ANNALES DE LA FACULTÉ DES SCIENCES TOULOUSE Mathématiques

BORHEN HALOUANI Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n

Tome XVIII, nº 3 (2009), p. 577-598.

http://afst.cedram.org/item?id=AFST_2009_6_18_3_577_0

© Université Paul Sabatier, Toulouse, 2009, tous droits réservés.

L'accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

BORHEN HALOUANI⁽¹⁾

ABSTRACT. — We give a sufficient condition for a C^{ω} (resp. C^{∞})-totally real, complex-tangential, (n-1)-dimensional submanifold in a weakly pseudoconvex boundary of class C^{ω} (resp. C^{∞}) to be a local peak set for the class \mathcal{O} (resp. A^{∞}). Moreover, we give a consequence of it for Catlin's multitype.

RÉSUMÉ. — On donne une condition suffisante pour qu'une sous variété C^{ω} (resp. C^{∞}), totalement réelle, complexe-tangentielle, de dimension (n-1) dans le bord d'un domaine faiblement pseudoconvexe de \mathbb{C}^n , soit un ensemble localement pic pour la classe \mathcal{O} (resp. A^{∞}). De plus, on donne une conséquence de cette condition en terme de multitype de D. Catlin.

1. Introduction and basic definitions

This article is a part of the Ph.D thesis of the author. The \mathcal{O} part was motivated by the paper of Boutet de Monvel and Iordan [B-I] and A^{∞} part by the methods of Hakim and Sibony [H-S]. Let D be a domain in \mathbb{C}^n with C^{ω} (resp. C^{∞})-boundary. We denote for an open set \mathcal{U} by \mathcal{O} (resp. A^{∞}) the class of holomorphic functions on \mathcal{U} (resp. the class of holomorphic functions in \mathcal{U} which have a C^{∞} -extension to $\overline{\mathcal{U}}$).

We say that $\mathbf{M} \subset bD$ is a local peak set at a point $p \in \mathbf{M}$ for the class \mathcal{O} (resp. A^{∞}), if there exist a neighborhood \mathcal{U} of p in \mathbb{C}^n and a function

^(*) Reçu le 1 novembre 2007, accepté le 10 janvier 2008

⁽²⁾ LMPA, Centre Universitaire de la Mi-Voix. Bât H. Poincaré, 50 rue F. Buisson, B.P. 699, F-62228 Calais Cédex, France.

halouani@lmpa.univ-littoral.fr

 $f \in \mathcal{O}(\mathcal{U})$ (resp. $A^{\infty}(D \cap \mathcal{U})$) such that |f| < 1 on $(\overline{D} \cap \mathcal{U}) \setminus \mathbf{M}$ and f = 1on $\mathbf{M} \cap \mathcal{U}$. Or equivalently, if there exists a function $g \in \mathcal{O}(\mathcal{U})$ (resp. $A^{\infty}(D \cap \mathcal{U})$) such that g = 0 on $\mathbf{M} \cap \mathcal{U}$ and $\Re g < 0$ on $(\overline{D} \cap \mathcal{U}) \setminus \mathbf{M}$.

We say that $\mathbf{M} \subset bD$ is a local interpolation set at a point $p \in \mathbf{M}$ for the class A^{∞} , if there exists a neighborhood \mathcal{U} of p such that each function $f \in C^{\infty}(\mathbf{M} \cap \mathcal{U})$ is the restriction to $\mathbf{M} \cap \mathcal{U}$ of a function $F \in A^{\infty}(D \cap \mathcal{U})$. A submanifold \mathbf{M} of bD is complex-tangential if for every $p \in \mathbf{M}$ we have $T_p(\mathbf{M}) \subseteq T_p^{\mathbb{C}}(bD)$, where $T_p^{\mathbb{C}}(bD)$ is the complex tangent space of $T_p(bD)$. If for every $p \in \mathbf{M}$, $T_p(\mathbf{M}) \cap iT_p(\mathbf{M}) = \{0\}$, we say that \mathbf{M} is totally real. Let $\rho : \mathcal{U} \longrightarrow \mathbb{R}$ be a local C^{∞} defining function of D, $D \cap \mathcal{U} = \{z \in \mathcal{U}/\rho(z) < 0\}$, $d\rho(p) \neq 0$, where \mathcal{U} is a neighborhood of $p \in bD$. We say D is (Levi) pseudoconvex at p if

$$\mathcal{L}ev\rho(p)[t] = \sum_{1 \leq i,j \leq n} \frac{\partial^2 \rho}{\partial z_i \partial \overline{z_j}}(p) t_i \overline{t}_j \ge 0,$$

for every $t \in T_p^{\mathbb{C}}(bD)$. $\mathcal{L}ev\rho(p)[t]$ is called the Levi form or the complex hessian of ρ .

Let D be Levi pseudoconvex at p. The point p is said to be strongly pseudoconvex if the Levi form is positive definite whenever $t \neq 0, t \in T_p^{\mathbb{C}}(bD)$. Otherwise it is said to be weakly pseudoconvex. A domain is called pseudoconvex if its boundary points are pseudoconvex.

We need the following terminology due to L. Hörmander. A function $\phi \in C^{\infty}(\mathcal{U})$ is almost-holomorphic with respect to a set $E \subset \overline{\mathcal{U}}$ if $\overline{\partial}\phi$ vanishes to infinite order at points of E.

The paper is organized as follows: In §2, we introduce the hypotheses (\mathcal{H}_1) and (\mathcal{H}_2) . In §3 and §4, we give the equivalent more handy sufficient condition (\mathcal{H}) for the existence of local peak set for the class \mathcal{O} and for the class A^{∞} . In the final section, we give some consequences for the multitype on **M** of the sufficient hypotheses.

2. Preliminaries

Let D be a pseudoconvex domain with C^{ω} (resp. C^{∞})-boundary. Let \mathbf{M} be an (n-1) dimensional submanifold of bD which is totally real and complex- tangential in a neighborhood of a point $p \in \mathbf{M}$. Let (V, γ) be a C^{ω} (resp. C^{∞})-parametrization of \mathbf{M} at p, where V is a neighborhood of the origin in \mathbb{R}^{n-1} such that $\gamma(0) = p$. Let \mathbf{X} be a C^{ω} (resp. C^{∞})-vector field on \mathbf{M} such that $\mathbf{X}(p) = 0$. Denote by $\zeta = (\zeta_1, \ldots, \zeta_{n-1})$ the coordinates of

a point in V. Then **X** can be written as $\mathbf{X} = \sum_{i} d_i(\zeta) \frac{\partial}{\partial \zeta_i}$ where d_i are C^{ω} (resp. C^{∞})-functions on V. We set D_0 the Jacobian matrix at the origin: $\left\{\frac{\partial d_i}{\partial \zeta_i}(0)\right\}_{i \leq i, j \leq n-1}$. Now, we introduce our first hypothesis:

 (\mathcal{H}_1) The matrix D_0 is diagonalizable and has $\widetilde{m}_1 \ge \ldots \ge \widetilde{m}_{n-1}$ eigenvalues with $\widetilde{m}_i \in \mathbb{N}^*$ for all i.

We say that **M** admits a peak-admissible C^{ω} (resp. C^{∞})-vector field **X** of weights $(\tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at $p \in \mathbf{M}$ for the class \mathcal{O} (resp. A^{∞}). (\mathcal{H}_1) is independent of the choice of the parametrization and the \tilde{m}_i and their multiplicities are uniquely determined. Using hypothesis (\mathcal{H}_1) , one can easily prove that there exists a C^{ω} (resp. C^{∞})-change of coordinates on V such that $\mathbf{X} = \sum_i \tilde{m}_i \zeta_i \frac{\partial}{\partial \zeta_i}$. This representation of **X** is invariant if we apply a "weight-homogeneous" polynomial transformation of coordinates as below:

LEMMA 2.1. — Let $\Lambda = (\Lambda_1, \ldots, \Lambda_{n-1})$ be a C^{ω} (resp. C^{∞})-change of coordinates on V such that $\Lambda(0) = 0$ and $d\Lambda(\mathbf{X}) = \mathbf{X}$. Then Λ is a polynomial map. More precisely, if $\zeta = (\zeta_1, \ldots, \zeta_{n-1}) \in V$, $I = (i_1, \ldots, i_{n-1}) \in$ \mathbb{N}^{n-1} and we set $|I|_* = \sum_{\nu} i_{\nu} \widetilde{m}_{\nu}$ then for every $1 \leq j \leq n-1$, $\Lambda_j(\zeta) =$ $\sum_{|I|_* = \widetilde{m}_j} a_I^j \zeta_1^{i_1} \ldots \zeta_{n-1}^{i_{n-1}}$ with $a_I^j \in \mathbb{R}$. Conversely, any Λ of this form pre- $|I|_* = \widetilde{m}_j$

serves X.

Proof. — The integral curves of **X** are $\kappa_{\zeta}(\lambda) = (\lambda^{\widetilde{m}_1}\zeta_1, \ldots, \lambda^{\widetilde{m}_{n-1}}\zeta_{n-1}), \lambda \in \mathbb{R}$. Since $d\Lambda(\mathbf{X}) = \mathbf{X}, \Lambda$ transforms an integral curve passing through ζ to an integral curve passing through $\eta = \Lambda(\zeta)$. So we obtain

$$(\lambda^{\widetilde{m}_1}\Lambda_1(\zeta),\ldots,\lambda^{\widetilde{m}_{n-1}}\Lambda_{n-1}(\zeta)) = (\Lambda_1(\kappa_{\zeta}(\Lambda)),\ldots,\Lambda_{n-1}(\kappa_{\zeta}(\lambda))).$$
(2.1)

Let $1 \leq j \leq n-1$ be fixed. We write Λ_j as: $\Lambda_j(\zeta) = \Lambda^*(\zeta) + R(\zeta)$ where $\Lambda^*(\zeta) := \sum_{|I|_* = \widetilde{m}} a_{i_1, \dots, i_{n-1}}^* \zeta_1^{i_1} \dots \zeta_{n-1}^{i_{n-1}}$ is non identically zero for a smallest

integer \widetilde{m} that satisfies this condition: there exists a constant C > 0 such that $|R(\kappa_{\zeta}(\lambda))| \leq C|\lambda|^{\widetilde{m}+1}$. From (2.1), we have

$$\lambda^{\widetilde{m}_j} \Lambda_j(\zeta) = \Lambda_j(\kappa_{\zeta}(\lambda)) = \lambda^{\widetilde{m}} \Lambda^*(\zeta) + R(\kappa_{\zeta}(\lambda)).$$
(2.2)

Now we divide (2.2) by $\lambda^{\widetilde{m}}$. When λ tends to 0 we obtain $\widetilde{m} = \widetilde{m}_j$ and $\Lambda_j(\zeta) = \Lambda^*(\zeta)$ for all $\zeta \in \mathbb{R}^{n-1}$. \Box

So let the coordinates be chosen such that $\mathbf{X} = \sum_{i} \widetilde{m}_{i} \zeta \frac{\partial}{\partial \zeta_{i}}$. For $\zeta = (\zeta_{1}, \ldots, \zeta_{n-1}), \eta = (\eta_{1}, \ldots, \eta_{n-1}) \in \mathbb{R}^{n-1}$ and $\lambda, \mu \in \mathbb{R}$, we set $\sigma := \zeta + i.\eta \in \mathbb{C}^{n-1}, \kappa_{\zeta}(\lambda) := (\lambda^{\widetilde{m}_{1}}\zeta_{1}, \ldots, \lambda^{\widetilde{m}_{n-1}}\zeta_{n-1})$ and $\kappa_{\sigma}(\mu, \lambda) := \kappa_{\zeta}(\mu) + i.\kappa_{\eta}(\lambda)$. Let ρ be a local defining function of D at $p \in bD$ and $\widetilde{\gamma} : \widetilde{V} \longrightarrow \widetilde{\theta}(\widetilde{V}) := \widetilde{\mathbf{M}}$ be a holomorphic-extension (resp. almost-holomorphic extension) of the parametrization γ of \mathbf{M} . In the C^{ω} -case $\widetilde{\mathbf{M}}$ is a complexification of \mathbf{M} and \widetilde{V} is an open neighborhood of the origin in \mathbb{C}^{n-1} . Let $M, K \in \mathbb{N}^*$ be such that $M \leq K$ and $m_j := M/\widetilde{m}_j \in \mathbb{N}^*, k_j := K/\widetilde{m}_j \in \mathbb{N}^*$. We set $\mathbf{E} = \{\zeta \in \mathbb{R}^{n-1} / \sum_{j} \zeta_{j}^{2m_j} = 1\}$. Now, we introduce our second hypothesis:

 $(\mathcal{H}_2) \text{ There exist constants } \varepsilon > 0, \ 0 < c \leq C \text{ such that for every } \sigma =$ $\zeta + i.\eta \in \mathbf{E} + i.\mathbf{E}, \ |\lambda| < \varepsilon, \ |\mu| < \varepsilon, \text{ we have: } c|\lambda|^{2M} (|\mu| + |\lambda|)^{2(K-M)} \leq$ $\rho(\widetilde{\gamma}(\kappa_{\sigma}(\mu, \lambda))) \leq C|\lambda|^{2M} (|\mu| + |\lambda|)^{2(K-M)}.$

DEFINITION 2.2. — If a C^{∞} (resp. C^{∞})-vector field **X** on **M** verifies (\mathcal{H}_1) and (\mathcal{H}_2) we say that **X** is peak-admissible of peak-type $(K, M; \tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at $p \in \mathbf{M}$ for the class \mathcal{O} (resp. A^{∞}).

Remark 2.3. —

- 1) The hypothesis (\mathcal{H}_2) does not depend neither on the choice of the defining function of the boundary bD nor the choice of the almostholomorphic extension (see Lemma 4.3 in section 4).
- 2) The geometric meaning of (\mathcal{H}_2) will become clear in inequality (\mathcal{H}) .

3. A sufficient condition for the existence of local peak set for the class \mathcal{O}

THEOREM 3.1. — Let D be a pseudoconvex domain in \mathbb{C}^n with C^{ω} boundary. Let \mathbf{M} be an (n-1)-dimensional C^{ω} -submanifold in bD that is totally real and complex-tangential at $p \in \mathbf{M}$. We suppose that \mathbf{M} admits a peak-admissible C^{ω} -vector field \mathbf{X} of peak-type $(K, M; \tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at pfor \mathcal{O} . Then \mathbf{M} is a local peak set at p for the class \mathcal{O} .

Proof. — The proof is based on Propositions 3.2 and 3.4 below after several holomorphic coordinates changes. Also we allow shrinkings of \mathbf{M} .

PROPOSITION 3.2. — Let D be a domain in \mathbb{C}^n with C^{ω} (resp. C^{∞})boundary bD. Let **M** be an (n-1)-dimensional C^{ω} -submanifold in bD which

is totally real and complex-tangential near p. Then there exists a holomorphic change (resp. an almost-holomorphic change) of coordinates (Z, w) with $Z = X + i.Y \in \mathbb{C}^{n-1}$ and $w = u + iv \in \mathbb{C}$, such that p corresponds to the origin and in an open neighborhood \mathcal{U} of the origin, we have:

- i) $\mathbf{M} = \{(Z, w) \in \mathcal{U}/Y = w = 0\}$. Moreover, \mathbf{M} is contained in an *n*-dimensional totally real submanifold $\mathbf{N} = \{(Z, w) \in \mathcal{U}/Y = u = 0\}$ of bD.
- ii) For every $c \in \mathbb{R}$, $\mathbf{M}_c = \{(Z, w) \in \mathbf{N}/v = c\}$ is complex-tangential or empty.
- iii) $D \cap \mathcal{U} = \{(Z, w) \in \mathcal{U}/\rho(Z, w) < 0\}$ with

$$\rho(Z, w) = u + A(Z) + vB(Z) + v^2 R(Z, v).$$

iv) A and B vanish of order ≥ 2 when Y = 0.

Proof. — We give the proof in the C^{ω} -case. Let γ be a C^{ω} -parametrization of **M** defined on a neighborhood of the origin in \mathbb{R}^{n-1} . After a translation and a rotation of the coordinates in \mathbb{C}^n we may assume that p is the origin and the real tangent space at 0 to bD is $T_0(bD) = \mathbb{C}^{n-1} \times i\mathbb{R}$. We set $L(Z, w) = i\mathbf{n}(Z, w)$ where **n** is the vector field of the outer exterior normal to bD. Then, for every $(Z, w) \in bD$, there exists a C^{ω} -integral curve $l_{(Z,w)}(\lambda) \in bD$ of L satisfying $l_{(Z,w)}(0) = (Z,w)$ and $\frac{dl_{(Z,w)}}{d\lambda}(\lambda) =$ $L(l_{(Z,w)}(\lambda))$. Now, we consider the map $\theta: (t,\lambda) \longmapsto l_{\gamma(t)}(\lambda)$. It is clear that θ is a C^{ω} -diffeomorphism from a neighborhood U of the origin in \mathbb{R}^n into an *n*-dimensional submanifold $N' := \theta(U)$ of bD which is totally real. By complexification of θ in a neighborhood \mathcal{W} of the origin in \mathbb{C}^n , we obtain in the new holomorphic coordinates $(Z', w'), M' = \{(Z', w') \in \mathcal{W}/Y' = w' = 0\}$ and $N' = \{(Z', w') \in \mathcal{W}/Y' = v' = 0\}$. We remark that the system $\{\Sigma_q = T_q(N') \cap T_q^{\mathbb{C}}(bD), q \in \mathcal{W}\}$ is C^{ω} and involutive. By Frobenius theorem [Bo] the leaves $M'_c = \{(Z', w') \in \mathcal{W} \cap N'/v' = c\}_{c \in \mathbb{R}}$ are complex-tangential to bD. Now, we change coordinates again by defining: Z = Z' and w = iw'. We obtain in a neighborhood \mathcal{U} of the origin i) and ii). Representing bD as a graph over $\mathbb{C}^{n-1} \times i\mathbb{R}$, we obtain iii). Since $\mathbf{M} \subset bD$ is complex-tangential A vanishes of order ≥ 2 if Y = 0. As $\frac{\partial}{\partial v}$ is tangent to **N** and the complex gradient $\nabla \rho = (0_{\mathbb{C}_{n-1}}, -1)$ is constant along **N**, we obtain that *B* vanishes of order ≥ 2 if Y = 0. This achieves iv) and the proposition. \Box

Let the change of coordinates of Proposition 3.2 for the vector field **X** which verifies hypothesis (\mathcal{H}_2) be achieved. Now we show the impact of (\mathcal{H}_2) . We set $\kappa := K/M = k_j/m_j \ge 1$. Since κ is independent of j,

we define in a sufficiently small neighborhood \mathcal{V} of the origin in \mathbb{C}^{n-1} the following pseudo-norms of the $Z = (z_1, \ldots, z_{n-1})$ coordinates of Proposition

3.2:
$$||Y|| = \left(\sum_{j} y_{j}^{2m_{j}}\right)^{1/2M}$$
 and $||Z||_{*} = \left(\sum_{j} |z_{j}|^{2k_{j}}\right)^{1/2K}$. We note that $A(Z) = \rho(\widetilde{\gamma}(\kappa_{\sigma}(\mu, \lambda)))$ where $Z = X + i Y = \kappa_{\sigma}(\mu, \lambda)$. Therefore, from now

 $A(Z) = \rho(\gamma(\kappa_{\sigma}(\mu, \lambda)))$ where $Z = X + i \cdot Y = \kappa_{\sigma}(\mu, \lambda)$. Therefore, from now on we may assume that A verifies:

 (\mathcal{H}) There exist two constants $0 < c \leq C$ such that, for every $Z = X + iY \in \mathbb{C}^{n-1}$ near the origin, we have:

$$|Y||_*^{2M} \cdot ||Z||_*^{2K-2M} \leq A(Z) \leq C||Y||_*^{2M} \cdot ||Z||_*^{2K-2M}$$

Remark 3.3. —

- 1) The proof of Proposition 3.2 remains true in the C^{∞} -case. We indicate the modification in Lemma 4.2 (section 4).
- 2) If $Z = (z_1, \ldots, z_{n-1}) \in \mathcal{V}$ where \mathcal{V} is a small open neighborhood of the origin in \mathbb{C}^{n-1} , then $\sum_j |z_j|^{2(k_j - m_j)} \approx \left(\sum_j |z_j|^{2m_j}\right)^{\kappa-1}$. Moreover, we may replace k_j by m_j and K by M in the definition of the pseudo-norm $||Z||_*$.

3) If $K = M = \tilde{m}_1 = \ldots = \tilde{m}_{n-1} = 1$, we find the property on A for a strongly pseudoconvex boundary.

PROPOSITION 3.4. — 1) If the real hyperplane $H = \mathbb{C}^{n-1} \times \mathbb{R} = \{(Z, iv) | Z \in \mathbb{C}^{n-1}, v \in \mathbb{R}\}$ lies outside of D in a neighborhood U of the origin, then there exists a constant T > 0 such that $B^2 \leq TA$ near the origin.

2) If there exists a constant T > 0 such that $B^2 \leq TA$ near the origin, then there exist a sufficiently small neighborhood \mathcal{U} of the origin and a holomorphic function ψ on \mathcal{U} (resp. an almost-holomorphic function with respect to $\mathbf{N} \cap \mathcal{U}$) which satisfies: $\Re \psi < 0$ on $\overline{D} \cap \mathcal{U}$ if $w \neq 0$ and $\psi = 0$ if w = 0. Here $\psi = \frac{w}{1 - 2K_1w}$ with a suitable constant $K_1 > 0$.

Proof. — The proof is elementary. See also [B-I]. \Box

In order to apply Proposition 3.4 2), we should determine the order of vanishing for certain functions on \mathbf{M} at $p = 0 \in \mathbf{M}$. We begin by defining the Z-weights and the Y-weights for polynomial functions.

DEFINITION 3.5. — Let $\chi = a_{I,J} z_1^{i_1} \overline{z}_1^{j_1} \dots z_{n-1}^{i_{n-1}} \overline{z}_{n-1}^{j_{n-1}}$, with $a_{I,J} \neq 0$, be a monomial. We define the Z-weight $\mathcal{P}_Z(\chi)$ of χ as : $P_Z(\chi) = \sum_{\nu} \widetilde{m}_{\nu}(i_{\nu}+j_{\nu})$.

If $g \neq 0$ is a polynomial function in Z and \overline{Z} we define the Z-weight of g as the smallest Z-weight in the decomposition of g by monomials. If g is a sum of monomials which have the same Z-weight L, we say that g is homogeneous with respect to the Z-weight. Let $X \in \mathbb{R}^{n-1}$ be fixed and $\Xi = \alpha_{I,J}(X)y_1^{i_1} \dots y_{n-1}^{i_{n-1}}$, with $\alpha_{I,J}(X) \neq 0$, be a monomial at Y. We define the Y-weight $P_Y(\Xi)$ of χ as $\sum_{\nu} \widetilde{m}_{\nu} i_{\nu}$. If $h \neq 0$ is a polynomial function in Y we define the X-weight of h to be the smallest Y-weight in the decomposition

we define the Y-weight of h to be the smallest Y-weight in the decomposition of h. If h is a sum of monomials which have the same Y-weight L', we say that h is homogeneous with respect to the Y-weight of order L'.

LEMMA 3.6. — Let $R, S \in \mathbb{N}, R \ge S$ and $F(X,Y) = \sum_{I,J} F_{I,J}Y^I X^J$ be a C^{ω} -function on an open neighborhood of the origin of \mathbb{C}^{n-1} such that, for all multi-indices $I = (i_1, \ldots, i_{n-1}), J = (j_1, \ldots, j_{n1})$ in $\mathbb{N}^{n-1}, F_{I,J} = 0$ or $\mathcal{P}_Y(F_{I,J}Y^I X^J) \ge S$ and $\mathcal{P}_Z(F_{I,J}Y^I X^J) \ge R \ge S$. Then, there exists a constant C > 0 such that, $|F(Z)| \le C ||Y||_*^s \cdot ||Z||_*^{R-S}$, $\forall Z = X + i.Y$ near the origin.

Proof. — This can be seen by Taylor expansion and standard arguments. \Box

LEMMA 3.7. — With the notations of Lemma 3.6, if $S \ge M$ and $R \ge K = \kappa M$, then $\frac{|F|^2}{A}$ is uniformly bounded on a sufficiently small neighborhood of the origin.

Proof. — This follows immediately from Lemma 3.6 and inequality (\mathcal{H}) .

In order to know the weights of A and B we analyze the restrictions which are imposed on the functions A and B by the pseudoconvexity of bD. We assume that $B \neq 0$ and we set $(\mathcal{P}_Y(B), \mathcal{P}_Z(B)) = (S, R)$. From (\mathcal{H}) we have $(\mathcal{P}_Y(A), \mathcal{P}_Z(A)) = (2M, 2K)$. Next, a simple computation of the Levi form at a point near the origin to bD for $t = \sum_{\nu} \widetilde{m}_{\nu} y_{\nu} \chi_{\nu} \in T^{\mathbb{C}}(bD)$, with $\chi_{\nu} = i \left[\frac{\partial}{\partial z_{\nu}} - \frac{i}{\eta} \frac{\partial \rho}{\partial z_{\nu}} \frac{\partial}{\partial w} \right]$ and $\eta = \frac{1}{2} \left(i + B + 2vR + v^2 \frac{\partial R}{\partial v} \right)$, gives $\mathcal{L}ev\rho[t] = \mathcal{A}(Z) + v\mathcal{B}(Z) + v^2\mathcal{R}(v, Z), Z$ varying on $\widetilde{\mathbf{M}}$, the complexification of \mathbf{M} . By pseudoconvexity of bD and Proposition 3.4 1) there exists a positive constant $T^* > 0$ such that

$$\mathcal{B} \geqslant T^* \mathcal{A}.\tag{3.1}$$

It remains to study the Z-weight and Y-weight of \mathcal{A} and \mathcal{B} and their relationship with the weights of A and B and finally to show $S \ge M$ and $R \ge K$. Some necessary auxiliaries results are given in Lemmas 3.8 and 3.9 below. We denote by $\partial_{\nu\mu}^2$ the partial derivative $\frac{\partial^2}{\partial z_{\nu}\partial \overline{z}_{\mu}}$ and $O_Y(L)$ (resp. $O_Z(L)$) is the set of functions that admit an Y-weight (resp. a Z-weight) $\ge L$ ($L \in \mathbb{N}$).

• Suppose that S < M.

The expressions of \mathcal{A} and \mathcal{B} are:

$$\mathcal{A} = \sum_{\nu,\mu} \partial_{\nu\overline{\mu}}^2 A \widetilde{m}_{\nu} \widetilde{m}_{\mu} y_{\nu} y_{\mu} + O_Y(2M+1)$$
$$\mathcal{B} = \sum_{\nu,\mu} \partial_{\nu\overline{\mu}}^2 A \widetilde{m}_{\nu} \widetilde{m}_{\mu} y_{\nu} y_{\mu} + O_Y(2S).$$

By Lemma 3.8 $A = A_{2M} + \widetilde{A}$ with $\mathcal{P}_Y(A_{2M}) = 2M$ and every term of \widetilde{A} has an Y-weight > 2M. We put $\mathcal{A}_{2M} := \sum_{\nu,\mu} \partial^2_{\nu\overline{\mu}} A_{2M} \widetilde{m}_{\nu} \widetilde{m}_{\mu} y_{\nu} y_{\mu}$. By Lemma 3.9 we obtain $\mathcal{A}_{2M} \neq 0$ and $\mathcal{P}_Y(\mathcal{A}_{2M}) = 2M$. Similarly, we have B $= B_S + \widetilde{B}_S$ where every term of \widetilde{B}_S has an Y-weight > 2M. We put $\mathcal{B}_S := \sum_{\nu,\mu} \partial^2_{\nu\overline{\mu}} B_S \widetilde{m}_{\nu} \widetilde{m}_{\mu} y_{\nu} y_{\mu}$. We obtain $\mathcal{B}_S \neq 0$ and $\mathcal{P}_Y(\mathcal{B}_S) = S$. Inequality (3.1) becomes:

$$(\mathcal{B}_S + O_Y(S+1))^2 \leq T^*(\mathcal{A}_{2M} + O_Y(2M+1)).$$
 (3.2)

Since $\mathcal{B}_S \neq 0$ there exists $Z_0 = X_0 + i \cdot Y_0$ with $Y_0 = (y_{0,1}, \ldots, y_{0,n-1}) \neq 0$ such that $\mathcal{B}_S(Z_0) \neq 0$. Since every term in the decomposition of \mathcal{B}_S has an Y-weight S, we consider for $\lambda > 0$, $\phi_{Y_0}(\lambda) = (\lambda^{\widetilde{m}_1} y_{0,1}, \ldots, \lambda^{\widetilde{m}_{n-1}} y_{0,n-1})$. Then $\mathcal{B}_S(X_0 + i \cdot \phi_{Y_0}(\lambda))$ becomes an homogeneous polynomial in λ of degree S (i.e. $\mathcal{B}_S(X_0 + i \cdot \phi_{Y_0}(\lambda)) = \lambda^S \mathcal{B}_S(X_0 + i \cdot Y_0)$). Therefore, we obtain $\lim_{\lambda \to 0^+} \frac{1}{\lambda^S} \mathcal{B}_S(X_0 + i \cdot \phi_{Y_0}(\lambda)) \neq 0$. Now we replace Z by $X_0 + i \cdot \phi_{Y_0}(\lambda)$ in inequality (3.2) and divide by λ^{2S} . We obtain $\mathcal{B}_S^2(X_0 + i \cdot \phi_{Y_0}) \leqslant 0$ when λ tends to 0^+ . So $\mathcal{B}_S(X_0 + i \cdot Y_0) = 0$ which is a contradiction. Thus, $S \geq M$.

• The case R < K can be falsified in an analogous way by using Lemma 3.9. Now Lemma 3.7 shows that $\frac{|B|^2}{A}$ is uniformly bounded. Then Proposition 3.4 implies the theorem.

LEMMA 3.8. — Let $X = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ be fixed and $P_X \in \mathbb{R}[y_1, \ldots, y_{n-1}]$ be homogeneous with respect to the Y-weight L. Then we have the following equations:

1)
$$\sum_{\nu=1}^{n-1} \frac{\partial P_X}{\partial y_{\nu}}(y_1, \dots, y_{n-1}) \widetilde{m}_{\nu} y_{\nu} = LP_X(y_1, \dots, y_{n1}).$$

2)
$$\sum_{\nu,\mu} \frac{\partial^2 P_X}{\partial y_\nu \partial y_\mu} (y_1, \dots, y_{n-1}) \widetilde{m}_\nu \widetilde{m}_\mu y_\nu y_\mu + \sum_{\nu=1}^{n-1} \frac{\partial P_X}{\partial y_\nu} (y_1, \dots, y_{n-1}) \widetilde{m}_\nu^2 y_\nu = L^2 P_X (y_1, \dots, y_{n-1}).$$

Proof. — For $1 \leq \nu \leq n-1$, we set $y_{\nu} = \widetilde{y}_{\nu}^{\widetilde{m}_{\nu}}$. Now, we consider the polynomial Q_X defined by $: Q_X(\widetilde{y}_1, \ldots, \widetilde{y}_{n-1}) = P_X(\widetilde{y}_1^{\widetilde{m}_1}, \ldots, \widetilde{y}_{n-1}^{\widetilde{m}_{n-1}})$. Q_X is an homogeneous polynomial at $\widetilde{Y} = (\widetilde{y}_1, \ldots, \widetilde{y}_{n-1})$ in the classic sense, of degree L. Then the result follows from Euler's equation.

LEMMA 3.9. — If $P_X \not\equiv 0$ is a polynomial in $\mathbb{R}[y_1, \ldots, y_{n-1}]$ not containing neither constant nor linear terms which is homogeneous with respect to the Y-weight $L \ge 2$ then $\sum_{\nu,\mu} \frac{\partial^2 P_X}{\partial y_\nu \partial y_\mu}(y_1, \ldots, y_{n-1}) \widetilde{m}_{\nu} \widetilde{m}_{\mu} y_{\nu} y_{\mu} \not\equiv 0.$

Proof. — Let P_X be a polynomial which depends exactly on (n - r - 1)-variables, where $0 \leq r \leq n - 2$. By a permutation of variables we may assume that $P_X(y_{r+1}, \ldots, y_{n-1}) = \sum_{I=(i_{r+1},\ldots,i_{n-1})} a_I(X)y_{r+1}^{i_{r+1}} \ldots y_{n-1}^{i_n-1}$. We suppose that the assertion of lemma is false. From Lemma 3.8, we have $\sum_{\nu=r+1}^{n-1} \frac{\partial P_X}{\partial y_{\nu}} \widetilde{m}_{\nu}^2 y_{\nu} = L^2 P_X$. Since $\sum_{\nu=r+1}^{n-1} \frac{\partial P_X}{\partial y_{\nu}} \widetilde{m}_{\nu} y_{\nu} = L P_X$ we get, for all (y_{r+1},\ldots,y_{n-1}) :

$$\sum_{\nu=r+1}^{n-1} \widetilde{m}_{\nu} (L - \widetilde{m}_{\nu}) \frac{\partial P_X}{\partial y_{\nu}} (y_{r+1}, \dots, y_{n-1}) y_{\nu} = 0$$
(3.3)

Now, for every $r+1 \leq \nu \leq n-1$, we set $\tau_{\nu} = \widetilde{m}_{\nu}(L-\widetilde{m}_{\nu})$. We have $\tau_{\nu} > 0$. In fact, let us suppose that $\tau_{\mu} = 0$ for a μ with $r+1 \leq \mu \leq n-1$.

For every term of P_X we have: $L = \sum_{\nu=r+1}^{n-1} \widetilde{m}_{\nu} i_{\nu}$. Then, two cases are possible for this term:

• $i_{\mu} = 1$ and $i_{\nu} = 0$ for all $\nu \neq \mu$.

•
$$i_{\mu} = 0.$$

Since there are no linear terms, the first case is impossible. So, $i_{\mu} = 0$ for this term. But, this is also impossible from the choice of variables.

Now we show that P_X vanishes identically. In fact, let $Y \neq 0$ be fixed. We consider $f(\lambda) = P_X(\lambda^{\tau_{r+1}}y_{r+1}, \ldots, \lambda^{\tau_{n-1}}y_{n-1}), \lambda > 0$. So, we have:

$$f'(\lambda) = \sum_{j=r+1}^{n-1} \frac{\partial P_X}{\partial y_j} (\lambda^{\tau_{r+1}} y_{r+1}, \dots, \lambda^{\tau_{n-1}} y_{n-1}) \tau_j \lambda^{\tau_{j-1}} y_j$$

For $r+1 \leq j \leq n-1$, we set $w_j = \lambda^{\tau_j} y_j$. We get by (3.3):

$$f'(\lambda) = \frac{1}{\lambda} \sum_{j=r+1}^{n-1} \tau_j w_j \frac{\partial P_X}{\partial y_j} (w_{r+1}, \dots, w_{n-1}) = 0.$$

So, f is constant. As $f(1) = P_X(y_{r+1}, \ldots, y_{n-1}) = \lim_{\lambda \to 0} f(\lambda) = P_X(0) = 0$, P_X vanishes identically. Therefore, we obtain a contradiction. \Box

4. A sufficient condition for the existence of a local peak sets for the class A^{∞}

This part was inspired by the article of Hakim and Sibony [H-S]. The following lemma can be shown by standard methods [Na].

LEMMA 4.1. — Let \widetilde{U}_X be a neighborhood of the origin in \mathbb{R}^n and h: $(X, Y) \mapsto h(X, Y) \ a \ C^{\omega}$ -function on $\widetilde{U}_X \times \mathbb{R}^n$. We suppose that h is m-flat where Y = 0. Then there exist a neighborhood V_Y of the origin in \mathbb{R}^n , a neighborhood $U_X \subset \subset \widetilde{U}_X$ of the origin and a function $g \in C^{\infty}(U_X \times \mathbb{R}^n)$ which vanishes on $U_X \times V_Y$ and verifies for $\varepsilon > 0$: $||g - h||_m^{U_X} \times \mathbb{R} < \varepsilon$.

LEMMA 4.2. — Let $\theta: \widetilde{U} \longrightarrow \mathbb{C}^n$ be a C^{∞} -parametrization of the submanifold **N** in a neighborhood of the origin in \mathbb{R}^n . Then θ has an extension $\widetilde{\theta}$ defined on a neighborhood \widetilde{U} of the origin in \mathbb{C}^n and which is almostholomorphic with respect to $\mathbf{N} \cap \widetilde{U}$.

Proof. — Let
$$T_m(X,Y) = \sum_{|\alpha| \leq m} \frac{1}{\alpha!} D_X^{\alpha} \theta(X) (iY)^{\alpha}$$
 and $U_X \subset \widetilde{U}_X$ be a

neighborhood of the origin in \mathbb{R}^n . For $k \in \mathbb{N}$ it is clear that $T_{k+1} - T_k$ is k-flat at Y when Y = 0. Now we apply the preceding Lemma 4.1 to $T_{k+1} - T_k$.

Then there exist a neighborhood V_Y^k of the origin in \mathbb{R}^n and a C^{∞} -function $g_k(X, Y)$ which vanishes on $U_X \times V_Y^k$ such that

$$||T_{k+1} - T_k - g_k||_k^{U_X \times \mathbb{R}^n} < 2^{-k}.$$
(4.1)

For $m \in \mathbb{N}^*$, we set $\widetilde{T}_m := T_0 + \sum_{k=0}^m (T_{k+1} - T_k - g_k) \in C^\infty(U_X \times \mathbb{R}^n)$. By

(4.1) $\sum_{k} (T_{k+1} - T_k - g_k)$ is a normal series for all norms C^l on $U_X \times \mathbb{R}^n$, $l \in \mathbb{N}$. So, the sequence $(\widetilde{T}_m)_m$ converges uniformly to $\widetilde{\theta} \in C^{\infty}(U_X \times \mathbb{R}^n)$. It is clear that for m and k, $T_m(X, 0) = \theta(X)$, $g_k(X, 0) = 0$. Hence, $\widetilde{\theta}(X, 0) = \lim_{m \to +\infty} \widetilde{T}_m(X, 0) = \theta(X)$. So $\widetilde{\theta}$ is an C^{∞} -extension of θ on $U_X \times \mathbb{R}^n$. That $\widetilde{\theta}$ is almost-holomorphic with respect to $U_X \times \mathbb{R}^n$ can be seen by similar arguments as in [H-S]. \Box

The following lemma shows that (\mathcal{H}_2) does not depend of the choice of the almost-holomorphic extension.

LEMMA 4.3. — Let $\widetilde{\gamma} : \widetilde{V} \longrightarrow \mathbb{C}^{n-1}$ be an almost-holomorphic extension of γ with respect to $\widetilde{V} \cap \mathbb{R}^{n-1}$ which satisfies the hypothesis (\mathcal{H}_2) (here γ is the C^{∞} -parametrization of \mathbf{M} defined in section 2). Let $\widetilde{\phi} : \widetilde{W} \longrightarrow \mathbb{C}^{n-1}$ be an another almost-holomorphic extension of γ with respect to $\widetilde{W} \cap \mathbb{R}^{n-1}$. Then, the hypothesis (\mathcal{H}_2) is satisfied for $\widetilde{\phi}$.

Proof. — The passage from $\widetilde{\gamma}$ to $\widetilde{\phi}$ is given by the transformation $\widetilde{\psi} \colon \widetilde{W} \longrightarrow \widetilde{V}$ which is almost-holomorphic with respect to $\widetilde{W} \cap \mathbb{R}^{n-1}$. So, we have $\widetilde{\psi} \mid_{\widetilde{W} \cap \mathbb{R}^{n-1}} = Id$ and $\widetilde{\phi} = \widetilde{\gamma} \circ \widetilde{\psi}$. It is sufficient to prove for every $\sigma \in \widetilde{W}$ and for all $l \in \mathbb{N}$: $|\widetilde{\psi}(\sigma) - \sigma| \lesssim |\Im\sigma|^{\mathfrak{l}}$.

Let $\sigma = \zeta + i.\eta$ with $\zeta \in \widetilde{W} \cap \mathbb{R}^{n-1}$ and $l \in \mathbb{N}$ be fixed. Then, we have

$$\widetilde{\psi}(\sigma) = \sum_{|I| \leq l} \frac{1}{I!} \frac{\partial^{|I|} \widetilde{\psi}}{\partial \eta^{I}}(\zeta) \eta^{I} + O(|\eta|^{l+1}).$$

$$\widetilde{\psi}(\sigma) = \zeta + \sum_{1 \leq |I| \leq l} \frac{1}{I!} \frac{\partial^{|I|} \widetilde{\psi}}{\partial \eta^{I}}(\zeta) \eta^{I} + O(|\eta|^{l+1}). \text{ So we can write } \widetilde{\psi} \text{ as } \widetilde{\psi}(\sigma) = \zeta + \sum_{j=1}^{l} \widetilde{\psi}^{(j)}(\sigma) + O(|\eta|^{l+1}) \text{ with } \widetilde{\psi}^{(j)}(\sigma) = \sum_{|I|=j} \frac{1}{I!} \frac{\partial^{j} \widetilde{\psi}}{\partial \eta^{I}}(\zeta) \eta^{I}. \text{ In particular,}$$

we have

$$\widetilde{\psi}(\sigma) = \zeta + \widetilde{\psi}^{(1)}(\sigma) + O(|\eta|^2) = \sum_{i=1}^{n-1} \frac{\partial \widetilde{\psi}}{\partial \eta_i}(\zeta)\eta_i + O(|\eta|^2).$$

Since $\overline{\partial}\widetilde{\psi} = O(|\eta|)$, we have $\delta_{kj} + i\frac{\partial\widetilde{\psi}_j}{\partial\eta_k}(\zeta) = O(|\eta|), \forall 1 \leq k, j \leq n-1$. This implies $\widetilde{\psi}^{(1)}(\sigma) = i\eta$. Consequently, $\widetilde{\psi}(\sigma) = \sigma + \sum_{j=2}^l \widetilde{\psi}^{(j)}(\sigma) + O(|\eta|^{l+1})$. Let

 $2 \leq j_0 \leq l$ be the smallest integer such that $\widetilde{\psi}^{(j_0)}$ is non zero. Then we get: $\widetilde{\psi}(\sigma) = \sigma + \widetilde{\psi}^{(j_0)}(\sigma) + O(|\eta|^{j_0+1})$. Now, $\overline{\partial}\widetilde{\psi} = \overline{\partial}\widetilde{\psi}^{(j_0)} + O(|\eta|^{j_0}) = O(|\eta|^{j_0})$. Thus, for all $1 \leq k \leq n-1$, we have

$$\frac{\partial \widetilde{\psi}^{(j_0)}}{\partial \overline{\sigma}_k} = -\frac{1}{2i} \left(\frac{\partial \widetilde{\psi}^{(j_0)}}{\partial \eta_k} \right) + O(|\eta|^{j_0}) = O(|\eta|^{j_0}).$$

This implies $\frac{\partial \widetilde{\psi}^{(j_0)}}{\partial \eta_k} = O(|\eta|^{j_0})$ for all $1 \leq k \leq n-1$. As $\frac{\partial \widetilde{\psi}^{(j_0)}}{\partial \eta_k}$ is a polynomial with respect to η of degree (j_0-1) we get, for all $1 \leq k \leq n-1$, $\frac{\partial \widetilde{\psi}^{(j_0)}}{\partial \overline{\eta}_k} \equiv 0$. So $\widetilde{\psi}^{(j_0)}$ is independent of η . This contradicts our choice of j_0 . Therefore, we obtain $\widetilde{\psi}(\sigma) = \sigma + O(|\eta|^{l+1})$. \Box

Before stating our theorem for the A^{∞} -case, we need a condition to guarantee the pseudoconvexity of the boundary under an almost-holomorphic change of coordinates. It is the aim of the following lemma.

LEMMA 4.4. — Suppose that the hypotheses of Proposition 3.2 are fulfilled. We denote by $\widetilde{\psi} : (Z, w) \longmapsto (Z', w')$ the almost-holomorphic change of coordinates. We suppose that there exist two constants C > 0 and $L \in \mathbb{N}$ such that, in an open neighborhood $\widetilde{\mathcal{U}}$ of $p \in \mathbf{M}$, we have

 (\mathcal{H}_3)

$$\mathcal{L}ev \ \rho(q)[t] \leqslant C|t|^2 \operatorname{dist}(q, \mathbf{N})^L, \ \forall q \in \mathcal{U} \cap bD.$$

Then, $D' = \widetilde{\theta}(D \cap \widetilde{\mathcal{U}})$ is a locally pseudoconvex at the origin.

Proof. — We set $N' = \tilde{\theta}(\mathbf{N})$ and $M' = \tilde{\theta}(\mathbf{M})$. Since $\tilde{\theta}$ is a local C^{∞} diffeomorphism on an open neighborhood $\tilde{\mathcal{U}}$ of $p, \tilde{\theta}$ preserves the distances.
In particular, we have: $\operatorname{dist}(q', N') \approx \operatorname{dist}(q, \mathbf{N})$ with $q' = \tilde{\theta}(q)$ and $q \in \tilde{\mathcal{U}}$.

Set $\Psi = \tilde{\theta}^{-1}$, $w = z_n$ and $w' = z'_n$. Since $\tilde{\theta}$ is an almost-holomorphic change of coordinates the matrix

$$\left\{\frac{\partial \Psi_i}{\partial z'_j}\right\}_{\substack{1 \le i \le n \\ 1 \le j \le n}} \text{ is nonsingular}$$
(4.2)

on a sufficiently small neighborhood of the origin.

For $1 \leq i \leq n$, we have

$$\frac{\partial}{\partial z'_j} = \sum_{j=1}^n \frac{\partial \Psi_j}{\partial z'_i} \frac{\partial}{\partial z_j} + \sum_{j=1}^n \frac{\partial \overline{\Psi_j}}{\partial z'_i} \frac{\partial}{\partial \overline{z}_j}$$
$$= \sum_{j=1}^n \frac{\partial \Psi_j}{\partial z'_i} \frac{\partial}{\partial z_j} + \sum_{j=1}^n O\left(\operatorname{dist}(q, \mathbf{N})^{L+1}\right) \frac{\partial}{\partial \overline{z}_j}$$

The domain D' is defined by $\rho' = \rho \circ \Psi$. Let $t' = (t'_1, \ldots, t'_n) \in T^{\mathbb{C}}_{q'}(bD')$. Thus $\sum_{j=1}^n \frac{\partial \rho'(q')}{\partial z'_j} t'_j = 0$. This implies

$$\sum_{j=1}^{n} \frac{\partial \rho}{\partial z_i} \frac{\partial \Psi_i}{\partial z'_i} t'_j + O\left(\operatorname{dist}(q, \mathbf{N})^{L+1}\right) = 0.$$

For $1 \leqslant i \leqslant n$ we set $t_i = \sum_{i,j=1}^n \frac{\partial \Psi_i}{\partial z'_i} t'_j$.

From (4.2) we get: $\sum_{i=1}^{n} \frac{\partial \rho}{\partial z_i} t_i = O\left(|t'| \operatorname{dist}(q, \mathbf{N})^{L+1}\right) = O\left(|t| \operatorname{dist}(q, \mathbf{N})^{L+1}\right).$

Now we decompose t into tangential component $t^{\mathcal{H}}$ and a normal component $t^{\mathcal{N}}$. So, $t = t^{\mathcal{H}} + t^{\mathcal{N}}$ with $t^{\mathcal{H}} \in T_q^{\mathbb{C}}(bD)$, $t^{\mathcal{N}} \perp T_q^{\mathbb{C}}(bD)$ and $|t^{\mathcal{H}}| + |t^{\mathcal{N}}| \leq 2|t|$. Moreover, $t^{\mathcal{N}} = \kappa(q)\mathbf{n}(q)$ with $\kappa(q) \in \mathbb{C}$ and, for all $1 \leq i \leq n$, we have $t_i^{\mathcal{N}} = \kappa(q)\frac{\partial\rho(q)}{\partial\overline{z_i}}$. This implies

$$\kappa(q) \sum_{i=1}^{n} \left| \frac{\partial \rho(q)}{\partial z_{i}} \right|^{2} = \sum_{i=1}^{n} \frac{\partial \rho(q)}{\partial z_{i}} \kappa(q) \frac{\partial \rho(q)}{\partial \overline{z}_{i}}$$
$$= \sum_{i=1}^{n} \frac{\partial \rho(q)}{\partial z_{i}} t_{i}^{\mathcal{N}} = \sum_{i=1}^{n} \frac{\partial \rho}{\partial z_{i}} t_{i}$$
$$= O\left(|t| dist(q, \mathbf{N})^{L+1} \right).$$

Consequently,

$$t^{\mathcal{N}}| = |\kappa(q)| = O\left(|t| \operatorname{dist}(q, \mathbf{N})^{L+1}\right).$$
(4.3)

Now, we compute the Levi form of ρ' . As

$$\frac{\partial \rho'(q')}{\partial z'_i} = \sum_{i=1}^n \frac{\partial \rho(q)}{\partial z_\kappa} \frac{\partial \Psi_\kappa(q')}{\partial z'_i} + O\left(\operatorname{dist}(q, \mathbf{N})^{L+1}\right)$$

and by replacing L by L + 1, we get

$$\frac{\partial^2 \rho'(q')}{\partial z'_i \partial \overline{z'}_j} = \sum_{k,l=1}^n \frac{\partial^2 \rho(q)}{\partial z_k \partial \overline{z}_l} \frac{\partial \Psi_k(q')}{\partial z'_i} \overline{\frac{\partial \Psi_l(q')}{\partial z'_j}} + O\left(\operatorname{dist}(q, \mathbf{N})^{L+1}\right)$$

By (4.3) it follows that

$$\begin{split} \sum_{i,j=1}^{n} \frac{\partial^{2} \rho'(q')}{\partial z'_{i} \partial \overline{z'_{j}}} t'_{i} \overline{t'_{j}} &= \sum_{k,l=1}^{n} \frac{\partial^{2} \rho(q)}{\partial z_{k} \partial \overline{z_{l}}} \left(\sum_{i=1}^{n} \frac{\partial \Psi_{k}(q')}{\partial z'_{i}} t'_{i} \right) \left(\sum_{j=1}^{n} \frac{\overline{\partial \Psi_{l}(q')}}{\partial z'_{j}} t'_{j} \right) \\ &+ O\left(dist(q, \mathbf{N})^{L+1} \right) \\ &= \sum_{k,l=1}^{n} \frac{\partial^{2} \rho(q)}{\partial z_{k} \partial \overline{z_{l}}} t^{\mathcal{H}}_{l} \overline{t^{\mathcal{H}}_{l}} + O\left(|t|^{2} dist(q, \mathbf{N})^{L+1} \right). \end{split}$$

From (\mathcal{H}_3) and (4.3) we get:

$$\sum_{k,l=1}^{n} \frac{\partial^2 \rho(q)}{\partial z_k \partial \overline{z}_l} t_i^{\mathcal{H}} \overline{t_l^{\mathcal{H}}} \geq C |t^{\mathcal{H}}|^2 dist(q, \mathbf{N})^L$$
$$\geq C |t|^2 dist(q, \mathbf{N})^L + O\left(|t|^2 dist(q, \mathbf{N})^{L+1}\right).$$

Thus there exists a constant C' > 0 such that $\mathcal{L}ev \ \rho'(q')[t'] \ge C'|t|^2$ dist $(q, N)^L$. This means that D' is a locally pseudoconvex at the origin. \Box

DEFINITION 4.5. — Let F be a C^{∞} -function on a neighborhood \mathcal{V} of the origin in \mathbb{C}^{n-1} . We say that F has Y-weight $\mathcal{P}_Y(F) \ge S$ $(S \in \mathbb{N})$ if there exists a constant C > 0 such that $|F(X,Y)| \le C||Y||_*^S$, $\forall Z = X + i.Y \in \mathcal{V}$. Also, we say that F has Z-weight $\mathcal{P}_Z(F) \ge R \ge S$ $(R \in \mathbb{N})$ if there exists a constant c > 0 such that $|F(X,Y)| \le c||Z||_*^R$, $\forall Z = X + i.Y \in \mathcal{V}$.

In the sequel we have to take into account the following obvious assertions.

Remark 4.6. —

1) Let F be a polynomial function with respect to Y. Then $\mathcal{P}_Y(F) \ge S \iff F(X,Y) = \sum_{I=(i_1,\dots,i_{n-1})} F_I(X)Y^I$ with $\sum_{\nu=1}^{n-1} \widetilde{m}_{\nu} i_{\nu} \ge S$. - 590 –

- 2) Let F be a polynomial function with respect to X and Y. Then $\mathcal{P}_Z(F) \ge R \iff F(X,Y) = \sum_{\substack{I=(i_1,\ldots,i_{n-1})\\J=(j_1,\ldots,j_{n-1})}} F_{I,J} X^J Y^I \text{ with } \sum_{\nu=1}^{n-1} \widetilde{m}_{\nu}(i_{\nu}+i_{\nu}) \ge R.$
- 3) If ||Y|| < 1 then there exists a constant a > 0 such that $||Y|| \leq a||Y||_*$.

Now, we give a version of Lemma 3.6 in the C^{∞} -case. Its proof is similar.

LEMMA 4.7. — Let $R, S \in \mathbb{N}$, $R \ge S$ and F be a C^{∞} -function on an open sufficiently small neighborhood \mathcal{V} of the origin in \mathbb{C}^{n-1} . We suppose that F has Y-weight $\mathcal{P}_Y(F) \ge S$ and Z-weight $\mathcal{P}_Z(F) \ge R$. Then, there exists a constant C > 0 such that: $|F(Z)| \le C||Y||_*^s \cdot ||Z||_*^{R-S}$, $\forall Z = X + i \cdot Y \in \mathcal{V}$.

THEOREM 4.8. — Let D be a pseudoconvex domain in \mathbb{C}^n with C^{∞} boundary. Let \mathbf{M} be an (n-1)-dimensional submanifold of bD which is totally real and complex-tangential in a neighborhood \mathcal{U} of $p \in \mathbf{M}$. We suppose

• There exist two positives constants C and L such that (\mathcal{H}'_3)

$$\mathcal{L}ev \ \rho(q)[t] \ge C|t|^2 \operatorname{dist}(q, M)^L, \ \forall q \in \mathcal{U} \cap bD, \ \forall t \in T_q^{\mathbb{C}}(bD).$$

• **M** admits a peak-admissible C^{∞} -vector field X of peak-type $(K, M; \widetilde{m}_1, \ldots, \widetilde{m}_{n-1})$ at p for A^{∞} .

Then,

- i) **M** is a local peak set at p for the class A^{∞} .
- i) **M** is a local interpolation set at p for the class A^{∞} .

Proof. — i) After an almost-analytic change of coordinates we obtain the following properties: The point $p \in \mathbf{M}$ corresponds to the origin and in an open neighborhood of the origin, we have $M' = \tilde{\theta}(M) = \{(Z', w')/Y' = w' = 0\}, D' = \tilde{\theta}(D)$ has $\rho'(Z', w') = u' + A(Z') + v'B(Z') + v'^2R(Z', v')$ as local defining function at the origin. Moreover, M' is locally contained in an n-dimensional submanifold $N' = \{(Z', w')/Y' = 0 \text{ and } u' = 0\}$ of bD' which is totally real. By Lemma 4.4, the condition (\mathcal{H}'_3) garantees that D' is a locally pseudoconvex at the origin. Moreover, the hypothesis on \mathbf{M} implies:

 (\mathcal{H}) There exist two constants $0 < c'_1 \leq c'^2$ such that, for every $Z' = X' + i \cdot Y' \in \mathbb{C}^{n-1}$ near the origin, we have:

$$c_1'||Y'||_*^{2M}.||Z'||_*^{2K-2M} \leqslant A(Z') \leqslant c_2'||Y'||_*^{2M}.||Z'||_*^{2K-2M}$$

From (\mathcal{H}) and Lemma 4.7 we get $\frac{|B|^2}{A}$ is uniformly bounded in a sufficiently small neighborhood of the origin in \mathbb{C}^{n-1} . By Proposition 3.4, there exists an almost-holomorphic function with respect to $N' \cap \mathcal{U}', \tilde{\psi}(w') = \frac{w'}{1 - 2K_1w'}$ defined on an open neighborhood \mathcal{U}' of the origin in \mathbb{C}^n such that: $\Re \tilde{\psi} < 0$ on $\overline{D'} \cap \mathcal{U}'$ if $w' \neq 0$ and $\tilde{\psi} = 0$ if w' = 0.

As $|\widetilde{\psi}(w')| \lesssim |w'|$, we have for every $(Z', w') \in \overline{D'} \cap \mathcal{U}'$,

$$\begin{array}{lll} A(Z') &=& \rho'(Z',w') - v'B(Z') - v^{'2}R(Z',v') - u' \\ &\leqslant& -v'B(Z') - v^{'2}R(Z',v') - u' \lesssim |u'| + |v'| \lesssim |w'|. \end{array}$$

Moreover, if \mathcal{U}' is sufficiently small we get:

$$dist((Z', w'), M') \lesssim ||Y'|| + |w'|.$$
(4.4)

Since $||Y'||_*^{2M} ||Z'||_*^{2(K-M)} \lesssim A(Z') \lesssim |w'|$ and $||Y'||_* \leqslant ||Z'||_*$ we have $||Y'||_*^{2K} \lesssim |w'|$. By Remark 4.6 inequality (4.4) gives: For every $(Z', w') \in \overline{D'} \cap \mathcal{U}'$: dist $((Z', w'), M') \lesssim |w'|^{1/2K}$. This has two consequences:

- a) $\overline{\partial}'\left(\frac{1}{\widetilde{\psi}}\right)$ has a C^{∞} -extension on $\mathcal{U}' \cap \overline{D'}$.
- b) If $F \in C^{\infty}(\mathcal{U}' \cap D')$ is an almost-holomorphic function with respect to $N' \cap \mathcal{U}'$ then $\frac{1}{\widetilde{\psi}}\overline{\partial}' F$ has a C^{∞} -extension on $\mathcal{U}' \cap \overline{D'}$.

(Here $\overline{\partial}'$ denotes the $\overline{\partial}$ -operator on D'. Set $\widetilde{\Psi} := \widetilde{\theta}^{-1}$. If $f' \in C^{\infty}(\mathcal{U}' \cap D')$ then $\overline{\partial}' f' = \widetilde{\Psi}^*(\overline{\partial}(f' \circ \widetilde{\theta}))$ where $\widetilde{\Psi}^*$ is the pull-back of $\widetilde{\Psi}$).

Proof. —

a) On $\mathcal{U}' \cap D'$ we have $\overline{\partial}' \left(\frac{1}{\widetilde{\psi}}\right) = -\left(\frac{1-2K_1w'}{w'}\right)^2 \overline{\partial}' \widetilde{\psi}$. As $\widetilde{\psi}$ is an almost-holomorphic function with respect to $N' \cap \mathcal{U}'$ we get for all $L \in \mathbb{N}^*$ and $(Z', w') \in \mathcal{U}' \cap \overline{D'}$, $|\overline{\partial}' \widetilde{\psi}(w')| \lesssim \operatorname{dist}((Z', w'), N')^L \lesssim \operatorname{dist}((Z', w'), M')^L \lesssim |w'|^{L/2K}$. (4.5)

b) With an analogous reasoning, we have for every $(Z', w') \in \mathcal{U}' \cap \overline{D'}$ and for all $L \in \mathbb{N}^*$, $|\overline{\partial}' F(Z', w')| \lesssim \operatorname{dist}((Z', w'), M')^L \lesssim |w'|^{L/2K}$. By (4.5) we see that the (0,1)-form $\overline{\partial}' \left(\frac{1}{\widetilde{\psi}}\right)$ has a $\overline{\partial}'$ -closed C^{∞} extension on $\mathcal{U}' \cap \overline{D'}$. We set $\psi = \widetilde{\psi} \circ \widetilde{\theta}$ and get that $\overline{\partial} \left(\frac{1}{\psi}\right)$ is a $\overline{\partial}$ -closed (0,1)-form of class C^{∞} on $\mathcal{U} \cap \overline{D}$.

Let $0 < \varepsilon \ll 1$ be such that $\overline{B(0,\varepsilon)} \subset \overline{\mathcal{U}}$ and $bB(0,\varepsilon) \cap bD$ be a transversal intersection. Due to Corollary 2 in [Mi] there exists a function $g \in C^{\infty}(\overline{B(0,\varepsilon)} \cap D)$ such that $\overline{\partial}g = \overline{\partial}\left(\frac{1}{\psi}\right)$ on $\overline{B(0,\varepsilon)} \cap D$. Adding a constant, we may assume that $\Re g > 0$. If ε is sufficiently small, we get $|g\psi| \leq \frac{1}{2}$ on $\overline{B(0,\varepsilon)} \cap D$. Now we consider $h = \frac{\psi}{1-g\psi}$. It is clear that $h \in C^{\infty}(\overline{B(0,\varepsilon)} \cap D)$. As $\overline{\partial}h = -\frac{1}{\left(\frac{1}{\psi} - g\right)^2}\overline{\partial}\left(\frac{1}{\psi} - g\right) = 0$ on $B(0,\varepsilon) \cap D$.

we obtain
$$h \in A^{\infty}(B(0,\varepsilon) \cap D)$$
. Moreover, $\psi \mid_{\mathbf{M}} = 0$ so $h \mid_{\mathbf{M}} = 0$. For every $(Z,w) \in \overline{B(0,\varepsilon) \cap D} \setminus \mathbf{M}$ we have $\Re h = \Re \left(\frac{1}{\frac{1}{\psi} - g}\right) = \frac{\frac{\Re \psi}{|\psi|^2} - \Re \overline{g}}{\left|\frac{1}{\psi} - g\right|^2} < 0.$

Thus, **M** is a local peak set at p for the class A^{∞} .

ii) Using the notations as above, let $F \in C^{\infty}(\overline{\mathbf{M} \cap B(0,\varepsilon_1)})$ with $0 < \varepsilon_1 \leq \varepsilon$. Let \widetilde{F} be an almost-holomorphic extension of F on $B(0,\varepsilon_2)$ with respect to $\mathbf{N} \cap B(0,\varepsilon_2)(\varepsilon_2 \leq \varepsilon_1$. By b) the (0,1)-form $\frac{1}{\psi}\overline{\partial}\widetilde{F}$ has a C^{∞} -extension on $\overline{B(0,\varepsilon_2)} \cap \overline{D}$. Since $\frac{1}{h} = (1 - g\psi)\frac{1}{\psi}, \frac{1}{h}\overline{\partial}\widetilde{F}$ is $\overline{\partial}$ -closed on $B(0,\varepsilon_2) \cap D$. Moreover, $\frac{1}{h}\overline{\partial}\widetilde{F}$ has a C^{∞} -extension on $\overline{B(0,\varepsilon_2)} \cap \overline{D}$.

Let $0 < \varepsilon_3 \leq \varepsilon_2$ be such that $bB(0, \varepsilon_3) \cap bD$ is a transversal intersection. By Corollary 2 of [Mi] there exists a function $G \in C^{\infty}(\overline{B(0, \varepsilon_3)} \cap D)$ such that $\overline{\partial}G = \frac{1}{h}\overline{\partial}\widetilde{F}$ on $\overline{B(0, \varepsilon_3)} \cap D$. Now we set $f = \widetilde{F} - hG$ on $\overline{B(0, \varepsilon_3)} \cap D$.

It is clear that $f \in C^{\infty}(\overline{B(0,\varepsilon_3)} \cap \overline{D})$. Moreover, we have $f \Big|_{\mathbf{M} \cap \overline{B(0,\varepsilon_3)}} = \widetilde{F} \Big|_{\mathbf{M} \cap \overline{B(0,\varepsilon_3)}} = F$ and $\overline{\partial} f = \overline{\partial} \widetilde{F} - h \overline{\partial} G = 0$. The theorem is completely proved. \Box

5. Some implications from the sufficient hypotheses for the multitype

We want to interpret the sufficient hypotheses (\mathcal{H}_1) and (\mathcal{H}_2) in terms of Catlin's multitype. In this section we first recall various concepts of types and we give the multitype for the points on the submanifold **M**.

Let D be a bounded pseudoconvex in \mathbb{C}^n with C^{∞} -boundary. Let ρ be a local defining function at a point $p \in bD$. The variety (1-)type $\Delta_1(bD, p)$ (or $\Delta_1(p)$ if no confusion can occur), introduced by D'Angelo [DA], is defined as

$$\Delta_1(bD,p) := \sup_z \left\{ \frac{\nu(z^*\rho)}{\nu(z-p)} \right\},\,$$

where the supremum is taken over all germs of nontrivial one-dimensional complex curves $z : (\mathbb{C}, 0) \longrightarrow (\mathbb{C}^n, p)$ with z(0) = p. Here, $\nu(f)$ denotes the vanishing order of the function f at 0 and $z^* \rho \equiv \rho \circ z$.

More generally, one can define the q-type, $\Delta q(bD, p)$ [DA], $1 \leq q \leq n$,

$$\Delta_q(bD,p) := \inf_z \Delta_1(bD \cap S, p).$$

Here S runs over all (n - q + 1)-dimensional complex hyperplanes passing through p, and $\Delta_1(bD \cap S, p)$ denotes the 1-type of the domain $D \cap S$ (considered as a domain in S) at p. Note that the q-types are biholomorphic invariants [DA], [Ca].

Next we recall the definition of Catlin's multitype. Let Γ_n denote the set of all *n*-tuples of numbers $\mu = (\mu_1, \ldots, \mu_n)$ with $1 \leq \mu_i \leq \infty$ such that

(i) $\mu_1 \leqslant \mu_2 \leqslant \ldots \leqslant \mu_n$;

(ii) For each k, either $\mu_k = \infty$ or there is a set of nonnegative numbers a_1, \ldots, a_k , with $a_k > 0$ such that $\sum_{j=1}^k a_j / \mu_j = 1$.

An element of Γ_n will be referred to as a weight. The set of weights can be ordered lexicographically, i.e., if $\mu' = (\mu'_1, \ldots, \mu'_n)$ and $\mu'' = (\mu''_1, \ldots, \mu''_n)$, then $\mu' < \mu''$ if for some $k, \mu'_j = \mu''_j$ for all j < k, but $\mu'_k < \mu''_k$. A weight $\mu \in \Gamma_n$ is said to be distinguished if there exist holomorphic coordinates (z_1, \ldots, z_n) about p, with p mapped to the origin, such that

If
$$\sum_{i} \frac{\alpha_i + \beta_i}{\mu_i} < 1$$
, then $D^{\alpha} \overline{D}^{\beta} \rho(p) = 0.$ (5.1)

Here D^{α} and \overline{D}^{β} denote the partial differential operators:

$$\frac{\partial^{|\alpha|}}{\partial z_1^{\alpha_1} \dots \partial z_n^{\alpha_n}} \text{ and } \frac{\partial^{|\beta|}}{\partial \overline{z}_1^{\beta_1} \dots \partial \overline{z}_n^{\beta_n}}, \text{ respectively.}$$

DEFINITION 5.1. — The multitype $\mathcal{M}(bD, p)$ (or $\mathcal{M}(p)$) is defined to be the least weight \mathcal{M} in Γ_n (smallest in the lexicographic sense) such that $\mathcal{M} \ge \mu$ for every distinguished weight μ .

We call a weight μ linearly distinguished if there exist a complex linear change of coordinates about p with p mapped to the origin and such that in the new coordinates (5.1) holds. The linear multitype $\mathcal{L}(bD, p)$ is defined to be the smallest weight $\mathcal{L} = (l_1, \ldots, l_n)$ such that $\mathcal{L} \ge \mu$ for every linearly distinguished weight μ .

Clearly $\mathcal{L}(bD, p)$ is invariant under linear change of coordinates and we have $\mathcal{L}(bD, p) \leq \mathcal{M}(bD, p)$. It is easy to see that the first component of $\mathcal{M}(p)$ is always 1.

Let us $\Delta(p) := (\Delta_n(p), \ldots, \Delta_1(p))$ where $\Delta_q(p)$ stands for the *q*-type. Let the multitype of *p* be $\mathcal{M}(p) = (\mu_1, \ldots, \mu_n)$. By the main theorem (property 4) in [Ca] it is always true that $\mathcal{M}(p) \leq \Delta(p)$ in the sense that $\mu_{n-q+1} \leq \Delta_q(p)$, for all $q = 1, \ldots, n$.

THEOREM 5.2. — Let D be a pseudoconvex domain in \mathbb{C}^n with C^{ω} boundary. Let \mathbf{M} be an (n-1)-dimensional submanifold of bD which is totally real and complex-tangential in a neighborhood \mathcal{U} of $p \in \mathbf{M}$. We suppose that \mathbf{M} admits a peak-admissible C^{ω} -vector field \mathbf{X} of peak-type $(K, M; \tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at p for the class \mathcal{O} . Then

(i)
$$\mathcal{M}(p) = \Delta(p) = (1, 2k_1, \dots, 2k_{n-1}).$$

(ii) $\mathcal{M}(p') = \Delta(p') = (1, 2m_1, \dots, 2m_{n-1})$ for $p' \in \mathbf{M} \cap \mathcal{U} - \{p\}$

Here, $m_j = M/\widetilde{m}_j$, $k_j = K/\widetilde{m}_j$ for all $1 \leq j \leq n-1$.

Remark 5.3. — An analogous result holds true in the A^{∞} -case.

Proof. — i) From Proposition 3.2 we know that there exists a holomorphic coordinates change (denoted θ) such that the point $p \in \mathbf{M}$ corresponds to the origin and in an open neighborhood of the origin in \mathbb{C}^n , the defining function ρ' of the boundary of $D' = \theta(D)$ is $\rho' = u' + A + v'B + v'^2R$. By hypothesis inequality (\mathcal{H}) holds in the new coordinates. So, we may identify the complexification $\widetilde{\mathbf{M}} = \mathbf{M} + i.\mathbf{M}$ of \mathbf{M} to $\mathbb{C}^{n-1} = T_0^{\mathbb{C}}(bD')$ and we may

assume that $\rho' |_{\mathbf{M}} \equiv A$ in a sufficiently small neighborhood of the origin in \mathbb{C}^{n-1} . Let $Z'_0 = X'_0 + i \cdot Y'_0 \neq 0$ near the origin in \mathbb{C}^{n-1} be fixed. We consider $f(\lambda) = A(\lambda Z'_0), \ \lambda \in [0,1]$. We set $m = \max_{1 \leq i \leq n-1} m_i, \ m' = \min_{1 \leq i \leq n-1} m_i$ and $\kappa = K/M \geq 1$. As

$$f(\lambda = \left(\sum_{i=1}^{n-1} \lambda^{2m_i} y_{0,i}^{'2m_i}\right) \left(\sum_{i=1}^{n-1} \lambda^{2m_i} \left(x_{0,i}^{'2m_i} + y_{0,i}^{'2m_i}\right)\right)^{\kappa-1},$$

we have $\lambda^{2m\kappa} f(1) \lesssim f(\lambda) \lesssim \lambda^{2m'\kappa} f(1)$. Therefore, we obtain

$$\frac{f(1)}{2m\kappa+1} \lesssim \int_0^1 f(\lambda) \, d\,\lambda \lesssim \frac{f(1)}{2m'\kappa+1}$$

By Remark 4 in [B-S], the 1-type of bD' at 0 is equal to line type in the new system of coordinates. This means that $\Delta_1(bD', 0) = \sup_{v \in \mathbb{C}^n, |v|=1} (\rho' \circ \ell_v)$,

where $\ell_v: \zeta \longmapsto \zeta.v$ is a complex line passing through the origin and having v as direction. Inequality (\mathcal{H}) implies $\Delta_1(bD', 0) = 2k_{n-1}$. Now we prove that $\Delta(bD', 0) = (1, 2k_1, \dots, 2k_{n-1})$ is a linearly distinguished weight at 0. Let $F: Z = (z_1, \dots, z_n) \longmapsto (z_n, z_1, z_2, \dots, z_{n-1})$ be a \mathbb{C} -linear change of coordinates. We set $\widetilde{Z} = (\widetilde{z}_1, \widetilde{Z}') = F(Z)$ with $\widetilde{Z}' = (\widetilde{z}_2, \dots, \widetilde{z}_n)$ and $\widetilde{\rho} = \rho' \circ F^{-1}$. As $\widetilde{\rho}(\widetilde{Z}) = \Re(\widetilde{z}_1) + A(\widetilde{Z}') + (\Im \widetilde{z}_1)B(\widetilde{Z}') + (\Im \widetilde{z}_1)^2R(\widetilde{Z}', \Im \widetilde{z}_1),$ $\frac{\partial \widetilde{\rho}}{\partial \widetilde{z}_1}(0) \neq 0$ because $\frac{\partial \rho'}{\partial z_n}(0) \neq 0$. This implies that $\alpha_1 = \beta_1 = 0$ for the property (5.1). Thus it is sufficient to verify that:

$$\sum_{i=2}^{n} \frac{\alpha_i + \beta_i}{2k_{i-1}} < 1 \quad \text{implies} \quad D^{\alpha} \overline{D}^{\beta} A(0) = 0$$

In fact, let $\alpha = (\alpha_2, \dots, \alpha_n), \ \beta = (\beta_2, \dots, \beta_n) \in \mathbb{N}^{n-1}$ be such that $\sum_{\nu=2}^n \frac{\alpha_{\nu} + \beta_{\nu}}{2k_{\nu-1}} < 1$. Then, $\sum_{\nu=2}^n \widetilde{m}_{\nu-1}(\alpha_{\nu} + \beta_{\nu}) < 2k$. Since A is C^{ω} on a sufficiently small neighborhood of the origin in $\mathbb{C}^{n-1}, A(X,Y) = \sum_{\substack{I=(i_2,\dots,i_n)\\J=(j_2,\dots,j_n)}} A_{I,J} X^J Y^I$ with $X = (x_2, \dots, x_n)$ and $Y = (y_2, \dots, y_n)$. We know that the Z-weight of

A is $\geq 2K$. By Remark 4.6, we have $\sum_{\nu=2}^{n} \widetilde{m}_{\nu}(i_{\nu} + j_{\nu}) \geq 2K$. Thus,

$$\mathcal{P}_Z(D^{\alpha}\overline{D}^{\beta}A) \geqslant \sum_{\nu=2}^n \widetilde{m}_{\nu-1}(i_{\nu}+j_{\nu}) - \sum_{\nu=2}^n \widetilde{m}_{\nu-1}(\alpha_{\nu}+\beta_{\nu}) > 0.$$

- 596 -

We obtain $D^{\alpha}\overline{D}^{\beta}A(0) = 0$. Therefore $\Delta(bD', 0)$ is linearly distinguished and $\Delta(bD', 0) \leq \mathcal{M}(bD', 0)$.

It remains to show that $\mathcal{M}(bD',0) \leq \Delta(bD',0)$. Setting $\mathcal{M}(bD',0) = (\mu_1,\ldots,\mu_n)$, by property 4 of Catlin in [Ca] we have $\mu_{n+1-q} \leq \Delta_q(bD',0)$ for all $q = 1,\ldots,n$.

It is sufficient to prove that $\Delta_q(bD', 0) = 2k_{n-q}$ for all $1 \leq q \leq n-1$.

- For q = 1, we have already shown that $\Delta_1(bD', 0) = 2k_{n-q}$.
- Let $2 \leq q \leq n-1$ be fixed. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{C}^n with $T_0^{\mathbb{C}}(bD') = Span_{\mathbb{C}}\{e_1, \ldots, e_{n-1}\}$. Consider $V_q = Span_{\mathbb{C}}\{e_{n-q}, \ldots, e_{n-1}\}$ and S an (n-q+1)-dimensional complex hyperplane in \mathbb{C}^n .

As

$$\dim (V_q \cap S) = \dim V_q + \dim S - \dim (V_q + S)$$

$$\geqslant q + n - q + 1 - n = 1,$$

it follows that there exists a complex line ℓ in $S \cap V_q$ that has order of contact $\geq 2k_{n-q}$ with the boundary bD' at 0. Therefore $\Delta_q(bD', 0) = 2k_{n-q}$. Moreover, if we set $\widetilde{S} = Span_{\mathbb{C}}\{e_1, \ldots, e_{n-q}, e_n\}$ then $\widetilde{S} \cap V_q = Span_{\mathbb{C}}\{e_{n-q}\}$. So $\Delta_1(\widetilde{S} \cap bD', 0) = 2k_{n-q}$. We therefore obtain $\mathcal{M}(bD', 0) \leq \Delta(bD', 0) =$ $(1, 2k_1, \ldots, 2k_{n-1})$. With $\Delta(bD', 0) = (1, 2k_1, \ldots, 2k_{n-1}) \leq \mathcal{M}(bD', 0)$, we find i).

ii) Let $p' \in \mathbf{M} \cap \mathcal{U} - \{p\}$. We work with the preceding system of coordinates and we set $\theta(p') = \tilde{p}' \neq 0$. \tilde{p}' is a boundary point of bD' near the origin such that $\Re(\tilde{p}') \neq 0$. Let $Z'_0 = X'_0 + i \cdot Y'_0 \in \mathbb{C}^{n-1}$ be fixed such $Y'_0 \neq 0$. We consider $f(\lambda) = A(\lambda Z'_0 + \tilde{p}'), \lambda \in [0, 1]$. In this case, there exist two constants $0 < c_1 \leq c_2$ which depend only of \tilde{p}' satisfying:

$$c_1 \sum_{i=1}^{n-1} \lambda^{2m_i} y_{0,i}^{'2m_i} \lesssim f(\lambda) \lesssim c_2 \sum_{i=1}^{n-1} \lambda^{2m_i} y_{0,i}^{'2m_i}.$$

Hence, $\lambda^{2m} f(1) \lesssim f(\lambda) \lesssim f(1) \lambda^{2m'}$. We obtain

$$\frac{f(1)}{2m+1} \lesssim \int_0^1 f(\lambda) \, d\,\lambda \lesssim \frac{f(1)}{2m'+1}$$

with constants that depend only of \tilde{p}' . By Remark 4 in [B-S] the 1-type of \tilde{p}' is equal to line type. So, $\Delta_1(bD', \tilde{p}') = 2m_{n-1}$. In the same way as

before one shows that $\Delta(\tilde{p}') = (1, 2m_1, \dots, 2m_{n-1})$ is linearly distinguished weight. Next, we proceed analogously as i) we obtain the equality and ii) holds. \Box

Bibliography

- [B-I] BOUTET DE MONVEL (L.), IORDAN (A.). Peak curves in weakly Pseudoconvex Boundaries in \mathbb{C}^2 . J. Diff. Geometry 7, Number 1, p. 1-15 (1997).
- [Bo] BOGGESS (A.) manifolds and the tangential Cauchy-Riemann com-plex. Studies in advanced mathematics (Texas AM University) (1992).
- [B-S] BOAS (H.P.), STRAUBE (E.J.). On equality of line type and variety type of real hypersurfaces in \mathbb{C}^n . J. Geom. Anal. 2, No.2, p. 95-98 (1992).
- [Ca] CATLIN (D.). Boundary invariants of pseudoconvex domains. Annals of Mathematics, 120, p. 529-586 (1984).
- [DA] D'ANGELO (J.P.). Real hypersurfaces, orders of contact, and applications. Annals of Mathematics, 115, p. 615-637 (1982).
- [H-S] HAKIM (M.), SIBONY (N.). Ensembles pics dans les domaines strictement pseudoconvexes. Duke Math. J. 45, p. 601-607 (1978).
- [Mi] MICHEL (J.). Integral representations on weakly pseudoconvex domains. Math. Z. 208, No. 3, p. 437-462 (1991).
- [Na] NARASIMHAN (R.). Analysis on Real and Complex Manifolds. North-Holland Mathematical Library (1968).