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Local Peak Sets in Weakly Pseudoconvex Boundaries
in C

n (∗)

Borhen Halouani
(1)

ABSTRACT. — We give a sufficient condition for a Cω (resp. C∞)-totally
real, complex-tangential, (n − 1)-dimensional submanifold in a weakly
pseudoconvex boundary of class Cω (resp. C∞) to be a local peak set for
the class O (resp. A∞). Moreover, we give a consequence of it for Catlin’s
multitype.

RÉSUMÉ. — On donne une condition suffisante pour qu’une sous variété
Cω (resp. C∞), totalement réelle, complexe-tangentielle, de dimension
(n− 1) dans le bord d’un domaine faiblement pseudoconvexe de Cn, soit
un ensemble localement pic pour la classe O (resp. A∞). De plus, on
donne une conséquence de cette condition en terme de multitype de D.
Catlin.

1. Introduction and basic definitions

This article is a part of the Ph.D thesis of the author. The O part was
motivated by the paper of Boutet de Monvel and Iordan [B-I] and A∞ part
by the methods of Hakim and Sibony [H-S]. Let D be a domain in C

n with
Cω (resp. C∞)-boundary. We denote for an open set U by O (resp. A∞) the
class of holomorphic functions on U (resp. the class of holomorphic functions
in U which have a C∞-extension to U ).

We say that M ⊂ bD is a local peak set at a point p ∈ M for the class
O (resp. A∞), if there exist a neighborhood U of p in C

n and a function
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f ∈ O(U) (resp. A∞(D ∩ U)) such that |f | < 1 on (D ∩ U)\M and f = 1
on M ∩ U . Or equivalently, if there exists a function g ∈ O(U) (resp.
A∞(D ∩ U)) such that g = 0 on M ∩ U and �g < 0 on (D ∩ U)\M.

We say that M ⊂ bD is a local interpolation set at a point p ∈ M for
the class A∞, if there exists a neighborhood U of p such that each function
f ∈ C∞(M ∩ U) is the restriction to M ∩ U of a function F ∈ A∞(D ∩ U).
A submanifold M of bD is complex-tangential if for every p ∈ M we have
Tp(M) ⊆ TC

p (bD), where TC
p (bD) is the complex tangent space of Tp(bD).

If for every p ∈ M, Tp(M) ∩ iTp(M) = {0} , we say that M is totally
real. Let ρ : U −→ R be a local C∞ defining function of D, D ∩ U = {z ∈
U/ρ(z) < 0}, dρ(p) �= 0, where U is a neighborhood of p ∈ bD. We say D is
(Levi) pseudoconvex at p if

Levρ(p)[t] =
∑

1�i,j�n

∂2ρ

∂zi∂zj
(p)titj � 0,

for every t ∈ TC
p (bD).Levρ(p)[t] is called the Levi form or the complex

hessian of ρ.

Let D be Levi pseudoconvex at p. The point p is said to be strongly
pseudoconvex if the Levi form is positive definite whenever t �= 0, t ∈
TC
p (bD). Otherwise it is said to be weakly pseudoconvex. A domain is called

pseudoconvex if its boundary points are pseudoconvex.

We need the following terminology due to L. Hörmander. A function
φ ∈ C∞(U) is almost-holomorphic with respect to a set E ⊂ U if ∂φ vanishes
to infinite order at points of E.

The paper is organized as follows: In §2, we introduce the hypotheses
(H1) and (H2). In §3 and §4, we give the equivalent more handy sufficient
condition (H) for the existence of local peak set for the class O and for the
class A∞. In the final section, we give some consequences for the multitype
on M of the sufficient hypotheses.

2. Preliminaries

Let D be a pseudoconvex domain with Cω (resp. C∞)-boundary. Let
M be an (n − 1) dimensional submanifold of bD which is totally real and
complex- tangential in a neighborhood of a point p ∈M. Let (V, γ) be a Cω

(resp. C∞)-parametrization of M at p, where V is a neighborhood of the
origin in R

n−1 such that γ(0) = p. Let X be a Cω (resp. C∞)-vector field
on M such that X(p) = 0. Denote by ζ = (ζ1, . . . , ζn−1) the coordinates of
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a point in V . Then X can be written as X =
∑
i

di(ζ)
∂

∂ζi
where di are Cω

(resp. C∞)-functions on V . We set D0 the Jacobian matrix at the origin:{
∂di
∂ζi

(0)
}
i�i,j�n−1

. Now, we introduce our first hypothesis:

(H1) The matrix D0 is diagonalizable and has m̃1 � . . . � m̃n−1 eigenval-
ues with m̃i ∈ N

∗ for all i.

We say that M admits a peak-admissible Cω (resp. C∞)-vector field
X of weights (m̃1, . . . , m̃n−1) at p ∈ M for the class O (resp. A∞). (H1)
is independent of the choice of the parametrization and the m̃i and their
multiplicities are uniquely determined. Using hypothesis (H1), one can easily
prove that there exists a Cω (resp. C∞)-change of coordinates on V such

that X =
∑
i

m̃iζi
∂

∂ζi
. This representation of X is invariant if we apply a

“weight-homogeneous” polynomial transformation of coordinates as below:

Lemma 2.1. — Let Λ = (Λ1, . . . ,Λn−1) be a Cω (resp. C∞)-change of
coordinates on V such that Λ(0) = 0 and dΛ(X) = X. Then Λ is a poly-
nomial map. More precisely, if ζ = (ζ1, . . . , ζn−1) ∈ V , I = (i1, . . . , in−1) ∈
N
n−1 and we set |I|∗ =

∑
ν

iνm̃ν then for every 1 � j � n − 1, Λj(ζ) =∑
|I|∗=m̃j

ajIζ
i1
1 . . . ζ

in−1
n−1 with ajI ∈ R. Conversely, any Λ of this form pre-

serves X.

Proof. — The integral curves of X are κζ(λ) = (λm̃1ζ1, . . . , λ
m̃n−1ζn−1),

λ ∈ R. Since dΛ(X) = X, Λ transforms an integral curve passing through ζ
to an integral curve passing through η = Λ(ζ). So we obtain

(λm̃1Λ1(ζ), . . . , λm̃n−1Λn−1(ζ)) = (Λ1(κζ(Λ)), . . . ,Λn−1(κζ(λ))). (2.1)

Let 1 � j � n − 1 be fixed. We write Λj as: Λj(ζ) = Λ∗(ζ) + R(ζ) where
Λ∗(ζ) :=

∑
|I|∗=m̃

a∗i1,...,in−1
ζi11 . . . ζ

in−1
n−1 is non identically zero for a smallest

integer m̃ that satisfies this condition: there exists a constant C > 0 such
that |R(κζ(λ))| � C|λ|m̃+1. From (2.1), we have

λm̃j Λj(ζ) = Λj(κζ(λ)) = λm̃Λ∗(ζ) +R(κζ(λ)). (2.2)

Now we divide (2.2) by λm̃. When λ tends to 0 we obtain m̃ = m̃j and
Λj(ζ) = Λ∗(ζ) for all ζ ∈ R

n−1. �
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So let the coordinates be chosen such that X =
∑

i m̃iζ
∂
∂ζi

. For ζ =
(ζ1, . . . , ζn−1), η = (η1, . . . , ηn−1) ∈ R

n−1 and λ, µ ∈ R, we set σ := ζ+i.η ∈
C
n−1, κζ(λ) := (λm̃1ζ1, . . . , λ

m̃n−1ζn−1) and κσ(µ, λ) := κζ(µ)+i.κη(λ). Let
ρ be a local defining function of D at p ∈ bD and γ̃ : Ṽ −→ θ̃(Ṽ ) := M̃ be
a holomorphic-extension (resp. almost-holomorphic extension) of the para-
metrization γ of M. In the Cω-case M̃ is a complexification of M and
Ṽ is an open neighborhood of the origin in C

n−1. Let M , K ∈ N
∗ be

such that M � K and mj := M/m̃j ∈ N
∗, kj := K/m̃j ∈ N

∗. We set
E = {ζ ∈ R

n−1/
∑
j

ζ
2mj

j = 1}. Now, we introduce our second hypothesis:

(H2) There exist constants ε > 0, 0 < c � C such that for every σ =
ζ+ i.η ∈ E+ i.E, |λ| < ε, |µ| < ε, we have: c|λ|2M (|µ|+ |λ|)2(K−M) �
ρ(γ̃(κσ(µ, λ))) � C|λ|2M (|µ|+ |λ|)2(K−M).

Definition 2.2. — If a C∞ (resp. C∞)-vector field X on M verifies
(H1) and (H2) we say that X is peak-admissible of peak-type (K,M ; m̃1, . . . ,
m̃n−1) at p ∈M for the class O (resp. A∞).

Remark 2.3. —

1) The hypothesis (H2) does not depend neither on the choice of the
defining function of the boundary bD nor the choice of the almost-
holomorphic extension (see Lemma 4.3 in section 4).

2) The geometric meaning of (H2) will become clear in inequality (H).

3. A sufficient condition for the existence of local peak set for
the class O

Theorem 3.1. — Let D be a pseudoconvex domain in C
n with Cω-

boundary. Let M be an (n − 1)-dimensional Cω-submanifold in bD that
is totally real and complex-tangential at p ∈M. We suppose that M admits
a peak-admissible Cω-vector field X of peak-type (K,M ; m̃1, . . . , m̃n−1) at p
for O. Then M is a local peak set at p for the class O.

Proof. — The proof is based on Propositions 3.2 and 3.4 below after
several holomorphic coordinates changes. Also we allow shrinkings of M.
�

Proposition 3.2. — Let D be a domain in C
n with Cω (resp. C∞)-

boundary bD. Let M be an (n−1)-dimensional Cω-submanifold in bD which

– 580 –



Local Peak Sets in Weakly Pseudoconvex Boundaries in Cn

is totally real and complex-tangential near p. Then there exists a holomor-
phic change (resp. an almost-holomorphic change) of coordinates (Z,w) with
Z = X + i.Y ∈ C

n−1 and w = u + iv ∈ C, such that p corresponds to the
origin and in an open neighborhood U of the origin, we have:

i) M = {(Z,w) ∈ U/Y = w = 0} . Moreover, M is contained in an
n-dimensional totally real submanifold N = {(Z,w) ∈ U/Y = u = 0}
of bD.

ii) For every c ∈ R, Mc = {(Z,w) ∈ N/v = c} is complex-tangential or
empty.

iii) D ∩ U = {(Z,w) ∈ U/ρ(Z,w) < 0} with

ρ(Z,w) = u+A(Z) + vB(Z) + v2R(Z, v).

iv) A and B vanish of order � 2 when Y = 0.

Proof. — We give the proof in the Cω-case. Let γ be a Cω-parametrization
of M defined on a neighborhood of the origin in R

n−1. After a translation
and a rotation of the coordinates in C

n we may assume that p is the ori-
gin and the real tangent space at 0 to bD is T0(bD) = C

n−1 × iR. We
set L(Z,w) = in(Z,w) where n is the vector field of the outer exterior
normal to bD. Then, for every (Z,w) ∈ bD, there exists a Cω-integral

curve l(Z,w)(λ) ∈ bD of L satisfying l(Z,w)(0) = (Z,w) and
dl(Z,w)

dλ
(λ) =

L(l(Z,w)(λ)). Now, we consider the map θ : (t, λ) �−→ lγ(t)(λ). It is clear that
θ is a Cω-diffeomorphism from a neighborhood U of the origin in R

n into an
n-dimensional submanifold N ′ := θ(U) of bD which is totally real. By com-
plexification of θ in a neighborhood W of the origin in C

n, we obtain in the
new holomorphic coordinates (Z ′, w′), M ′ = {(Z ′, w′) ∈ W/Y ′ = w′ = 0}
and N ′ = {(Z ′, w′) ∈ W/Y ′ = v′ = 0}. We remark that the system
{Σq = Tq(N ′)∩TC

q (bD), q ∈ W} is Cω and involutive. By Frobenius theorem
[Bo] the leaves M ′

c = {(Z ′, w′) ∈ W∩N ′/v′ = c}c∈R are complex-tangential
to bD. Now, we change coordinates again by defining: Z = Z ′ and w = iw′.
We obtain in a neighborhood U of the origin i) and ii). Representing bD as
a graph over C

n−1× iR, we obtain iii). Since M ⊂ bD is complex-tangential

A vanishes of order � 2 if Y = 0. As
∂

∂v
is tangent to N and the complex

gradient ∇ρ = (0Cn−1
,−1) is constant along N, we obtain that B vanishes

of order � 2 if Y = 0. This achieves iv) and the proposition. �

Let the change of coordinates of Proposition 3.2 for the vector field
X which verifies hypothesis (H2) be achieved. Now we show the impact
of (H2). We set κ := K/M = kj/mj � 1. Since κ is independent of j,
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we define in a sufficiently small neighborhood V of the origin in C
n−1 the

following pseudo-norms of the Z = (z1, . . . , zn−1) coordinates of Proposition

3.2: ||Y || =

∑
j

y
2mj

j

1/2M

and ||Z||∗ =
(∑

j |zj |2kj

)1/2K

. We note that

A(Z) = ρ(γ̃(κσ(µ, λ))) where Z = X + i.Y = κσ(µ, λ). Therefore, from now
on we may assume that A verifies:

(H) There exist two constants 0 < c � C such that, for every Z = X +
iY ∈ C

n−1 near the origin, we have:

c||Y ||2M∗ .||Z||2K−2M
∗ � A(Z) � C||Y ||2M∗ .||Z||2K−2M

∗

Remark 3.3. —

1) The proof of Proposition 3.2 remains true in the C∞-case. We indicate
the modification in Lemma 4.2 (section 4).

2) If Z = (z1, . . . , zn−1) ∈ V where V is a small open neighborhood

of the origin in C
n−1 , then

∑
j

|zj |2(kj−mj) ≈

∑
j

|zj |2mj

κ−1

.

Moreover, we may replace kj by mj and K by M in the definition of
the pseudo-norm ||Z||∗ .

3) If K = M = m̃1 = . . . = m̃n−1 = 1, we find the property on A for a
strongly pseudoconvex boundary.

Proposition 3.4. — 1) If the real hyperplane H = C
n−1×R = {(Z, iv)/

Z ∈ C
n−1, v ∈ R} lies outside of D in a neighborhood U of the origin, then

there exists a constant T > 0 such that B2 � TA near the origin.

2) If there exists a constant T > 0 such that B2 � TA near the ori-
gin, then there exist a sufficiently small neighborhood U of the origin and
a holomorphic function ψ on U (resp. an almost-holomorphic function with
respect to N ∩ U) which satisfies: �ψ < 0 on D ∩ U if w �= 0 and ψ = 0 if
w = 0. Here ψ =

w

1− 2K1w
with a suitable constant K1 > 0.

Proof. — The proof is elementary. See also [B-I]. �

In order to apply Proposition 3.4 2), we should determine the order of
vanishing for certain functions on M at p = 0 ∈ M. We begin by defining
the Z-weights and the Y -weights for polynomial functions.
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Definition 3.5. — Let χ = aI,Jz
i1
1 z

j1
1 . . . z

in−1
n−1 z

jn−1
n−1 , with aI,J �= 0, be a

monomial. We define the Z-weight PZ(χ) of χ as : PZ(χ) =
∑
ν

m̃ν(iν+jν).

If g �≡ 0 is a polynomial function in Z and Z we define the Z-weight of
g as the smallest Z-weight in the decomposition of g by monomials. If g
is a sum of monomials which have the same Z-weight L, we say that g
is homogeneous with respect to the Z-weight. Let X ∈ R

n−1 be fixed and
Ξ = αI,J(X)yi11 . . . y

in−1
n−1 , with αI,J(X) �≡ 0, be a monomial at Y . We define

the Y -weight PY (Ξ) of χ as
∑
ν

m̃νiν . If h �≡ 0 is a polynomial function in Y

we define the Y -weight of h to be the smallest Y -weight in the decomposition
of h. If h is a sum of monomials which have the same Y -weight L′, we say
that h is homogeneous with respect to the Y -weight of order L′.

Lemma 3.6. — Let R, S ∈ N, R � S and F (X,Y ) =
∑
I,J

FI,JY
IXJ be

a Cω-function on an open neighborhood of the origin of C
n−1 such that, for

all multi-indices I = (i1, . . . , in−1), J = (j1, . . . , jn1) in N
n−1, FI,J = 0 or

PY (FI,JY IXJ) � S and PZ(FI,JY IXJ) � R � S. Then, there exists a
constant C > 0 such that, |F (Z)| � C||Y ||S∗ .||Z||R−S

∗ , ∀Z = X + i.Y near
the origin.

Proof. — This can be seen by Taylor expansion and standard arguments.
�

Lemma 3.7. — With the notations of Lemma 3.6, if S � M and R �
K = κM , then

|F |2
A

is uniformly bounded on a sufficiently small neighbor-
hood of the origin.

Proof. — This follows immediately from Lemma 3.6 and inequality (H).
�

In order to know the weights of A and B we analyze the restrictions
which are imposed on the functions A and B by the pseudoconvexity of bD.
We assume that B �≡ 0 and we set (PY (B),PZ(B)) = (S,R). From (H)
we have (PY (A),PZ(A)) = (2M, 2K). Next, a simple computation of the
Levi form at a point near the origin to bD for t =

∑
ν m̃νyνχν ∈ TC(bD),

with χν = i

[
∂

∂zν
− i

η

∂ρ

∂zν

∂

∂w

]
and η =

1
2

(
i+B + 2vR + v2 ∂R

∂v

)
, gives

Levρ[t] = A(Z) + vB(Z) + v2R(v, Z), Z varying on M̃, the complexifica-
tion of M. By pseudoconvexity of bD and Proposition 3.4 1) there exists a
positive constant T ∗ > 0 such that

B � T ∗A. (3.1)
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It remains to study the Z-weight and Y -weight of A and B and their re-
lationship with the weights of A and B and finally to show S � M and
R � K. Some necessary auxiliaries results are given in Lemmas 3.8 and 3.9
below. We denote by ∂2

νµ the partial derivative ∂2

∂zν∂zµ
and OY (L) (resp.

OZ(L)) is the set of functions that admit an Y -weight (resp. a Z-weight)
� L (L ∈ N).

• Suppose that S < M .

The expressions of A and B are:

A =
∑
ν,µ

∂2
νµAm̃νm̃µyνyµ +OY (2M + 1)

B =
∑
ν,µ

∂2
νµAm̃νm̃µyνyµ +OY (2S).

By Lemma 3.8 A = A2M + Ã with PY (A2M ) = 2M and every term of
Ã has an Y -weight > 2M . We put A2M :=

∑
ν,µ ∂

2
νµA2Mm̃νm̃µyνyµ. By

Lemma 3.9 we obtain A2M �≡ 0 and PY (A2M ) = 2M . Similary, we have B
= BS + B̃S where every term of B̃S has an Y -weight > 2M . We put BS :=∑

ν,µ ∂
2
νµBSm̃νm̃µyνyµ. We obtain BS �≡ 0 and PY (BS) = S. Inequality

(3.1) becomes:

(BS +OY (S + 1))2 � T ∗(A2M +OY (2M + 1)). (3.2)

Since BS �≡ 0 there exists Z0 = X0 + i.Y0 with Y0 = (y0,1, . . . , y0,n−1) �≡ 0
such that BS(Z0) �= 0. Since every term in the decomposition of BS has an
Y -weight S, we consider for λ > 0, φY0(λ) = (λm̃1y0,1, . . . , λ

m̃n−1y0,n−1).
Then BS(X0 + i.φY0(λ)) becomes an homogeneous polynomial in λ of de-
gree S (i.e. BS(X0 + i.φY0(λ)) = λSBS(X0 + i.Y0)). Therefore, we obtain

lim
λ→0+

1
λS
BS(X0 + i.φY0(λ)) �= 0. Now we replace Z by X0 + i.φY0(λ) in in-

equality (3.2) and divide by λ2S . We obtain B2
S(X0 + i.φY0) � 0 when λ

tends to 0+. So BS(X0 + i.Y0) = 0 which is a contradiction. Thus, S � M .

• The case R < K can be falsified in an analogous way by using Lemma 3.9.

Now Lemma 3.7 shows that
|B|2
A

is uniformly bounded. Then Proposition
3.4 implies the theorem. �

Lemma 3.8. — Let X = (x1, . . . , xn−1) ∈ R
n−1 be fixed and PX ∈

R[y1, . . . , yn−1] be homogeneous with respect to the Y -weight L. Then we
have the following equations:
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1)
n−1∑
ν=1

∂PX
∂yν

(y1, . . . , yn−1)m̃νyν = LPX(y1, . . . , yn1).

2)
∑
ν,µ

∂2PX
∂yν∂yµ

(y1, . . . , yn−1)m̃νm̃µyνyµ+
n−1∑
ν=1

∂PX
∂yν

(y1, . . . , yn−1)m̃2
νyν =

L2PX(y1, . . . , yn−1).

Proof. — For 1 � ν � n − 1, we set yν = ỹm̃ν
ν . Now, we consider the

polynomial QX defined by : QX(ỹ1, . . . , ỹn−1) = PX(ỹm̃1
1 , . . . , ỹ

m̃n−1
n−1 ). QX

is an homogeneous polynomial at Ỹ = (ỹ1, . . . , ỹn−1) in the classic sense, of
degree L. Then the result follows from Euler’s equation. �

Lemma 3.9. — If PX �≡ 0 is a polynomial in R[y1, . . . , yn−1] not contain-
ing neither constant nor linear terms which is homogeneous with respect to

the Y -weight L � 2 then
∑
ν,µ

∂2PX
∂yν∂yµ

(y1, . . . , yn−1)m̃νm̃µyνyµ �≡ 0.

Proof. — Let PX be a polynomial which depends exactly on (n − r − 1)-
variables, where 0 � r � n − 2. By a permutation of variables we may
assume that PX(yr+1, . . . , yn−1) =

∑
I=(ir+1,...,in−1)

aI(X)yir+1
r+1 . . . y

in−1
n−1 . We

suppose that the assertion of lemma is false. From Lemma 3.8, we have
n−1∑
ν=r+1

∂PX
∂yν

m̃2
νyν = L2PX . Since

n−1∑
ν=r+1

∂PX
∂yν

m̃νyν = LPX we get, for all

(yr+1, . . . , yn−1):

n−1∑
ν=r+1

m̃ν(L− m̃ν)
∂PX
∂yν

(yr+1, . . . , yn−1)yν = 0 (3.3)

Now, for every r+1 � ν � n−1, we set τν = m̃ν(L− m̃ν). We have τν > 0.
In fact, let us suppose that τµ = 0 for a µ with r + 1 � µ � n− 1.

For every term of PX we have: L =
n−1∑
ν=r+1

m̃νiν . Then, two cases are possible

for this term:
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• iµ = 1 and iν = 0 for all ν �= µ.

• iµ = 0.

Since there are no linear terms, the first case is impossible. So, iµ = 0 for
this term. But, this is also impossible from the choice of variables.

Now we show that PX vanishes identically. In fact, let Y �= 0 be fixed. We
consider f(λ) = PX(λτr+1yr+1, . . . , λ

τn−1yn−1), λ > 0. So, we have:

f ′(λ) =
n−1∑
j=r+1

∂PX
∂yj

(λτr+1yr+1, . . . , λ
τn−1yn−1)τjλτj−1yj .

For r + 1 � j � n− 1, we set wj = λτjyj . We get by (3.3):

f ′(λ) =
1
λ

n−1∑
j=r+1

τjwj
∂PX
∂yj

(wr+1, . . . , wn−1) = 0.

So, f is constant. As f(1) = PX(yr+1, . . . , yn−1) = lim
λ→0

f(λ) = PX(0) = 0,

PX vanishes identically. Therefore, we obtain a contradiction. �

4. A sufficient condition for the existence of a local peak sets for
the class A∞

This part was inspired by the article of Hakim and Sibony [H-S]. The fol-
lowing lemma can be shown by standard methods [Na].

Lemma 4.1. — Let ŨX be a neighborhood of the origin in R
n and h :

(X,Y ) �−→ h(X,Y ) a Cω-function on ŨX×R
n. We suppose that h is m-flat

where Y = 0. Then there exist a neighborhood VY of the origin in R
n , a

neighborhood UX ⊂⊂ ŨX of the origin and a function g ∈ C∞(UX × R
n)

which vanishes on UX × VY and verifies for ε > 0 : ||g − h||UX
m × R < ε.

Lemma 4.2. — Let θ: Ũ −→ C
n be a C∞-parametrization of the sub-

manifold N in a neighborhood of the origin in R
n. Then θ has an extension

θ̃ defined on a neighborhood Ũ of the origin in C
n and which is almost-

holomorphic with respect to N ∩ Ũ .

Proof. — Let Tm(X,Y ) =
∑

|α|�m

1
α!
Dα
Xθ(X)(iY )α and UX ⊂⊂ ŨX be a

neighborhood of the origin in R
n. For k ∈ N it is clear that Tk+1 − Tk is k-

flat at Y when Y = 0. Now we apply the preceding Lemma 4.1 to Tk+1−Tk.
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Then there exist a neighborhood V k
Y of the origin in R

n and a C∞-function
gk(X,Y ) which vanishes on UX × V k

Y such that

||Tk+1 − Tk − gk||UX×R
n

k < 2−k. (4.1)

For m ∈ N
∗, we set T̃m := T0 +

m∑
k=0

(Tk+1 − Tk − gk) ∈ C∞(UX × R
n). By

(4.1)
∑
k

(Tk+1 − Tk − gk) is a normal series for all norms Cl on UX × R
n,

l ∈ N. So, the sequence (T̃m)m converges uniformly to θ̃ ∈ C∞(UX ×R
n). It

is clear that for m and k, Tm(X, 0) = θ(X), gk(X, 0) = 0. Hence, θ̃(X, 0) =
lim

m→+∞
T̃m(X, 0) = θ(X). So θ̃ is an C∞-extension of θ on UX × R

n. That

θ̃ is almost-holomorphic with respect to UX × R
n can be seen by similar

arguments as in [H-S]. �

The following lemma shows that (H2) does not depend of the choice of the
almost-holomorphic extension.

Lemma 4.3. — Let γ̃ : Ṽ −→ C
n−1 be an almost-holomorphic extension

of γ with respect to Ṽ ∩R
n−1 which satisfies the hypothesis (H2) (here γ is

the C∞-parametrization of M defined in section 2). Let φ̃ : W̃ −→ C
n−1

be an another almost-holomorphic extension of γ with respect to W̃ ∩R
n−1.

Then, the hypothesis (H2) is satisfied for φ̃.

Proof. — The passage from γ̃ to φ̃ is given by the transformation ψ̃: W̃ −→
Ṽ which is almost-holomorphic with respect to W̃ ∩ R

n−1. So, we have
ψ̃

∣∣∣
W̃∩Rn−1 = Id and φ̃ = γ̃ ◦ ψ̃. It is sufficient to prove for every σ ∈ W̃ and

for all l ∈ N: |ψ̃(σ)− σ| � |Iσ|l.

Let σ = ζ + i.η with ζ ∈ W̃ ∩ R
n−1 and l ∈ N be fixed. Then, we have

ψ̃(σ) =
∑
|I|�l

1
I!
∂|I|ψ̃

∂ηI
(ζ)ηI +O(|η|l+1).

ψ̃(σ) = ζ +
∑

1�|I|�l

1
I!
∂|I|ψ̃

∂ηI
(ζ)ηI + O(|η|l+1). So we can write ψ̃ as ψ̃(σ) =

ζ +
l∑

j=1

ψ̃(j)(σ) + O(|η|l+1) with ψ̃(j)(σ) =
∑
|I|=j

1
I!
∂jψ̃

∂ηI
(ζ)ηI . In particular,
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we have

ψ̃(σ) = ζ + ψ̃(1)(σ) +O(|η|2) =
n−1∑
i=1

∂ψ̃

∂ηi
(ζ)ηi +O(|η|2).

Since ∂ψ̃ = O(|η|), we have δkj + i
∂ψ̃j
∂ηk

(ζ) = O(|η|), ∀ 1 � k, j � n− 1. This

implies ψ̃(1)(σ) = iη. Consequently, ψ̃(σ) = σ+
l∑

j=2

ψ̃(j)(σ) +O(|η|l+1). Let

2 � j0 � l be the smallest integer such that ψ̃(j0) is non zero. Then we get:
ψ̃(σ) = σ + ψ̃(j0)(σ) + O(|η|j0+1). Now, ∂ψ̃ = ∂ψ̃(j0) + O(|η|j0) = O(|η|j0).
Thus, for all 1 � k � n− 1, we have

∂ψ̃(j0)

∂σk
= − 1

2i

(
∂ψ̃(j0)

∂ηk

)
+O(|η|j0) = O(|η|j0).

This implies
∂ψ̃(j0)

∂ηk
= O(|η|j0) for all 1 � k � n − 1. As

∂ψ̃(j0)

∂ηk
is a

polynomial with respect to η of degree (j0−1) we get, for all 1 � k � n−1,
∂ψ̃(j0)

∂ηk
≡ 0. So ψ̃(j0) is independent of η. This contradicts our choice of j0.

Therefore, we obtain ψ̃(σ) = σ +O(|η|l+1). �

Before stating our theorem for the A∞-case, we need a condition to guar-
antee the pseudoconvexity of the boundary under an almost-holomorphic
change of coordinates. It is the aim of the following lemma.

Lemma 4.4. — Suppose that the hypotheses of Proposition 3.2 are ful-
filled. We denote by ψ̃ : (Z,w) �−→ (Z ′, w′) the almost-holomorphic change
of coordinates. We suppose that there exist two constants C > 0 and L ∈ N

such that, in an open neighborhood Ũ of p ∈M, we have

(H3)

Lev ρ(q)[t] � C|t|2dist(q,N)L, ∀ q ∈ Ũ ∩ bD.

Then, D′ = θ̃(D ∩ Ũ) is a locally pseudoconvex at the origin.

Proof. — We set N ′ = θ̃(N) and M ′ = θ̃(M). Since θ̃ is a local C∞-
diffeomorphism on an open neighborhood Ũ of p, θ̃ preserves the distances.
In particular, we have: dist(q′, N ′) ≈ dist(q,N) with q′ = θ̃(q) and q ∈ Ũ .
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Set Ψ = θ̃−1, w = zn and w′ = z′n. Since θ̃ is an almost-holomorphic change
of coordinates the matrix{

∂Ψi

∂z′j

}
1�i�n
1�j�n

is nonsingular (4.2)

on a sufficiently small neighborhood of the origin.

For 1 � i � n, we have

∂

∂z′j
=

n∑
j=1

∂Ψj

∂z′i

∂

∂zj
+

n∑
j=1

∂Ψj

∂z′i

∂

∂zj

=
n∑
j=1

∂Ψj

∂z′i

∂

∂zj
+

n∑
j=1

O
(
dist(q,N)L+1

) ∂

∂zj

The domain D′ is defined by ρ′ = ρ ◦ Ψ. Let t′ = (t′1, . . . , t
′
n) ∈ TC

q′ (bD
′).

Thus
n∑
j=1

∂ρ′(q′)
∂z′j

t′j = 0. This implies

n∑
i,j=1

∂ρ

∂zi

∂Ψi

∂z′i
t′j +O

(
dist(q,N)L+1

)
= 0.

For 1 � i � n we set ti =
n∑

i,j=1

∂Ψi

∂z′i
t′j .

From (4.2) we get:
n∑
i=1

∂ρ

∂zi
ti = O

(
|t′|dist(q,N)L+1

)
= O

(
|t|dist(q,N)L+1

)
.

Now we decompose t into tangential component tH and a normal component
tN . So, t = tH + tN with tH ∈ TC

q (bD), tN⊥TC
q (bD) and |tH|+ |tN | � 2|t|.

Moreover, tN = κ(q)n(q) with κ(q) ∈ C and, for all 1 � i � n, we have
tNi = κ(q)∂ρ(q)∂zi

. This implies

κ(q)
n∑
i=1

∣∣∣∣∂ρ(q)∂zi

∣∣∣∣2 =
n∑
i=1

∂ρ(q)
∂zi

κ(q)
∂ρ(q)
∂zi

=
n∑
i=1

∂ρ(q)
∂zi

tNi =
n∑
i=1

∂ρ

∂zi
ti

= O
(
|t|dist(q,N)L+1

)
.

Consequently,
|tN | = |κ(q)| = O

(
|t|dist(q,N)L+1

)
. (4.3)
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Now, we compute the Levi form of ρ′. As

∂ρ′(q′)
∂z′i

=
n∑
i=1

∂ρ(q)
∂zκ

∂Ψκ(q′)
∂z′i

+O
(
dist(q,N)L+1

)
and by replacing L by L+ 1, we get

∂2ρ′(q′)
∂z′i∂z

′
j

=
n∑

k,l=1

∂2ρ(q)
∂zk∂zl

∂Ψk(q′)
∂z′i

∂Ψl(q′)
∂z′j

+O
(
dist(q,N)L+1

)
By (4.3) it follows that

n∑
i,j=1

∂2ρ′(q′)
∂z′i∂z

′
j

t′it
′
j =

n∑
k,l=1

∂2ρ(q)
∂zk∂zl

(
n∑
i=1

∂Ψk(q′)
∂z′i

t′i

) n∑
j=1

∂Ψl(q′)
∂z′j

t′j


+ O

(
dist(q,N)L+1

)
=

n∑
k,l=1

∂2ρ(q)
∂zk∂zl

tHi t
H
l +O

(
|t|2dist(q,N)L+1

)
.

From (H3) and (4.3) we get:

n∑
k,l=1

∂2ρ(q)
∂zk∂zl

tHi t
H
l � C|tH|2dist(q,N)L

� C|t|2dist(q,N)L +O
(
|t|2dist(q,N)L+1

)
.

Thus there exists a constant C ′ > 0 such that Lev ρ′(q′)[t′] � C ′|t|2
dist(q,N)L. This means that D′ is a locally pseudoconvex at the origin.
�

Definition 4.5. — Let F be a C∞-function on a neighborhood V of the
origin in C

n−1. We say that F has Y -weight PY (F ) � S (S ∈ N) if there
exists a constant C > 0 such that |F (X,Y )| � C||Y ||S∗ , ∀Z = X + i.Y ∈ V.
Also, we say that F has Z-weight PZ(F ) � R � S (R ∈ N) if there exists a
constant c > 0 such that |F (X,Y )| � c||Z||R∗ , ∀Z = X + i.Y ∈ V.

In the sequel we have to take into account the following obvious assertions.

Remark 4.6. —

1) Let F be a polynomial function with respect to Y . Then PY (F ) �

S ⇐⇒ F (X,Y ) =
∑

I=(i1,...,in−1)

FI(X)Y I with
n−1∑
ν=1

m̃νiν � S.
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2) Let F be a polynomial function with respect to X and Y . Then

PZ(F ) � R⇐⇒ F (X,Y ) =
∑

I=(i1,...,in−1)
J=(j1,...,jn−1)

FI,JX
JY I with

n−1∑
ν=1

m̃ν(iν+

jν) � R.

3) If ||Y || < 1 then there exists a constant a > 0 such that ||Y || �
a||Y ||∗.

Now, we give a version of Lemma 3.6 in the C∞-case. Its proof is similar.

Lemma 4.7. — Let R,S ∈ N, R � S and F be a C∞-function on an
open sufficiently small neighborhood V of the origin in C

n−1. We suppose
that F has Y -weight PY (F ) � S and Z-weight PZ(F ) � R. Then, there
exists a constant C > 0 such that: |F (Z)| � C||Y ||S∗ .||Z||R−S

∗ , ∀Z = X +
i.Y ∈ V.

Theorem 4.8. — Let D be a pseudoconvex domain in C
n with C∞-

boundary. Let M be an (n − 1)-dimensional submanifold of bD which is
totally real and complex-tangential in a neighborhood U of p ∈M. We sup-
pose

• There exist two positives constants C and L such that

(H′
3)

Lev ρ(q)[t] � C|t|2dist(q,M)L, ∀ q ∈ U ∩ bD, ∀t ∈ TC
q (bD).

• M admits a peak-admissible C∞-vector field X of peak-type
(K,M ; m̃1, . . . , m̃n−1) at p for A∞.

Then,

i) M is a local peak set at p for the class A∞.

i) M is a local interpolation set at p for the class A∞.

Proof. — i) After an almost-analytic change of coordinates we obtain the
following properties: The point p ∈ M corresponds to the origin and in an
open neighborhood of the origin, we have M ′ = θ̃(M) = {(Z ′, w′)/Y ′ =
w′ = 0}, D′ = θ̃(D) has ρ′(Z ′, w′) = u′ + A(Z ′) + v′B(Z ′) + v

′2R(Z ′, v′)
as local defining function at the origin. Moreover, M ′ is locally contained
in an n-dimensional submanifold N ′ = {(Z ′, w′)/Y ′ = 0 and u′ = 0} of
bD′ which is totally real. By Lemma 4.4, the condition (H′

3) garantees that
D′ is a locally pseudoconvex at the origin. Moreover, the hypothesis on M
implies:
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(H) There exist two constants 0 < c′1 � c′2 such that, for every Z ′ =
X ′ + i.Y ′ ∈ C

n−1 near the origin, we have:

c′1||Y ′||2M∗ .||Z ′||2K−2M
∗ � A(Z ′) � c′2||Y ′||2M∗ .||Z ′||2K−2M

∗ .

From (H) and Lemma 4.7 we get
|B|2
A

is uniformly bounded in a sufficiently

small neighborhood of the origin in C
n−1. By Proposition 3.4, there exists

an almost-holomorphic function with respect to N ′∩U ′, ψ̃(w′) =
w′

1− 2K1w′

defined on an open neighborhood U ′ of the origin in C
n such that: �ψ̃ < 0

on D′ ∩ U ′ if w′ �= 0 and ψ̃ = 0 if w′ = 0.

As |ψ̃(w′)| � |w′|, we have for every (Z ′, w′) ∈ D′ ∩ U ′,

A(Z ′) = ρ′(Z ′, w′)− v′B(Z ′)− v
′2R(Z ′, v′)− u′

� −v′B(Z ′)− v
′2R(Z ′, v′)− u′ � |u′|+ |v′| � |w′|.

Moreover, if U ′ is sufficiently small we get:

dist((Z ′, w′),M ′) � ||Y ′||+ |w′|. (4.4)

Since ||Y ′||2M∗ ||Z ′||2(K−M)
∗ � A(Z ′) � |w′| and ||Y ′||∗ � ||Z ′||∗ we have

||Y ′||2K∗ � |w′|. By Remark 4.6 inequality (4.4) gives: For every (Z ′, w′) ∈
D′ ∩ U ′: dist((Z ′, w′),M ′) � |w′|1/2K . This has two consequences:

a) ∂
′
(

1

ψ̃

)
has a C∞-extension on U ′ ∩D′.

b) If F ∈ C∞(U ′ ∩D′) is an almost-holomorphic function with respect

to N ′ ∩ U ′ then
1

ψ̃
∂
′
F has a C∞-extension on U ′ ∩D′.

(Here ∂
′
denotes the ∂-operator on D′. Set Ψ̃ := θ̃−1. If f ′ ∈ C∞(U ′ ∩D′)

then ∂
′
f ′ = Ψ̃∗(∂(f ′ ◦ θ̃)) where Ψ̃∗ is the pull-back of Ψ̃).

Proof. —

a) On U ′ ∩ D′ we have ∂
′
(

1

ψ̃

)
= −

(
1− 2K1w

′

w′

)2

∂
′
ψ̃. As ψ̃ is an

almost-holomorphic function with respect to N ′ ∩ U ′ we get for all
L ∈ N

∗ and (Z ′, w′) ∈ U ′ ∩D′,

|∂′
ψ̃(w′)| � dist((Z ′, w′), N ′)L � dist((Z ′, w′),M ′)L � |w′|L/2K . (4.5)
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b) With an analogous reasoning, we have for every (Z ′, w′) ∈ U ′ ∩ D′

and for all L ∈ N
∗, |∂′

F (Z ′, w′)| � dist((Z ′, w′),M ′)L � |w′|L/2K .

By (4.5) we see that the (0, 1)-form ∂
′
(

1

ψ̃

)
has a ∂

′
-closed C∞-

extension on U ′ ∩ D′. We set ψ = ψ̃ ◦ θ̃ and get that ∂
(

1
ψ

)
is a

∂-closed (0, 1)-form of class C∞ on U ∩D.

Let 0 < ε # 1 be such that B(0, ε) ⊂ U and bB(0, ε) ∩ bD be a transver-
sal intersection. Due to Corollary 2 in [Mi] there exists a function g ∈
C∞(B(0, ε) ∩D) such that ∂g = ∂

(
1
ψ

)
on B(0, ε) ∩D. Adding a con-

stant, we may assume that �g > 0. If ε is sufficiently small, we get |gψ| �
1
2

on B(0, ε) ∩D. Now we consider h =
ψ

1− gψ
. It is clear that h ∈

C∞(B(0, ε) ∩D). As ∂h = − 1(
1
ψ
− g

)2 ∂

(
1
ψ
− g

)
= 0 on B(0, ε) ∩D

we obtain h ∈ A∞(B(0, ε) ∩ D). Moreover, ψ |M = 0 so h |M = 0. For ev-

ery (Z,w) ∈ B(0, ε) ∩D\M we have �h = �
(

1
1
ψ
− g

)
=

�ψ
|ψ|2 −�g∣∣∣∣ 1
ψ
− g

∣∣∣∣2
< 0.

Thus, M is a local peak set at p for the class A∞. �

ii) Using the notations as above, let F ∈ C∞(M ∩B(0, ε1)) with
0 < ε1 � ε. Let F̃ be an almost-holomorphic extension of F on B(0, ε2)

with respect to N ∩ B(0, ε2)(ε2 � ε1. By b) the (0, 1)-form
1
ψ
∂F̃ has a

C∞-extension on B(0, ε2) ∩D. Since
1
h

= (1 − gψ)
1
ψ

,
1
h
∂F̃ is ∂-closed on

B(0, ε2) ∩D. Moreover,
1
h
∂F̃ has a C∞-extension on B(0, ε2) ∩D.

Let 0 < ε3 � ε2 be such that bB(0, ε3) ∩ bD is a transversal intersection.
By Corollary 2 of [Mi] there exists a function G ∈ C∞(B(0, ε3) ∩D) such

that ∂G =
1
h
∂F̃ on B(0, ε3) ∩D. Now we set f = F̃ − hG on B(0, ε3) ∩D.

It is clear that f ∈ C∞(B(0, ε3) ∩D). Moreover, we have f
∣∣∣M∩B(0,ε3)

=

F̃
∣∣∣M∩B(0,ε3)

= F and ∂f = ∂F̃ − h∂G = 0. The theorem is completely
proved. �
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5. Some implications from the sufficient hypotheses for the
multitype

We want to interpret the sufficient hypotheses (H1) and (H2) in terms of
Catlin’s multitype. In this section we first recall various concepts of types
and we give the multitype for the points on the submanifold M.

Let D be a bounded pseudoconvex in C
n with C∞-boundary. Let ρ be a

local defining function at a point p ∈ bD. The variety (1-)type ∆1(bD, p) (or
∆1(p) if no confusion can occur), introduced by D’Angelo [DA], is defined
as

∆1(bD, p) := sup
z

{
ν(z∗ρ)
ν(z − p)

}
,

where the supremum is taken over all germs of nontrivial one-dimensional
complex curves z : (C, 0) −→ (Cn, p) with z(0) = p. Here, ν(f) denotes the
vanishing order of the function f at 0 and z∗ρ ≡ ρ ◦ z.

More generally, one can define the q-type, ∆q(bD, p) [DA], 1 � q � n,

∆q(bD, p) := inf
z

∆1(bD ∩ S, p).

Here S runs over all (n − q + 1)-dimensional complex hyperplanes passing
through p, and ∆1(bD ∩ S, p) denotes the 1-type of the domain D ∩ S
(considered as a domain in S) at p. Note that the q-types are biholomorphic
invariants [DA], [Ca].

Next we recall the definition of Catlin’s multitype. Let Γn denote the set of
all n-tuples of numbers µ = (µ1, . . . , µn) with 1 � µi �∞ such that

(i) µ1 � µ2 � . . . � µn;

(ii) For each k, either µk = ∞ or there is a set of nonnegative numbers

a1, . . . , ak, with ak > 0 such that
k∑
j=1

aj/µj = 1.

An element of Γn will be referred to as a weight. The set of weights can be
ordered lexicographically, i.e. , if µ′ = (µ′

1, . . . , µ
′
n) and µ′′ = (µ′′

1 , . . . , µ
′′
n),

then µ′ < µ′′ if for some k, µ′
j = µ′′

j for all j < k, but µ′
k < µ′′

k . A weight
µ ∈ Γn is said to be distinguished if there exist holomorphic coordinates
(z1, . . . , zn) about p, with p mapped to the origin, such that

If
∑
i

αi + βi
µi

< 1, then DαD
β
ρ(p) = 0. (5.1)
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Here Dα and D
β

denote the partial differential operators:

∂|α|

∂zα1
1 . . . ∂zαn

n
and

∂|β|

∂zβ1
1 . . . ∂zβn

n

, respectively.

Definition 5.1. — The multitype M(bD, p) (or M(p)) is defined to be
the least weight M in Γn (smallest in the lexicographic sense) such that
M � µ for every distinguished weight µ.

We call a weight µ linearly distinguished if there exist a complex linear
change of coordinates about p with p mapped to the origin and such that
in the new coordinates (5.1) holds. The linear multitype L(bD, p) is defined
to be the smallest weight L = (l1, . . . , ln) such that L � µ for every linearly
distinguished weight µ.

Clearly L(bD, p) is invariant under linear change of coordinates and we have
L(bD, p) � M(bD, p). It is easy to see that the first component of M(p) is
always 1.

Let us ∆(p) := (∆n(p), . . . ,∆1(p)) where ∆q(p) stands for the q-type. Let
the multitype of p be M(p) = (µ1, . . . , µn). By the main theorem (property
4) in [Ca] it is always true that M(p) � ∆(p) in the sense that µn−q+1

� ∆q(p), for all q = 1, . . . , n.

Theorem 5.2. — Let D be a pseudoconvex domain in C
n with Cω-

boundary. Let M be an (n − 1)-dimensional submanifold of bD which is
totally real and complex-tangential in a neighborhood U of p ∈ M. We
suppose that M admits a peak-admissible Cω-vector field X of peak-type
(K,M ; m̃1, . . . , m̃n−1) at p for the class O. Then

(i) M(p) = ∆(p) = (1, 2k1, . . . , 2kn−1).

(ii) M(p′) = ∆(p′) = (1, 2m1, . . . , 2mn−1) for p′ ∈M ∩ U − {p}.

Here, mj = M/m̃j, kj = K/m̃j for all 1 � j � n− 1.

Remark 5.3. — An analogous result holds true in the A∞-case.

Proof. — i) From Proposition 3.2 we know that there exists a holomorphic
coordinates change (denoted θ) such that the point p ∈ M corresponds to
the origin and in an open neighborhood of the origin in C

n, the defining
function ρ′ of the boundary of D′ = θ(D) is ρ′ = u′ + A + v′B + v′2R. By
hypothesis inequality (H) holds in the new coordinates. So, we may identify
the complexification M̃ = M + i.M of M to C

n−1 = TC
0 (bD′) and we may

– 595 –



Borhen Halouani

assume that ρ′ |M ≡ A in a sufficiently small neighborhood of the origin in
C
n−1. Let Z ′

0 = X ′
0 + i.Y ′

0 �= 0 near the origin in C
n−1 be fixed. We consider

f(λ) = A(λZ ′
0), λ ∈ [0, 1]. We set m = max

1�i�n−1
mi, m′ = min

1�i�n−1
mi and

κ = K/M � 1. As

f(λ =

(
n−1∑
i=1

λ2miy
′2mi
0,i

) (
n−1∑
i=1

λ2mi

(
x

′2mi
0,i + y

′2mi
0,i

))κ−1

,

we have λ2mκf(1) � f(λ) � λ2m′κf(1). Therefore, we obtain

f(1)
2mκ+ 1

�
∫ 1

0

f(λ) d λ � f(1)
2m′κ+ 1

.

By Remark 4 in [B-S], the 1-type of bD′ at 0 is equal to line type in the
new system of coordinates. This means that ∆1(bD′, 0) = sup

v∈Cn,|v|=1

(ρ′ ◦Lv),

where Lv: ζ �−→ ζ.v is a complex line passing through the origin and having
v as direction. Inequality (H) implies ∆1(bD′, 0) = 2kn−1. Now we prove
that ∆(bD′, 0) = (1, 2k1, . . . , 2kn−1) is a linearly distinguished weight at
0. Let F : Z = (z1, . . . , zn) �−→ (zn, z1, z2, . . . , zn−1) be a C-linear change
of coordinates. We set Z̃ = (z̃1, Z̃ ′) = F (Z) with Z̃ ′ = (z̃2, . . . , z̃n) and
ρ̃ = ρ′ ◦ F−1. As ρ̃(Z̃) = �(z̃1) + A(Z̃ ′) + (Iz̃1)B(Z̃ ′) + (Iz̃1)2R(Z̃ ′, Iz̃1),
∂ρ̃

∂z̃1
(0) �= 0 because

∂ρ′

∂zn
(0) �= 0. This implies that α1 = β1 = 0 for the

property (5.1). Thus it is sufficient to verify that:

n∑
i=2

αi + βi
2ki−1

< 1 implies DαD
β
A(0) = 0.

In fact, let α = (α2, . . . , αn), β = (β2, . . . , βn) ∈ N
n−1 be such that

n∑
ν=2

αν + βν
2kν−1

< 1. Then,
n∑

ν=2

m̃ν−1(αν + βν) < 2k. Since A is Cω on a suffi-

ciently small neighborhood of the origin in C
n−1,A(X,Y ) =

∑
I=(i2,...,in)
J=(j2...,jn)

AI,JX
JY I

with X = (x2, . . . , xn) and Y = (y2, . . . , yn). We know that the Z-weight of

A is � 2K. By Remark 4.6, we have
n∑

ν=2

m̃ν(iν + jν) � 2K. Thus,

PZ(DαD
β
A) �

n∑
ν=2

m̃ν−1(iν + jν)−
n∑

ν=2

m̃ν−1(αν + βν) > 0.
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We obtain DαD
β
A(0) = 0. Therefore ∆(bD′, 0) is linearly distinguished and

∆(bD′, 0) �M(bD′, 0).

It remains to show that M(bD′, 0) � ∆(bD′, 0). Setting M(bD′, 0) =
(µ1, . . . , µn), by property 4 of Catlin in [Ca] we have µn+1−q � ∆q(bD′, 0)
for all q = 1, . . . , n.

It is sufficient to prove that ∆q(bD′, 0) = 2kn−q for all 1 � q � n− 1.

• For q = 1, we have already shown that ∆1(bD′, 0) = 2kn−q.

• Let 2 � q � n − 1 be fixed. Let {e1, . . . , en} be the standard basis
of C

n with TC
0 (bD′) = SpanC{e1, . . . , en−1}. Consider Vq =

SpanC{en−q, . . . , en−1} and S an (n − q + 1)-dimensional complex
hyperplane in C

n.

As

dim (Vq ∩ S) = dimVq + dimS − dim (Vq + S)
� q + n− q + 1− n = 1,

it follows that there exists a complex line L in S∩Vq that has order of contact
� 2kn−q with the boundary bD′ at 0. Therefore ∆q(bD′, 0) = 2kn−q. More-
over, if we set S̃ = SpanC{e1, . . . , en−q, en} then S̃ ∩ Vq = SpanC{en−q}.
So ∆1(S̃ ∩ bD′, 0) = 2kn−q. We therefore obtain M(bD′, 0) � ∆(bD′, 0) =
(1, 2k1, . . . , 2kn−1). With ∆(bD′, 0) = (1, 2k1, . . . , 2kn−1) � M(bD′, 0), we
find i).

ii) Let p′ ∈M∩U −{p}. We work with the preceding system of coordinates
and we set θ(p′) = p̃′ �= 0. p̃′ is a boundary point of bD′ near the origin
such that �(p̃′) �= 0. Let Z ′

0 = X ′
0 + i.Y ′

0 ∈ C
n−1 be fixed such Y ′

0 �= 0.
We consider f(λ) = A(λZ ′

0 + p̃′), λ ∈ [0, 1]. In this case, there exist two
constants 0 < c1 � c2 which depend only of p̃′ satisfying:

c1

n−1∑
i=1

λ2miy
′2mi
0,i � f(λ) � c2

n−1∑
i=1

λ2miy
′2mi
0,i .

Hence, λ2mf(1) � f(λ) � f(1)λ2m′
. We obtain

f(1)
2m+ 1

�
∫ 1

0

f(λ) d λ � f(1)
2m′ + 1

.

with constants that depend only of p̃′. By Remark 4 in [B-S] the 1-type
of p̃′ is equal to line type. So, ∆1(bD′, p̃′) = 2mn−1. In the same way as
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before one shows that ∆(p̃′) = (1, 2m1, . . . , 2mn−1) is linearly distinguished
weight. Next, we proceed analogously as i) we obtain the equality and ii)
holds. �
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