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The Lane-Emden Function and Nonlinear Eigenvalues
Problems

IssELKOU OuLD AHMED Izip Bra®

RESUME. — Nous considérons un probleme aux valeurs propres, semi-
linéaire elliptique, sur une boule de R™ et montrons que ces valeurs et
fonctions propres peuvent s’obtenir a partir de la fonction de Lane-Emden.

ABSTRACT. — We consider a semilinear elliptic eigenvalues problem on
a ball of R™ and show that all the eigenfunctions and eigenvalues, can be
obtained from the Lane-Emden function.

1. Introduction

We consider the problem

Au+ A1+uw)* =0, in By
(PY)S u>0, in By
u=0, on 0B,

where B is the unit ball of R™, n > 3, A > 0 and o > 1.

This problem arises in many physical models like the nonlinear heat
generation and the theory of gravitational equilibrium of polytropic stars(cf.
[2] and [11]). Tt is well known (cf. [2], [10], [12]) that there exists a criti-
cal constant A*(«a), such that (Pg) admits, at least, one solution if 0 <
A < A*(«) and no solution if A > A\*(«). We deal here with these critical
constants and the corresponding eigenfunctions.

(*) Recu le 31/07/07, accepté le 20/01/08
(1) Faculté des Sciences et Techniques, B.P. 5026 Nouakchott, Mauritanie.
isselkou@univ-nkc.mr
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Let ¢ be the Lane-Emden function(cf. [1], [5], [6],[15]) in the n-dimensional
space and rq the first ”zero” of ¢, we show that

M (a) = max 72> 1(r).
re[0,ro]

We use this formula to compute \*(a), when « is the Critical Sobolev
Exponent. We also extend, to the subcritical case, an estimate of A*(«)
given in [10] and show qualitative properties of the eigenfunctions.

In the Appendix, we show how to approximate ¢, so one can use numerical
approaches (Maple or Matlab) to get estimates of A*(«).

2. Scalings of the Lane-Emden function as solutions

When 0 < A < A*(a), it is known that any regular solution of (Py) is
radial and the minimal one is stable and analytical (cf.[8], [12]).

PROPOSITION 2.1. — Let u be a regular solution of (Py), then

u(r) = (1+ u(0))é (\/Xu + u(0)>“T’1r) —1, Vrelol]

where ¢ is the Lane-Emden function, in the n-dimensional space.
Proof. — The Lane-Emden function(cf. [1], [5], [6], [15]) is the solution

of
& (1) + 221 (r) + o) ()" =0,
(L-E) { 6(0) = 1, '(0) = 0.

The proof of the proposition is quite immediate.

3. The Subcritical Case

Let us consider the problem (Py), with 1 < a < Z—f; Let ¢ be the
Lane-Emden function.

PROPOSITION 3.1. — There exists ro > 0, such that ¢(ro) = 0, ¢(r) > 0,
Vr € (0,70 and

X(@) = max 6% (p).
pE[O,TQ]

We also have




The Lane-Emden Function and Nonlinear Eigenvalues Problems

Proof.— As ¢(0) > 0, we infer that ¢ > 0, on a maximal interval [0, rg[.
The problem
Au+u* =0, in R
{ w>0, in R"

does not admit a solution (cf.[4]), so we infer that ro < co and ¢(rg) = 0.

Let us put

~ dlpr) — é(p)
Volr) = o(p)

with 0 < p < rg, then ¢, is a solution of (P{), with A = p?¢*~1(p). We
infer that

, Vrelo,1],

max 26" () < A*(a).
pE[0,70]

Let us suppose that

max p°¢*" ! (p) < X(a),
p€[0,70]

if ur«(q) is the unique solution of (P{.,))(cf.[10]), one can use Proposition
1 to show that

W=

u»m%m=u+ummﬂm)@6v@m 0+u»mﬂ®f%r>————L——>.

1 + UA*(Q)(O)

Let us put py«(o) = (A" (a )% (1 +u/\ “(a)( ) =N . As uy-(q) = 0, we infer
that px«(a) < 70. AS Uy (a)(l) , we infer that
L =0 () (@) T
1 + UA*(Q) (0) o U/\*(a) '
So we get
¢(p)\* a 7") - (b(p)\* e} ) * 2 _
Upe(a) (1) = (@) @/ ond A (o) = (pA*(a)) o l(p)\*(a)).

D(Pr+ (o))
The last equality leads to a contradiction.

To prove the last statement, we use the fact that the maximum here is
achieved at a unique 7, (see the next lemma). So we get

2

¢'(ra) = NCE

#(rs), and

6773 (ra) (26%(ra) + dra(a = Do) () + (@ = 172 (@ = 2) (¢ ra))” + 6(7)0" (ra) ) ) <0
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We first replace ¢”(r,) by its value from (L — E) and then ¢'(r,), from
the previous equality, to get

> (ra) (—(a—l)/\*(a)+2(n—4)+4 2) <0.

a—1
Simplifying, one gets the estimate.

Remark 3.2. — The last statement in Proposition 2 is also true for o >
242 with the same proof, provided that sup,.cg, 2¢* " (r) is attained (see
the next Proposition 6); this has been proved in [10], using sophisticated
arguments.

LEMMA 3.3. — Let us put g(r) = r2¢*~1(r), r € [0,70], there exists
po €]0,ro[ such that g is increasing on [0, po] and decreasing on [pg, ro].

Proof.— Let p be an arbitrary positive constant with p < rg, then, as
we have already mentioned 1, is a solution of (PO‘) where v = g(p). As
g (r) =r¢*"2(r) (26(r) + (o — 1)r¢/(r)) , we infer that g is increasing on a
maximal interval Iy C [0,7¢] with 0 € I,.

Using Proposition 2, there exists pg €]0,rg[, such that g(pg) =
max,¢fo,r] 9(r) = A*(a). This po is unique, otherwise, if there exists
A € [0,7¢], such that g(\) = max,cjor, 9(r) = A*(a), then ¢,, and ¥y
are both solutions of the problem (PA (a)> . As ¢ is decreasing on [0, o],

we infer that ¢,,(0) = 1;?;5;’) + 1¢¢/\)>‘) ¥x(0). So we get two different

solutions of the problem (Poi(a)) . This leads to a contradiction (cf. [10]).
As g(rg) = 0, we infer that Iy # [0,r0]. Let us put § = sup . The function
g can’t be constant on a nontrivial interval J C [d,r¢], for if g(r) = ¢ in J,
then for every A € J, ¢, is a solution of (P%). As ¢y, (0) # 1,,(0), if
A1, A2 € J and Ay # A2, we infer that the problem (P%) admits an infinity
of solutions. This leads again to a contradiction (cf. [10]).

So if g is not decreasing on [d, rg], then there exists 8; and [2 with
ro > P2 > (1 > §, such that g is decreasing on [4, 5] and increasing on
[01, B2]. Let us put ¢g = min(g(9),g(B2)), then ¢g > g(51). Let us choose ¢ €
19(81), co[, so the problem g(t) = ¢ admits at least three different solutions
A €]0, B, 1< i < 3. As iy, (0) # b, (0), if i # 4, 1 < 4,5 < 3, we obtain

three solutions for the problem (P%). So we get a contradiction.

We conclude that g is increasing on [0, §], decreasing on [d, ro] and 6 = po.

PROPOSITION 3.4. — If A = X\*(«), there exists a unique px-(o) €]0,70],
such that
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A (a) = (p)\*(a))2 (pa_l(pA*(a)) and the unique solution uy- (o) of (P)‘\ﬁ(a))
: Blor-(@7) = H(pr-(a)
P(Pr+(a))

When 0 < A < X*(«), there exist exactly two constants vy and py, such that
0 <7x < Prs(a) < pa < To, A =130""1(rn) = p30° *(pa) and the only two

solutions of (PY) are

U= (a) (1) = = Ypreray (1), Y7 €[0,1].

Uy = ¢m7 U\ = q/}p>\;
the minimal one(cf.[2]) is uy, limy_quy = 0 in C© (B_l) and
limy_gva(r) =00, ¥V r € [0,1].

Proof. — Using Proposition 2 and Lemma 1, one infers that the only
solution of (P{.,)) is ¥, We put px«(a) = po- If 0 <A < A*(a), using the
lemma again, we infer that g(t) = )\ admits exactly two solutions r) and
px, with 0 < 7y < pre(a) < px < 71o. Let us put uy = 9y, and vy = ¥,
ux(0) # vx(0). These two functions uy and vy are solutions of the the
problem (Py'), which admits only two ones (cf. [10]).

As ¢ is decreasing on [0, 7], one can verify that ux(0) < vx(0), so we
infer that the minimal solution (cf.[2]) is uy.

As A =730 (rx) = p30*1(pa), 0 < 7x < pas(a) < pa < To, we get
limy_o7ry = 0, limy_0px = 70, limyx_oux(r) = lim,, o d;((:\:)) -1
0, and limyx_ovA(r) = lim,, ., w = ¢(ror) (limp)\ﬂ’f‘(];> =

d(px #(px)
oo, Vre [0,1].

4. The Critical Sobolev Exponent Case

In this section, we suppose that a = Z—fg and n > 3.

Let us consider the following problem

Au+u® =0, in R
(o7 )
(P ){ u>0, in R™,

Remark 4.1. — Every radially symmetrical solution of (P%) verifies
lim, o0 u(r) =0 (cf. [9]).

Following the method of Pohozaev in [14], the problem

oy [ (r)+ 2= (r) +u(r) =0, Vr >0
@ ){ w>0, u(0) =1, u'(0) = 0

admits a solution ¢.

- 639 -



Isselkou Ould Ahmed Izid Bihn

LEMMA 4.2. — Let u be a radially symmetrical regular solution of (P%),
then »
u(r) = u(0)é (u(O)Tr> .

Proof.— This proof is immediate.

LEMMA 4.3. — Let us put g(r) = r2¢*~1(r), r € Ry, then there exists
ro > 0, such that g is increasing on [0,rg], decreasing on [rq,c0[, with
lim, o g(r) = 0.

Proof.— As we have already mentioned, ¢ is increasing near 0. Let us
assume that ¢ is nondecreasing on [0, oo, then we have two possibilities

lim g(r) = oo or lim g(r) =¢, 0 < ¢ < oo.
For every p > 0, 1, is a solution of (Py), with v = P20 L(p) = g(p). We
infer (cf. [2], [10]) that g(r) < A*(«), V r > 0, so the first limit becomes
impossible.

In the second case, we have two subcases: ¢ is achieved or not.

If ¢ is not achieved, then V [ such that 0 < [ < ¢, there exists r; > 0 such
that g(r;) = I. One can verify that V 0 < I < ¢, the problem (P) admits
the solution v, so we infer that ¢ < \*(«). Let u be a radially symmetrical
solution (cf. [2], [10] and [3]) of (P%). As in the proof of Proposition 2, one
can verify that

a=1 1

u=1v,, p=+c(l+u(0) = and T+ u(0) = ¢(p).

As ¢ = p?¢°~1(p) = g(p), we get a contradiction.

Let us suppose that ¢ is achieved, as g is assumed to be nondecreasing,
there exists 7o such that g(r) = ¢, ¥V r > rg. Let us choose, an arbitrary
constant p > 0 such that p > rg. The function 1, is a solution of the
problem (P2), where v = p*¢*~(p) = g(p) = ¢, V p = ro . This means
that this problem, with such a 7, admits an infinity of solutions v,; this
leads to a contradiction (cf. [2], [10]). So g is not nondecreasing on [0, co].
As g can’t be constant on a nontrivial interval, we deduce that there exists
positive constants r; and 79, such that r;1 < r9, with g is increasing on
[0,71] and decreasing on a maximal interval [r1, 2. Let us suppose that g
increases again on [ro,r3], with ro < r3. If v € ]g(re), min (9(r1), 9(rs)) [,
then g(r) = v admits, at least, three roots, so the problem (P,‘Y”‘) admits, at
least, three solutions; this gives again a contradiction (cf. [10]).
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Finally, we get the existence of 7 > 0, such that g is increasing on [0, rg]
and decreasing on [rg,c0[. As g > 0, we infer that lim, . g(r) = ¢o > 0.
If ¢g > 0, then for every ¢ €]0, co], there exists a unique p. € R, verifying
g(pc) = c¢. As ¢ < X*(«), the problem (P?%) admits exactly two solutions

(cf. [10]). One of these two solutions is 1), . Let u. be the other one, then,
using Proposition 2 again, we get

uelr) = s 7 = d (14 ue(0) T = 393 (e (14 0.(0) 7).

So we infer that ¢ = g(y). As the two solutions are different, p. # v and
v is another root of g(r) = ¢. This gives a contradiction and proves that
necessarily ¢ = 0. This ends the proof of the lemma.

PROPOSITION 4.4. — Let us assume o = Z—J_rg, n > 3, then

AN(a) = Jnax [g(r)-

Proof.— Let v = g(p) = p*¢*~(p),p € R%, we have seen that 1, is a
solution of (PS) . So we infer that g(p) < A*(a), ¥V p € Ry.

Let us suppose that

max g(r) < A*(«)
re ]0,00[

and let u be the unique solution (cf. [10]) of (Py.,,). As in the proof of

Proposition 2, we get that u = ¢, and A\*(«) = g(p). This gives a contra-
diction.

n(n—2)
4

PROPOSITION 4.5. — We have A*(«) = . There exists a unique

Tas(a) = V/n(n —2), such that \*(«a)

solution of (Pf*(a))

ri*(a)(bo‘_l(rA*(a)) and a unique

Urr(a) = Prae (-
If 0 < A < X*(«), there exist exactly two constants

22 75y 21 75y
\/1 RRTCE R VA ey \/1 ~ ey T/ T amey
ry = and =
g (n(n—2)) " "v2x ” (n(n—2)) " v2x

such that 0 < 7\ < Thax(a) < px, A = g(ra) = g(px) and the only two
solutions of (PY) are

uy = P, and vy = P, ,

the minimal one (cf. [2]) is uy; limy_ouy = 0, in C°(By) and
limy_guvx(r) =r*""—1, ¥V r€]0,1].
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Proof. — One can use Lemma 3 to get the existence (and the uniqueness)
of r)«(a) =70, Tx and py. It is then easy to verify that ¢,,. , is a solution
of ( )\*(a)) uy = ¢, and vy = 1,, are solutions of (PY). The problem
(Pg) admits only two solutions (cf. [10]), as ¢ is decreasing on R’ , one can
verify that uy(0) < vx(0), so uy # vy. We conclude that uy and vy are the
only solutions of (Py) and the minimal one (cf. [2]) is ua.

Let us compute the constants ry«(q), 7x and py.

It is well known (cf. [13]) that, if « = 22 the problem (Q%) admits the

n—2’
continuum of spherically symmetncal "instantons”

n—2 n—=2

Uy (r) = 77 (n(n — 2)) "7 (2 +r)25 Ly >0,

Let us fix v > 0, so u,(0) = v (n(n — 2)) . Using Lemma 2, we get
the expression of the Lane-Emden function

2—n

L T2 2
o(r) = ﬁuv (wy()727) = (1 + m) :

Asa—1="22 1= _4  we infer that

g(r) = g ) = (1+m)

Using Proposition 4, a direct calculation gives

r? -2
() = 1+ ——
(e) e ( + n(n — 2))
Y ORI _n(n-2)
n(n—2)/, 4
reran (ay = VAT

In [7], the previous constant has been computed, using the Pohozaev Iden-
tity. If 0 < A < A*(«), the equation g(r) = A admits two positive roots

2 / 4 22 4ax
\/]‘ T n(n=2) 1- n(n—2) \/1 T n(n—2) +4/1- n(n—2)

N ) T T ) v

This gives us uy = ¥, and vy =1,,; as rx < pa, we get ux(0) < v5(0), so
uy is the minimal solution.
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As A = 13071 (ra) = pRo* 1 (pa),0 < 7x < Tas(a) < pa < 00, one can
verify that o
limy_ory = 0, limy_,g px = 00, limy_guy = 0, in C° (Bl) and

limy v (0) = lim,, o 4;5(%) —1=r2"—1,Vr€0,1].

5. The Supercritical Case

n+2

We consider here the case o > n > 3. Let us put

4o a
= 4 1.
(@) a—1+ \/a—l’va>

Let’s first detail a condition, f(a) > n — 2, used in [10].

LemMmA 5.1. — If (3 <n <10 and o > Z_i-2>

2
r(n>10and$—f§<a<L V"_l),

n—2v/n—1—4
then f(a) >n—2. If n > 10 and nr—lg\z/n_”:; < a, then f(a) <n—2.

Proof.— Let us put p(t) = 4t* + 4t and u = , /=%, so we get f(a) =

p(u). The only positive root of p(t) = n—2,istg = ¥ "7217 and the equation

u = 7”1_21_1 has the only solution oy = n"2\2/—v ;- But g > 0, if and
only if n > 10.

n+2
n—27

3 < n < 10. We infer that f(a) >n —2,if 3 <n < 10.

For every o >

)

we have a > 1 so we get /=25 > 1> ¥ 1_1 if

If n > 10, we have a0>”+2>1 one can verify that ifﬁ—fg<a<ao,
then f(a) >n—2and f(a) <n-—2,if o > ap.

PROPOSITION 5.2. — Let us put \s = ﬁ (a(n—2)—n).

n—2vn
If(3<n<10and2—f§<a) 0r(n>10and2—i’§<a<n 2\/— 4) then

1
A (a) = rﬁaxg(r), A (@) > As and ¢(r) ~ AT as r — oo

+

If (pi) is an increasing sequence of positive reals, such that (1, ) are so-

lutions of (PY) and lim;_,o p; = 00, then lim; o ¥y, (r) = A5~ (rﬁ —
1), ¥ r€0,1].
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If n > 10 and % ”1;;1 < a then

1
M () =supg(r) = As and ¢(r) ~ AT as r — oo.
R

If (\;) is an increasing positive sequence such that lim; .o A; = As and
Vi, w; is the unique solution of (PY), then

_1
lmy oo wi (1) = AZ " (rTa — 1), ¥ r €]0,1).

Proof.— As in the proof of Proposition 4, one can verify that A*(a) =
supg. g(r), where g(r) = r2¢°~1(r).

If(3<n<10and2—f§<a)0r(n>10and2—f§<a<% “TILL),

using Lemma 4, we get f(a) > n — 2. So we can use Theorem 1 in [10] to

infer that A\*(a) > As, (Pfi(a)) admits a unique solution and (Py ) admits

an infinity of solutions. Using the unique solution uy-(4) of (P)‘f‘*(a)), one

can deduce from Proposition 1 that uy-() = 1,, where p € R} and g(p) =
A*(a). We conclude that the supremum is achieved and \*(«) = Mmaxg- g(r).

Let us suppose that

a = liminf g(r) < A = limsup g(r).
T—00 r—o00
For every A €]a, A[, the equation g(r) = A admits a sequence of roots (r;),
with lim;_,o, 7, = 00. As for every i, 9, is a solution of (Py), we get an
infinity of solutions for this problem; but an infinity of solutions exists only
when A = A, (cf. [10]). We get a contradiction and infer that

1
a=A=X = lim g(r), so ¢(r) ~ AT PR as r — 0.
T—00

If (p;) is an increasing sequence of positive constants, such that (1,,) are
solutions of (P ) and lim;_, p; = 00, then one can use the previous asymp-

1
totic behavior of ¢ to get lim;_,oo ¥, (1) = A5 (rﬁ —1), Vr€]o,1].

If n > 10 and % < a, we get from Lemma 4 that f(a) < n—2.
Using [10] again, we infer that \*(a) = A, (PY) admits a unique solution
for every A €]0, \*(«)[. As the function g is increasing near r = 0, we infer
that g is increasing on R . For, on one hand, if g decreases on a nontrivial
open interval I C R, then the equation g(r) = A admits at least two roots

r1 < ro, if X € mins g(r), maxys g(r)[. As ¢, and 1., are solutions of (Py),
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with 9y, (0) # ¥,,(0), this violates the uniqueness result of [10]. On another
hand, the function g can’t be constant on a nontrivial interval, otherwise
we get an infinity of solutions for some A. One can then see that

Jim g(r) = supg(r) = X" (a): X'(a) = A (cf. [10).

1
So ¢(r) ~ ST as r — o0

Using this asymptotic behavior, one can show the last statement of the
proposition.

Let us put

Au+ A1+ uw)* =0, in B,
Q)¢ u>0, in By,
u=0, on 0B,

where B,, = {x € R", ||z|| < ro}. For every solution u of (Q%), we put
v(r) = u(ror) for every r € [0,1]. Let A} («), be the maximal eigenvalue of
(@%)-
LEMMA 5.3. — A function u is a solution of (QY), if and only if v is a
solution of (P%,). In particular, we get A}, (o) = rg\* ().
0
Proof. — The proof is easy.

Remark 5.4. — According to the previous lemma, the results obtained
here for (PY) (on the unit ball B;), can be easily stated for (Q%) (on any
ball By,).

6. Appendix

Let Si be the set of all the (k — i)—selections of {1,...,i} and s(j) the
multiplicity of the element j, 1 < j <. If u is a analytical solution of (Py),
with u(r) = 22 ja,r® near r = 0, 7y the convergence radius of this series,
then

PROPOSITION 6.1. —

n—2 2

A 1 1
1 = T 9k
and ¥V k> 1, agy n2(2k+n2 2k)x

A 1 1
Vk=0, a1 =0, a2 =—5(14ao)" (E — —)

- —i Lo i
YR (4 a) EHP:%)(@ — p)zsesiflnj:1a2(1+s(j))~
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Proof. — Let us choose 0 < r < p < 1, by standard integrations, we get

A

ulr) - ulp) =~ x

((72_" - /Or "1+ u(t)¥dt + /p(t —prmh(a + u(t))%it) .

T

Let us point out that

(1+u(r)® = (14 u(0) — u(0) + u(r))”

= (1 +u(0)* (1 + %)a = (1+ap)” (1 pye, N ri>a7 u(0) = ag.

By the Maximum Principle, we have ¥V r €]0, 1[, 0 < u(r) < u(0), so we get

u(0) — u(r)

1 1
1+U;(O) < ,VTG [07 ])

we infer that

(I4u(r)® = (1+ag)” <1 +E?i1a(a_ D-Aa=j+1) (Em & 1>J> :

4! izll—&—aor

All these series are uniformly convergent on [0, p]. If we put
(1 +u(r)® = B2 4¢517, we get

A r . P :
u(,«):n_2 <(r2”p2”)/0 t”*lz;”;ocjtﬂdt+/ (th”tnl)E;iocjtﬂdt>

T
A (g o P s T o P o P
n—2 J:O]j+n 7=0%J ]+7l ]:()Jj+2 ]:0]j+n

by Tj+2 p27n7,.j+n

—N® e —— 4+ D2 e

+n—2< J_Ocjj+2+ =09 )

A i pi+2 pi+2 i
A (3 PPN y - N A /- B N - S P
n—2 ( ]—QC] 2]_’_”_2 + jfoc]j+2 ]—Ocjj_’_n §=2%) 2j

We finally obtain

A 1 1, . - 1 1
2 = Y o cio(—————— — Yl N e (—— — ).
@ ) = 25 (Sl — D SR g - )
Using the previous identity, we obtain
A 1 1
- E>1, ap = — 2 epo.
a =0, VE>1, a n—2(k+n—2 k:>ck2
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Using (1), we get

co=(1+ap)”, ¢ za(l—l—ao)a_lal =0
and

1

1. .
_ asgk ZrPd-lo, _ 1Y .
Vk> 1, ¢, = (1 + ao) Ejzlj!szo(a p) (1 n ao)j EsESiHizlal"rS(Z)

1 .4 » .
=%, ﬁH;:o(a =) (14 a0)" ™ Ty a1y
Using the previous relation and the fact that a; = 0 , one can verify (by

induction) that asgyr; = 0, Vk > 0. We then obtain from (2) and the
expression of ¢

R 1 1
k= o\ 2k rn—2  2k) P2

A 1 1 k-1 L1 a—j j
T2 <2k +n—-2 %) izt slp=ola—p) (14 a0)™ " Bocgy | Thioyta(pati-

Vi € [Lk—1], Card(S]_,) = C]_}.

Let us put
1
d2=2— and YV k>1,
n
d _ 1 k—1 1Hi—1 ) . HZ d
% = Gt —g)an = =@ TP Esesy imidaesi),

then
LEMMA 6.2. — ag, = (—1)FAF (14 ag)* @ D dyy, V k> 1.

Proof. —

a2 1 1 1 1
— — 1 2a—1 _ .
=g = (It (n+2 4> <n 2)

b
4(n+2)

1 1 Lo i
mziﬂ i—!Hp:o(Oé = P)Esesi Il 1do145(5))

1 o

—\2(1 2a—1 1
(1+ao) i(n+2)2n

«
2 2 2(a—1)+1
2n (1+ao)

dy =

o do — 1 a
An+2)7 4n+2)2n’
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so we infer that the formula is true for £k = 2. Let us suppose it true for
every j, such that 2 < j < k. From Proposition 7, we have

A2(k+1)

A 1 1 Lol o :
=03 (2k T 1)) Pyt i mo(@p) (1+a0) ™ 2, e T 10201440)

_ —A R a—j -
- (Q(k + 1) +n— 2)(2(1€ ¥+ 1))2j:1ﬁnp:0(a_p) (1 + aO) Esesinizla%l-&-s(i))-

Vjelkl, Vs €8], ifi€l,j], then 1 <1+ s(i) <k,

so one can use the hypothesis to get V i € [1, j],

(71)1+s(i))\1+s(i) (1 + ao)(s(i)+1)(a*1)+1

A2(14s(i)) = da(1+5(i))-

‘We then obtain _
IT}_ 1 as(145i))

= (—1) B (@) \BL, (A5@) (1 4 gg) PO DE@ODH I g g0

— (_1)j+zg:15(i))\j+zgzls(i) (1 +a0)aj+(a71)2i:15(i) Hg=1d2(1+s(i))«
But for every s € 57 we have Ej: s(t) =k —j.
k =1
We infer that
T as(1 () = (—1)"AF (1 +ag) T DE DI do g

= (=1)FN (1 4 ao) ™" T dyy 4oy
Substituting in the expression of as(j41), we obtain

1
QD) +tn-—22k+1)

n(t1) = (_1)k+1)\k+1 (1 + ao)k:(afl)Jra

1., .
R =0 = P)% ey him1daeati

1

= (—1)FHINRHL (] 4 (k+1)(a=1)+1
=1 (1+a0) Qi+ +n—2)20k+1)

X
)
P —IHj la—pE T d

j—lj! pfO( ) ses] Hi=192(1+s(3))

= (“1)FFARFL (1 4 o) BV gy ),
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Let us compute the first terms of the Lane-Emden function,
o(r) = B2 yaz;r?, near r = 0, where ag = 1, and
ao; = (—1)12l(a71)+1d2i7 Vi > 1.

1 1 «
D=l s M T 2) " T GaAm )
B 1 1 B B 1 a? ala—1) |
o= gy (O + 7ot~ D) = g {<2n> Wn+2) " 20y }
B 1 ala—1)(a—2) .
dg = 5T 6) <ad6 + ala — 1)dyds + 6dg>

1 al a?(la—1 a?(a—1)

8(n +6) { (2n) (4(n+2)) (6(n+4)) * 2(2n)2 (6(n+4)) * (2n)? (4(n +2))

ale—1)(a—2)
o}

~—

dyo = 10(n1+ 8) {adg + Oé(a2_ 1) (2d2d6 4 di) 4 3%66614-}-
ala—1)(a—2)(a=3) ,
24 d2}
S ! . ad(a~1)
~10(n+8) | (2n) (4(n+2)) (6(n+4)) (8(n+6))  2(2n)2 (6(n +4)) (8(n + 6))
+ o¥(a 1) o?(a = 1)(a—2) a?(a 1)
(2n)2 (4(n+2)) (8(n+6))  6(2n)3 (8(n+6))  (2n)2(4(n + 2)) (6(n +4))
N a?(a—1)? o3(a—1) a*(a—1)(a - 2)
2(2n)% (6(n+4)) ~ 2(2n)2 (4(n+2))*>  2(2n)* (4(n+2))

+a(a— 1)(04—2)(@—3)}'

24(2n)*
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