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RÉSUMÉ. — Nous montrons que les feuilletages holomorphes induits par
les applications rationnelles quasi-homogènes remplissent les composantes
irréductibles de l’espace Fq(r, d) des feuilletages de codimension q et degré
d de l’espace projectif Pr pour tout 1 � q � r − 2. Nous étudions la
géométrie de telles composantes irréductibles. Nous montrons que ce sont
des variétés rationnelles et calculons leur degré dans plusieurs cas.

ABSTRACT. — We show that the singular holomorphic foliations induced
by dominant quasi-homogeneous rational maps fill out irreducible com-
ponents of the space Fq(r, d) of singular foliations of codimension q and
degree d on the complex projective space Pr, when 1 � q � r − 2.
We study the geometry of these irreducible components. In particular we
prove that they are all rational varieties and we compute their projective
degrees in several cases.
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Stability of foliations induced by rational maps

1. Introduction

1.1. The space of codimension one holomorphic foliations on P
r

Let us consider a differential 1-form in C
r+1

ω =
r∑

i=0

aidxi

where the ai are homogeneous polynomials of degree d + 1 in variables
x0, . . . , xr, with complex coefficients. Assume that

∑r
i=0 aixi = 0, so that

ω descends to the complex projective space P
r and defines a global section

of the twisted sheaf of 1-forms Ω1
Pr (d+ 2).

The space of codimension one foliations of degree d on P
r is the algebraic

subset of P
(
H0(Pr,Ω1

Pr (d+ 2))
)

consisting of the 1-forms ω that satisfy the
Frobenius integrability condition and have zero set of codimension at least
two, i.e.,

F(r, d) =
{
ω ∈ P

(
H0(Pr,Ω1

Pr (d+ 2))
)
|ω ∧ dω = 0 and codim sing(ω) � 2

}
.

For the study of the irreducible components of F(r, d) we refer to e. g.
[2] and [11].

1.2. Stability of quasi-homogeneous pencils

One of the first results on the subject is due to Gómez-Mont and Lins
Neto [7] who proved that there are irreducible components R(r, d, d) ⊂
F(r, 2d − 2), r � 3, whose generic element is a foliation tangent to a Lef-
schetz pencil of degree d hypersurfaces. Their proof explores the topology
of the underlying real foliation and relies on the stability of the Kupka com-
ponents of the singular set and on Reeb’s Leaf Stability Theorem. Using
similar methods they recognized for r � 4 other irreducible components
R(r, d0, d1) ⊂ F(r, d0 + d1 − 2) with generic member tangent to a quasi-
homogeneous pencil 〈λF p0 − µGp1〉 with p0 and p1 relatively prime natural
numbers satisfying p0d0 = p1d1, di = degFi. Later Calvo-Andrade [1] ex-
tended Gómez-Mont-Lins Neto result about quasi-homogeneous pencils to
dimension three. His proof has an extra dynamical ingredient –the stability
of leaves carrying non-trivial holonomy.

In fact in both of the above mentioned papers the authors do not re-
strict to P

r and prove their results for foliations on an arbitrary projective
manifold M with dimM � 3 and H1(M,C) = 0. Alternative proofs of the
above results may be found in [14, 16].
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1.3. Infinitesimal stability of quasi-homogeneous pencils

Although full of geometric insights the above mentioned works do not
seem to shed any light on the scheme structure or the geometry ofR(r, d0, d1).
The present article stems from an attempt to understand these problems.

Using infinitesimal techniques, as in [4], we describe the Zariski tangent
space of R(r, d0, d1) at a generic point and arrive at a proof that R(r, d0, d1)
–with the natural scheme structure given by the Frobenius integrability
condition– is generically reduced. More precisely if R(r, d0, d1) denotes the
closure of the image of the rational map

ρ : P
(
H0(Pr,OPr (d0))

)
× P

(
H0(Pr,OPr (d1))

)
- -−> P

(
H0(Pr,Ω1(d0 + d1))

)
(F0, F1) �−→ d0F0dF1 − d1F1dF0.

then our first result reads as follows.

Theorem 1.1. — If r � 3 then R(r, d0, d1) is an irreducible and generically
reduced component of F(r, d0 + d1 − 2).

As explained above the only novelty in Theorem 1.1, besides the method
of its proof, is what concerns the scheme structure over a generic point. For
a more precise statement see Theorem 2.1 in §2.

The main content of this article is the generalization of Theorem 1.1 to
foliations of higher codimension.

1.4. Foliations on P
r of higher codimension

Let ω be a homogeneous q-form on C
r+1 with coefficients of degree d+1

that is annihilated by Euler’s vector field. As before ω can be interpreted
as a section of the sheaf of twisted differential q-forms Ωq

Pr (d+ q + 1).

We recall from [13] (see also [4]) that ω defines a degree d holomorphic
foliation of codimension q on P

r if it satisfies both Plücker’s decomposability
condition

(ivω) ∧ ω = 0 for every v ∈
q−1∧

C
r+1, (1.1)

and the integrability condition

(ivω) ∧ dω = 0 for every v ∈
q−1∧

C
r+1. (1.2)

– 688 –
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It is therefore natural to set Fq(r, d), the space of codimension q holo-
morphic foliations of degree d on P

r, as{
ω∈P

(
H0(Pr,Ωq

Pr (d+ q + 1))
) ∣∣ω satisfies (1.1), (1.2) and codim sing(ω)�2

}
.

1.5. Infinitesimal stability of quasi-homogeneous rational maps

If one interprets the elements of R(r, d0, d1) as foliations tangent to the
fibers of rational maps

P
r - -−> P

1

x �−→ (F p0 : Gp1)

then a possible counterpart in the higher codimension case are the foliations
tangent to dominant rational maps P

r- -−> P
q.

When q = r− 1 there is no hope to establish a stability result even for a
generic rational map. Indeed, under this constraint both Plücker’s condition
and the integrability condition are vacuous. Thus Fr−1(r, d) can be identi-
fied with an open subset of P

(
H0(Pr,Ωr−1

Pr (d+ r))
)

= P
(
H0(Pr, TP

r(d− 1))
)
.

It is well known that for d � 2 a generic element of this space has no alge-
braic leaves, see for instance [3].

For 1 � q � r − 2 fix integers d0, . . . , dq and consider homogeneous
polynomials Fi of degree di for i = 0, . . . , q. Assume that the q-form

ω = iR(dF0 ∧ . . . ∧ dFq), (1.3)

is non-zero. It is easy to check that ω satisfies both (1.1) and (1.2) since
ivω =

∑
aijiR(dFi ∧ dFj), where the aij are homogeneous polynomials.

Moreover, it defines a foliation tangent to the fibers of the map

P
r - -−> P

q

x �−→ (F e0
0 : . . . : F eq

q )

with ei = lcm(d0, . . . , dq)/di. We set

d =
∑

di − q − 1

and denote by
R(r, d0, . . . , dq) ⊂ Fq(r, d)

the closure of the set of foliations that can be written in the form (1.3). It
is the closure of the image of the rational map

ρ :
∏

i P
(
H0(OPr (di))

)
- -−> P

(
H0(Pr,Ω1(d+ q + 1))

)
(Fi) �−→ iR(dF0 ∧ . . . ∧ dFq).

Notice that for q = 1 we recover the definition of R(r, d0, d1).
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Theorem 1.2. — If r � 4 and 1 � q � r− 2 then R(r, d0, . . . , dq) is an
irreducible and generically reduced component of Fq (r,

∑
di − q − 1) .

As far as we know there is no information in the literature concerning
the geometry of the irreducible components of Fq(r, d) so far.

1.6. Geometry of the rational components

In Section 3 we initiate this study through an investigation of the parame-
trization ρ. Besides computing the dimension of R(r, d0, . . . , dq), we prove
the following.

Theorem 1.3. — The irreducible components R(r, d0, . . . , dq) are ratio-
nal varieties.

By its definition, R(r, d0, . . . , dq) is unirational. The proof of rationality
relies on the construction of a variety X that sits as an open set in the total
space of a tower of Grassmann bundles, together with a birational morphism
p : X → R(r, d0, . . . , dq).

In general we do not know how to naturally compactify X to a projective
variety where p extends to a morphism. Albeit, in a number of cases we are
able to do that and obtain, with the aid of Schubert Calculus, formulas for
the degree of the projective subvarities

R(r, d0, . . . , dq) ⊂ P
(
H0(Pr,Ωq(d+ q + 1))

)
.

For example the first few values for the degree of R(r, 2, 2, 2) are listed
below.

r Degree
3 1324220
4 2860923458080
5 243661972980477736263
6 728440733705107831789517245858
7 704613096513585123585398408696231899176183

Several other cases are treated in Section 5.

2. Infinitesimal stability of quasi-homogeneous pencils

In this first section we present our proof of Theorem 1.1. All the argu-
ments will be reworked later in greater generality. We felt the exposition of
this particular case of Theorem 1.2 would improve the clarity of the paper.
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For simplicity, let us denote by

Se = H0(Pr,OPr (e)) (2.1)

the vector space of homogeneous polynomials of degree e in r+ 1 variables,
and

F = F(r, d)

so that our rational map ρ is

ρ : P (Sd0)× P (Sd1) - -−> F ⊂ P
(
H0(Pr,Ω1(d+ 2))

)
. (2.2)

If p0 and p1 denote the unique coprime natural numbers such that p0d0 =
p1d1 then

ρ(F0, F1) = d0F0dF1 − d1F1dF0 = p1F0dF1 − p0F1dF0

where the last equality of differential forms is up to multiplicative constant.

We remark that

d

(
F p0

0

F p1
1

)
=

F p0−1
0

F p1+1
1

(p1F0dF1 − p0F1dF0).

Therefore, the closure of the leaves of the singular foliation defined by the
integrable 1-form ρ(F0, F1) are irreducible components of the members of
the pencil of hypersurfaces of degree p0d0 = p1d1 generated by F p0

0 and
F p1

1 .

2.1. The Zariski tangent space of F

For a scheme X and a point x ∈ X we denote by TxX the Zariski tangent
space of X at x. If P (V ) is the projective space associated to a C-vector
space V and denoting π : V − {0} → P (V ) the canonical projection, for
each v ∈ V we have a natural identification

Tπ(v)P (V ) = V/(v)

where (v) denotes de one-dimensional subspace generated by v. With slight
abuse of notations, the Zariski tangent space TωF of F at a point ω is
represented by the forms η ∈ H0(Pr,Ω1(d+ 2))/(ω) such that

(ω + εη) ∧ (dω + εdη) = 0 mod ε2

that is, such that

ω ∧ dη + η ∧ dω = 0 or, equivalently dω ∧ dη = 0,

where the equivalence is implied by the following variant of Euler’s formula
for homogeneous polynomials.
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Lemma 2.1. — If η is a homogeneous q-form with degree d coefficients
then

iRdη + d(iRη) = (q + d)η

where R is the radial or Euler vector field and iR denotes the interior product
or contraction with R.

Proof. — See [11, Lemme 1.2, pp. 3]. �

Therefore to determine TωF is equivalent to solve dω ∧ dη = 0. Notice
that in the situation under scrutiny dω = (d0 + d1)dF0 ∧ dF1. The first step
towards the general η satisfying dω ∧ dη = 0 is given by Saito’s generaliza-
tion of DeRham’s division Lemma. In Lemma 2.2 we state variants of both
DeRham’s and Saito’s Lemmas fine tuned up for our purposes.

Lemma 2.2 ([15]). — Let F0, . . . , Fq be homogeneous polynomial func-
tions on C

r+1 and let Θ ∈ Ωq+1(Cr+1) be the (q + 1)-form given by

Θ = dF0 ∧ . . . ∧ dFq .

(a) Suppose that q < r and codim sing(Θ) � 2. If η ∈ Ω1(Cr+1) is a
homogeneous polynomial 1−form such that Θ∧η = 0 then there exist
homogeneous polynomials a0, . . . , aq such that

η =
q∑

i=0

aidFi.

(b) Suppose that q < r − 1 and codim sing(Θ) � 3. If η ∈ Ω2(Cr+1) is a
homogeneous polynomial 2-form such that Θ ∧ η = 0 then there exist
homogeneous polynomial 1-forms α0, . . . , αq such that

η =
q∑

i=0

αi ∧ dFi.

Remark 2.3. — The hypothesis q < r in (a) and q < r− 1 in (b) are not
really necessary. For instance in item (b) the singular set sing(Θ) equals the
locus where the (q + 1)× (r + 1) Jacobian matrix (∂Fi/∂xj) has rank � q.
Hence sing(Θ) is empty or has codimension at most r + 1 − q. When q �
r − 1 it follows that codim sing(Θ) � 3 implies that Θ has no singularities.
We conclude that F0, . . . , Fq are linearly independent linear forms and the
conclusion trivially holds true in this case.

In face of Lemma 2.2 it is natural to define the open subset

U = {ω ∈ R(r, d0, d1) | codim sing(dω) � 3 and codim sing(ω) � 2}. (2.3)
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The next result will imply the infinitesimal stability of quasi-homogeneous
pencils corresponding to points of U . It is a simple particular case of Propo-
sition 3.3. The iteration argument in the proof is generalized in Lemma 3.2.
We feel it is worthwhile to write it here for the sake of clarity.

Proposition 2.4. — Let (F0, F1) ∈ P (Sd0) × P (Sd1) be such that
ρ(F0, F1) = ω ∈ U . Then the derivative

dρ(F0, F1) : T(F0,F1)(P (Sd0)× P (Sd1))→ TωF

is surjective. In other words, ρ is a submersion over U .

Proof. — It is convenient to write

ρ(F0, F1) = d0F0dF1 − d1F1dF0 = iR(dF0 ∧ dF1).

Then, the derivative of ρ at the point (F0, F1)

dρ(F0, F1) : Sd0/(F0)× Sd1/(F1)→ TωF

is calculated as

dρ(F0, F1)(F ′
0, F

′
1) = iR(dF ′

0 ∧ dF1 + dF0 ∧ dF ′
1).

Let η ∈ H0(Pr,Ω1(d+2)) represent an element of TωF , that is, dω∧dη =
0. We shall prove that η belongs to the image of dρ(F0, F1), i.e.,

η = iR(dF ′
0 ∧ dF1 + dF0 ∧ dF ′

1)

for some F ′
0 ∈ Sd0 and F ′

1 ∈ Sd1 .

Since dω = dF0 ∧ dF1, applying the division Lemma 2.2 to dη it follows
that there exist homogeneous 1-forms α and β such that

dη = α ∧ dF0 + β ∧ dF1.

Notice that dη is a 2-form with coefficients homogeneous polynomials of
degree d = d0+d1−2. Hence the coefficients of α (resp. β) are homogeneous
of degree d1 − 1 (resp. d0 − 1). Applying exterior derivative we find

dα ∧ dF0 + dβ ∧ dF1 = 0.

Multiplying by dF1 we get dα ∧ dF0 ∧ dF1 = 0. From lemma 2.2 applied to
dα we deduce

dα = α′ ∧ dF0 + α′′ ∧ dF1
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where α′ and α′′ are 1-forms with coefficients homogeneous polynomials of
respective degrees d1−2− (d0−1) = d1−d0−1 and d1−2− (d1−1) = −1.
Hence α′′ = 0. Similarly,

dβ = β′ ∧ dF0 + β′′ ∧ dF1

where β′ and β′′ are 1-forms with coefficients homogeneous polynomials of
respective degrees d0−2− (d0−1) = −1 and d0−2− (d1−1) = d0−d1−1.
Hence β′ = 0.

Suppose that d0 = d1. By the considerations above regarding degrees,
α′ = β′′ = 0. Thus α and β are closed 1-forms. Therefore α = −dF ′

1 and
β = dF ′

0 where F ′
i is some homogeneous polynomial of degree di. It follows

that dη = dF ′
0∧dF1 +dF0∧dF ′

1 and since iR(dη) = (d+1)η we obtain that
η is a scalar multiple of iR(dF ′

0∧dF1+dF0∧dF ′
1). Therefore the Proposition

is proved in the case d0 = d1.

Now suppose d0 �= d1, say d0 > d1. Then d1 − d0 − 1 < 0. Hence dα = 0
and dβ = β′′ ∧ dF1. Repeating the argument of the previous case we obtain
a sequence of 1-forms βi, i ∈ N, such that

dβi = βi+1 ∧ dF1

Comparing degrees it follows that, for k � 0, βk = 0. Thus dβk−1 = 0
and there exists a homogeneous polynomial bk−1 such that βk−1 = dbk−1.
Then dβk−2 = dbk−1∧dF1 and hence βk−2 = bk−1dF1 +dbk−2 for a suitable
homogeneous polynomial bk−2. Then dβk−3 = βk−2 ∧ dF1 = dbk−2 ∧ dF1.
Hence there exists bk−3 such that βk−3 = bk−2dF1 + dbk−3. Iterating this,
we conclude that β = β0 = b1dF1 + db0 and therefore

dη = dF ′
1 ∧ dF0 + dF ′

0 ∧ dF1

where dF ′
1 = α and dF ′

0 = db0, as wanted. �

2.2. Proof of Theorem 1.1

As a matter of fact we prove the following slightly more precise state-
ment.

Theorem 2.1. — If r � 3 then R(r, d0, d1) is an irreducible component
of F(r, d). Moreover, F(r, d) is smooth and reduced at the points of U .

Proof. — Write as before ρ : P - -−> F , where P = P (Sd0) × P (Sd1),
F = F(r, d) and R = R(r, d0, d1) is the closure of the image of ρ. Put
F = (F0, F1) ∈ P . Proposition 2.4 implies that for ω = ρ(F ), the derivative

dρ(F ) : TFP → TFω
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is surjective and also factors through TωR ⊆ TωF . Then TωR = TωF . It
follows that R is an irreducible component of F and F is reduced at the
generic point of R. �

3. Stability of quasi-homogeneous rational maps

In this section we exhibit some previously unknown irreducible compo-
nents R(r, d0, . . . , dq) of Fq(r, d), generalizing the case q = 1 of the previous
section.

A point of R(r, d0, . . . , dq) will be a twisted q-form ω ∈ H0(Pr,Ωq(d +
q + 1)) of type

ω = iR(dF0 ∧ . . .∧ dFq) =
∑

0�j�q
(−1)jdjFj dF0 ∧ . . .∧ d̂Fj ∧ . . .∧ dFq (3.1)

where Fj ∈ Sdj
is a homogeneous polynomial of degree dj in r+1 variables,

and
d0 + . . .+ dq = d+ q + 1. (3.2)

We call ω a rational q-form in P
r of type (d0, . . . , dq).

More precisely, R(r, d0, . . . , dq) is defined as the closure of the image of
the rational map

ρ : P (Sd0)× . . .× P
(
Sdq

)
- -−> P

(
H0(Pr,Ωq(d+ q + 1))

)
(3.3)

induced by the multilinear map

µ : Sd0 × . . .× Sdq → H0(Pr,Ωq(d+ q + 1))

such that µ(F0, . . . , Fq) = iR(dF0∧. . .∧dFq). The base locus of ρ is described
in (4.1) below.

As in the previous section, we define the open subset

U = {ω ∈ R(r, d0, . . . , dq) | codim sing(dω) � 3 and codim sing(ω) � 2}.
(3.4)

With notation as above, our main purpose in this section is to prove the
following Theorem 3.1, which is a more precise version of Theorem 1.2 of
the Introduction.

Theorem 3.1. — Suppose r � 3 and 1 � q � r−2. Then R(r, d0, . . . , dq)
is an irreducible component of Fq(r, d). Moreover, Fq(r, d) is smooth and
reduced at the points of U .
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The strategy is the same as the one used to prove Theorem 2.1. Let us
denote by F = Fq(r, d). The scheme F is defined by the quadratic equations

i(vJ)ω ∧ ω = 0 and i(vJ)ω ∧ dω = 0 (3.5)

for all J ⊂ {0, . . . , r} of cardinality q − 1.

The tangent space TωF of F at a point ω is represented by the forms
ω′ ∈ H0(Pr,Ωq(d+q+1))/(ω) such that ωε = ω+εω′ satisfies the conditions
(3.5) modulo ε2, that is

i(vJ)ωε ∧ ωε = 0 and i(vJ)ωε ∧ dωε = 0

modulo ε2, for all J ⊂ {0, . . . , r} of cardinality q−1. Expanding, one obtains

i(vJ)ω′ ∧ ω + i(vJ)ω ∧ ω′ = 0 and i(vJ)ω′ ∧ dω + i(vJ)ω ∧ dω′ = 0. (3.6)

In order to work out ω′ from (3.6) we will need a pair of technical results.

3.1. Lemmata

The first technical Lemma is a generalization of Lemma 2.2 that will be
a central tool in the rest of this article.

Lemma 3.1. — Let F0, . . . , Fq be homogeneous polynomial functions on
C
r+1 and let Θ ∈ Ωq+1(Cr+1) be the (q + 1)-form given by

Θ = dF0 ∧ . . . ∧ dFq .

Suppose that codim sing(Θ) � 3. If η ∈ Ωq+1(Cr+1) is such that η ∧ dFi ∧
dFj = 0 for every 0 � i < j � q then there exist holomorphic 1-forms
α0, . . . , αq ∈ Ω1(Cr+1) such that

η =
q∑

i=0

αi ∧ dF0 ∧ . . . d̂Fi . . . ∧ dFq.

Proof. — For the second item let U be an open covering of C
r+1\sing(Θ).

Since codim sing(Θ) � 3 we can assume that over each open set U ∈ U our
set of functions is part of a coordinate system on U . It is then clear that

η|U =
∑

αi,U ∧ dF0 ∧ . . . d̂Fi . . . ∧ dFq

for suitable 1-forms α0,U , . . . , αq,U ∈ Ω1(U).
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A simple computation shows that over U ∩ V

(αi,U − αi,V ) ∧Θ = 0 .

It follows from Saito’s Lemma [15] that there exists a unique (q+1)×(q+1)
matrix AU∩V with entries in O(U ∩ V ) such that




α0,U − α0,V

...
αq,U − αq,V


 = AU∩V ·




dF0

...
dFq




Of course the collection of matrices AU∩V with (U, V ) ranging in U2 defines
an element of H1(Cr+1 \sing(Θ),M⊗O) ∼= H1(Cr+1 \sing(Θ),O)⊗M, with
M being the vector space of (q + 1)× (q + 1) matrices.

The hypothesis codim sing(Θ) � 3 implies that this cohomology group
is trivial, see for instance [8, pg. 133]. Therefore we may write AU∩V =
AU − AV where AU , AV are matrices of holomorphic functions in U resp.
V . We can thus set


α0

...
αq


 =




α0,U

...
αq,U


−AU ·




dF0

...
dFq


 =




α0,V

...
αq,V


−AV ·




dF0

...
dFq




as the sought global 1-forms at least over C
r+1 \ sing(Θ). To conclude one

has just to invoke Hartog’s extension Theorem to ensure that these 1-forms
extend to C

r+1. �

By expanding in its homogeneous components both sides of the equality

η =
q∑

i=0

αi ∧ dF0 ∧ . . . d̂Fi . . . ∧ dFq,

it can be easily seen that if η is a homogeneous polynomial q-form then the
1-forms α0, . . . , αq can be assumed homogeneous polynomial 1-forms.

The second technical Lemma in this subsection replaces the iteration
argument in the proof of Theorem 2.1

Lemma 3.2. — For j = 0, . . . , q let Fj ∈ Sdj be a homogeneous polyno-
mial of degree dj. Suppose ω = iR(dF0∧. . .∧dFq) satisfies codim sing (dω) �
3. Then, for α ∈ H0(Pr,Ω1(e)) the following conditions are equivalent:
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(a) dα =
∑

0�k�q Ak ∧ dFk for some Ak ∈ H0(Pr,Ω1(e− dk)).

(b) α = dG+
∑

0�k�qHk dFk for some G ∈ Se and Hk ∈ Se−dk
.

Proof. — It is clear that (b) implies (a). Let us prove the converse, by
induction on e ∈ N. If (a) holds, applying exterior derivative we get

0 = d2α =
∑

0�k�q

dAk ∧ dFk =⇒ dAk ∧ dF0 ∧ · · · ∧ dFq = 0.

By the hypothesis on the Fj and Lemma 2.2,

dAk =
∑

0�h�q

Akh ∧ dFh

for some Akh ∈ H0(Pr,Ω1(e − dk − dh)). Since e − dk < e, the inductive
hypothesis applies to Ak and yields

Ak = dGk +
∑

0�h�q

Hkh dFh

for some Gk ∈ Se−dk
and Hk ∈ Se−dk−dh

. Replacing in (a) we find

dα =
∑
k

dGk ∧ dFk +
∑
h,k

Hkh dFh ∧ dFk.

Since iRα = 0, we have e · α = iRdα. Applying iR we obtain, after a little
calculation

e · α = dG+
∑

0�k�q

Hk dFk

where

G = −
∑
k

dkFkGk, Hk = (dk + e)Gk +
∑
h

dhFh(Hkh −Hhk)

as claimed. �

3.2. Surjectivity of the derivative and proof of Theorem 1.2

Now we are ready to complete the proof of Theorem 3.1 and hence of
Theorem 1.2 of the Introduction. The proof follows from Proposition 3.3
below combined with the same argument used in the proof of Theorem 2.1.

Proposition 3.3. — Suppose r � 3 and 1 � q < r−1. If F = (F0, . . . , Fq) ∈∏
i P (Sdi) is such that ρ(F ) = ω ∈ U then the derivative

dρ(F ) : TF (P (Sd0)× · · · × P
(
Sdq

)
)→ TωF

is surjective.
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Proof. — At a point F = (F0, . . . , Fq) belonging to the domain of ρ the
derivative

dρ(F ) : Sd0/(F0)× . . .× Sdq/(Fq)→ TωF (3.7)

is calculated by multilinearity as

dρ(F )(F ′
0, . . . , F

′
q) =

∑
0�j�q

iR(dF0 ∧ . . . ∧ dF ′
j ∧ . . . ∧ dFq).

Let ω = ρ(F ) ∈ U and ω′ ∈ TωF . From (3.6) we have

i(vJ)ω′ ∧ dω = −i(vJ)ω ∧ dω′.

Since dω is a constant multiple of dF0 ∧ . . . ∧ dFq (see Lemma 2.1 ), by
exterior multiplication with dFj we obtain

dFj ∧ i(vJ)ω ∧ dω′ = 0

for all j, J .

Let Yj , (0 � j � q), be rational vector fields such that dFi(Yj) = δij . For
J = {0, . . . , q} \ {i, j} we have i(vJ)ω = λ(FidFj − FjdFi). Then,

0 = dFj ∧ i(vJ)ω ∧ dω′ = λdFj ∧ FjdFi ∧ dω′,
which implies that

dFi ∧ dFj ∧ dω′ = 0

for all 0 � i, j � q.

Lemma 3.1 implies that

dω′ =
∑

0�j�q
αj ∧ dF0 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFq (3.8)

for some αj ∈ H0(Pr,Ω1(dj)). Applying exterior derivative we find

0 = d2ω′ =
∑

0�j�q
dαj ∧ dF0 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFq.

Taking wedge product with dFj we get

dαj ∧ (dF0 ∧ . . . ∧ dFq) = 0

for all j. Therefore, thanks to Lemma 2.2,

dαj =
∑

0�k�q

Ajk ∧ dFk
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for suitable Ajk ∈ H0(Pr,Ω1(dj − dk)). Lemma 3.2 implies that

αj = dGj +
∑

0�k�q

Hjk dFk

for some Gj ∈ Sdj
and Hjk ∈ Sdj−dk

(we use the convention Se = 0 for
e < 0). Replacing in (3.8) above we have

dω′ =
∑

0�j�q
dGj ∧ dF0 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFq + c dF0 ∧ . . . ∧ dFq (3.9)

for some c ∈ C. Since iRω
′ = 0, Lemma 2.1 yields (

∑
i di) ω′ = iRdω

′.
Applying iR to (3.9) and taking (3.7) into account, we obtain

ω′ = dρ(F )(F ′
0, . . . , F

′
q)

where F ′
j = (−1)j

(
∑

i
di)

Gj . Therefore dρ(F ) is surjective, as claimed. �

4. Geometry of the parametrization

In this section we analyze the parametrization

ρ : P (Sd0)× . . .× P
(
Sdq

)
- -−> Rq(r, d̄) ⊂ P

(
H0(Pr,Ωq(d+ q + 1))

)
,

where Sdi = H0(Pr,OPr (di)), d =
∑

di and d̄ = (d0, . . . , dq).

4.1. Base locus

Let us start by describing the base locus B(ρ) of ρ.

If iR(dF0∧. . .∧dFq) = 0, applying exterior differentiation and Lemma 2.1
we obtain that dF0 ∧ . . .∧ dFq = 0. This means that the Jacobian matrix of
F0, . . . , Fq has rank < q + 1 everywhere, that is, the derivative of the map

F : C
r+1 → C

q+1

defined by F (x) = (F0(x), . . . , Fq(x)) has rank < q + 1 at every x ∈ C
r+1.

This is equivalent to the fact that F is not dominant, that is, f(F0, . . . , Fq) =
0 for some non-zero polynomial f ∈ C[y0, . . . , yq] (i.e., the Fj are alge-
braically dependent). We thus obtain

B(ρ) = {(F0, . . . , Fq) ∈
∏
i

P (Sdi) |F : C
r+1 → C

q+1 is not dominant}.

(4.1)
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For q = 1 the set theoretical description of ρ is rather simple:

B(ρ) = {(F0, F1) ∈ P (Sd0)× P (Sd1) |F d1
0 = F d0

1 } . (4.2)

For general q we have a stratification

B(ρ)1 ⊂ B(ρ)2 ⊂ . . . ⊂ B(ρ)q = B(ρ)

where B(ρ)k = {(F0, . . . , Fq) |dim image(F ) � k}. The first stratum B(ρ)1
is set-theoretically equal to

{(F0, . . . , Fq) ∈
∏
i

P (Sdi) |F d̂0
0 = . . . = F d̂q

q }

where d̂j =
∏

i �=j di. For k > 1 the same set theoretical description is
considerably more complex and we will carry it out only in very particular
cases in §5.

Beware that the scheme structure of B(ρ) is often non-reduced, see §5.6.

At any rate, we register the following easy consequence of Lemma 2.1.

Proposition 4.1. — Let

ρ̃ :
∏

i P (Sdi
) - -−> P

(
Sd−1⊗

q+1
∧ S�

1

)
(F0, . . . , Fq) �−→ dF0 ∧ . . . ∧ Fq.

Then the base loci of ρ̃ and ρ are one and the same as schemes.

Proof. — Let V ⊂ Se⊗
q
∧ S�

1 be the subspace of closed q–forms with

coefficients of degree e. Put W = iR(V ) ⊂ Se+1⊗
q−1
∧ S�

1. Then iR : V →
W is a linear isomorphism. We still denote by iR : P (V ) → P (W ) the
projectivization. Since the image of ρ̃ lies in P (V ) and ρ = iR ◦ ρ̃, the
assertion follows. �

4.2. Weighted homogeneous polynomials

Fix d̄ = (d0, . . . , dq) ∈ N
q+1 and e ∈ N. A polynomial f in C[y0, . . . , yq]

is said to be weighted homogeneous of type d̄ and degree e if

f(λd0y0, . . . , λ
dqyq) = λef(y0, . . . , yq)

for any λ ∈ C. Equivalently, f is a linear combination of monomials∏
0�j�q

y
αj

j such that d̄ · α :=
∑

0�j�q
djαj = e.
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This is tantamount to declaring each variable yi to be of degree di.

We denote by
Sq,d̄,e

the C-vector space of all such polynomials and write its dimension asN(q, d̄, e).
Notice that N(q, d̄, e) = dimSq,d̄,e can be expressed by the Hilbert series

H(t) =
∑
e

N(q, d̄, e)te =
1∏q

i=1(1− tdi)
.

Throughout we will assume that the vector of natural numbers d̄ ∈ N
q+1

is non-decreasingly ordered, i.e., d0 � d1 � · · · � dq.

Define ē = ē(d̄) = (e1, . . . , ek) such that ei < ei+1 and ∪0�i�q{di} =
∪1�i�k{ei}. If ni stands for the number of times the natural number ei
appears in d̄ then the pair (ē, n̄), where n̄ = (n1, . . . , nk), determines d̄.

Set qj = −1 +
∑

1�i�j ni, and for l = 1, . . . , k

d̄l = (e1, . . . , e1︸ ︷︷ ︸
n1 times

, e2, . . . , e2︸ ︷︷ ︸
n2 times

, . . . , el, . . . , el︸ ︷︷ ︸
nl times

).

Clearly, for each f ∈ Sq,d̄,ej
, no variable yi with weight di > ej occurs in f ;

thus
Sq,d̄,ej

∼= Sqj ,d̄j ,ej
.

Denote by E
q+1 = End(Cq+1) the set of all polynomial maps f : C

q+1 →
C
q+1. It is a ring under sum and composition of maps. If f = (f0, . . . , fq) ∈

E
q+1, we say that f is of type d̄ if fi is weighted homogeneous of type d̄ and

degree di, for all i = 0, . . . , q.

Lemma 4.2. — Maps of type d̄ form a subring of E
q+1. More precisely,

if f, g ∈ E
q+1 are of type d̄ then f ◦ g is of type d̄. Moreover, the set

GL(q, d̄) = {f ∈ E
q+1|f is of type d̄ and df(0) is invertible}

is a group.

Proof. — Clearly G = GL(q, d̄) is closed under compositions. It remains
to show that every element is invertible in G. Let us denote the block of
variables of weight ei by

y
1

= y0, . . . , yq1︸ ︷︷ ︸
(weight e1)

, y
2

= yq1+1, . . . , yq2︸ ︷︷ ︸
(weight e2)

, . . . , y
k

= yqk−1 , . . . , yqk︸ ︷︷ ︸
(weight ek)

.
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The main point is that each f ∈ G has the following triangular shape,

(f
1
(y

1
), f

2
(y

1
, y

2
), . . . , f

k
(y

1
, . . . , y

k
)).

Here
f
i
(y

1
, . . . , y

i
) = (fi1(y1

, . . . , y
2
), . . . , f2ni(y1

, . . . , y
i
)),

with
fij(y1

, . . . , y
i
) = gij(y1

, . . . , y
i−1

) + hij(yi) ∈ Sqi,d̄i,ei

where hij(yi) is in fact linear in the block of variables y
i
of weight ei. Indeed,

since ei+1 > ei, no y
i+1

occurs in f
i
. Thus f can be written as

(h1(y1
), h2(y2

) + g
2
(y

1
), . . . , hk(yk) + g

k
(y

1
, . . . , y

k−1
)).

Now we see that df(0) is made up of blocks of the linear maps hi = dhi :
C
ni → C

ni . Hence invertibility of the former is equivalent to dhi ∈ GLni
∀i.

Thus, given (z1, . . . , zq) = (f(y)), one can solve successively


y
1

= h1
−1(z1), then

y
2

= h2
−1(z2 − g

2
(y

1
)),

...
y
k

= hk
−1(zk − g

k
(y

1
, . . . , y

k−1
)).

�

The group GL(q, d̄) naturally acts on the domain of µ (cf. 3.3):

GL(q, d̄)×
∏

0�j�q
Sdj

−→
∏

0�j�q
Sdj

(f, (F0, . . . , Fq)) �−→ (f0(F ), . . . , fq(F )) .

In other words, considering F as a polynomial map F : C
r+1 → C

q+1, the
action is just composition with a polynomial map f : C

q+1 → C
q+1 which

belongs to GL(q, d̄).

4.3. The fibers of ρ

The key tool for the description of the fiber of ρ and the proof of Theorem
1.3 is the following Proposition.

Proposition 4.3. — Let F = (F0, . . . , Fq), G = (G0, . . . , Gq) ∈ Sd0 ×
. . .×Sdq Suppose that both dF0∧· · ·∧dFq and dG0∧· · ·∧dGq are non-zero
(q+1)-forms. If codim sing(dF0∧· · ·∧dFq) � 2 then the following conditions
are equivalent:
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(a) iR(dF0 ∧ . . . ∧ dFq) = iR(dG0 ∧ . . . ∧ dGq) up to a constant multiple.

(b) dF0 ∧ . . . ∧ dFq = dG0 ∧ . . . ∧ dGq up to a constant multiple.

(c) dGj =
∑

0�k�q Ajk dFk for some Ajk ∈ Sdj−dk
, for all j.

(d) Gj = fj(F0, . . . , Fq) for some fj ∈ C[y0, . . . , yq], for all j.

(e) Gj = fj(F0, . . . , Fq), for all j for a unique fj ∈ Sq,d̄,dj
. Moreover,

(f0, . . . , fq) belongs to GL(q, d̄).

Proof. — (a) ⇔ (b): Use the identity d(iR(dF0 ∧ . . . ∧ dFq)) = (q +
d)(dF0 ∧ . . . ∧ dFq) from Lemma 2.1.

(b) ⇒ (c): Multiplying by dGj we obtain dGj ∧ dF0 ∧ . . . ∧ dFq = 0.
Since F is generic, it follows by the division lemma that the dGj are linear
combinations of the dFk. The coefficients may be chosen as homogeneous
polynomials, necessarily of the stated degree.

(c)⇒ (b): Using the hypothesis and calculating wedges we have

dG0 ∧ . . . ∧ dGq = det(A) dF0 ∧ . . . ∧ dFq.

Now det(A) is a non-zero homogeneous polynomial, and its degree is zero,
so it is a constant, thereby proving the claim.

(d) ⇒ (e): Let fj =
∑

α cαy
α, where α ∈ N

q+1 and cα ∈ C, so that
Gj =

∑
α cαF

α. Write fj = gj + hj where gj is the sum over the exponents
α such that d̄ · α = dj . We have hj(F ) = 0 by the homogeneity of Gj

and of the Fk. Therefore we may take fj = gj , the weighted homogeneous
polynomial that we needed. Uniqueness is clear since the Fk are algebraically
independent. Finally, setting f = (f0, . . . , fq), since

dG0 ∧ . . . ∧ dGq = det(df)dF0 ∧ . . . ∧ dFq

it follows that det(df) = det(df(0)) is a nonzero constant.

(e)⇒ (d): obvious.

(d)⇒ (c): If Gj =
∑

α cαF
α, taking exterior derivative we immediately

get dGj as a linear combination of the dFk.

(c)⇒ (d): It suffices to use Lemma 4.4 below. �

Lemma 4.4. — Let F = (F0, . . . , Fq) ∈ Sd0 × . . . × Sdq be generic. Let
G be a homogeneous polynomial of degree e such that dG =

∑
0�k�q Ak dFk
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for some Ak ∈ Se−dk
. Then G = f(F0, . . . , Fq) for a unique polynomial

f ∈ Sq,d̄,e.

Proof. — We proceed by induction on e. The assertion is clear for e = 0.
Taking exterior derivative we have d2G =

∑
k dAk ∧ dFk = 0. Thus dAk ∧

dF0∧. . .∧dFq = 0 for all k. Since F is generic, we get dAk =
∑

hBkh dFh for
some Bkh ∈ Se−dk−dh

. By the inductive hypothesis, Ak = fk(F0, . . . , Fq) for
some polynomial fk. On the other hand, applying iR to dG =

∑
k Ak dFk we

obtain eG =
∑

k Ak dkFk. Replacing here Ak by fk(F0, . . . , Fq) we obtain
the claim. Uniqueness and weighted homogeneity were argued before. �

Proposition 4.5. — For general F = (F0, . . . , Fq) ∈
∏

0�j�q Sdj
we

have a bijective map

GL(q, d̄) −→ µ−1µ(F )
(f0, . . . , fq) �−→ (f0(F ), . . . , fq(F ))

with µ the multilinear map inducing ρ as in (3.3).

Proof. — The assertion follows from the equivalence (a)⇐⇒ (e) in 4.3.
�

Corollary 4.6. — We have the formula for the fiber dimension,

dim ρ−1ρ(F ) =
∑

0�j�q
(N(q, d̄, dj)− 1).

4.4. A natural factorization and proof of Theorem 1.3

We will now proceed to describe a tower of open subsets of Grassmann
bundles birational to R(r, d̄). We preserve the notation of Subsection 4.2.

Start with Y0 = G(n1,Se1), the grassmannian of n1-planes in Se1 . Let
X1 ⊂ Y1 be the open subset defined as

X1 = {F1 ∧ · · · ∧ Fn1 ∈ G(n1, Se1) |codim sing(dF0 ∧ · · · ∧ dFn1) � 2}.

Now let A2 → X1 be the vector subbundle of the trivial bundle Se2 × X1

with fiber over F 1 = F1 ∧ · · · ∧ Fn1 ∈ X1 given by

A2(F 1) = {G ∈ Se2 | dF1 ∧ · · · ∧ dFn1 ∧ dG = 0}.

Recalling Lemma 2.2(a), and the above considerations on weighted homo-
geneity, we have in fact

A2(F 1) = {G ∈ Se2 |G = f(F 1), f ∈ Sq1,d̄1,e2} ∼= Sq1,d̄1,e2 .
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Let Y2 = G(n2,Se2/A2) be the Grassmann bundle over X1. Notice that,
for an element G2 = [G1] ∧ · · · ∧ [Gn2 ] ∈ G(n2,Se2/Sq,d̄,e2(p)) over a point
F 1 = F1 ∧ · · · ∧ Fn1 ∈ X1, the (n1 + n2)-form

η(G2) = dF1 ∧ · · · dFn1 ∧ dG1 ∧ · · · ∧ dGn2

is well-defined up to a non zero multiplicative constant. Therefore we can
set X2 ⊂ Y2 as the open subset defined by

X2 = {G2 ∈ Y2 | codim sing η(G2) � 2}

Continuing, we have a vector subbundle A3 of Se3 ×X2 with fiber

A3(F 1, G2) = {H ∈ Se3 | dF1 ∧ · · · ∧ dFn1 ∧ dG1 ∧ · · · ∧ dGn2 ∧ dH = 0}.

As before, this is isomorphic to Sq2,d̄2,e3 . Proceeding this way, we arrive at
an open subset X = Xk ⊂ Yk where Yk → Xk−1 is the Grassmann bundle
G(nk,Sek

/Ak−1). Clearly X is a rational variety just like all Grassmann
bundles over rational varieties. Using Proposition 4.3, we arrive at a bir-
rational map from X to R(r, d̄). It follows that R(r, d̄) is rational and this
concludes the proof of Theorem 1.3 �

5. Degree calculations

5.1. Input from intersection theory

Let q : X → P
N be a proper, generically finite map. Then the degree of

the image Y = q(X) ⊆ P
N is given by∫

Y

hr =
1
δ

∫
X

q�h

where h =hyperplane class, δ = deg q is the number of points in q−1(q(x))
for general x ∈ X.

Suppose next that π : E → Z is a holomorphic vector bundle over a
smooth projective variety Z. The total Chern class of E can be written
as c(E) = 1 + c1(E) + · · · + ck(E), with ci(E) ∈ Ai(Z), the Chow group
of codimension i cycles. Chern classes can be thought of as operators on
homology or on the total Chow group A(Z) = ⊕Aj(Z) by taking cap prod-
ucts: Aj(Z) # z �→ ci(E) ∩ z ∈ Aj−i(Z). The total Segre class is given by
the inverse operator, s(E) = (1−η)−1 = 1+η+η2 + · · ·, with η = 1− c(E).
Thus, s(E) = 1− c1(E)+ c1(E)2− c2(E)+ · · ·. Segre classes give the Gysin
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map for a projective bundle, p : P (E) → Z. If h denotes the relative hy-
perplane class, we have p�(he+i ∩ p�(z)) = si(E)∩ z, where e = rank E − 1.
Suppose E >−→ C

N+1× Z is a vector subbundle. Put X = P (E). Let
q : X ⊂ P

N × Z → P
N be induced by projection. The relative hyperplane

class is equal to the pullback of the hyperplane class of P
N , q�h, written

simply h. If q is generically injective then we have deg q(X) =
∫
Z
sn(E),

with n = dimZ. Indeed, we have dim q(X) = dimX = n + e. Hence
deg q(X) =

∫
X

he+n =
∫
Z
p�(he+n) =

∫
Z
sn(E).

5.2. Linear projections of grassmannians

We keep the notation as in the previous section. Here we proceed to find
the degree of the projective variety

R(r, d̄) ⊂ P
(
H0(Pr,Ωq(d+ q + 1))

)
in some cases. Recalling the proof of Proposition 4.1, we see that all degree
calculations can be lifted from P (W ) to P (V ).

When q1 = q, i.e. all the degrees di are equal to e1, the variety X
constructed in §4.4 is an open subset of the grassmannian G(q,Se1). It
follows that the morphism ρ̄ : X → R(r, d̄) gives rise to a rational map

ρ̃ : G(q + 1,Se1) - -−> R̃(r, d̄) ⊂ P

(
Sd−1⊗

q+1
∧ S�

1

)
.

Notice that ρ̄ is the composition of Plücker’s embedding with a central
projection

P

(∧q+1
Se1

)
- -−> P

(
Sd−1⊗

q+1
∧ S�

1

)
F0 ∧ · · · ∧ Fq �→ dF0 ∧ · · · ∧ dFq.

It is a simple exercise to show that G(q + 1,Se1) is disjoint from the
center of this projection if, and only if, q = 1 or d0 = · · · = dq = 1. In
both cases the degree of these components is equal to the degree of the
corresponding grassmannians under Plücker’s embedding. More precisely,
setting N = (q + 1)(r − q) = dimG(q + 1, r + 1), we have

deg(R(q, 1, . . . , 1)) = degG(q + 1,S1) =
1!2! · · · q!N !

(r − q)!(r − q + 1)! . . . r!

deg(R(1, d, d)) = degG(2,Sd1) =
1

Nd − 1

(
2Nd − 2
Nd

)
,

where Nd =
(
r + d
r − 1

)
.

(5.1)
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5.3. Correction due to base locus

The scheme-theoretic structure of the base locus of a rational map φ :
Y - -−> P

(
C
N

)
is defined as follows (cf. [10, 7.17.3, p. 168]). We are given a line

bundle (=invertible sheaf) L over Y together with a homomorphism ON
Y →

L, surjective over the open dense subset U ⊆ Y where φ is a morphism. The
image, J , of the induced homomorphism

ON
Y OY

J

VL

is the sheaf of ideals defining the base locus. If D denotes an effective Cartier
divisor such that J = OY (−D) · J ′ for some ideal sheaf J ′, then the set
of zeros, V (J ′) is contained in V (J ). Clearly φ extends to the complement
U ′ = Y \ V (J ′) ⊇ U in such a way that the pullback of the hyperplane
bundle is

φ�|UOP(CN )(1) = L ⊗O(−D).

5.4. Case (2,2,2)

The situation is still manageable. It turns out that the scheme of inde-
terminacy of the rational map

ρ̃ : X = G(3,S2) - -−> R̃(r, d̄) ⊂ P(S3⊗
3
∧S�

1)
F0 ∧ F1 ∧ F2 �−→ dF0 ∧ dF1 ∧ dF2

is equal to the image of the Veronese-like embedding

Y = G(2,S1)
v
↪→ X = G(3,S2)

〈L0, L1〉 �−→ 〈L2
0, L0L1, L

2
1〉.

Thus a single blowup π : X̃ → X along Y resolves the indeterminacy i.e.,
the induced map ρ̃ : X̃ → R̃(r, d̄) is a morphism. The reader may consult
the Arxiv version [5] for details. This yields the formula for the pullback of
the hyperplane class

ρ̃�h = π�q1 − e,

with e = [E], class of the exceptional divisor E = π−1Z and q1 is the
hyperplane class of the Plücker embedding. See also [6, §4.4, p. 82].
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Since ρ̃ is generically injective, the degree of the image can be calculated
as

degR(r, 2, 2, 2) =
∫
X̃

ρ̃ �hdimX .

Setting N = dimX = dimG(3,S2) = 3(
(
r + 2

2

)
− 3), the degree is given

by ∫
X̃

ρ̃ �hN =
∫
X

π�

N∑
0

(
N
i

)
π�qi1 · (−e)N−i.

Using projection formula, we are reduced to the calculation of

• the Plücker’s degree of G(3,S2) for the term with i = N ,

and

• the contribution of π�(e)j = (−1)j−1v�sj−δN ,

where N stands for the normal bundle of the embedding v and

δ = rankN = dimG(3,S2)− dimG(2,S1).

The minus signs come from the formula

ι�O
X̃

(E) = ON (−1).

The Segre classes of the normal bundle are obtained from the usual exact
sequence

TY >−→ TX|Y −→→ N .

Details can be seen in [5]. We find,

r deg
3 1324220
4 2860923458080
5 243661972980477736263
6 728440733705107831789517245858
7 704613096513585123585398408696231899176183

d0 = d1 = d2 = 2

5.5. Bundles of projective spaces

When k = 2 and n2 = 1, the variety X constructed in §4.4 is an open
subset of a projective bundle over an open subset of a grassmannian. In
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general we do not know a manageable compactification. Even when we can
compactify X as above, the scheme structure of the base locus of ρ̄ can be
non reduced and is far form being understood in general.

Nevertheless in the following three cases we are able to handle the degree:

• q = 1 and d0 divides d1.

• arbitrary q but k = 2 and d1 = 1, i.e., d̄ = (1, . . . , 1, e).

• q = 1, d0 = 2 and d1 = 3.

5.5.2. q = 1 and d0 divides d1

This is in fact the only case for which we got a closed formula. Now the
natural parameter space, X, is a projective bundle

X −→ P (Sd0)

described in the sequel.

Write the tautological line subbbundle over the projective space P (Sd0),

OSd0
(−1) >−→ Sd0 .

Set κ = d1/d0. Taking symmetric power, we have the exact sequence

OSd0
(−κ) >−→ Sd1 −→→ Sd1 ,

which defines the vector bundle Sd1 . The fiber of Sd1 over each F0 ∈ P (Sd0)
is the quotient vector space Sd1/〈Fκ

0 〉. Thus we have

ρ̃ : X = P
(
Sd1

)
−→ R̃(r, d0, d1) ⊆ P

(
Sd1+d0−2⊗

2
∧S�

1

)
.

(F0, F 1) �−→ dF0 ∧ dF1.

The pullback of the hyperplane class via the map ρ̃ is obtained as

H = h + h′

where h = c1OSd0
(1), which comes from the base P (Sd0), and h′ =

c1OSd1
(1), the relative hyperplane class. With the notation as in (18), we

have
rankSd1 − 1 = Nd1 − 2
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for the fiber dimension of P
(
Sd1

)
→ P (Sd0). The sought for degree is

degR(r, d0, d1) =
∫

P(Sd1)
HNd1+Nd0−1 =

∑
i

(Nd1 +Nd0 − 1i)hisNd0−i(Sd1)

=
(
Nd1 +Nd0 − 1

Nd0

)
− d1

d0

(
Nd1 +Nd0 − 1

Nd0 − 1

)
.

The last equality follows from the calculation of the Segre class s(Sd1) =
1− κh, so si(Sd1) is zero in degrees i � 2, cf. [6, p. 47].

If r = 3, d1 = 2, d0 = 1, one finds
(

3 + 8
3

)
−2

(
11
2

)
= 55. By contrast,

the degree of the Segre variety P̌
3 × P

9 ⊂ P
39 of which the image of ρ is a

rational projection, is equal to
(

12
3

)
.

5.5.2. k = 2 and d0 = 1

We are now looking at foliations defined by

ω = iR(dF0 ∧· · · ∧dFq)

where degF0 = · · · = degFq−1 = 1; degFq = d � 2. A natural parameter
space is the projective bundle over the grassmannian

G = G(q,S1)

defined as follows. Write the tautological sequence

Rq >−→ S1 −→→ Q.

The fiber of Rq over F ∈ G is the space 〈F0, . . . , Fq−1〉 spanned by lin-
ear forms. Now the last polynomial Fq is taken as a class in the pro-
jective space P

(
Sd/〈F d

0 , F0 · F d−1
1 , . . . , F d

q−1〉
)
. The natural homomorphism

SymdRq → Sd is injective; it corresponds to an instance of the vector bundle
A2 described in 4.4. Form the projective bundle

π : X = P (Sd/SymdRq) −→ G.

Note that the rational map

X
ρ̄

- -−> P(Sd−1⊗
q
∧S�

1)
(〈F0, . . . , Fq−1〉, F q) �−→ dF0 ∧ . . . ∧ dFq−1 ∧ dFq

is in fact regular everywhere. Indeed, regularity is an open condition; the
map is invariant under the natural action of GLr+1 and is regular at the
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representative (〈x0, . . . , xq−1〉, xd−1
q x0) of the unique closed orbit. Thus the

sought for degree can be computed by Schubert calculus in the following
manner. Set

g = q(r + 1− q) = dimG

N =
(
r + d
r

)
−

(
q − 1 + d
q − 1

)
− 1, (5.3)

so that presently the dimension of the component is δ = N+g. The pullback
of the hyperplane class from P(Sd−1⊗

q
∧ S�

1) is equal to h + q1, where h
stands for the relative hyperplane class of the projective bundle X → G
and q1 = c1Q. By general principles, the degree is given by∫

X

(h + q1)δ =
g∑
0

(
δ
i

) ∫
G

π�(hδ−i)qi1 =
g∑
0

(
δ
i

) ∫
G

sg−i · qi1.

Here si = ci(SymdRq). For q = 2, r = 3 we find

d2(d− 1)(d+ 3)(d2 + 2)(d2 + 4d+ 6)(d+ 2)2(d+ 1)2
/
(26 · 35),

a polynomial of degree 12 in d. For q = 2; r = 4, 5, 6, 7, 8 we find polynomial
formulas of respective degrees 24, 40, 60, 84, 112. This suggests a polynomial
degree like 2r(r − 1). Now for q = 3, r = 4, 5, 6, 7, 8 we get polynomial
formulas of degrees 3r(r−2) with respect to d. Further experiments (cf. [17])
suggest polynomial formulas of degrees qr(r − q + 1). Here is a sample for
small values of r, q, d.

(r, q) = (5, 2)
d 2 3 4 5

deg 2390850 10457430102 9654013512864 3099059696318355

(r, q) = (6, 2)

d 2 3 4 5
deg 1139133688 91451421683006 1118409272891730904 3524857658574891999976

(r, q) = (6, 3)

2 3 4 5
8983484048 9350781792221835 1060759743612735149417 22044166363067583367287424

5.6. (2, 2m+ 1)

Assume q = 1, d0 = 2 and d1 = 2m + 1. Set for short X = P (S2) ×
P (S2m+1). Put as before Nd =

(
r + d
d

)
− 1. We have

dimX = N2 +N2m+1.
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The indeterminacy locus of

ρ̃ : X - -−> P

(
S2m+1⊗

2
∧S�

1

)
(F,G) �−→ dF ∧dG.

is, set-theoretically, the “bi-Veronese”,

V = {(L2, L2m+1) |L ∈ P (S1)}.

There is compelling computer algebra evidence indicating that the inde-
terminacy locus of the rational map ρ̃ is a thickening of B. Blowing up the
reduced structure, the new indeterminacy locus, B′, of the induced ratio-

nal map X′- -−> P(S2m+1⊗
2
∧S�

1) is reduced only for m = 1. Nevertheless,
it still is a rather manageable complete intersection. In fact, we find local
equations of B′ of the form em, f1, ..., fu, with e denoting the equation of
the exceptional divisor, and the fi’s define a projective subbundle of the
exceptional divisor. We find that the reduced structure B′

red = P(NP(S1)/B)
is the projectivization of the normal bundle of P (S1) in B, as indicated in
the diagram

T P (S 1 ) T P (S 1)

T B TX NB (rank = dim P (S q))

NP(S 1 ) / B NP(S 1 ) /X NB ,

||

all restricted to P (S1). Using this, we find the following table for the first
few degrees in dimensions 3 and 4. Details can be read in [5].

degR(r, d0 = 2, d1 = 2m+ 1)
d1 deg (P3)
5 27500627268
7 19062120397608
9 3910289698588916
11 341013122932980120

d1 deg (P4)
5 5858652068789831804
7 2734930355086609774678630
9 118796991387599661786404269060
11 955667356931740162987705236374200
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Interpolating the first few values of odd d1, we find for P
3 the polynomial

(t−1)
(
t26+55t25+1450t24+24616t23+305020t22+2961172t21+23561656t20+

158392960t19+918866662t18+4670514826t17+21033417148t16+84615935632t15

+305921226844t14+998318576836t13+2949392111320t12+7903552056256t11+
19229223618721t10+41774679574903t9+72390849730794t8+15945324910344t7

− 541088235621216t6 − 2539188961011216t5 − 315410776482528t4

+ 14933666207688192t3 + 85822791395378688t2 − 247712474710388736t +
162893498195312640

)
/3656994324480.

It fits all values of degR(3, 2, t), t = 2m+1, up to m = 35, presently the
physical limit of our computer’s memory. It should be noted that

degR(3, 2, 2t) =
(
N2t +N2 − 1

N2

)
− 2t

2

(
N2t +N2 − 1

N2 − 1

)
is a polynomial

in t of the same degree 27 as in (19) above.
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