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Representations of PGL(2) of a local field
and harmonic cochains on graphs

Paul Broussous
(1)

Dedicated to Colin Bushnell on his 60th birthday

ABSTRACT. — We give combinatorial models for non-spherical, generic,
smooth, complex representations of the group G = PGL(2, F ), where F
is a non-Archimedean locally compact field. More precisely we carry on
studying the graphs (X̃k)k�0 defined in a previous work. We show that
such representations may be obtained as quotients of the cohomology
of a graph X̃k, for a suitable integer k, or equivalently as subspaces of
the space of discrete harmonic cochains on such a graph. Moreover, for
supercuspidal representations, these models are unique.

RÉSUMÉ. — Nous donnons des modèles combinatoires des représentations
lisses, complexes, génériques, non-sphériques du groupe G = PGL(2, F ),
où F est un corps localement compact non-archimédien. Plus précisément
nous reprenons l’étude des graphes (X̃k)k�0 inaugurée dans un précédent
travail. Nous montrons que de telles représentations se réalisent comme
quotients de la cohomologie d’un graphe X̃k pour un k bien choisi, ou, de
façon équivalente, dans un espace de formes harmoniques discrètes sur un
tel graphe. Pour les représentations supercuspidales, ces modèles sont de
plus uniques.
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Introduction

Let F be a non-archimedean local field and G be the locally compact
group PGL(N,F ), whereN � 2 is an integer. In [1] the author constructed a
projective tower of simplicial complexes fibered over the Bruhat-Tits build-
ing X of G. He addressed the question of understanding the structure of the
cohomology spaces of these complexes as G-modules. In this article we give
a conceptual treatment of the case N = 2. In that case X is a homogeneous
tree and (a slightly modified version of) the projective tower is formed of
graphs X̃n, n � 0, acted upon by G.

Let π be an irreducible generic and non-spherical smooth complex rep-
resentation of G. We show there is a natural G-equivariant map

Ψ̃π : π∨ −→ H∞(X̃n(π),C) ,

where n(π) is an integer related to the conductor of π, π̃ denotes the contra-
gredient representation of π, and H∞(X̃n(π),C) denotes the space of smooth
discrete harmonic cochains on X̃n(π). Our construction is based on the ex-
istence of new vectors for irreducible generic representations whose proof is
due to Casselman in the case N = 2 [5] (see [7] for the general case).

The G-space H∞(X̃n(π),C) is naturally isomorphic to the contragre-
dient representation of the cohomology space H1

c (X̃n(π),C) (cohomology
space with compact support and complex coefficients). We show that Ψ̃π

corresponds to a non-zero natural G-equivariant map:

Ψπ : H1
c (X̃n(π),C) −→ π .

In other words π is naturally a quotient of H1
c (X̃n(π),C). When π is su-

percuspidal the surjective map Ψ splits and π embeds in H1
c (X̃n(π),C). We

show that this model is unique:

dimCHomG(π,H1
c (X̃n(π),C)) = 1 .

The proof of that fact roughly goes as follows. Using a geodesic Radon
transform on the space of 1-cochains with finite support on X̃k, k � 0, we
construct an intertwining operator:

jk : H1
c (X̃k,C) −→ c-indG

T 1T

(the compactly induced representation of the trivial character of the diag-
onal torus T of G). The point is that this map is injective. Moreover we
have: ⋃

k�0

Im(jk) = c-indG
T 1T .
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We show that c-indG
T 1T naturally embeds in a space of Whittaker func-

tions on G and we may then rely on the uniqueness of Whittaker model for
PGL(2, F ).

That such a combinatorial realization of the generic non-spherical ir-
reducible representations of PGL(2, F ) is feasible was actually conjectured
by Pierre Cartier more than thirty years ago [4] (but he did not introduce
any simplicial structure). Later on Cartier’s student Ahumada Bustamante
[3] studied the action of the full automorphism group Γ = Aut(X) of the
tree X on pairs of vertices at distance k + 1 (i.e. on edges of X̃k). Using
an equivalent language, he proved that, under the action of Γ, the space
H2(X̃k,C) of L2 harmonic cochains splits into two irreducible components
H±

2 (X̃k,C), formed of even and odd harmonic cochains respectively.

The present article is not a completion of the previous work [1] where we
computed the supercuspidal part of the cohomology space H1

c (X̃2,C). (Be
aware that the notation slightly differs. In particular, X̃2 is the space X̃1 of
[1])). Even though the results are compatible, here we do not determine the
structure of the spaces H1

c (X̃k,C), k � 0, as G-modules. In a forthcoming
work [2] we shall work out this structure and its links with types theory.

I would like to thank V. Sécherre and A. Bouaziz for pointing out some
embarrassing mistakes in previous versions of this work. I thank G. Hen-
niart, A. Gaborieau and A. Raghuram for stimulating discussions.

The notes are organized as follows. In §1 we shall discuss the link be-
tween cohomology and harmonic cochains on graphs. §§2-4 are about the
construction of the maps Ψπ, Ψ̃π and some of their properties. The Radon
transform is defined and studied in §5 in order to prove our uniqueness
result (theorem (5.3.2)).

In the sequel we shall use the following notation:

o = oF is the ring of integers of F ,

p = pF is the maximal ideal of o,

v = vF is the normalized additive valuation on F ,

k = kF is the residue class field o/p,

q = |kF | is the cardinal of k,

| | = | |F is the multiplicative valuation on F× normalized in such a way
that |�|F = 1/q for any generator � of the ideal p.

The contragrediente of a representation V is denoted by Ṽ or V∨.
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1. Proper G-graphs and harmonic cochains

1.1. In this section we let G be any locally profinite group and Y be
a locally finite directed graph (each vertex belongs to a finite number of
edges). We write Y 0 (resp. Y 1) for the set of vertices (resp. edges) of Y . We
have the map Y 1 −→ Y 0, a �→ a+ (resp. a �→ a−), where for any edge a we
denote by a+ and a− its head and tail respectively. We assume that G acts
on Y and preserves the structure of directed graph. For all s ∈ Y 0, a ∈ Y 1,
we have incidence numbers [a : s] ∈ {−1, 1, 0} satisfying [g.a : g.s] = [a : s],
for all g ∈ G; these are defined by [a : a+] = +1, [a : a−] = −1, and
[a : s] = 0 if s �∈ {a+, a−}. Finally we assume that the action of G on Y is
proper: for all s ∈ Y 0, the stabilizer Gs := {g ∈ G ; g.s = s} is open and
compact.

1.2. We let H1
c (Y,C) denote the cohomology space of the CW-complex

Y with compact support and complex coefficients. Recall that it may be
calculated as follows. Let C0(Y,C) (resp. C1(Y,C)) be the C-vector space
with basis Y 0 (resp. Y 1). Let Ci

c(Y,C), i = 0, 1, be the C-vector space of
1-cochains with finite support : Ci

c(Y,C) is the subspace of the algebraic
dual of Ci(Y,C) formed of those linear forms whose restrictions to the basis
Y i have finite support. The coboundary map

d : C0
c (Y,C) −→ C1

c (Y,C)

is given by df(a) = f(a+) − f(a−). Then

(1.2.1) H1
c (Y,C) � C1

c (Y,C)/dC0
c (Y,C) .

The group G acts on Ci(Y,C) and Ci
c(Y,C). Since the action of G on

Y is proper, these spaces are smooth G-modules. The coboundary map is
G-equivariant and the isomorphism (1.2.1) is G-equivariant. So H1

c (Y,C) is
smooth as a G-module; it is not admissible in general.

1.3. For i = 0, 1, we have a natural pairing:

〈−,−〉 : Ci(Y,C) × Ci
c(Y,C) −→ C ,

where Ci(Y,C) is the space of i-cochains with arbitrary support. The pair-
ings are given by:

〈f, g〉 =
∑

x∈Y i

f(x)g(x) , i = 0, 1 .
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Via these pairings we may identify the algebraic dual Ci
c(Y,C)∗ of Ci

c(Y,C)
with Ci(Y,C), i = 0, 1. The contragredient representation Ci

c(Y,C)∨ iden-
tifies with the space of smooth linear forms in Ci(Y,C). A straightforward
computation gives:

(1.3.1) 〈f, dg〉 = 〈d∗f, g〉 , f ∈ C1(Y,C) , g ∈ C0
c (Y,C) ,

where d∗: C1(Y,C) −→ C0(Y,C) is defined by

d∗f(s) =
∑

a∈Y 1, s∈a

[a : s]f(a) , s ∈ Y 0 .

Of course this latter sum has a finite number of terms. An element of the
kernel of d∗ is called a harmonic cochain on Y . We denote by H(Y,C) =
ker(d∗) the space of harmonic cochains. It is naturally acted upon by G.
The smooth part of H(Y,C) under the action of G, i.e. the space of smooth
harmonic cochains is denoted by H∞(Y,C). The following lemma follows
from equality (1.3.1).

(1.3.2) Lemma. — The algebraic dual of H1
c (Y,C) naturally identifies with

H(Y,C). Under this isomorphism, the contragredient representation of
H1

c (Y,C) corresponds to H∞(Y,C).

2. The projective tower of graphs

2.1 In this section, we recall the construction of [1]. The notation is
slightly modified. We denote by X the Bruhat-Tits building of G (cf. [8]
chap. II, §1). This is a 1-dimensional simplicial complex (a (q+ 1)-homoge-
neous tree). Let k � 0 be an integer. An (oriented) k-path inX is an injective
sequence (s0, . . . , sk) of vertices inX such that, for i = 0, . . . , k−1, {si, si+1}
is an edge of X.We define an oriented graph X̃k as follows. Its vertex set
(resp. edge set) is the set of k-paths (resp. (k+1)-paths) in X. The structure
of oriented graph is given by:

a+ = (t1, . . . , tk+1), a− = (t0, . . . , tk), if a = (t0, . . . , tk+1) .

The group G acts on X̃k. If k � 1, X̃k is a simplicial complex and the
G-action is simplicial. For k = 0 the action preserves the graph structure.
For all k, it preserves the orientation of X̃k. Recall ([1] Lemma 4.1) that
the simplicial complexes X̃k, k � 1 are connected. The directed graph X̃0
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is obtained from X by doubling the edges (with the same vertex set); it is
obviously connected.

2.2. For any integer n � 1, we write Γ0(pn) for the image in G of the
following subgroup of GL(2, F ):

Γ̃0(pn) =
{ (

a b
c d

)
∈ GL(2, F ); a, d ∈ o×, b ∈ o, c ∈ pn

}

We let Γo(p0) be the image in PGL(2, F ) of the standard maximal compact
subgroup of GL(2, F ):

Γ̃0(p0) =
{ (

a b
c d

)
∈ GL(2, o); ad− bc ∈ o×

}

For all n � 0, Γo(pn+1) is the stabilizer in G of some edges of X̃n. We fix
such an edge ao.

3. The construction

3.1. We start by recalling Casselman’s result. We fix an irreducible com-
plex smooth representation (π,V) of G. We assume that:

(3.1.1) π has no non-zero vector fixed by Γ0(p0),

(3.1.2) π is generic, i.e. it is not of the form χ ◦ det, where χ is a char-
acter of F×/(F×)2 and det : G −→ F×/(F×)2 is the map induced by the
determinant map: GL(2, F ) −→ F×.

We have the following result ([5] Theorem 1):

(3.1.3) Theorem (Casselman). — i) For k large enough, the space of fixed
vectors VΓo(pk+1) is non-zero.

ii) Let n(π) � 0 be such that VΓo(pn(π)+1) �= {0} and VΓo(pn(π)) = {0}.
Then for all k � n(π), we have:

dimCVΓo(pk+1) = k − n(π) + 1 .
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3.2. For all a ∈ X̃1
n(π) (resp. s ∈ X̃0

n(π)), we write Γa (resp. Γs) for the
stabilizer of a (resp. s) in G. In particular we have Γao

= Γo(pn(π)+1).

(3.2.1) Lemma. — i) For all a ∈ X̃1
n(π), we have dimVΓa = 1.

ii) Let a ∈ X̃1
n(π) and s ∈ X̃0

n(π) with s ∈ a. Then for all v ∈ VΓa , we
have ∑

k∈Γs/Γa

kv = 0 .

Point i) is obvious. In ii), the vector
∑

k∈Γs/Γa

kv is fixed by Γs. So it must

be zero since Γs is conjugate to Γo(pn(π)).

Let us fix a non-zero vector vo ∈ VΓao ; vo is unique up to a scalar in C
×.

If a is any edge of Xn(π), we put

(3.2.2) va = gvo, where a = gao .

This is indeed possible since G acts transitively on X̃1
n(π). Moreover, since

vo is fixed by Γao
, va does not depend on the choice of g ∈ G such that

a = gao. Let Ṽ be the contragredient representation of V. We define a map:

Ψ̃π : Ṽ −→ C1(Xn(π),C)

by Ψ̃π(ϕ)(a) = ϕ(va). From (3.2.2) we have that Ψ̃π is G-equivariant.

(3.2.3) Lemma. — i) The image of Ψ̃π lies in H∞(Xn(π),C).

ii) The map Ψ̃π is injective.

For i), it suffices to prove that Im(Ψ̃π) ⊂ H(X̃n(π),C). So we must prove
that for all ϕ ∈ Ṽ, (ϕ(va))a∈X̃1

n(π)
is a harmonic cochain on X̃n(π), that is:

∑
s∈a

[a : s]ϕ(va) = 0, for all s ∈ X0
n(π) .

Let s be any vertex of X̃n(π). Write s̄ for the convex hull in X of the set
of vertices of X occuring in the path s (this is a segment lying in some
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apartment). We know that the pointwise stabilizer of s̄ in G (that is the
stabilizer Γs of s in G) acts transitively on the set of apartments of X
containing s̄. It follows that Γs acts transitively on

A+
s = {a ∈ X̃1

n(π); a
+ = s} and A−

s = {a ∈ X̃1
n(π); a

− = s} .

Fix some a+
s ∈ A+

s and a−s ∈ A−
s . Then

∑
s∈a

[a : s]ϕ(va) = ϕ
( ∑

a∈A+
s

va −
∑

a∈A−
s

va

)

= ϕ
( ∑

k∈Γs/Γ
a
+
s

kva+
s
−

∑
k∈Γs/Γ

a
−
s

kva−
s

)
= 0 ,

thanks to lemma (3.2.1).

The G-equivariant map Ψ̃π is necessarily injective since it is non-zero
and since the representation π is irreducible.

Passing to contragredient representations, we get an intertwining oper-
ator:

˜̃Ψπ : ˜̃H
1

c(X̃n(π),C) −→ ˜̃V .

Recall that for any smooth G-module W, we have a canonical injection
W −→ ˜̃W. It is surjective if and only if W is admissible. In particular V
and ˜̃V are canonically isomorphic since π is irreducible, whence admissible.

(3.2.4) Theorem. — The map ˜̃Ψπ restricts to a non-zero intertwining op-
erator Ψπ : H1

c (X̃n(π),C) −→ V � ˜̃V, given by:

Ψπ(ω̄) =
∑

a∈X̃1
n(π)

ω(a)va .

where for ω ∈ C1
c (X̃n(π),C), ω̄ denotes the image of ω in H1

c (X̃n(π),C).

In particular, the representation (π,V) is naturally a quotient of the coho-
mology space H1

c (X̃n(π),C).

The theorem follows from a straightforward computation based on Lemma
(3.2.1)(ii) and is left to the reader.
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Remark. — Assume that π is supercuspidal. Then it is projective in the
category of smooth complex representations of G. So as a corollary of The-
orem (3.2.4) we get an injective map (π,Vπ) −→ H1

c (Xn(π),C).

4. Some properties of the map Ψ̃π.

4.1. We keep the notation as in the last section. If Y is any directed
graph, we write Hc(Y,C) for the subspace of H(Y,C) of harmonic cochains
with finite support and H2(Y,C) for the subspace of L2-harmonic cochains,
that is cochains f ∈ H(Y,C) satisfying

∑
a∈Y 1

|f(a)|2 <∞ .

Note that any element of Hc(Xn(π),C) is smooth.

(4.1.1) Proposition. — i) If π is a supercuspidal representation then ImΨ̃π

is contained in Hc(Xn(π),C).

ii) If π is a square-integrable representation then ImΨ̃π lies in

H2(Xn(π),C).

Assume π supercuspidal. Let λ ∈ Ṽ. Then Ψ̃π(λ)(a) = λ(gvao) for all
a = gao ∈ X1

n(π). Since π is supercuspidal, the coefficient g ∈ G �→ λ(gvao)
has compact support C. Choose a finite number of compact open subgroups
Ki, i ∈ I, of G and elements gi ∈ G, i ∈ I, such that C lies in the union of
the giKi, i ∈ I. Then the support of the harmonic cochain Ψ̃π(λ) lies in

⋃
i∈I

giKiao =
⋃
i∈I

giKi/(Ki ∩ Γao)ao ,

a finite set.

Now assume that π is square-integrable. With the notation as above, the
coefficient g �→ λ(gvao) is square-integrable. Consider the Haar measure on
G such that Γao has volume 1. Then

∫
G

|λ(gvao
)|2dg =

∑
a∈X1

n(π)

|λ(va)|2 <∞ ,

as required.
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(4.1.2) Corollary. — If π is supercuspidal, the map Ψ̃π : (Ṽ, π∨) −→
Hc(Xn(π),C) induces a non-zero (whence injective) map Ψ̄π : (Ṽ, π∨) −→
H1

c (Xn(π),C).

The map Ψ̄π is

λ �→ Ψ̃π(λ) mod dC0
c (Xn(π),C) .

It suffices to prove that

Hc(Xn(π),C) ∩ dC0
c (Xn(π),C) = {0} .

If f lies in the intersection then d∗f = 0 and f = dg for some g ∈
C0

c (Xn(π),C). We then have d∗f̄ = 0 (where f̄(a) is the complex conju-
gate of f(a)), and

∑
a∈X1

n(π)

|f(a)|2 = 〈f̄ , f〉 = 〈f̄ , dg〉 = 〈d∗f̄ , g〉 = 0 .

Hence f = 0.

5. The geodesic Radon tranform

5.1. In corollary (4.1.2) we saw that each supercuspidal irreducible rep-
resentation of G may be realized as a G-invariant subspace of H1

c (Xk,C) for
a certain k. In order to prove that this model is unique, we need to embed
the space H1

c (Xk,C) in a standard G-module which contains supercuspidal
irreducible representations with multiplicity 1. This standard G-module is
the space of locally constant functions with compact support on the set of
all oriented apartments of Xk endowed with a certain topology (see below).
This will be done via a Radon transform that “integrates” 1-cochains over
each apartment of Xk.

Recall that an apartment of X is a doubly infinite geodesic of X, that
is the image in X of an injective sequence of vertices (sk)k∈Z such that for
all k ∈ Z, {sk, sk+1} is an edge of X.

An oriented apartment Ã of X is by definition a pair (A, ε), where A
is an apartment of X and ε is an orientation of A as a simplicial complex.
Our group G acts on oriented apartments via g.(A, ε) = (gA, gε), where gε
is the unique orientation on A satisfying [ga : gs]gε = [a : s]ε, for all a ∈ A1,
s ∈ A0. The group G acts transitively on the set of oriented apartments.
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Let T be the diagonal torus of G (the image of the diagonal torus of
GL(2, F ) in G). The G-set Ã of oriented apartments in X is isomorphic to
G/T . Indeed the stabilizer of an oriented apartement (A, ε), that is the set of
g ∈ G such that gA = A and gε = ε, is conjugate to T . We endow Ã with the
topology corresponding to the quotient topology of G/T . In particular for
any Ã in Ã and any open (compact) subgroup K of G, K.Ã = {kÃ; k ∈ K}
is an open (compact) neighbourhood of Ã in Ã. Let Ã ∈ Ã and k be a non-
negative integer. By definition the (oriented) apartment of X̃k corresponding
to Ã is the 1-dimensional subsimplicial complex Ãk of X̃k whose edges (resp.
vertices) are the (k + 1)-paths a (resp. k-paths s) in X contained in Ã and
such that the orientations of a (resp. s) and Ã are compatible. We denote by
Ãk the set of apartments of X̃k. Then Ã �→ Ãk is a G-equivariant bijection
between Ã and Ãk which allows us to identify both G-sets.

Let k be a non-negative integer and a be an edge of X̃k. Define a subset
Ãa of Ã by

Ãa = {Ã ∈ Ã ; a ∈ Ã1} .

(5.1.1) Lemma. — i) With the notation as above, we have Ãa = ΓaÃo, for
any Ão in Ãa. In particular Ãa is a compact open subset of Ã.

ii) The set {Ãa ; k � 0, a ∈ X̃1
k} is a basis of the topology of Ã formed

of compact open subsets.

The equality Ãa = ΓaÃo follows from the fact that Γa acts transitively
on the apartments of X containing the path a. For ii), we must prove that
any open subset Ω of Ã contains Ãa for some k � 0 and a ∈ X̃1

k . Replacing
Ω by gΩ for some g ∈ G we may assume that it contains the oriented
apartment Ãst corresponding to the coset 1.T ∈ G/T . For r � 1, let Kr be
the image in G of the following congruence subgroup of GL(2, F ):

{ (
a b
c d

)
; a, d ∈ 1 + pr, b, c ∈ pr

}
.

Take r large enough so that KrÃst ⊂ Ω. Let T o be the maximal compact
open subgroup of T . It stabilizes Ast pointwise, whence it fixes Ãst. So
KrT

oÃst ⊂ Ω. The subgroup KrT
o is Γa for some a ∈ Ã1

st and we are done.

5.2. Fix k � 0. We define a (geodesic) Radon transform

R = Rk : C1
c (X̃k,C) −→ F(Ã) ,
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where F(Ã) is the space of functions on Ã, by

R(ω)(Ã) =
∑

a∈Ã1

ω(a) .

Note that the image of a 1-cochain ω whose support is reduced to a single
edge ao is ω(ao)CharÃao

, where Char denotes a characteristic function. So

the image of R actually lies in the space C0
c (Ã) of locally constant functions

with compact support on Ã. Clearly R is G-equivariant.

(5.2.1) Lemma. — For all f ∈ C0
c (X̃k,C), we have R(df) = 0.

Indeed if Ã ∈ Ã, we have

R(df)(Ã) =
∑

a∈Ã1

f(a+) − f(a−)

=
∑

a∈Ã1

f(a+) −
∑

a∈Ã1

f(a−) =
∑
s∈Ã0

f(s) −
∑
s∈Ã0

f(s) = 0 ,

since the map Ã1 −→ Ã0, a �→ a+ (resp. a �→ a−) is a bijection.

(5.2.2) Proposition. — i) The following sequence of G-modules is exact:

C0
c (X̃k,C) d−→ C1

c (X̃k,C) R−→ C0
c (Ã) .

In other words R induces an injective map:

R̄ : H1
c (X̃k,C) −→ C0

c (Ã) .

ii) Moreover we have:
⋃
k�0

R̄k(H1
c (X̃k,C)) = C0

c (Ã) .

Point ii) follows from the fact that C0
c (Ã) is generated as a C-vector

space by the functions CharÃa
, where a ∈ X̃1

k and k � 0.

To prove i) we need to introduce some more concepts. A path p in X̃k is
a sequence of edges au, u = 0, . . . , l−1, such that for u = 0, . . . , l−2, au and
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au+1 share a vertex. Abusing the notation we shall write p = (x0, x1, . . . , xl),
where for u = 0, . . . , l−1, {a+

u , a
−
u } = {xu, xu+1}, keeping in mind that when

k = 0 two neighbour vertices do not determine a unique edge. We define
“incidence coefficients” [p : au] ∈ {±1}, u = 0, . . . , l − 1, by [p : au] = 1 if
and only if a−u = xu and a+

u = xu+1.

Let ω ∈ C1
c (X̃k,C) be in the kernel of R. The “integral” of ω along p is

by definition ∫
p

ω =
∑

u=0,...,l−1

[p : au]ω(au) .

(5.2.3) Lemma. — With the notation as above, if p is a loop, i.e. if a0 and
al−1 share the vertex xl = x0, then∫

p

ω = 0 .

We first show that the lemma implies proposition (5.2.2). Fix so ∈ X̃0
k

and αo ∈ C. For any x ∈ X̃0
k , we set

f(x) = αo +
∫

p

ω ,

where p = (x0, . . . , xl) is any path satisfying x0 = so and xl = x. We claim
that f(x) does not depend on the choice of p. Indeed let q = (y0, . . . , ym) be
another path satisfying the same assumptions and set q−p = (z0, . . . , zm+l+1),
where zu = xu, for u = 0, . . . , l, and zu = ym+l+1−u, for u = l + 1, . . . , l +
1 +m. Then one easily checks that

(αo +
∫

q

ω) − (αo +
∫

p

ω) =
∫

q−p

ω = 0 ,

since q − p is a loop.

Let a ∈ X̃1
k and p = (xo, . . . , xl) be a path such that x0 = so and

xl = a−. Set q = (xo, . . . , xl, a
+). Then

f(a+) − f(a−) =
∫

q

ω −
∫

p

ω = [q : a]ω(a) = ω(a) .

So we must now prove that one can choose so and αo so that f ∈
C0(X̃k,C) has finite support. Let Sk be the support of ω in X̃1

k and set

S :=
⋃

a∈Sk

cvx(a) ⊂ X ,
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where cvx(a) denotes the convex hull of a in (the geometric realization of)
X. Then S is a bounded subset of X. Let t be a vertex in S and δ be an
integer large enough so that S ⊂ X(t, δ), where X(t, δ) is the subtree of X
whose vertices are at combinatorial distance from t less than or equal to
δ. Then the complementary set cX(t, δ) of X(t, δ) in X has the following
property; for any k-path a ⊂ cX(t, δ), there exists a half-apartment A+

such that a ⊂ A+ ⊂ cX(t, δ). Set

S′
k = {s ∈ X̃0

k ; cvx(s) ∩X(t, δ) �= ∅}.

Choose so outside S′
k and set αo = 0. We are going to prove that the support

of f is contained in S′
k. Let x be in X̃0

k\S′
k. Choose half-apartments A+

o and
A+ so that:

A+, A+
o ⊂ cS and cvx(so) ⊂ A+

o , cvx(x) ⊂ A+ .

Consider vertices s′o and x′ of X̃k whose convex hulls in X lie in A+
o and

A+ respectively. One may choose s′o (resp. x′) away enough from the origin
of A+

o (resp. of A+) so that there exists an apartment B of X containing
both cvx(s′o) and cvx(x′).

First case: the vertices s′o and x′ induce the same orientation on B (see figure
1). Let B̃ be the corresponding oriented apartment. Let Ã+

o be the oriented
half-apartment whose orientation is induced by so and Ã+ be the oriented
half-apartment whose orientation is induced by x. Let p(so, s′o) (resp. p(x′, x)
and p(s′o, x

′)) be the unique injective path in X̃k joining so to s′o (resp. x′ to
x, s′o to x′) and such that p(so, s′o) ⊂ Ã+

o (resp. p(x′, x) ⊂ Ã+, p(s′o, x
′) ⊂ B̃).

By concatenation, we get a path p(so, x) = p(so, s′o) + p(s′o, x
′) + p(x′, x)

joining so and x. Since those vertices of X̃k occuring in p(so, s′o) or p(x′, x)
do not lie in S, we have

∫
p(so,s′

o)

ω =
∫

p(x,x′)

ω = 0 .

Moreover ∫
p(s′

o,x′)

ω = ±R(ω)(B̃) = 0 ,

by assumption. So
∫

p(so,x)

ω = 0 and f(x) = αo +
∫

p(so,x)

ω = 0 ,

as required.
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A A+ +

B

o

k

ss x x’ ’oo

S

Figure 1

Second case: the vertices s′o and x′ induce different orientations on B (see
figure 2). Then one can choose a third vertex x′′ ∈ S′

k such that s′o and
x′′ (resp. x′ and x′′) lie in some common apartment B1 (resp. B2) and
induce the same orientation on that apartment. We denote by B̃1 and B̃2

the corresponding oriented apartments. Then, with the notation as in the
first case, one easily shows that

f(x) = f(so) +
∫

p(so,s′
o)

ω + ±R(ω)(B̃1) + ±R(ω)(B̃2) +
∫

p(x′,x)

ω = 0 .

A A+ +

B

o

B B1 2

ss x x

x

’ ’

’’

oo

Sk’

Figure 2

Proof of lemma (5.2.3). — It is based on the following easy lemma whose
proof is left to the reader.

(5.2.4) Lemma. — Let U be either Z, N or a finite interval of integers. Let
p = (xu)u∈U be a path in X̃k. Assume that p satisfies one of the following
properties:
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(P1) For all u ∈ U such that u+ 1 ∈ U , we have a+
u = a−u+1;

(P2) For all u ∈ U such that u+ 1 ∈ U , we have a−u = a+
u+1.

Then p is injective and there is an apartment Ã containing p. In particular
p cannot be a loop.

Remark. — A path p satisfies (P1) or (P2) if and only if the sequence of
incidence numbers ([p : au])u is constant.

Let p = (x0, . . . , xl) be a loop. We consider the index u as an element of
Z/lZ. According to the previous lemma, the set V of indices u ∈ Z/lZ such
that we have neither a+

u = a−u+1 nor a−u = a+
u+1 is non-empty. Moreover

it has cardinal at least 2. Let us first consider the case 4V = 2 (this case
indeed occurs when k = 0). We may for instance assume that

a−0 = a−l−1 = x0 and a+
uo−1 = a+

uo
= xuo ,

for some uo ∈ Z/lZ\{0}. Hence we must have

a−u+1 = a+
u , u = 0, . . . , uo − 2 a−u = a+

u+1, u = uo, . . . , l − 2 .

x
0

x1 ux
1

x
0
=st

tt t s s s1 2 3

00

123
=

A
0

+ Au
0

+
x

u

xu
0+1

0

l 1

x2

Figure 3

Choose a half-apartment A+
o , whose vertex set is {s0, s1, . . . , su, . . .}, satis-

fying:

• for all u � 0, there is an edge bu of A+
o , such that b+u = su, b−u = su+1;

• s0 = x0 = b+0 .

Similarly choose a half-apartmentA+
uo

, whose vertex set is {t0, t1, . . . , tu, . . .},
satisfying:

• for all u � 0, there is an edge cu of A+
uo

such that c+u = su+1, c−u = su;

• t0 = xuo
= c−0 .
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Consider the two infinite paths:

p1 = (. . . , su, . . . , s1, s0 = x0, x1, x2, . . . , xuo−1, xuo = t0, t1, t2, . . . , tv, . . .)

p2 = (. . . , su, . . . , s1, s0 = x0, xl−1, xl−2, . . . , xuo+1, xuo
= t0, t1, t2, . . . , tv, . . .)

By lemma (5.2.4) we can find an apartment Ã1 (resp. Ã2) whose vertices
are those of p1 (resp. those of p2). Since ω has finite support, we can give
an obvious meaning to the integrals:

∫
p1

ω and
∫

p2

ω .

Moreover we have∫
p1

ω = R(ω)(Ã1) = 0 and
∫

p2

ω = R(ω)(Ã2) = 0 .

Finally we have:
∫

p1

ω −
∫

p2

ω =
∑

u=0,...,uo−1

ω(au) −
∑

u=l−1,l−2,...,uo

ω(au)

=
∑

u=0,...,uo−1

[p : au]ω(au) +
∑

u=l−1,l−2,...,uo

[p : au]ω(au) =
∫

p

ω = 0 ,

�.

This proof extends to the case 4V > 2 by introducing for all u ∈ V a
half-apartment starting at the vertex au ∩ au+1. The details are left to the
reader (see figure 4).

Figure 4
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5.3 Uniqueness of the model in H1
c (X̃k,C) for supercuspidals

Because of the homeomorphism Ã � G/T , the G-module C0
c (Ã) is iso-

morphic to C0
c (G/T ), the space of locally constant complex functions with

compact support on G/T . The G-module C0
c (G/T ) by definition is the com-

pactly induced representation c-indG
T 1T of the trivial character 1T of T to

G. So we may rephrase proposition (5.2.2) in the following way.

(5.3.1) Proposition. — For all k � 0, the Radon transform induces an
injective G-equivariant map:

H1
c (X̃k,C) −→ c-indG

T 1T ,

where c-ind denotes a compactly induced representation and 1T denotes the
trivial character of T .

(5.3.2) Theorem. — Let (π,Vπ) be an irreducible supercuspidal representa-
tion of G. Then we have

dimCHomG[Vπ, H
1
c (X̃n(π),C)] = 1 .

This theorem will from the following result due to Waldspurger ([9] Prop.
9’, p. 31):

(5.3.3) Theorem (J.-L. Waldspurger). — Let (π,Vπ) be an irreducible uni-
tary smooth representation of G. Then we have

dimCHomG(Vπ, 1T ) = 1 .

Proof of (5.3.2). — Waldspurger’s result together with Frobenius reci-
procity imply that

dimCHomG(Vπ, IndG
T 1T ) = 1 ,

where IndG
T 1T is the representation of G smoothly induced from the trivial

character of T . This representation is the smooth part of the G-module
C(G/T ) formed of those locally constant functions on G that are stabilized
by an open subgroup of G. Since c-indG

T 1T naturally embeds as a sub-G-
module of IndG

T 1T , we get :

dimCHomG(Vπ, c-indG
T 1T ) � dimCHomG(Vπ, IndG

T 1T ) ,

and the theorem follows.
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représentations du groupe linéaire, Math. Ann., 256 no. 2, p. 199-214 (1981).

[8] Serre (J.-P.). — Trees, Springer, 2nd ed.2002.

[9] Waldspurger (J.-L.). — Correspondance de Shimura, J. Math. Pures et Appl., 59,
p. 1-133 (1980).

– 559 –


