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The Lane-Emden Function and Nonlinear Eigenvalues
Problems

Isselkou Ould Ahmed Izid Bih
(1)

RÉSUMÉ. — Nous considérons un problème aux valeurs propres, semi-
linéaire elliptique, sur une boule de Rn et montrons que ces valeurs et
fonctions propres peuvent s’obtenir à partir de la fonction de Lane-Emden.

ABSTRACT. — We consider a semilinear elliptic eigenvalues problem on
a ball of Rn and show that all the eigenfunctions and eigenvalues, can be
obtained from the Lane-Emden function.

1. Introduction

We consider the problem

(Pα
λ )




∆u + λ(1 + u)α = 0, in B1

u > 0, in B1

u = 0, on ∂B1

where B1 is the unit ball of R
n, n � 3, λ > 0 and α > 1.

This problem arises in many physical models like the nonlinear heat
generation and the theory of gravitational equilibrium of polytropic stars(cf.
[2] and [11]). It is well known (cf. [2], [10], [12]) that there exists a criti-
cal constant λ∗(α), such that (Pα

λ ) admits, at least, one solution if 0 <
λ < λ∗(α) and no solution if λ > λ∗(α). We deal here with these critical
constants and the corresponding eigenfunctions.
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Let φ be the Lane-Emden function(cf. [1], [5], [6],[15]) in the n-dimensional
space and r0 the first ”zero” of φ, we show that

λ∗(α) = max
r∈[0,r0[

r2φα−1(r).

We use this formula to compute λ∗(α), when α is the Critical Sobolev
Exponent. We also extend, to the subcritical case, an estimate of λ∗(α)
given in [10] and show qualitative properties of the eigenfunctions.
In the Appendix, we show how to approximate φ, so one can use numerical
approaches (Maple or Matlab) to get estimates of λ∗(α).

2. Scalings of the Lane-Emden function as solutions

When 0 < λ � λ∗(α), it is known that any regular solution of (Pα
λ ) is

radial and the minimal one is stable and analytical (cf.[8], [12]).

Proposition 2.1. — Let u be a regular solution of (Pα
λ ), then

u(r) = (1 + u(0))φ
(√

λ(1 + u(0))
α−1

2 r
)
− 1, ∀ r ∈ [0, 1]

where φ is the Lane-Emden function, in the n-dimensional space.

Proof. — The Lane-Emden function(cf. [1], [5], [6], [15]) is the solution
of

(L− E)
{

φ”(r) + n−1
r φ′(r) + φ(r)|φ(r)|α−1 = 0,

φ(0) = 1, φ′(0) = 0.

The proof of the proposition is quite immediate.

3. The Subcritical Case

Let us consider the problem (Pα
λ ), with 1 < α < n+2

n−2 . Let φ be the
Lane-Emden function.

Proposition 3.1. — There exists r0 > 0, such that φ(r0) = 0, φ(r) > 0,
∀r ∈ [0, r0[ and

λ∗(α) = max
ρ∈[0,r0]

ρ2φα−1(ρ).

We also have

λ∗(α) � 2
(α− 1)2

(α(n− 2) − n) , if
n

n− 2
< α <

n + 2
n− 2

.
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Proof. — As φ(0) > 0, we infer that φ > 0, on a maximal interval [0, r0[.
The problem {

∆u + uα = 0, in R
n

u > 0, in R
n

does not admit a solution (cf.[4]), so we infer that r0 < ∞ and φ(r0) = 0.

Let us put

ψρ(r) =
φ(ρr) − φ(ρ)

φ(ρ)
, ∀ r ∈ [0, 1],

with 0 < ρ < r0, then ψρ is a solution of (Pα
λ ), with λ = ρ2φα−1(ρ). We

infer that
max

ρ∈[0,r0]
ρ2φα−1(ρ) � λ∗(α).

Let us suppose that

max
ρ∈[0,r0]

ρ2φα−1(ρ) < λ∗(α),

if uλ∗(α) is the unique solution of (Pα
λ∗(α))(cf.[10]), one can use Proposition

1 to show that

uλ∗(α)(r)=
(
1 + uλ∗(α)(0)

) (
φ

(
(λ∗(α))

1
2

(
1 + uλ∗(α)(0)

)α−1
2 r

)
− 1

1 + uλ∗(α)(0)

)
.

Let us put ρλ∗(α) = (λ∗(α))
1
2

(
1 + uλ∗(α)(0)

)α−1
2 . As uλ∗(α) � 0, we infer

that ρλ∗(α) < r0. As uλ∗(α)(1) = 0, we infer that

1
1 + uλ∗(α)(0)

= φ

(
(λ∗(α))

1
2

(
1 + uλ∗(α)(0)

)α−1
2

)
.

So we get

uλ∗(α)(r) =
φ(ρλ∗(α)r) − φ(ρλ∗(α))

φ(ρλ∗(α))
and λ∗(α) =

(
ρλ∗(α)

)2
φα−1(ρλ∗(α)).

The last equality leads to a contradiction.

To prove the last statement, we use the fact that the maximum here is
achieved at a unique rα (see the next lemma). So we get

φ′(rα) = − 2
(α− 1)rα

φ(rα), and

φα−3(rα)

(
2φ2(rα) + 4rα(α − 1)φ(rα)φ′(rα) + (α − 1)r2

α

(
(α − 2)

(
φ′(rα)

)2
+ φ(rα)φ′′(rα)

))
� 0.
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We first replace φ′′(rα) by its value from (L − E) and then φ′(rα), from
the previous equality, to get

φα−1(rα)
(
−(α− 1)λ∗(α) + 2(n− 4) + 4

α− 2
α− 1

)
� 0.

Simplifying, one gets the estimate.

Remark 3.2. — The last statement in Proposition 2 is also true for α �
n+2
n−2 , with the same proof, provided that supr∈R+

r2φα−1(r) is attained (see
the next Proposition 6); this has been proved in [10], using sophisticated
arguments.

Lemma 3.3. — Let us put g(r) = r2φα−1(r), r ∈ [0, r0], there exists
ρ0 ∈]0, r0[ such that g is increasing on [0, ρ0] and decreasing on [ρ0, r0].

Proof. — Let ρ be an arbitrary positive constant with ρ < r0, then, as
we have already mentioned ψρ is a solution of

(
Pα

γ

)
, where γ = g(ρ). As

g′(r) = rφα−2(r) (2φ(r) + (α− 1)rφ′(r)) , we infer that g is increasing on a
maximal interval I0 ⊂ [0, r0] with 0 ∈ I0.

Using Proposition 2, there exists ρ0 ∈]0, r0[, such that g(ρ0) =
maxr∈[0,r0] g(r) = λ∗(α). This ρ0 is unique, otherwise, if there exists
λ ∈ [0, r0], such that g(λ) = maxr∈[0,r0] g(r) = λ∗(α), then ψρ0 and ψλ

are both solutions of the problem
(
Pα

λ∗(α)

)
. As φ is decreasing on [0, r0],

we infer that ψρ0(0) = 1−φ(ρ0)
φ(ρ0)

�= 1−φ(λ)
φ(λ) = ψλ(0). So we get two different

solutions of the problem
(
Pα

λ∗(α)

)
. This leads to a contradiction (cf. [10]).

As g(r0) = 0, we infer that I0 �= [0, r0]. Let us put δ = sup I0. The function
g can’t be constant on a nontrivial interval J ⊂ [δ, r0], for if g(r) = c in J,
then for every λ ∈ J , ψλ is a solution of (Pα

c ) . As ψλ1(0) �= ψλ2(0), if
λ1, λ2 ∈ J and λ1 �= λ2, we infer that the problem (Pα

c ) admits an infinity
of solutions. This leads again to a contradiction (cf. [10]).

So if g is not decreasing on [δ, r0], then there exists β1 and β2 with
r0 > β2 > β1 > δ, such that g is decreasing on [δ, β1] and increasing on
[β1, β2]. Let us put c0 = min(g(δ), g(β2)), then c0 > g(β1). Let us choose c ∈
]g(β1), c0[, so the problem g(t) = c admits at least three different solutions
λi ∈]0, β2[, 1 � i � 3. As ψλi(0) �= ψλj (0), if i �= j, 1 � i, j � 3, we obtain
three solutions for the problem (Pα

c ) . So we get a contradiction.

We conclude that g is increasing on [0, δ], decreasing on [δ, r0] and δ = ρ0.

Proposition 3.4. — If λ = λ∗(α), there exists a unique ρλ∗(α) ∈]0, r0[,
such that
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λ∗(α) =
(
ρλ∗(α)

)2
φα−1(ρλ∗(α)) and the unique solution uλ∗(α) of (Pα

λ∗(α))
is

uλ∗(α)(r) =
φ(ρλ∗(α)r) − φ(ρλ∗(α))

φ(ρλ∗(α))
= ψρλ∗(α)(r), ∀ r ∈ [0, 1].

When 0 < λ < λ∗(α), there exist exactly two constants rλ and ρλ, such that
0 < rλ < ρλ∗(α) < ρλ < r0, λ = r2

λφ
α−1(rλ) = ρ2

λφ
α−1(ρλ) and the only two

solutions of (Pα
λ ) are

uλ = ψrλ
, vλ = ψρλ

;

the minimal one(cf.[2]) is uλ, limλ→0 uλ = 0 in C0
(
B1

)
and

limλ→0 vλ(r) = ∞, ∀ r ∈ [0, 1[.

Proof. — Using Proposition 2 and Lemma 1, one infers that the only
solution of (Pα

λ∗(α)) is ψρ0 . We put ρλ∗(α) = ρ0. If 0 < λ < λ∗(α), using the
lemma again, we infer that g(t) = λ admits exactly two solutions rλ and
ρλ, with 0 < rλ < ρλ∗(α) < ρλ < r0. Let us put uλ = ψrλ

and vλ = ψρλ
,

uλ(0) �= vλ(0). These two functions uλ and vλ are solutions of the the
problem (Pα

λ ), which admits only two ones (cf. [10]).

As φ is decreasing on [0, r0], one can verify that uλ(0) < vλ(0), so we
infer that the minimal solution (cf.[2]) is uλ.

As λ = r2
λφ

α−1(rλ) = ρ2
λφ

α−1(ρλ), 0 < rλ < ρλ∗(α) < ρλ < r0, we get
limλ→0 rλ = 0, limλ→0 ρλ = r0, limλ→0 uλ(r) = limrλ→0

φ(rλr)
φ(rλ) − 1 =

0, and limλ→0vλ(r) = limρλ→r0
φ(ρλr)−φ(ρλ)

φ(ρλ) = φ(r0r)
(
limρλ→r0

1
φ(ρλ)

)
=

∞, ∀ r ∈ [0, 1[.

4. The Critical Sobolev Exponent Case

In this section, we suppose that α = n+2
n−2 and n � 3.

Let us consider the following problem

(Pα)
{

∆u + uα = 0, in R
n

u > 0, in R
n.

Remark 4.1. — Every radially symmetrical solution of (Pα) verifies
limr→∞ u(r) = 0 (cf. [9]).

Following the method of Pohozaev in [14], the problem

(Qα)
{

u”(r) + n−1
r u′(r) + uα(r) = 0, ∀ r > 0

u > 0, u(0) = 1, u′(0) = 0

admits a solution φ.
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Lemma 4.2. — Let u be a radially symmetrical regular solution of (Pα),
then

u(r) = u(0)φ
(
u(0)

α−1
2 r

)
.

Proof. — This proof is immediate.

Lemma 4.3. — Let us put g(r) = r2φα−1(r), r ∈ R+, then there exists
r0 > 0, such that g is increasing on [0, r0], decreasing on [r0,∞[, with
limr→∞ g(r) = 0.

Proof. — As we have already mentioned, g is increasing near 0. Let us
assume that g is nondecreasing on [0,∞[, then we have two possibilities

lim
r→∞

g(r) = ∞ or lim
r→∞

g(r) = c, 0 < c < ∞.

For every ρ > 0, ψρ is a solution of (Pα
γ ), with γ = ρ2φα−1(ρ) = g(ρ). We

infer (cf. [2], [10]) that g(r) � λ∗(α), ∀ r > 0, so the first limit becomes
impossible.

In the second case, we have two subcases: c is achieved or not.

If c is not achieved, then ∀ l such that 0 < l < c, there exists rl > 0 such
that g(rl) = l. One can verify that ∀ 0 < l < c, the problem (Pα

l ) admits
the solution ψrl

, so we infer that c � λ∗(α). Let u be a radially symmetrical
solution (cf. [2], [10] and [3]) of (Pα

c ) . As in the proof of Proposition 2, one
can verify that

u = ψρ, ρ =
√

c (1 + u(0))
α−1

2 and
1

1 + u(0)
= φ(ρ).

As c = ρ2φα−1(ρ) = g(ρ), we get a contradiction.

Let us suppose that c is achieved, as g is assumed to be nondecreasing,
there exists r0 such that g(r) = c, ∀ r � r0. Let us choose, an arbitrary
constant ρ > 0 such that ρ � r0. The function ψρ is a solution of the
problem

(
Pα

γ

)
, where γ = ρ2φα−1(ρ) = g(ρ) = c, ∀ ρ � r0 . This means

that this problem, with such a γ, admits an infinity of solutions ψρ; this
leads to a contradiction (cf. [2], [10]). So g is not nondecreasing on [0,∞[.
As g can’t be constant on a nontrivial interval, we deduce that there exists
positive constants r1 and r2, such that r1 < r2, with g is increasing on
[0, r1] and decreasing on a maximal interval [r1, r2[. Let us suppose that g
increases again on [r2, r3], with r2 < r3. If γ ∈ ]g(r2),min (g(r1), g(r3)) [,
then g(r) = γ admits, at least, three roots, so the problem

(
Pα

γ

)
admits, at

least, three solutions; this gives again a contradiction (cf. [10]).
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Finally, we get the existence of r0 > 0, such that g is increasing on [0, r0]
and decreasing on [r0,∞[. As g > 0, we infer that limr→∞ g(r) = c0 � 0.
If c0 > 0, then for every c ∈]0, c0[, there exists a unique ρc ∈ R+, verifying
g(ρc) = c. As c < λ∗(α), the problem (Pα

c ) admits exactly two solutions
(cf. [10]). One of these two solutions is ψρc

. Let uc be the other one, then,
using Proposition 2 again, we get

uc(r) = ψγ , γ = c
1
2 (1 + uc(0))

α−1
2 = c

1
2 φ

1−α
2

(
c

1
2 (1 + uc(0))

α−1
2

)
.

So we infer that c = g(γ). As the two solutions are different, ρc �= γ and
γ is another root of g(r) = c. This gives a contradiction and proves that
necessarily c = 0. This ends the proof of the lemma.

Proposition 4.4. — Let us assume α = n+2
n−2 , n � 3, then

λ∗(α) = max
r∈ ]0,∞[

g(r).

Proof. — Let γ = g(ρ) = ρ2φα−1(ρ), ρ ∈ R
∗
+, we have seen that ψρ is a

solution of
(
Pα

γ

)
. So we infer that g(ρ) � λ∗(α), ∀ ρ ∈ R+.

Let us suppose that

max
r∈ ]0,∞[

g(r) < λ∗(α)

and let u be the unique solution (cf. [10]) of (Pα
λ∗(α)). As in the proof of

Proposition 2, we get that u = ψρ and λ∗(α) = g(ρ). This gives a contra-
diction.

Proposition 4.5. — We have λ∗(α) = n(n−2)
4 . There exists a unique

rλ∗(α) =
√

n(n− 2), such that λ∗(α) = r2
λ∗(α)φ

α−1(rλ∗(α)) and a unique
solution of (Pα

λ∗(α))
uλ∗(α) = ψrλ∗(α) .

If 0 < λ < λ∗(α), there exist exactly two constants

rλ =

√
1 − 2λ

n(n−2) −
√

1 − 4λ
n(n−2)

(n(n− 2))−1 √2λ
and ρλ =

√
1 − 2λ

n(n−2) +
√

1 − 4λ
n(n−2)

(n(n− 2))−1 √2λ

such that 0 < rλ < rλ∗(α) < ρλ, λ = g(rλ) = g(ρλ) and the only two
solutions of (Pα

λ ) are

uλ = ψrλ
and vλ = ψρλ

,

the minimal one (cf. [2]) is uλ; limλ→0 uλ = 0, in C0(B1) and
limλ→0 vλ(r) = r2−n − 1, ∀ r ∈]0, 1].
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Proof. — One can use Lemma 3 to get the existence (and the uniqueness)
of rλ∗(α) = r0, rλ and ρλ. It is then easy to verify that ψrλ∗(α) is a solution
of (Pα

λ∗(α)), uλ = ψrλ
and vλ = ψρλ

are solutions of (Pα
λ ). The problem

(Pα
λ ) admits only two solutions (cf. [10]), as φ is decreasing on R

∗
+, one can

verify that uλ(0) < vλ(0), so uλ �= vλ. We conclude that uλ and vλ are the
only solutions of (Pα

λ ) and the minimal one (cf. [2]) is uλ.

Let us compute the constants rλ∗(α), rλ and ρλ.

It is well known (cf. [13]) that, if α = n+2
n−2 , the problem (Qα) admits the

continuum of spherically symmetrical ”instantons”

uγ(r) = γ
n−2

2 (n(n− 2))
n−2

4
(
γ2 + r2

) 2−n
2 , γ > 0.

Let us fix γ > 0, so uγ(0) = γ
2−n

2 (n(n− 2))
n−2

4 . Using Lemma 2, we get
the expression of the Lane-Emden function

φ(r) =
1

uγ(0)
uγ

(
uγ(0)

−2
n−2 r

)
=

(
1 +

r2

n(n− 2)

) 2−n
2

.

As α− 1 = n+2
n−2 − 1 = 4

n−2 , we infer that

g(r) = r2φα−1(r) = r2

(
1 +

r2

n(n− 2)

)−2

.

Using Proposition 4, a direct calculation gives

λ∗(α) = max
r>0

r2

(
1 +

r2

n(n− 2)

)−2

= r2

(
1 +

r2

n(n− 2)

)−2

|
r=rλ∗(α)=

√
n(n−2)

=
n(n− 2)

4
.

In [7], the previous constant has been computed, using the Pohozaev Iden-
tity. If 0 < λ < λ∗(α), the equation g(r) = λ admits two positive roots

rλ =

√
1 − 2λ

n(n−2) −
√

1 − 4λ
n(n−2)

(n(n− 2))−1 √2λ
and ρλ =

√
1 − 2λ

n(n−2) +
√

1 − 4λ
n(n−2)

(n(n− 2))−1 √2λ
.

This gives us uλ = ψrλ
and vλ = ψρλ

; as rλ < ρλ, we get uλ(0) < vλ(0), so
uλ is the minimal solution.
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As λ = r2
λφ

α−1(rλ) = ρ2
λφ

α−1(ρλ), 0 < rλ < rλ∗(α) < ρλ < ∞, one can
verify that
limλ→0 rλ = 0, limλ→0 ρλ = ∞, limλ→0 uλ = 0, in C0

(
B1

)
and

limλ→0 vλ(0) = limρλ→∞
φ(ρλr)
φ(ρλ) − 1 = r2−n − 1, ∀ r ∈]0, 1].

5. The Supercritical Case

We consider here the case α > n+2
n−2 , n � 3. Let us put

f(α) =
4α

α− 1
+ 4

√
α

α− 1
, ∀α > 1.

Let’s first detail a condition, f(α) > n− 2, used in [10].

Lemma 5.1. — If
(
3 � n � 10 and α > n+2

n−2

)
or

(
n > 10 and n+2

n−2 < α < n−2
√

n−1
n−2

√
n−1−4

)
,

then f(α) > n− 2. If n > 10 and n−2
√

n−1
n−2

√
n−1−4

� α, then f(α) � n− 2.

Proof. — Let us put p(t) = 4t2 + 4t and u =
√

α
α−1 , so we get f(α) =

p(u). The only positive root of p(t) = n−2, is t0 =
√

n−1−1
2 and the equation

u =
√

n−1−1
2 has the only solution α0 = n−2

√
n−1

n−2
√

n−1−4
. But α0 > 0, if and

only if n > 10.

For every α > n+2
n−2 , we have α > 1 so we get

√
α

α−1 > 1 >
√

n−1−1
2 , if

3 � n � 10. We infer that f(α) > n− 2, if 3 � n � 10.

If n > 10, we have α0 > n+2
n−2 > 1, one can verify that if n+2

n−2 < α < α0,
then f(α) > n− 2 and f(α) � n− 2, if α � α0.

Proposition 5.2. — Let us put λs = 2
(α−1)2 (α(n− 2) − n) .

If
(
3 � n � 10 and n+2

n−2 < α
)

or
(
n > 10 and n+2

n−2 < α < n−2
√

n−1
n−2

√
n−1−4

)
then

λ∗(α) = max
R∗

+

g(r), λ∗(α) > λs and φ(r) ∼ λ
1

α−1
s r

2
1−α , as r → ∞.

If (ρi) is an increasing sequence of positive reals, such that (ψρi
) are so-

lutions of (Pα
λs

) and limi→∞ ρi = ∞, then limi→∞ ψρi(r) = λ
1

α−1
s (r

2
1−α −

1), ∀ r ∈]0, 1].
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If n > 10 and n−2
√

n−1
n−2

√
n−1−4

� α then

λ∗(α) = sup
R∗

+

g(r) = λs and φ(r) ∼ λ
1

α−1
s r

2
1−α , as r → ∞.

If (λi) is an increasing positive sequence such that limi→∞ λi = λs and
∀i, wi is the unique solution of (Pα

λi
), then

limi→∞ wi(r) = λ
1

α−1
s (r

2
1−α − 1), ∀ r ∈]0, 1].

Proof. — As in the proof of Proposition 4, one can verify that λ∗(α) =
supR∗

+
g(r), where g(r) = r2φα−1(r).

If
(
3 � n � 10 and n+2

n−2 < α
)

or
(
n > 10 and n+2

n−2 < α < n−2
√

n−1
n−2

√
n−1−4

)
,

using Lemma 4, we get f(α) > n − 2. So we can use Theorem 1 in [10] to
infer that λ∗(α) > λs,

(
Pα

λ∗(α)

)
admits a unique solution and

(
Pα

λs

)
admits

an infinity of solutions. Using the unique solution uλ∗(α) of
(
Pα

λ∗(α)

)
, one

can deduce from Proposition 1 that uλ∗(α) = ψρ, where ρ ∈ R
∗
+ and g(ρ) =

λ∗(α). We conclude that the supremum is achieved and λ∗(α) = maxR∗
+
g(r).

Let us suppose that

a = lim inf
r→∞

g(r) < A = lim sup
r→∞

g(r).

For every λ ∈]a,A[, the equation g(r) = λ admits a sequence of roots (ri),
with limi→∞ ri = ∞. As for every i, ψri

is a solution of (Pα
λ ), we get an

infinity of solutions for this problem; but an infinity of solutions exists only
when λ = λs (cf. [10]). We get a contradiction and infer that

a = A = λs = lim
r→∞

g(r), so φ(r) ∼ λ
1

α−1
s r

2
1−α , as r → ∞.

If (ρi) is an increasing sequence of positive constants, such that (ψρi
) are

solutions of (Pα
λs

) and limi→∞ ρi = ∞, then one can use the previous asymp-

totic behavior of φ to get limi→∞ ψρi
(r) = λ

1
α−1
s (r

2
1−α − 1), ∀ r ∈]0, 1].

If n > 10 and n−2
√

n−1
n−2

√
n−1−4

� α, we get from Lemma 4 that f(α) � n−2.
Using [10] again, we infer that λ∗(α) = λs, (Pα

λ ) admits a unique solution
for every λ ∈]0, λ∗(α)[. As the function g is increasing near r = 0, we infer
that g is increasing on R

∗
+. For, on one hand, if g decreases on a nontrivial

open interval I ⊂ R
∗
+, then the equation g(r) = λ admits at least two roots

r1 < r2, if λ ∈] minI g(r),maxI g(r)[. As ψr1 and ψr2 are solutions of (Pα
λ ),
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with ψr1(0) �= ψr2(0), this violates the uniqueness result of [10]. On another
hand, the function g can’t be constant on a nontrivial interval, otherwise
we get an infinity of solutions for some λ. One can then see that

lim
r→∞

g(r) = sup
R∗

+

g(r) = λ∗(α); λ∗(α) = λs (cf. [10]).

So φ(r) ∼ λ
1

α−1
s r

2
1−α , as r → ∞.

Using this asymptotic behavior, one can show the last statement of the
proposition.

Let us put

(Qα
λ)




∆u + λ(1 + u)α = 0, in Br0

u > 0, in Br0

u = 0, on ∂Br0

where Br0 = {x ∈ R
n, ‖x‖ < r0}. For every solution u of (Qα

λ), we put
v(r) = u(r0r) for every r ∈ [0, 1]. Let λ∗

r0
(α), be the maximal eigenvalue of

(Qα
λ).

Lemma 5.3. — A function u is a solution of (Qα
λ), if and only if v is a

solution of (Pα
r2
0λ

). In particular, we get λ∗
r0

(α) = r2
0λ

∗(α).

Proof. — The proof is easy.

Remark 5.4. — According to the previous lemma, the results obtained
here for (Pα

λ ) (on the unit ball B1), can be easily stated for (Qα
λ) (on any

ball Br0).

6. Appendix

Let Si
k be the set of all the (k − i)−selections of {1, ..., i} and s(j) the

multiplicity of the element j, 1 � j � i. If u is a analytical solution of (Pα
λ ),

with u(r) = Σ∞
k=0akr

k near r = 0, r0 the convergence radius of this series,
then

Proposition 6.1. —

∀ k � 0, a2k+1 = 0, a2 =
λ

n− 2
(1 + a0)α

(
1
n
− 1

2

)

and ∀ k > 1, a2k =
λ

n− 2

(
1

2k + n− 2
− 1

2k

)
×

Σk−1
i=1 (1 + a0)

α−i 1
i!

Πi−1
p=0(α− p)Σs∈Si

k−1
Πi

j=1a2(1+s(j)).
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Proof. — Let us choose 0 < r � ρ < r0, by standard integrations, we get

u(r) − u(ρ) =
λ

n− 2
×

(
(r2−n − ρ2−n)

∫ r

0

tn−1(1 + u(t))αdt +
∫ ρ

r

(t− ρ2−ntn−1)(1 + u(t))αdt

)
.

Let us point out that

(1 + u(r))α = (1 + u(0) − u(0) + u(r))α

= (1 + u(0))α

(
1 +

u(r) − u(0)
1 + u(0)

)α

= (1 + a0)
α

(
1 + Σ∞

i=1

ai

1 + a0
ri

)α

, u(0) = a0.

By the Maximum Principle, we have ∀ r ∈]0, 1[, 0 < u(r) < u(0), so we get∣∣∣∣u(0) − u(r)
1 + u(0)

∣∣∣∣ < 1, ∀ r ∈ [0, 1],

we infer that

(1+u(r))α = (1 + a0)
α

(
1 + Σ∞

j=1

α(α− 1)...(α− j + 1)
j!

(
Σ∞

i=1

ai

1 + a0
ri

)j
)

.

All these series are uniformly convergent on [0, ρ]. If we put
(1 + u(r))α = Σ∞

j=0cjr
j , we get

u(r)=
λ

n− 2

(
(r2−n − ρ2−n)

∫ r

0

tn−1Σ∞
j=0cjt

jdt +
∫ ρ

r

(t− ρ2−ntn−1)Σ∞
j=0cjt

jdt

)

=
λ

n− 2

(
Σ∞

j=0cj
r2+j

j + n
− Σ∞

j=0cj
ρ2−nrj+n

j + n
+ Σ∞

j=0cj
ρj+2

j + 2
− Σ∞

j=0cj
ρj+2

j + n

)

+
λ

n− 2

(
−Σ∞

j=0cj
rj+2

j + 2
+ Σ∞

j=0cj
ρ2−nrj+n

j + n

)

=
λ

n− 2

(
Σ∞

j=2cj−2
rj

j + n− 2
+ Σ∞

j=0cj
ρj+2

j + 2
− Σ∞

j=0cj
ρj+2

j + n
− Σ∞

j=2cj−2
rj

j

)
.

We finally obtain

(2) u(r) =
λ

n− 2

(
Σ∞

j=2cj−2(
1

j + n− 2
− 1

j
)rj + Σ∞

j=0cjρ
j+2(

1
j + 2

− 1
j + n

)
)

.

Using the previous identity, we obtain

a1 = 0, ∀ k > 1, ak =
λ

n− 2

(
1

k + n− 2
− 1

k

)
ck−2.
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Using (1), we get

c0 = (1 + a0)
α
, c1 = α (1 + a0)

α−1
a1 = 0

and

∀ k > 1, ck = (1 + a0)
α Σk

j=1

1
j!

Πj−1
p=0(α− p)

1

(1 + a0)
j
Σs∈Sj

k
Πj

i=1a1+s(i)

= Σk
j=1

1
j!

Πj−1
p=0(α− p) (1 + a0)

α−j Σs∈Sj
k
Πj

i=1a1+s(i).

Using the previous relation and the fact that a1 = 0 , one can verify (by
induction) that a2k+1 = 0, ∀k > 0. We then obtain from (2) and the
expression of ck

a2k =
λ

n− 2

(
1

2k + n− 2
− 1

2k

)
c2k−2

=
λ

n− 2

(
1

2k + n− 2
− 1

2k

)
Σk−1

j=1

1
j!

Πj−1
p=0(α−p) (1 + a0)

α−j Σs∈Sj
k−1

Πj
i=1a2(1+s(i)).

∀ j ∈ [1, k − 1], Card(Sj
k−1) = Cj−1

k−2.

Let us put

d2 =
1
2n

and ∀ k > 1,

d2k =
1

(2k + n− 2)(2k)
Σk−1

i=1

1
i!

Πi−1
p=0(α− p)Σs∈Si

k−1
Πi

j=1d2(1+s(j)),

then

Lemma 6.2. — a2k = (−1)kλk (1 + a0)
k(α−1)+1

d2k, ∀ k > 1.

Proof. —

a4 =
αλ2

(n− 2)2
= (1 + a0)2α−1

(
1

n + 2
− 1

4

) (
1
n
− 1

2

)

= λ2(1 + a0)2α−1 1
4(n + 2)

α

2n
= λ2(1 + a0)2(α−1)+1 1

4(n + 2)
α

2n
.

d4 =
1

4(n + 2)
Σ1

i=1

1
i!

Πi−1
p=0(α− p)Σs∈Si

1
Πi

j=1d2(1+s(j))

=
α

4(n + 2)
d2 =

1
4(n + 2)

α

2n
,
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so we infer that the formula is true for k = 2. Let us suppose it true for
every j, such that 2 � j � k. From Proposition 7, we have

a2(k+1)

=
λ

n− 2

(
1

2k + n
− 1

2(k + 1)

)
Σk

j=1

1
j!

Πj−1
p=0(α−p) (1 + a0)

α−j Σs∈Sj
k
Πj

i=1a2(1+s(i))

=
−λ

(2(k + 1) + n− 2)(2(k + 1))
Σk

j=1

1
j!

Πj−1
p=0(α−p) (1 + a0)

α−j Σs∈Sj
k
Πj

i=1a2(1+s(i)).

∀ j ∈ [1, k], ∀s ∈ Sj
k, if i ∈ [1, j], then 1 � 1 + s(i) � k,

so one can use the hypothesis to get ∀ i ∈ [1, j],

a2(1+s(i)) = (−1)1+s(i)λ1+s(i) (1 + a0)
(s(i)+1)(α−1)+1

d2(1+s(i)).

We then obtain
Πj

i=1a2(1+s(i))

= (−1)Σ
j
i=1(1+s(i))λΣj

i=1(1+s(i)) (1 + a0)
Σj

i=1{(α−1)(s(i)+1)+1} Πj
i=1d2(1+s(i))

= (−1)j+Σj
i=1s(i)λj+Σj

i=1s(i) (1 + a0)
αj+(α−1)Σj

i=1s(i) Πj
i=1d2(1+s(i)).

But for every s ∈ Sj
k, we have Σj

i=1s(i) = k − j.

We infer that

Πj
i=1a2(1+s(i)) = (−1)kλk (1 + a0)

αj+(α−1)(k−j) Πj
i=1d2(1+s(i))

= (−1)kλk (1 + a0)
(α−1)k+j Πj

i=1d2(1+s(i)).

Substituting in the expression of a2(k+1), we obtain

a2(k+1) = (−1)k+1λk+1 (1 + a0)
k(α−1)+α 1

(2(k + 1) + n− 2)(2(k + 1))
×

Σk
j=1

1
j!

Πj−1
p=0(α− p)Σs∈Sj

k
Πj

i=1d2(1+s(i))

= (−1)k+1λk+1 (1 + a0)
(k+1)(α−1)+1 1

(2(k + 1) + n− 2)(2(k + 1))
×

Σk
j=1

1
j!

Πj−1
p=0(α− p)Σs∈Sj

k
Πj

i=1d2(1+s(i)).

= (−1)k+1λk+1 (1 + a0)
(k+1)(α−1)+1

d2(k+1).
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Let us compute the first terms of the Lane-Emden function,
φ(r) = Σ∞

i=0a2ir
2i, near r = 0, where a0 = 1, and

a2i = (−1)i2i(α−1)+1d2i, ∀i > 1.

d0 = 1; d2 =
1
2n

; d4 =
1

4(n + 2))
αd2 =

α

(2n) (4(n + 2))
;

d6 =
1

6(n + 4)

(
αd4 +

1
2
α(α− 1)d2

2

)
=

1
6(n + 4)

{
α2

(2n) (4(n + 2))
+

α(α− 1)
2 (2n)2

}
;

d8 =
1

8(n + 6)

(
αd6 + α(α− 1)d4d2 +

α(α− 1)(α− 2)
6

d3
2

)

=
1

8(n + 6)

{
α3

(2n) (4(n + 2)) (6(n + 4))
+

α2(α− 1)
2(2n)2 (6(n + 4))

+
α2(α− 1)

(2n)2 (4(n + 2))

+
α(α− 1)(α− 2)

6(2n)3

}
;

d10 =
1

10(n + 8)

{
αd8 +

α(α− 1)
2

(
2d2d6 + d2

4

)
+ 3

α(α− 1)(α− 2)
6

d2
2d4+

α(α− 1)(α− 2)(α− 3)
24

d4
2

}

=
1

10(n + 8)

{
α4

(2n) (4(n + 2)) (6(n + 4)) (8(n + 6))
+

α3(α− 1)
2(2n)2 (6(n + 4)) (8(n + 6))

+
α3(α− 1)

(2n)2 (4(n + 2)) (8(n + 6))
+

α2(α− 1)(α− 2)
6(2n)3 (8(n + 6))

+
α3(α− 1)

(2n)2 (4(n + 2)) (6(n + 4))

+
α2(α− 1)2

2(2n)3 (6(n + 4))
+

α3(α− 1)
2(2n)2 (4(n + 2))2

+
α2(α− 1)(α− 2)
2(2n)3 (4(n + 2))

+
α(α− 1)(α− 2)(α− 3)

24(2n)4

}
.
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