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to the generalized Riemann-Hilbert problem(1)

R.R. Gontsov
(2)

, I.V. Vyugin
(3)

ABSTRACT. — We consider the generalized Riemann-Hilbert problem for
linear differential equations with irregular singularities. If one weakens the
conditions by allowing one of the Poincaré ranks to be non-minimal, the
problem is known to have a solution. In this article we give a bound for the
possibly non-minimal Poincaré rank. We also give a bound for the number
of apparent singularities of a scalar equation with prescribed generalized
monodromy data.

RÉSUMÉ. — Nous considérons le problème de Riemann-Hilbert généralisé
pour des équations différentielles linéaires avec singularités irrégulières. Si
on affaiblit les conditions en autorisant que l’un des rangs de Poincaré ne
soit pas minimal, il est connu que le problème a une solution. Dans cet ar-
ticle nous donnons une borne pour le rang de Poincaré ainsi obtenu. Nous
donnons aussi une borne pour le nombre de singularités apparentes de
l’équation scalaire avec une donnée de monodromie généralisée prescrite.

1. Introduction

Consider a system
dy

dz
= B(z)y, y(z) ∈ C

p, (1.1)

of p linear differential equations whose matrix B(z) is meromorphic on
the Riemann sphere C and holomorphic outside the set of singular points
a1, . . . , an.
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By the monodromy representation or the monodromy of this system we
mean the representation

χ : π1(C \ {a1, . . . , an}) → GL(p,C) (1.2)

of the fundamental group of the punctured sphere in the space of invertible
complex matrices of order p. (A loop γ is mapped to a matrix Gγ such that
Y (z) = Ỹ (z)Gγ , where Y (z) is a fundamental matrix of the system and
Ỹ (z) its analytic continuation along γ.)

Since the fundamental group of the punctured sphere is generated by the
homotopy classes of all simple loops γi (each γi encircles the only singular
point ai, and by convention we assume the loop γ1 . . . γn is contractible), the
representation χ is defined by local monodromy matrices Gi corresponding
to these loops.

A singular point ai of the system (1.1) is said to be Fuchsian if the matrix
differential 1-form B(z)dz has a simple pole at this point. By Sauvage’s
theorem (see [9], Th. 11.1) a Fuchsian singularity is always regular (i. e., each
solution has at most power growth near it), although a regular singularity
is not necessarily Fuchsian. The system (1.1) is said to be Fuchsian if all its
singular points are Fuchsian.

The classical Riemann-Hilbert problem asks for conditions under which
it is possible to construct a Fuchsian system (1.1) with prescribed sin-
gular points a1, . . . , an and prescribed monodromy (1.2). (In the general
case the problem has a negative solution, a counterexample was found by
A. Bolibrukh, see [1], Sect. 2.) One knows various sufficient conditions for the
affirmative solution of this problem. One such condition is the irreducibility
of the representation (1.2) (see [1], Th. 4.2.1). And by Plemelj’s theorem
the problem always has a solution if one allows the point a1 to be regular
rather than Fuchsian (see [1], Th. 3.2.1).

A generalization of the Riemann-Hilbert problem was formulated by
A. Bolibrukh, S. Malek and C. Mitschi in [6], under the denomination of the
generalized Riemann-Hilbert problem (the GRH-problem). Before presenting
this problem we first recall the notions of local holomorphic and meromor-
phic transformations, the Poincaré rank and the minimal Poincaré rank of
the system (1.1).

If the coefficient matrix B(z) of the system (1.1) has the Laurent expan-
sion of the form

B(z) =
B−r−1

(z − a)r+1
+ . . . +

B−1

z − a
+ B0 + . . . (B−r−1 �= 0)
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in a neighbourhood of a singularity a = ai then one refers to the integer r
as the Poincaré rank of the system at this point.

A local linear transformation (in a neighbourhood Oi of a point ai)

y′ = Γ(z)y

is said to be holomorphic (more precisely, holomorphically invertible) if the
matrix Γ(z) is holomorphic in Oi and det Γ(ai) �= 0. This transformation is
said to be meromorphic (more precisely, meromorphically invertible) if the
matrix Γ(z) is meromorphic at ai, holomorphic in Oi\{ai} and det Γ(z) �≡ 0.

Such transformations take (1.1) to the system

dy′

dz
= B′(z)y′, B′(z) =

dΓ
dz

Γ−1 + ΓB(z)Γ−1. (1.3)

Under such transformations the systems (1.1) and (1.3) are said to be holo-
morphically (resp. meromorphically) equivalent.

A holomorphic transformation does not change the Poincaré rank of
the original system, while a meromorphic one may increase or decrease the
Poincaré rank. The minimal Poincaré rank of the system (1.1) at the point
ai is the smallest Poincaré rank of local systems (1.3) in the meromorphic
equivalence class of (1.1) at the point ai.

Now the GRH-problem can be formulated as follows.

Let for each i = 1, . . . , n a local system

dy

dz
= Bi(z)y (1.4)

be given in the neighbourhood Oi of an (irregular) singular point ai of the
Poincaré rank ri which is minimal. Assume that a monodromy matrix of
(1.4) (with respect to a suitable fundamental solution) coincides with Gi

(recall that Gi = χ(γi) for the given representation (1.2)).

Does there exist a global system (1.1) with singularities a1, . . . , an of the
Poincaré ranks r1, . . . , rn, with the prescribed monodromy (1.2) and such
that it is meromorphically equivalent to the system (1.4) in each Oi?

We will refer to the monodromy representation (1.2) and the family of
local systems (1.4) as generalized monodromy data.
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These data are called reducible if the representation (1.2) is reducible
and the local systems (1.4) are simultaneously reducible, i. e., they can
be reduced via meromorphic transformations to systems with coefficient
matrices of the same block upper-triangular form. Otherwise we say that
the generalized monodromy data are irreducible.

Generalizing A. Bolibrukh’s method of solution of the classical Riemann-
Hilbert problem to the case of irregular singularities, the authors of [6]
obtained some sufficient conditions for an affirmative solution of the GRH-
problem. One such condition is the irreducibility of the generalized mon-
odromy data in the case if one at least of the singularities is unramified (the
definition of ramified and unramified singular points see in §2).

An analogue of Plemelj’s theorem is that the problem has always a so-
lution if one allows the Poincaré rank of a global system at the point a1 not
to be minimal. We here obtain an estimate for the Poincaré rank at this
point.

Theorem 1.1. — Any generalized monodromy data can be realized by
a global system (1.1) that has the minimal Poincaré ranks at all points
but one (a1 for instance), at which it has Poincaré rank not greater than
r1 + (p− 1)(n + R− 2), where R =

∑n
i=1 ri � 1.

Remark. — We assume that R � 1 because R = 0 is a case of Fuch-
sian singularities a1, . . . , an, which was considered in [11]. It was shown
there that the Poincaré rank of unique non-Fuchsian (regular) singularity
from Plemelj’s theorem can be reduced to a value that is not greater than
(p− 1)(n− 1).

Section 4 is devoted to the GRH-problem for scalar equations, for which
we recall and reformulate results already proved in [11]. The problem is to
construct a scalar linear differential equation

dpy

dzp
+ b1(z)

dp−1y

dzp−1
+ . . . + bp(z)y = 0

with prescribed singular points a1, . . . , an and generalized monodromy data.
In the construction there necessary arise apparent singularities (at which
coefficients of an equation are singular, but solutions are meromorphic, so
that a monodromy is trivial), the number of which was estimated in [11].
We present these results in the language of the GRH-problem for systems,
although Section 4 is independent of the previous sections.
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We are very thankful to the prof. D. Bertrand for the offering to publish
this paper and to the referee for a lot of useful comments which allowed us
to improve the presentation of the paper.

2. Irregular systems and holomorphic vector bundles

In this paragraph we recall the main results which we will need from the
theory of irregular singularities and their relations with vector bundles. Our
main reference is the article [6] by A. Bolibrukh, S. Malek and C. Mitschi.

In a neighbourhood of an irregular singularity a = ai of Poincaré rank
r the system (1.1) has a formal fundamental matrix Ŷ (z) of the form (see
[3], Th. 1)

Ŷ (z) = F̂ (z)(z − a)E UeQ(z), (2.1)

where

F̂ (z) is a formal (matrix) Laurent series in z − a (in general divergent)
with a finite principal part and det F̂ (z) is distinct from the zero series;

Q(z), E and U are block-diagonal matrices with diagonal blocks Qj(z),
Ej and U j of the same size, j = 1, . . . , N ;

the blocks Qj(z) and Ej too are block-diagonal of the form

Qj(z) = diag
(
qj(t)Imj , qj(tζj)Imj , . . . , qj(tζ

sj−1
j )Imj

)
,

where qj(t) is a polynomial in t = (z − a)−1/sj with no constant term,
ζj = e−2πi/sj for some integer sj and deg qj � rsj , Imj denotes the identity
matrix of size mj ;

Ej = diag
(
Êmj , Êmj +

1
sj

Imj , . . . , Ê
mj +

sj − 1
sj

Imj

)
,

where Êmj is a constant matrix of size mj in canonical Jordan form and its
eigenvalues ρ satisfy the condition 0 � Re ρ < 1/sj ;

the matrix U j decomposes into blocks
[
U j

]kl of the form

[
U j

]kl
= ζ

−(k−1)(l−1)
j Imj , 1 � k, l � sj ,

with respect to the block structure of the matrices Qj(z) and Ej .
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Let the matrix Q(z) be thought of as the (matrix) polynomial in 1/(z−a)
of fractional degree degQ. Then this degree is called the Katz rank of a
singularity z = a.

Since the matrix Q(z) is a meromorphic invariant of the system (1.1), it
follows from the properties of this matrix that the Katz rank is not greater
than the minimal Poincaré rank of a singularity. Moreover, the minimal
Poincaré rank is the least integer greater than or equal to the Katz rank of
a singularity.

Definition 2.1. — An irregular singularity of the system (1.1) is called
unramified (or a singularity without roots) if for every block Qj(z) of the
matrix Q(z) from (2.1) the corresponding integer sj is equal to one.

In the opposite case a singularity is called ramified (or a singularity with
roots).

Now we will describe briefly the method of solution for the GRH-problem
given in [6].

From the representation (1.2) one constructs over the punctured Rie-
mann sphere C \ {a1, . . . , an} a holomorphic vector bundle F of rank p
with a holomorphic connection ∇ having the prescribed monodromy (1.2).
This bundle is defined by a set {Uα} of sufficiently small discs covering
C \ {a1, . . . , an} and a set {gαβ} of constant matrices defining a gluing co-
cycle. A connection ∇ is defined by a set {ωα} of matrix differential 1-forms
ωα ≡ 0. So in the intersections Uα ∩ Uβ �= ∅ the gluing conditions

ωα = (dgαβ)g−1
αβ + gαβωβg

−1
αβ

hold.

Further one extends the pair (F,∇) to the whole Riemann sphere by
means of the local matrix differential 1-forms ωi = Bi(z)dz of the coefficients
of the systems (1.4) defined each in the neighbourhood Oi of the point ai,
i = 1, . . . , n. This is the so-called canonical extension (F 0,∇0) of the pair
(F,∇) in the sense of Deligne.

Then one constructs a family F of extensions of the pair (F,∇) replacing
the forms ωi in the construction of (F 0,∇0) by the forms

ω′
i = (dΓi)Γ−1

i + ΓiωiΓ−1
i , (2.2)

where y′ = Γi(z)y are all possible meromorphic transformations of a system
(1.4) which do not increase its Poincaré rank ri, i = 1, . . . , n (see (1.3)).
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The family F contains all holomorphic vector bundles over C with con-
nections having the prescribed monodromy data (1.2), (1.4). Since a con-
nection on a holomorphically trivial vector bundle defines a global system
of linear differential equations on the Riemann sphere, one gets that

The GRH-problem has a positive solution for the given generalized mon-
odromy data (1.2), (1.4) if and only if at least one of the vector bundles of
the family F is holomorphically trivial.

The Birkhoff-Grothendieck theorem states that each holomorphic vector
bundle F ′ of rank p on the Riemann sphere is holomorphically equivalent
to a sum of line bundles

F ′ ∼= O(k1) ⊕ . . .⊕O(kp),

where {k1 � . . . � kp} is a system of integers called the splitting type of the
bundle F ′.

From this theorem one concludes that for every (F ′,∇′) ∈ F there exists
a global system dy = ωy holomorphically equivalent to the system dy = ω′

iy
in Oi for i = 2, . . . , n and

ω = − K

z − a1
dz + (z − a1)−K ω̃1(z − a1)K , K = diag(k1, . . . , kp), (2.3)

in O1, where orda1 ω̃1 = −(r1 + 1). This global system has the prescribed
generalized monodromy data, but its Poincaré rank r′1 at the singular point
a1 may be greater than r1. The relation (2.3) implies that r′1 is not greater
than r1+k1−kp. Further to prove Theorem 1.1 we will estimate the integers
k1 − kp for some bundles F ′ from F .

Let us recall that the degree degF ′ of a bundle F ′ with a connection ∇′

defined by the forms ω′
i from (2.2) is the sum

degF ′ =
n∑

i=1

resai
trω′

i.

The degree of a bundle is an integer equal to the sum of the coefficients ki

of its splitting type.

Now we consider a subset E ⊂ F of the family F constructed by means
of meromorphic transformations with matrices Γi(z) from (2.2) of some spe-
cial form. For this construction one needs the following definition.

Definition 2.2. — Consider a system (1.4) with an (irregular) singular
point ai and its formal fundamental matrix Ŷi(z) of the form (2.1), where all
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matrices are supplied with subscript i. An admissible matrix for this system
is an integer-valued diagonal matrix Λi = diag(Λ1

i , . . . ,Λ
N
i ) blocked in the

same way as Qi(z) and such that

(z−ai)Λ
j
iEj

i (z−ai)−Λj
i is holomorphic at the point ai if the block Qj

i (z)
has no ramification;

Λj
i is a scalar matrix if the block Qj

i (z) has ramification.

Let us write the matrix Ŷi(z) as follows:

Ŷi(z) = F̂i(z)(z − ai)−Λi(z − ai)Λi(z − ai)Ei Uie
Qi(z). (2.4)

By an analogue of Sauvage’s lemma (see [9], L. 11.2) for formal series, there
exists a meromorphically invertible matrix Γ′

i(z) in Oi, such that

Γ′
i(z)F̂i(z)(z − ai)−Λi = (z − ai)DF̂0(z), (2.5)

where D is a diagonal integer-valued matrix and F̂0(z) is an invertible formal
(matrix) Taylor series in z − ai.

Meromorphic transformations (required for the construction of a subset
E ∈ F) for an irregular singularity ai are now defined by the matrices
ΓΛi(z) = (z − ai)−D Γ′

i(z) depending on Λi (because Γ′
i(z) depends on Λi).

It follows from (2.4), (2.5) that the transformation y′ = ΓΛi(z)y takes (1.4)
to the system with formal fundamental matrix

Ŷ ′
i (z) = F̂0(z)(z − ai)Λi(z − ai)Ei Uie

Qi(z).

One needs to verify now that such transformations do not increase the
Poincaré ranks ri of the systems (1.4). This is provided by the following
lemma, all statements of which are proved in [6], Sect. 2.

Lemma 2.3. — Consider the set E of the extensions (FΛ,∇Λ) of the
pair (F,∇) to the whole Riemann sphere obtained by means of all possi-
ble systems Λ = {Λ1, . . . ,Λn} of admissible matrices for the singularities
a1, . . . , an. This set is a subset of the family F , i. e. for each pair (FΛ,∇Λ)
the Poincaré rank of the connection ∇Λ at the point ai is equal to ri.

Moreover, for the degree of the bundle FΛ the following relation holds:

degFΛ =
n∑

i=1

tr (Λi + Ei).

Let us call the eigenvalues βj
i = λj

i + ρj
i of the matrix Λi + Ei (formal)

exponents of the connection ∇Λ at the (irregular) singular point ai.
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3. Proof of Theorem 1.1

Theorem 1.1 is a direct consequence of the following result (which is
based on the proof of Lemma 2 from [6]).

Proposition 3.1. — Consider a pair (FΛ,∇Λ) ∈ E such that the expo-
nents of ∇Λ satisfy the condition 0 � Reβj

i < M , M ∈ N
∗, for all i, j.

Assume R =
∑n

i=1 ri � 1.

Then the following inequalities hold for the splitting type (kΛ
1 , . . . , k

Λ
p ) of

the bundle FΛ:

kΛ
j − kΛ

j+1 � (n + R)M − 2, j = 1, . . . , p− 1.

Proof. — We consider two separate cases.

Case 1. For the splitting type of the bundle FΛ one has the inequalities

kΛ
j − kΛ

j+1 � n + R− 2, j = 1, . . . , p− 1.

Since M ∈ N
∗, the announced result in this case follows from these inequal-

ities.

Case 2. For some l one has kΛ
l − kΛ

l+1 > n + R− 2.

Consider the system (1.1) with the singularities a1, . . . , an and general-
ized monodromy data (1.2), (1.4) such that the Poincaré ranks of singular-
ities a2, . . . , an are equal to r2, . . . , rn respectively and the differential form
ω = B(z)dz of the coefficients in the neighbourhood O1 of the point a1 has
the form

ω = − K

z − a1
dz + (z − a1)−K ω̃Λ1(z − a1)K , (3.1)

where K = diag(kΛ
1 , . . . , k

Λ
p ) and orda1 ω̃

Λ1 = −(r1 + 1) (see (2.3)).

By (3.1) the entries ωmj and ω̃mj of the matrix differential 1-forms ω
and ω̃Λ1 are connected for m �= j by the equality

ωmj = (z − a1)−kΛ
m+kΛ

j ω̃mj .

By assumption kΛ
l −kΛ

l+1 > n+R−2 for some l. Therefore we have kΛ
j −kΛ

m >
n+R− 2 for j � l, m > l, hence the orders orda1ωmj at the point a1 of the
differential 1-forms ωmj with indicated indices are greater than n+R−r1−3,
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whereas the sum of the orders ordai
ωmj at the singular points distinct from

a1 is at least −n−R + r1 + 1.

We thus obtain for meromorphic forms ωmj with indicated indices that
the sum of their orders over all singularities and zeros is greater than −2,
although this sum is known to be −2 for a non-trivial differential 1-form on
C (see [8], Prop. 17.12). These forms are therefore identically equal to zero,
so that the matrix differential 1-forms ω, ω̃Λ1 are block upper-triangular:

ω =
(
ω1 ∗
0 ω2

)
, ω̃Λ1 =

(
ω̃1 ∗
0 ω̃2

)
,

where the matrix forms ω1, ω̃1 have size l × l.

This means that the bundle FΛ has a subbundle F 1 ∼= O(kΛ
1 ) ⊕ . . . ⊕

O(kΛ
l ) of rank l with a connection ∇1 defined by the forms ω1, ω̃1 satisfying

the required gluing conditions (in view of (3.1)).

From results of [4] it follows that the local system dy = ω̃Λ1y (which
is holomorphically equivalent to the system dy = ωΛ1y in O1) and system
dy = ωy (which is holomorphically equivalent to the systems dy = ωΛiy

in Oi, i = 2, . . . , n) have formal fundamental matrices Ỹi in Oi of a block
upper-triangular structure similar to ω̃Λ1 , ω respectively:

Ỹi =
(
Ỹ 1

i ∗
0 Ỹ 2

i

)
.

Furthermore they have the form

Ỹi(z) = F̃0(z)(z − ai)Λ̃i(z − ai)Ẽi Ũie
Q̃i(z),

where Λ̃i = S−1ΛiS, Ẽi = S−1EiS, Ũi = S−1UiS, Q̃i(z) = S−1Qi(z)S for
some constant invertible matrix S, the matrices Λ̃i and Q̃i(z) are diagonal
and obtained by suitable permutations of the diagonal elements of Λi and
Qi(z) respectively, the matrix Ẽi is upper-triangular and the matrix Ũi =
diag(Ũ1

i , Ũ
2
i ) is block-diagonal with respect to the block-structure of the

matrix Ỹi. Moreover, the invertible formal (matrix) Taylor series F̃0(z) has
the same block upper-triangular structure as the matrix Ỹi.

Thus, one gets that the set {1β1
i , . . . ,

1βl
i} of the (formal) exponents of

the connection ∇1 at the singularity ai is a subset of the (formal) exponents
of the connection ∇Λ at this point.
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Assume that kΛ
l − kΛ

l+1 � (n+R)M − 1. Then for the mean value of the
exponents 1βj

i of the connection ∇1 we have the lower bound

1
ln

n∑
i=1

l∑
j=1

1βj
i =

degF 1

ln
=

kΛ
1 + . . . + kΛ

l

ln
�

kΛ
l+1

n
+M+

MR− 1
n

�
kΛ

l+1

n
+M

(recall that M and R are elements of N
∗), while for the mean value of the

other exponents 2βj
i of the connection ∇Λ we have the upper bound

1
(p− l)n

n∑
i=1

p−l∑
j=1

2βj
i =

degFΛ − degF 1

(p− l)n
=

kΛ
l+1 + . . . + kΛ

p

(p− l)n
�

kΛ
l+1

n
.

We obtain that the mean value of the exponents 1βj
i is larger by M at

least than the mean value of the exponents 2βj
i , while by assumption the

real parts of all the exponents of the connection ∇Λ are strictly less than
M . We arrive to a contradiction, hence kΛ

l − kΛ
l+1 � (n + R)M − 2 for

each l. �

Proof of Theorem 1.1. — Consider the pair (FΛ0
,∇Λ0

) ∈ E ⊂ F corre-
sponding to the system Λ0 = {0, . . . , 0} of zero matrices. In that case the
exponents βj

i of the connection ∇Λ0
satisfy the condition

0 � Reβj
i = Re ρj

i < 1,

therefore by Proposition 3.1 we have the inequalities

k0
j − k0

j+1 � n + R− 2, j = 1, . . . , p− 1,

for the coefficients k0
j of the splitting type of the bundle FΛ0

. Hence

k0
1 − k0

p =
p−1∑
j=1

(k0
j − k0

j+1) � (p− 1)(n + R− 2).

The coefficient matrix B(z) of the global system (1.1) corresponding to
the connection ∇Λ0

has the form

B(z) = − K0

z − a1
+ (z − a1)−K0

B̃(z)(z − a1)K0

in the neighbourhood O1 of the point a1, where K0 = diag(k0
1, . . . , k

0
p) and

orda1B̃(z) = −(r1 + 1) (see (3.1)). Then the Poincaré rank of this system
at the point a1 is not greater than the quantity

r1 + k0
1 − k0

p � r1 + (p− 1)(n + R− 2)
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(recall that this system has the prescribed singularities a1, . . . , an, general-
ized monodromy data (1.2), (1.4) and the Poincaré ranks r2, . . . , rn at the
points a2, . . . , an respectively). �

Let us say a few words about the problem of the meromorphic transfor-
mation of a local system

dy

dz
= C(z)y, C(z) =

C−r−1

zr+1
+ . . . +

C−1

z
+ C0 + . . . , (3.2)

of p linear differential equations to a Birkhoff standard form in a neighbour-
hood of an irregular singularity z = 0 of Poincaré rank r (not necessarily
minimal), i.e. to a system with coefficient matrix C ′(z) of the form

C ′(z) =
C ′

−r′−1

zr′+1
+ . . . +

C ′
−1

z
, r′ � r (3.3)

(note that such a system is defined on the whole Riemann sphere and ∞ is
a Fuchsian singularity for it).

This problem is not yet resolved, though it is known that the problem
has an affirmative answer in dimensions p = 2 and p = 3; one also knows
various sufficient conditions for a positive solution in an arbitrary dimension
p (for instance, the problem has a positive solution if the system (3.2) is
irreducible (A. Bolibrukh) or if all the eigenvalues of the matrix C−r−1 are
distinct (H. L. Turrittin); see Balser’s survey [2] for details).

Denote by r0 > 0 the minimal Poincaré rank of the system (3.2) and
consider the GRH-problem for the following generalized monodromy data:

i) an irregular singularity a1 = 0 of local system meromorphically equiv-
alent to (3.2) and with Poincaré rank r0;

ii) a Fuchsian singularity a2 = ∞.

There exists a global system on the whole Riemann sphere that is Fuch-
sian at infinity and meromorphically equivalent to the system (3.2) in a
neighbourhood of the point a1 = 0. By Theorem 1.1 (where n = 2 and
R = r0 > 0) the coefficient matrix of this system has the form (3.3), where
r′ � r0 + (p− 1)r0 = pr0. Thus, one gets the following statement.

Corollary 3.2. — If for the minimal Poincaré rank r0 of the sys-
tem (3.2) the inequality r0 � r/p holds then it can be meromorphically
transformed into a Birkhoff standard form (with Poincaré rank not greater
than r).
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4. The GRH-problem for scalar linear differential equations

Consider a linear differential equation

dpu

dzp
+ b1(z)

dp−1u

dzp−1
+ . . . + bp(z)u = 0 (4.1)

of order p with coefficients b1(z), . . . , bp(z) meromorphic on the Riemann
sphere C and holomorphic outside the set of singular points a1, . . . , an.

One defines the monodromy representation

χ : π1(C \ {a1, . . . , an}) → GL(p,C) (4.2)

of this equation in the same way as for a system (1.1); one merely needs to
consider in place of a fundamental matrix Y (z) a row (u1, . . . , up), where the
functions u1(z), . . . , up(z) form a basis in the solution space of the equation.
This representation is defined by local monodromy matrices Gi correspond-
ing to simple loops γi.

A singular point ai of the equation (4.1) is said to be Fuchsian if the
coefficient bj(z) has at this point a pole of order j or lower (j = 1, . . . , p). By
Fuchs’s theorem (see [9], Th. 12.1) a singular point of the equation (4.1) is
Fuchsian if and only if it is regular. The equation (4.1) is said to be Fuchsian
if all its singular points are Fuchsian.

Using a standard change

y1 = u, y2 =
du

dz
, . . . , yp =

dp−1u

dzp−1

one can go over from the equation (4.1) to a companion system (1.1) with
coefficient matrix B(z) of the form

B(z) =




0 1 0
. . . . . .

0 0 1
−bp . . . . . . −b1


 . (4.3)

Definition 4.1. — Let us call two linear differential equations mero-
morphically equivalent in a neighbourhood of a singular point if their com-
panion systems are.
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The Katz rank Ki of the equation (4.1) at a singularity ai is equal to
the Katz rank of the companion system at this point and it is known that

ordaibj(z) � −j(Ki + 1), j = 1, . . . , p (4.4)

(see [10], Sect. 3, especially Th. 3.2, Th. 3.3).

Let us now formulate the GRH-problem for scalar linear differential
equations as follows.

Let for each i = 1, . . . , n a local equation

dpu

dzp
+ bi

1(z)
dp−1u

dzp−1
+ . . . + bi

p(z)u = 0 (4.5)

be given in the neighbourhood Oi of a singular point ai with Katz rank Ki

and such that its monodromy matrix (with respect to a suitable fundamental
solution) coincides with Gi (recall that Gi = χ(γi) for the given representa-
tion (4.2)).

Does there exist a global equation (4.1) with singularities a1, . . . , an, pre-
scribed monodromy (4.2) and such that it is meromorphically equivalent to
the equation (4.5) in each Oi?

We will again refer to the monodromy representation (4.2) and local
equations (4.5) as the generalized monodromy data.

Note that in view of (4.4) coefficients bj(z) of a global equation solving
the GRH-problem have bounded orders of poles.

If ai is a Fuchsian singularity of the local equation (4.5) for each i =
1, . . . , n then a global equation (if it exists) is Fuchsian by Fuchs’s theorem
(or, if the reader prefers, by the equalities Ki = 0). Thus, in this case one
gets a classical problem of the construction of a Fuchsian equation with
prescribed singularities and monodromy. Even in this case the problem has
a negative solution in general because for p > 2, n > 2, and for p = 2, n > 3
the number of parameters determining a Fuchsian equation is less than the
number of parameters determining the set of conjugacy classes of represen-
tations χ (see [1], pp. 158–159). Therefore, to construct such an equation
with given monodromy, one needs so-called apparent singular points. In
the case of irreducible representations an expression for the smallest possi-
ble number of apparent singular points has been obtained by A. Bolibrukh
[5]. Estimates for this number in the case of an arbitrary monodromy were
presented in [11], as well as similar estimates in the case of non-Fuchsian
singularities.
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From results of J. Plemelj it follows that the classical Riemann-Hilbert
problem (for linear systems) has a positive solution if one at least of the
monodromy matrices of the representation (4.2) is diagonalisable (see [1],
p. 10 and p. 62). Thus, any monodromy representation can be realized by a
Fuchsian system with one apparent singularity (one only needs to consider
the representation χ∗ obtained from (4.2) by the addition of a singular point
an+1 with identity monodromy matrix). In the same way one obtains that
each generalized monodromy data can be realized by a global system with
prescribed singularities of minimal Poincaré rank and one possible apparent
Fuchsian singularity.

Let us consider the representation (4.2) and the local companion systems
for the local equations (4.5). For each local system (with Katz rank Ki)
consider a meromorphically equivalent one

dy

dz
= B′

i(z)y (4.6)

with minimal Poincaré rank ri. Recall that ri is the least integer greater
than or equal to the Katz rank Ki, i. e. ri = −[−Ki], where [ ] stands for
the integer part.

We now realize the generalized monodromy data (4.2), (4.6) by a global
system with singularities a1, . . . , an of Poincaré ranks r1, . . . , rn respectively
and apparent Fuchsian singularity an+1. By Deligne’s lemma from [7] (p.
163) this system can be meromorphically transformed (globally) to a sys-
tem with coefficient matrix B(z) of the form (4.3), where b1(z), . . . , bp(z)
are meromorphic functions on the Riemann sphere. Besides a1, . . . , an+1,
the transformed system has apparent singularities, the number m of which
satisfies the inequality

m � (R + n + 1)p(p− 1)
2

,

where R =
∑n

i=1 ri (this estimate is presented in [11], Lemma 2).

One readily sees that the first component of a solution of the last sys-
tem with coefficient matrix B(z) of the form (4.3) is a solution of an equa-
tion (4.1). By construction this equation has the prescribed singularities
a1, . . . , an, monodromy (4.2) and it is meromorphically equivalent to the
equation (4.5) in each Oi. Furthermore, the number of its apparent singu-
larities is m+1 (note that an+1 is also an apparent singularity of the equation
with respect to the originally prescribed singular points a1, . . . , an). Bearing
in mind that R = −

∑n
i=1[−Ki], we obtain that
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Each generalized monodromy data (4.2), (4.5) can be realized by an equa-
tion (4.1) such that the number of its apparent singularities is not greater
than

(K + n + 1)p(p− 1)
2

+ 1,

where K = −
∑n

i=1[−Ki] and [ ] stands for the integer part.
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