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Stability of foliations induced by rational maps

F. CUKIERMAN() | J. V. PEREIRA(® | I. VAINSENCHER®)

RESUME. — Nous montrons que les feuilletages holomorphes induits par
les applications rationnelles quasi-homogenes remplissent les composantes
irréductibles de I’espace Fq(r, d) des feuilletages de codimension ¢ et degré
d de l'espace projectif P pour tout 1 < ¢ < r — 2. Nous étudions la
géométrie de telles composantes irréductibles. Nous montrons que ce sont
des variétés rationnelles et calculons leur degré dans plusieurs cas.

ABSTRACT. — We show that the singular holomorphic foliations induced
by dominant quasi-homogeneous rational maps fill out irreducible com-
ponents of the space Fy(r,d) of singular foliations of codimension ¢ and
degree d on the complex projective space P", when 1 < ¢ < 7 — 2.
We study the geometry of these irreducible components. In particular we
prove that they are all rational varieties and we compute their projective
degrees in several cases.
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Stability of foliations induced by rational maps

1. Introduction

1.1. The space of codimension one holomorphic foliations on P"

Let us consider a differential 1-form in C"*+!

T
w= E a;dx;
i=0

where the a; are homogeneous polynomials of degree d + 1 in variables
Zg, ..., T, with complex coefficients. Assume that ZLO a;z; = 0, so that
w descends to the complex projective space P" and defines a global section
of the twisted sheaf of 1-forms Qg, (d + 2).

The space of codimension one foliations of degree d on P" is the algebraic
subset of P (H°(P", Q. (d + 2))) consisting of the 1-forms w that satisfy the
Frobenius integrability condition and have zero set of codimension at least
two, i.e.,

F(r,d) ={w e P HP",Qp.(d+2))) |wAdw=0 and codimsing(w) > 2} .

For the study of the irreducible components of F(r,d) we refer to e. g.
[2] and [11].

1.2. Stability of quasi-homogeneous pencils

One of the first results on the subject is due to Gémez-Mont and Lins
Neto [7] who proved that there are irreducible components R(r,d,d) C
F(r,2d — 2), r > 3, whose generic element is a foliation tangent to a Lef-
schetz pencil of degree d hypersurfaces. Their proof explores the topology
of the underlying real foliation and relies on the stability of the Kupka com-
ponents of the singular set and on Reeb’s Leaf Stability Theorem. Using
similar methods they recognized for r > 4 other irreducible components
R(r,do,d1) C F(r,do + di — 2) with generic member tangent to a quasi-
homogeneous pencil (\FP° — uGP') with py and p; relatively prime natural
numbers satisfying pody = p1dy, d; = deg F;. Later Calvo-Andrade [1] ex-
tended Gémez-Mont-Lins Neto result about quasi-homogeneous pencils to
dimension three. His proof has an extra dynamical ingredient —the stability
of leaves carrying non-trivial holonomy.

In fact in both of the above mentioned papers the authors do not re-

strict to P” and prove their results for foliations on an arbitrary projective
manifold M with dim M > 3 and H*(M,C) = 0. Alternative proofs of the
above results may be found in [14, 16].
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1.3. Infinitesimal stability of quasi-homogeneous pencils

Although full of geometric insights the above mentioned works do not
seem to shed any light on the scheme structure or the geometry of R(r, dg, d1).
The present article stems from an attempt to understand these problems.

Using infinitesimal techniques, as in [4], we describe the Zariski tangent
space of R(r,dy,dy) at a generic point and arrive at a proof that R(r, dg, d1)
—with the natural scheme structure given by the Frobenius integrability
condition— is generically reduced. More precisely if R(r,do,d1) denotes the
closure of the image of the rational map

p: P (H(P",Op.(do))) x P (H°(P", Opr(d1))) --> P (H°(P",Q'(do+d1)))
(Fo,Fl) [— dQFodFl 7d1F1dF0.

then our first result reads as follows.

THEOREM 1.1. — Ifr > 3 then R(r, do, dy) is an irreducible and generically
reduced component of F(r,dy + di — 2).

As explained above the only novelty in Theorem 1.1, besides the method
of its proof, is what concerns the scheme structure over a generic point. For
a more precise statement see Theorem 2.1 in §2.

The main content of this article is the generalization of Theorem 1.1 to
foliations of higher codimension.

1.4. Foliations on P" of higher codimension

Let w be a homogeneous g-form on C"*! with coefficients of degree d+ 1
that is annihilated by Euler’s vector field. As before w can be interpreted
as a section of the sheaf of twisted differential g-forms Qf, (d + ¢ +1).

We recall from [13] (see also [4]) that w defines a degree d holomorphic
foliation of codimension g on P if it satisfies both Pliicker’s decomposability
condition

q—1
(lyw) ANw =0 for every v € /\ crtt, (1.1)
and the integrability condition
q—1
(tyw) Ndw =0 for every v € /\ crtl. (1.2)
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It is therefore natural to set F,(r,d), the space of codimension ¢ holo-
morphic foliations of degree d on P", as

{weP (H(P",Qf, (d+ g + 1)) |w satisfies (1.1), (1.2) and codim sing(w)>2} .

1.5. Infinitesimal stability of quasi-homogeneous rational maps

If one interprets the elements of R(r,dy, d;) as foliations tangent to the
fibers of rational maps

P’ o--> P!
x — (FPo:GM)

then a possible counterpart in the higher codimension case are the foliations
tangent to dominant rational maps P"--> P4.

When ¢ = r — 1 there is no hope to establish a stability result even for a
generic rational map. Indeed, under this constraint both Pliicker’s condition
and the integrability condition are vacuous. Thus F,._1(r,d) can be identi-
fied with an open subset of P (H(P", Q5! (d 4 7)) = P (HO(P", TP"(d — 1))).
It is well known that for d > 2 a generic element of this space has no alge-
braic leaves, see for instance [3].

For 1 < ¢ < r — 2 fix integers dy,...,dy and consider homogeneous
polynomials F; of degree d; for i =0, ..., q. Assume that the ¢-form
w:iR(dFo/\.../\qu), (13)

is non-zero. It is easy to check that w satisfies both (1.1) and (1.2) since
tww = Y a;jir(dF; A dF;), where the a;; are homogeneous polynomials.
Moreover, it defines a foliation tangent to the fibers of the map

P o--> P1
r o (F . FY)

with e; = lem(dy, . .., dy)/d;. We set
d=> di—q—1

R(r,do,...,dq) C Fy(r,d)

the closure of the set of foliations that can be written in the form (1.3). It
is the closure of the image of the rational map

p TLP (HOp (d))) --> P (HOP",Q\d+q+1))
(Fz) — iR(dFQ/\.../\qu).

Notice that for ¢ = 1 we recover the definition of R(r, dy, d1).

and denote by
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THEOREM 1.2. — Ifr >4 and 1 < ¢ <r —2 then R(r,do,...,dq) is an
irreducible and generically reduced component of Fy (r,> di —q—1) .

As far as we know there is no information in the literature concerning
the geometry of the irreducible components of F(r, d) so far.

1.6. Geometry of the rational components

In Section 3 we initiate this study through an investigation of the parame-
trization p. Besides computing the dimension of R(r,dp, ..., d,), we prove
the following.

THEOREM 1.3. — The irreducible components R(r,do, . ..,dq) are ratio-
nal varieties.

By its definition, R(r,do,...,dq) is unirational. The proof of rationality
relies on the construction of a variety X that sits as an open set in the total
space of a tower of Grassmann bundles, together with a birational morphism
p: X — R(r,do,...,dg).

In general we do not know how to naturally compactify X to a projective
variety where p extends to a morphism. Albeit, in a number of cases we are
able to do that and obtain, with the aid of Schubert Calculus, formulas for
the degree of the projective subvarities

R(r,do,...,dg) CP(H(P",QUd+q+1))).

For example the first few values for the degree of R(r,2,2,2) are listed
below.

Degree

1324220

2860923458080

243661972980477736263
728440733705107831789517245858
704613096513585123585398408696231899176183

| O Y =] W 3

Several other cases are treated in Section 5.

2. Infinitesimal stability of quasi-homogeneous pencils

In this first section we present our proof of Theorem 1.1. All the argu-
ments will be reworked later in greater generality. We felt the exposition of
this particular case of Theorem 1.2 would improve the clarity of the paper.
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For simplicity, let us denote by
S. = H(P", Op-(e)) (2.1)

the vector space of homogeneous polynomials of degree e in r + 1 variables,
and

F=F(r,d)
so that our rational map p is

p:P(Sq4,) X P(Sq,)-->F CP(H(P", Q' (d+2))). (2.2)

If pg and p; denote the unique coprime natural numbers such that pgdy =
p1dy then
p(Fo, F1) = doFodFy — di F1dFy = p1 FodFy — poF1dFy

where the last equality of differential forms is up to multiplicative constant.

We remark that

e\ Ryt
d (Ff”) = PPt (p1FodEy — poF1dFy).

Therefore, the closure of the leaves of the singular foliation defined by the
integrable 1-form p(Fy, Fy) are irreducible components of the members of
the pencil of hypersurfaces of degree pody = pid; generated by Fj3° and
FPr.

2.1. The Zariski tangent space of F

For a scheme X and a point x € X we denote by T, X the Zariski tangent
space of X at . If P (V) is the projective space associated to a C-vector
space V and denoting 7 : V — {0} — P (V) the canonical projection, for
each v € V we have a natural identification

where (v) denotes de one-dimensional subspace generated by v. With slight
abuse of notations, the Zariski tangent space T,F of F at a point w is
represented by the forms n € H°(P", Q!(d + 2))/(w) such that

(w4 en) A (dw + edn) = 0 mod €
that is, such that
wAdn+nAdw=0 or equivalently dw Adn =20,

where the equivalence is implied by the following variant of Euler’s formula
for homogeneous polynomials.
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LEMMA 2.1. — If 5 is a homogeneous q-form with degree d coefficients
then

irdn +d(irn) = (¢ +d)n
where R is the radial or Fuler vector field and ig denotes the interior product
or contraction with R.

Proof. — See [11, Lemme 1.2, pp. 3]. O

Therefore to determine T,,F is equivalent to solve dw A dn = 0. Notice
that in the situation under scrutiny dw = (dg + d1)dFy A dF;. The first step
towards the general 7 satisfying dw A dn = 0 is given by Saito’s generaliza-
tion of DeRham’s division Lemma. In Lemma 2.2 we state variants of both
DeRham’s and Saito’s Lemmas fine tuned up for our purposes.

LEMMA 2.2 ([15]). — Let Fy,...,F, be homogeneous polynomial func-
tions on C™*1 and let © € QIT(C™T1) be the (q + 1)-form given by

@:dFo/\.../\qu.

(a) Suppose that ¢ < r and codimsing(®) > 2. If n € QYC™*!) is a
homogeneous polynomial 1—form such that © An = 0 then there exist
homogeneous polynomials ag, . ..,aq such that

q
n= Z a;dF;.
i=0

(b) Suppose that ¢ < r — 1 and codimsing(©) > 3. If n € Q*(C™!) is a
homogeneous polynomial 2-form such that © An = 0 then there exist
homogeneous polynomial 1-forms o, ..., aq such that

q
=0

Remark 2.3. — The hypothesis ¢ < r in (a) and ¢ < r— 1 in (b) are not
really necessary. For instance in item (b) the singular set sing(®) equals the
locus where the (¢ + 1) x (r + 1) Jacobian matrix (0F;/0z;) has rank < g.
Hence sing(©) is empty or has codimension at most r + 1 — g. When ¢ >
r — 1 it follows that codimsing(©) > 3 implies that © has no singularities.
We conclude that Fy, ..., F, are linearly independent linear forms and the
conclusion trivially holds true in this case.

In face of Lemma 2.2 it is natural to define the open subset
U ={w e R(r,dy,d1) | codim sing(dw) > 3 and codim sing(w) > 2}. (2.3)
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The next result will imply the infinitesimal stability of quasi-homogeneous
pencils corresponding to points of . It is a simple particular case of Propo-
sition 3.3. The iteration argument in the proof is generalized in Lemma 3.2.
We feel it is worthwhile to write it here for the sake of clarity.

PROPOSITION 2.4. — Let (Fy, F1) € P(S4,) X P(Sq4,) be such that
p(Fo, F1) = w € U. Then the derivative

dp(Fo, 1) : T(py, 7, (P (Say) x P (Sq,)) — TWF
is surjective. In other words, p is a submersion over U.
Proof. — 1t is convenient to write
p(Fo, Fy) = doFodFy — diF1dFy = ig(dFy A dFYy).
Then, the derivative of p at the point (Fp, F})
dp(Fo, F1) : Sa,/(Fo) X Sq, /(F1) — T,F
is calculated as
dp(Fo, Fy)(Fy, F)) = ig(dFy A dFy + dFy A dFY).
Let n € HO(P", Q! (d+2)) represent an element of T,,F, that is, dw Adn =
0. We shall prove that n belongs to the image of dp(Fy, F1), i.e.,
n=igr(dFj A dFy + dFy A dFY)
for some Fj € Sy, and F| € Sy,.

Since dw = dFy A dF}, applying the division Lemma 2.2 to dn it follows
that there exist homogeneous 1-forms « and 3 such that

dn=aNdFy+ B AdF,.

Notice that dn is a 2-form with coefficients homogeneous polynomials of
degree d = dp+d; — 2. Hence the coefficients of « (resp. 3) are homogeneous
of degree d; — 1 (resp. dy — 1). Applying exterior derivative we find

da A dFy +dB A dFy = 0.

Multiplying by dF; we get da A dFy A dFy = 0. From lemma 2.2 applied to
da we deduce
da=od NdFy+d" NdFy
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where o' and o are 1-forms with coefficients homogeneous polynomials of
respective degrees dy —2—(dp—1) =d; —dp—1land dy —2—(d1 — 1) = —1.
Hence o = 0. Similarly,

dg =3 NdFy + " N dFy

where 3’ and 3" are 1-forms with coefficients homogeneous polynomials of
respective degrees dg—2—(dp—1) = —land dg—2—(dy —1) = dp—dy — 1.
Hence 3’ = 0.

Suppose that dy = d;. By the considerations above regarding degrees,
o = " = 0. Thus « and § are closed 1-forms. Therefore « = —dF] and
B = dFj; where F is some homogeneous polynomial of degree d;. It follows
that dn = dF{ AdFy +dFy AdF] and since ig(dn) = (d+ 1)n we obtain that
7 is a scalar multiple of i g(dFj AdFy +dFy AdFY). Therefore the Proposition
is proved in the case dy = d;.

Now suppose dy # dy, say dy > dy. Then dy — dg — 1 < 0. Hence dao =0
and dB = 3” A dF;. Repeating the argument of the previous case we obtain
a sequence of 1-forms (;, i € N, such that

dB; = Bit1 NdFy

Comparing degrees it follows that, for £ > 0, By = 0. Thus dBx_1 = 0
and there exists a homogeneous polynomial b;_; such that By_1 = dbg_1.
Then dB;_o = db_1 ANdF; and hence (B;_o = by _1dF; + dby_5 for a suitable
homogeneous polynomial bx_5. Then dBy_3 = Bx_o A dFy = dbg_o A dF}.
Hence there exists by_3 such that Bx_3 = bp_odF + dby_3. Iterating this,
we conclude that 6 = By = bidF} + dby and therefore

dn = dF| NdFy + dFj A dFy
where dF] = o and dF}, = dby, as wanted. O

2.2. Proof of Theorem 1.1

As a matter of fact we prove the following slightly more precise state-
ment.

THEOREM 2.1. — Ifr > 3 then R(r,do,d1) is an irreducible component
of F(r,d). Moreover, F(r,d) is smooth and reduced at the points of U.

Proof. — Write as before p : P--> F, where P = P(Sg,) X P(Sy,),
F = F(r,d) and R = R(r,do,d;1) is the closure of the image of p. Put
F = (Fy, F1) € P. Proposition 2.4 implies that for w = p(F), the derivative

dp(F) :TpP — TF,
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is surjective and also factors through T,,R C T,F. Then T, R = T, F. It
follows that R is an irreducible component of F and F is reduced at the
generic point of R. (]

3. Stability of quasi-homogeneous rational maps

In this section we exhibit some previously unknown irreducible compo-
nents R(r,dy, . ..,d,) of Fy(r,d), generalizing the case ¢ = 1 of the previous
section.

A point of R(r,do,...,d,) will be a twisted g-form w € H(P",Q%(d +
g+ 1)) of type

w=ip(dFoA.. . NdF) = Y (=1)7d;Fj dFy A... AdF; A...NdF, (3.1)

0<j<q

where Fj € Sy, is a homogeneous polynomial of degree d; in r + 1 variables,
and

do+...+dg=d+q+1. (3.2)
We call w a rational g-form in P” of type (do,. .., dq).

More precisely, R(r,do, ... ,dq) is defined as the closure of the image of
the rational map

p:P(Sq) X ... xP(Sq,)-->P(H'(P",Q%d+q+1))) (3.3)
induced by the multilinear map
f1:Sqy X ... x Sq, — H(P",Q%d + g+ 1))

such that u(Fy, ..., Fy) = ir(dFoA. . .AdFy). The base locus of p is described
n (4.1) below.

As in the previous section, we define the open subset

U={weR(rd,...,d,)|codim sing(dw) > 3 and codim sing(w) > 2}.
(3.4)

With notation as above, our main purpose in this section is to prove the
following Theorem 3.1, which is a more precise version of Theorem 1.2 of
the Introduction.

THEOREM 3.1. — Supposer > 3 and1 < g < r—2. Then R(r,dy, ... ,dq)
is an irreducible component of F4(r,d). Moreover, Fq(r,d) is smooth and
reduced at the points of U.
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The strategy is the same as the one used to prove Theorem 2.1. Let us
denote by F = F,4(r,d). The scheme F is defined by the quadratic equations

i(vj))wAw=0 and i(vy)wAdw=0 (3.5)
for all J C {0,...,r} of cardinality ¢ — 1.

The tangent space T, F of F at a point w is represented by the forms
W' € HY(P",Q9(d+q+1))/(w) such that w. = w+ew’ satisfies the conditions
(3.5) modulo €2, that is

i(vj)we A\we =0 and i(vy)we Adwe =0
modulo €2, for all J C {0,...,7} of cardinality ¢— 1. Expanding, one obtains

i(vy)w Aw~+i(v))wAw =0 and i(vy)w' Adw +i(vy)w Adw = 0. (3.6)

In order to work out w’ from (3.6) we will need a pair of technical results.

3.1. Lemmata

The first technical Lemma is a generalization of Lemma 2.2 that will be
a central tool in the rest of this article.

LEMMA 3.1. — Let Fy, ..., F, be homogeneous polynomial functions on
Cr*L and let © € QITL(C"+Y) be the (q + 1)-form given by

@:dFo/\.../\qu.

Suppose that codimsing(©) > 3. If n € QITL(C™) is such that n A dF; A
dF; = 0 for every 0 < i < j < g then there exist holomorphic 1-forms
gy -, aq € QYC) such that

q
n=>Y aiANdFyA...dF,... NdF,.
1=0

Proof. — For the second item let I be an open covering of C"+1\sing(0).
Since codimsing(©) > 3 we can assume that over each open set U € U our
set of functions is part of a coordinate system on U. It is then clear that

Mu :Zai’U/\dFo/\...EF\'i.../\qu
for suitable 1-forms ap, ..., a0 € Q' (U).
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A simple computation shows that over U NV
(aiyU — Cki’v) AO=0.

It follows from Saito’s Lemma [15] that there exists a unique (g+1) x (¢+1)
matrix Ayny with entries in O(U N V) such that

o, U — 0,V dFy
: = Avunv -
Qq,U — Qg v dF,

Of course the collection of matrices Ayny with (U, V) ranging in U4? defines
an element of HY(C™*1\ sing(©), M® 0) = H}(C"*!\ sing(©), O) @M, with
M being the vector space of (¢ + 1) X (¢ + 1) matrices.

The hypothesis codim sing(©) > 3 implies that this cohomology group
is trivial, see for instance [8, pg. 133]. Therefore we may write Apny =
Ay — Ay where Ay, Ay are matrices of holomorphic functions in U resp.
V. We can thus set

(7)) OLO,U dFO 0407\/ dFO
= 0 | cAue ] = Ay
0y oq.U dFy, 0q.v dFy,
as the sought global 1-forms at least over C"*! \ sing(0). To conclude one

has just to invoke Hartog’s extension Theorem to ensure that these 1-forms
extend to C™t1. O

By expanding in its homogeneous components both sides of the equality
q —_—
n=>Y aiNdFy A...dF;... NdFy,
i=0

it can be easily seen that if  is a homogeneous polynomial g-form then the
1-forms oy, ..., ¢ can be assumed homogeneous polynomial 1-forms.

The second technical Lemma in this subsection replaces the iteration
argument in the proof of Theorem 2.1

LEMMA 3.2. — For j =0,...,q let Fj € Sq; be a homogeneous polyno-
mial of degree d;. Suppose w = ir(dFoA. .. ANdFy) satisfies codim sing (dw) >
3. Then, for a € H°(P",Q(e)) the following conditions are equivalent:
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(a) do =Y ey Ak N dEFy; for some Ay, € HO(P", Q' (e — dy.)).

(b) a =dG + Zogkgq Hy, dFy, for some G € S, and Hy, € Se_gq, .

Proof. — 1t is clear that (b) implies (a). Let us prove the converse, by
induction on e € N. If (a) holds, applying exterior derivative we get

0=d’a= Y dAy AdFy = dAx NdFy A+~ NdFy = 0.
0<k<q
By the hypothesis on the F; and Lemma 2.2,
dAg = Y Agn AdF),
0<h<q
for some Ay, € HO(P", Q' (e — dy — dy,)). Since e — dj, < e, the inductive
hypothesis applies to Ay and yields
A =dGi+ ) Hy dFy
0<h<q
for some G, € S¢_q, and Hy € S._g,—a, - Replacing in (a) we find
da =Y " dGy NdFy,+ Y Hyy dFy A dFy.
k h,k

Since iga = 0, we have e -« = igda. Applying ir we obtain, after a little
calculation
e-a=dG + Z H; dF;
0<k<q

where

G=—> dFyGy, Hy=(dp+e)Gr+ > dnFn(Hyn — Hpr)
K h
as claimed. O

3.2. Surjectivity of the derivative and proof of Theorem 1.2

Now we are ready to complete the proof of Theorem 3.1 and hence of
Theorem 1.2 of the Introduction. The proof follows from Proposition 3.3
below combined with the same argument used in the proof of Theorem 2.1.

PROPOSITION 3.3. — Supposer >3 andl < g <r—1.IfF = (Fy,..., F,) €
[L,P(Sa,) is such that p(F) = w € U then the derivative

dp(lZ)Z jgi(P)(sdo) X oo X P)(qu>) — TLJE

18 surjective.
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Proof. — At a point F = (Fy, ..., F,) belonging to the domain of p the
derivative

dp(F) : Say/(Fo) X ... x S, /(Fy) = T,F (3.7)

is calculated by multilinearity as

dp(E)(Fy, ..., Fp) =Y ir(dFy A...NdF] A ... NdFy).

0<i<q

Let w=p(F) € U and v’ € T,,F. From (3.6) we have
i(vy)w' Adw = —i(vy)w Adw'.

Since dw is a constant multiple of dFy A ... A dF, (see Lemma 2.1 ), by
exterior multiplication with dF}; we obtain

dF; Ni(vy)w Adw' =0
for all 7, J.

Let Y}, (0 < j < @), be rational vector fields such that dF;(Y;) = §;;. For
J={0,...,¢}\ {¢,7} we have i(vy)w = A(F;dF; — F;dF;). Then,
0= dF] A\ i(vJ)w A\ dw’ = )\dF] A\ FJdFZ A\ dw’,
which implies that
dF; A dFj Adw' =0

for all 0 < 4,7 < q.

Lemma 3.1 implies that

d' = Y aj AdFy A...NAF; A ... AdF, (3.8)

0<y<gq

for some a; € HO(P",Q!(d;)). Applying exterior derivative we find

0=d%' = Y daj AdFyA...NdF; A ... AdF,.

0<j<q
Taking wedge product with dF; we get
dOéj/\(dFo/\.../\qu) =0

for all j. Therefore, thanks to Lemma 2.2,

daj = Y Aj AdFy

0<k<q
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for suitable A, € HO(P",Q'(d; — di)). Lemma 3.2 implies that
Qj = dGJ + Z ij dFk
0<k<q

for some G; € Sy; and Hji € Sg;—q, (we use the convention S, = 0 for
e < 0). Replacing in (3.8) above we have

dw' = 3" dGjNdFo A...NAFj AL NdFy+cdFy A...NdF,  (3.9)

0<j<q

for some ¢ € C. Since igw’ = 0, Lemma 2.1 yields (}_,d;) w' = igdw'.
Applying ig to (3.9) and taking (3.7) into account, we obtain

W' = dp(F)(F}, ..., Fl)

(27:1);) G;. Therefore dp(F) is surjective, as claimed. O

where FJ/ =1

4. Geometry of the parametrization

In this section we analyze the parametrization
p:P(Sq,) X ... xP(Sq,)--> Ry(r,d) CP(H'(P",Q(d+q+1))),

where Sy, = HO(P", Op-(d;)), d = . d; and d = (do, . . ., d,).
4.1. Base locus

Let us start by describing the base locus B(p) of p.

Ifig(dFoA. . .AdF,) = 0, applying exterior differentiation and Lemma 2.1
we obtain that dFy A ... AdF; = 0. This means that the Jacobian matrix of
Fy, ..., Fy has rank < g + 1 everywhere, that is, the derivative of the map

F:Crtt — catt

defined by F(z) = (Fy(z),..., F,(z)) has rank < ¢ + 1 at every z € C" 1.
This is equivalent to the fact that F' is not dominant, that is, f(Fo, ..., F,) =
0 for some non-zero polynomial f € Clyo,...,yq] (i.e., the F; are alge-
braically dependent). We thus obtain

B(p) = {(Fy,..., Fy) € H]P)(Sdi) | F:C"t! — € is not dominant}.

(4.1)
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For ¢ = 1 the set theoretical description of p is rather simple:

B(p) = {(Fo, F1) € P(Sa,) x P(Sa,) | Fy* = F{"}. (4.2)

For general g we have a stratification

B(p)1 CB(p)2 C ... C B(p), = B(p)

where B(p)r = {(Fb, ..., Fy) | dimimage(F) < k}. The first stratum B(p),
is set-theoretically equal to

{(Fo,....Fy) € [[P(Sa) | Ffe = ... = Fiin}

where cij = H#j d;. For k > 1 the same set theoretical description is
considerably more complex and we will carry it out only in very particular
cases in §5.

Beware that the scheme structure of B(p) is often non-reduced, see §5.6.
At any rate, we register the following easy consequence of Lemma 2.1.
PROPOSITION 4.1. — Let
~ g+1
p: Hi]P)(Sdi) --> P <Sd_1® N S’{)
(Fo,..., Fy) — dFo N ... NFy.
Then the base loci of p and p are one and the same as schemes.

Proof. — Let V C S.® A S7 be the subspace of closed g—forms with

coefficients of degree e. Put W = ig(V) C Sc11® q/\l Si. Then ig : V —
W is a linear isomorphism. We still denote by ig : P(V) — P (W) the
projectivization. Since the image of p lies in P (V) and p = ig o p, the
assertion follows. O

4.2. Weighted homogeneous polynomials

Fix d = (do,...,dg) € N**! and e € N. A polynomial f in Clyo,...,¥q]
is said to be weighted homogeneous of type d and degree e if

f()‘doy07 ey )‘dqu) = )\ef(yOa cee 7yq)

for any A € C. Equivalently, f is a linear combination of monomials

H yjo-‘j such that d- o := Z djaj =e.

0<j<q 0<j<q
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This is tantamount to declaring each variable y; to be of degree d;.

We denote by
S

q,d.e

the C-vector space of all such polynomials and write its dimension as N(q, d, ¢).

Notice that N(q,d,e) = dim S,.d.e can be expressed by the Hilbert series

H(t) = ZN(q,J,e)te = ;

(1 — i)

Throughout we will assume that the vector of natural numbers d € NI+1
is non-decreasingly ordered, i.e., dyp < di < --- < dy.

Define € = &(d) = (e1,...,ex) such that e; < e;41 and Upgigq{di} =
Ulggk{ei}.}f n; stands for the number of times the natural number e;
appears in d then the pair (€,7), where i = (nq,...,ny), determines d.

Set ¢; = —1 +Z1gl<j”ia and forl=1,...,k

dl = (61,...,61,62,...,62,...,61,...,61).
—_——— —— ———
ny times n. times n; times
Clearly, for each f € Sy.de, s Do variable y; with weight d; > e; occurs in I
thus
Sqde; = Sq;dje;

Denote by E4T! = End(C?*!) the set of all polynomial maps f : C¢+1 —
C9*1. Tt is a ring under sum and composition of maps. If f = (fo,..., f;) €
E9*1, we say that f is of type d if f; is weighted homogeneous of type d and
degree d;, for all i =0,...,q.

LEMMA 4.2. — Maps of type d form a subring of E4tL, More precisely,
if f,g € BT are of type d then f o g is of type d. Moreover, the set

GL(q,d) = {f € EY"Y|f is of type d and df(0) is invertible}

1S a group.
Proof. — Clearly G = GL(q, d) is closed under compositions. It remains
to show that every element is invertible in G. Let us denote the block of

variables of weight e; by

Yy = Yo Yq s Yy = Yautlso s Yams  oor Yy = Yar1re s Ya -
—_——— —_———— —_————
(weight e;) (weight ez) (weight ey)
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The main point is that each f € G has the following triangular shape,

L) Lo y)s - L s w)-
Here
i7,<g177g2) = (fil(glv'"ag2)a"'7f2ni(g17"'7gi))a
with
fii@yy) = 95y, )+ hij(Y,) € Sq,.d, e,

where h;;(y,) is in fact linear in the block of variables y. of weight ;. Indeed,
since e;11 > e;, no Y, occurs in L,. Thus f can be written as

(hy(y,) ho(yy) + 9,y le(y,) + 9, (Yo -y, )

Now we see that df(0) is made up of blocks of the linear maps h; = dh; :
C™ — C™. Hence invertibility of the former is equivalent to dh; € GL,, Vi.
Thus, given (z1,...,24) = (f(y)), one can solve successively

Y, = hy~'(z;), then

gz = h2_1(§2 - 22(g1))7

Y =0 (2 =9, (Y, )
O

The group GL(q, d) naturally acts on the domain of y (cf.3.3):

GL(q,d) x J] 8¢, — ] 84

0<j<q 0<j<q

(f7(F0>-~'7Fq)) — (fO(E)v7fq(E))

In other words, considering F as a polynomial map F : C™+! — Ct!, the
action is just composition with a polynomial map f : Catl — C9*+! which
belongs to GL(q, d).

4.3. The fibers of p

The key tool for the description of the fiber of p and the proof of Theorem
1.3 is the following Proposition.

PROPOSITION 4.3. — Let F = (Fy, ..., Fy),G = (Go,...,Gy) € Sq, X
... X 8q, Suppose that both dFg \---NdFy and dGo A\ --- NdG are non-zero
(g+1)-forms. If codimsing(dFyA- - -AdFy) > 2 then the following conditions
are equivalent:
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(a) ip(dFy A ... ANdFy) = ig(dGo A ... ANdGy) up to a constant multiple.
(b) dFg A...ANdFy; =dGo A ... NdGq up to a constant multiple.
(c) dG; = Zogkgq Ajy dFy for some Ajy, € Sa;_a,,, for all j.
(d) G; = fj(Fo,...,Fy) for some f; € Clyo,...,yql, for all j.
(e) G; = fi(Fo,...,Fy), for_ all j for a unique f; € S g4, Moreover,
(fo,- .., fq) belongs to GL(q,d).

Proof. — (a) < (b): Use the identity d(ig(dFo A ... AdFy,)) = (¢ +
d)(dFy A ... ANdFy) from Lemma2.1.

(b) = (c): Multiplying by dG; we obtain dG; A dFy A ... NdF, = 0.
Since F' is generic, it follows by the division lemma that the dG; are linear
combinations of the dF}. The coefficients may be chosen as homogeneous
polynomials, necessarily of the stated degree.

(¢) = (b): Using the hypothesis and calculating wedges we have
dGo A ... NdGg =det(A) dFy A ... NdFy,.

Now det(A) is a non-zero homogeneous polynomial, and its degree is zero,
so it is a constant, thereby proving the claim.

(d) = (e): Let f; = >, cay®, where a € N7t and ¢, € C, so that
Gj =), caF*. Write f; = g; + h; where g; is the sum over the exponents
a such that d - a = d;. We have h;(F) = 0 by the homogeneity of G,
and of the Fj,. Therefore we may take f; = g;, the weighted homogeneous
polynomial that we needed. Uniqueness is clear since the Fj, are algebraically
independent. Finally, setting f = (fo,..., fy), since

dGo A ... NdG, = det(df)dFy A ... NdF,
it follows that det(df) = det(df(0)) is a nonzero constant.
(e) = (d): obvious.

(d) = (c): If Gj =3, ca F', taking exterior derivative we immediately
get dG; as a linear combination of the dFj.

(¢) = (d): It suffices to use Lemma 4.4 below. O

LEMMA 4.4, — Let F = (Fy,...,Fy) € Sq, x ... x Sg, be generic. Let
G be a homogeneous polynomial of degree e such that dG = Zogkgq Ay dFy,
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for some Ay € Se_q,. Then G = f(Fy,...,F,) for a unique polynomial
f € Sq’g’e.

Proof. — We proceed by induction on e. The assertion is clear for e = 0.
Taking exterior derivative we have d2G = Y p dAr A dFy, = 0. Thus dA; A
dFyA...NdFy; = 0 for all k. Since F is generic, we get dAy, = Y, By dF}, for
some By, € Sc_g, —d, - By the inductive hypothesis, Ay = fx(Fo, ..., F,) for
some polynomial fj,. On the other hand, applying ir to dG = >, Ay dF}, we
obtain eG = ), Ay diF). Replacing here Ay, by fi(Fo,...,F,;) we obtain
the claim. Uniqueness and weighted homogeneity were argued before. ([

PROPOSITION 4.5. — For general F' = (Fy, ..., Fy) € [[ocjc,Sa, we
have a bijective map

GL(g,d) — ptu(E)
(va-“qu) [— (fO(E)»afq(E))

with p the multilinear map inducing p as in (3.3).

Proof. — The assertion follows from the equivalence (a) <= (e) in 4.3.
t

COROLLARY 4.6. — We have the formula for the fiber dimension,

dimp_lp(E) = Z (N(q’(j’ dj) - 1).

0<j<q

4.4. A natural factorization and proof of Theorem 1.3

We will now proceed to describe a tower of open subsets of Grassmann

bundles birational to R(r, d). We preserve the notation of Subsection 4.2.

Start with Yo = G(nq,S.,), the grassmannian of n;-planes in S,. Let
X1 C Y: be the open subset defined as

X1 ={F1A---ANF,, €G(ny,Se,)|codimsing(dFy A --- ANdF,,) > 2}.

Now let Ay — X7 be the vector subbundle of the trivial bundle S., x X3
with fiber over £y = F1 A--- A F,,, € X; given by

As(Fq) ={G € S,, |dFy A -+ - NdF,, ANdG = 0}.

Recalling Lemma 2.2(a), and the above considerations on weighted homo-
geneity, we have in fact

AQ(El) = {G €S, |G = f(E1)7f € Sq1;J17€2} = Sq1,517€2’
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Let Y3 = G(n2,Se,/A2) be the Grassmann bundle over X;. Notice that,
for an element Gy = [G1] A -+ A [Gy,] € G(n2,Se, /S, 4.,(p)) over a point
Fi=FAN---AF, € Xy, the (n1 + ng)-form

n(Gy) =dFy A ---dF,, NdGy A -+ - NdGp,

is well-defined up to a non zero multiplicative constant. Therefore we can
set Xo C Y5 as the open subset defined by

X2 = {G, € Y| codim singn(Gy) > 2}
Continuing, we have a vector subbundle A3 of S., x Xy with fiber
As(F1,Gy) ={H € Sy |dFy N+~ NdF,, NdG1 N -+ NdGp, NdH = 0}.

As before, this is isomorphic to S, 4, .. . Proceeding this way, we arrive at
an open subset X = X C Y, where Y, — X;_1 is the Grassmann bundle
G(nk,Se, /Ak—1). Clearly X is a rational variety just like all Grassmann
bundles over rational varieties. Using Proposition 4.3, we arrive at a bir-

rational map from X to R(r,d). It follows that R(r,d) is rational and this
concludes the proof of Theorem 1.3 ]

5. Degree calculations

5.1. Input from intersection theory

Let ¢ : X — PV be a proper, generically finite map. Then the degree of
the image Y = ¢(X) C PV is given by

1
hT:—/q*h
=5,

where h =hyperplane class, § = degq is the number of points in ¢ !(g(z))
for general x € X.

Suppose next that 7 : &€ — Z is a holomorphic vector bundle over a
smooth projective variety Z. The total Chern class of E can be written
as ¢(E) = 1+ c1(E) + -+ + cx(E), with ¢;(E) € AY(Z), the Chow group
of codimension i cycles. Chern classes can be thought of as operators on
homology or on the total Chow group A(Z) = @&A;(Z) by taking cap prod-
ucts: A;(Z) 3 z— ¢;(E) Nz € A;_i(Z). The total Segre class is given by
the inverse operator, s(E) = (1-n)"! = 1+n+n?+---, with n = 1 —¢(E).
Thus, s(E) =1 —c1(E) + ¢1(E)? — ca(E) + - - . Segre classes give the Gysin
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map for a projective bundle, p : P(£) — Z. If h denotes the relative hy-
perplane class, we have p,(h*™ N p*(2)) = s;(F) N 2z, where e = rank € — 1.
Suppose € >— CN*lx Z is a vector subbundle. Put X = P(&). Let
q: X Cc PY x Z — PV be induced by projection. The relative hyperplane
class is equal to the pullback of the hyperplane class of PV, ¢*h, written
simply h. If ¢ is generically injective then we have degq(X) = [, sn(£),
with n = dim Z. Indeed, we have dimg(X) = dimX = n + e. Hence
degq(X) = fX hetn = fZ px(h®M) = fz sn(€).

5.2. Linear projections of grassmannians

We keep the notation as in the previous section. Here we proceed to find
the degree of the projective variety

R(r,d) C P (H*(P",Q9(d + q+1)))

in some cases. Recalling the proof of Proposition 4.1, we see that all degree
calculations can be lifted from P (W) to P (V).

When ¢q; = ¢, i.e. all the degrees d; are equal to e;, the variety X
constructed in §4.4 is an open subset of the grassmannian G(g,S.,). It

follows that the morphism p: X — R(r,d) gives rise to a rational map
_ ~ - g+1
5:G(qg+1,S.,) -->R(r,d) C P (sd_1® A S{) .

Notice that p is the composition of Pliicker’s embedding with a central
projection

+1
P (/\‘1+1 Sel) > P (Sd1® ‘A s;)
FoA--AF, —  dFyA--AdF,

It is a simple exercise to show that G(q + 1,8S.,) is disjoint from the
center of this projection if, and only if, g =1 ordy = --- =d; = 1. In
both cases the degree of these components is equal to the degree of the
corresponding grassmannians under Pliicker’s embedding. More precisely,
setting N = (¢ + 1)(r —¢) =dim G(q¢ + 1,7 + 1), we have

1121~ gINT
1 (2N, -2
degRLGD) = dew62Sa) = g (PN,
d
where Nd:(:i—1>.

51
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5.3. Correction due to base locus

The scheme-theoretic structure of the base locus of a rational map ¢ :
Y-->P ((CN) is defined as follows (cf. [10, 7.17.3, p. 168]). We are given a line
bundle (=invertible sheaf) £ over Y together with a homomorphism O —
L, surjective over the open dense subset U C Y where ¢ is a morphism. The
image, J, of the induced homomorphism

Oy@ﬁv —>Oy

N

J

is the sheaf of ideals defining the base locus. If D denotes an effective Cartier
divisor such that J = Oy (—D) - J’ for some ideal sheaf [J’, then the set
of zeros, V(J') is contained in V(J). Clearly ¢ extends to the complement
U =Y \V(J') 2 U in such a way that the pullback of the hyperplane
bundle is

(b‘*UO[p((CN)(l) =L ®O(-D).

5.4. Case (2,2,2)

The situation is still manageable. It turns out that the scheme of inde-
terminacy of the rational map

~ - 3
5iX =G(3,S:) --> R(r.d)C P(Ss® AS})
FoNFy N\ Fy — dFy N dFy N dFy

is equal to the image of the Veronese-like embedding

Y =G(2,S) — X=0G(3,8)
(Lo, L1) — (L3, LoLy, L3).

Thus a single blowup 7 : )?~—> X along Y resolves the indeterminacy i.e.,
the induced map p : X — R(r,d) is a morphism. The reader may consult
the Arxiv version [5] for details. This yields the formula for the pullback of
the hyperplane class

ﬁkh:ﬂ*ql_ev

with e = [E], class of the exceptional divisor E = 7n71Z and q is the
hyperplane class of the Pliicker embedding. See also [6, §4.4, p. 82].
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Since p is generically injective, the degree of the image can be calculated
as

degR(r,2,2,2) = /~ prhdim X,
X

Setting N = dim X = dim G(3,S3)
by

3((T 42_ 2) — 3), the degree is given

fiﬁ*hN = /Xmi:: (7) ql - (—e)N .

Using projection formula, we are reduced to the calculation of
e the Pliicker’s degree of G(3,S3) for the term with i = N,
and
e the contribution of m,(e)? = (—1)7"1v,s;_sN,
where N stands for the normal bundle of the embedding v and
§ =rank N = dim G(3,S2) — dim G(2,Sy).
The minus signs come from the formula
O%(E) = On(-1).

The Segre classes of the normal bundle are obtained from the usual exact
sequence
TY >—TXy — N.

Details can be seen in [5]. We find,

deg

1324220

2860923458080

243661972980477736263
728440733705107831789517245858
704613096513585123585398408696231899176183

do=dy =dy =2

| O OY = W 3

5.5. Bundles of projective spaces

When k& = 2 and ny = 1, the variety X constructed in §4.4 is an open
subset of a projective bundle over an open subset of a grassmannian. In
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general we do not know a manageable compactification. Even when we can
compactify X as above, the scheme structure of the base locus of p can be
non reduced and is far form being understood in general.

Nevertheless in the following three cases we are able to handle the degree:
e ¢ =1 and dy divides d;.
e arbitrary ¢ but k =2 and dy = 1, i.e., d = (1,...,1,¢e).

e g=1,dp=2and dy =3.

5.5.2. q =1 and dy divides dy

This is in fact the only case for which we got a closed formula. Now the
natural parameter space, X, is a projective bundle

X — P (Sa)
described in the sequel.
Write the tautological line subbbundle over the projective space P (Sq, ),
Osdo(—l) > Sq,-
Set k = dy /dy. Taking symmetric power, we have the exact sequence
Os,, (—=K) >— S4, — Sa,,

which defines the vector bundle S4,. The fiber of Sy, over each Fy € P (Sy,)
is the quotient vector space Sq, /(F{'). Thus we have

~ _ ~ 2
p:X=P(Ss) — R(rdo,d)CP (sd1+d02® /\S{) .

(FQ,Fl) [ — dFo/\dFl
The pullback of the hyperplane class via the map p is obtained as
H=h+h'

where h = ¢10g, (1), which comes from the base P(S4,), and h' =
a10g, (1), the relative hyperplane class. With the notation as in (18), we

have
rank Sy, — 1= Ng, — 2
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for the fiber dimension of P (Sq4,) — P (S4,). The sought for degree is

deg’R(r, do,dl) = / I{N‘ilJrNdof1 = Z (Nd1 =+ Ndo — 11) hiSNdO—i(gdl)

P(gdl) i
_ Nd1+Nd0—1 _ﬁ Nd1+Ndo_1
Ndo do Ndo —1 ’

The last equality follows from the calculation of the Segre class 5(Sq,) =
1 — kh, so $;(Sq4,) is zero in degrees i > 2, cf. [6, p. 47].

Ifr =3, dy =2, dy = 1, one finds <3 J?: 8> -2 (121) = 55. By contrast,
the degree of the Segre variety P? x P9 C P39 of which the image of p is a

rational projection, is equal to (132 >

5.5.2.k=2anddy =1

We are now looking at foliations defined by

w = iR(dFo AR /\qu)

where deg Fy = --- = deg Fy_1 = 1; deg F; = d > 2. A natural parameter
space is the projective bundle over the grassmannian
G =G(g,81)

defined as follows. Write the tautological sequence
R, >— S — Q.

The fiber of R, over F € G is the space (Fy,...,F,_1) spanned by lin-
ear forms. Now the last polynomial Fj is taken as a class in the pro-
jective space P (Sd/<F5i, Fy - Fld_l7 el Fg_1>). The natural homomorphism
SymgR, — Sgq is injective; it corresponds to an instance of the vector bundle
As described in 4.4. Form the projective bundle

m: X = ]P’(Sd/Sydeq) — G.
Note that the rational map
P q
X - --> P(Sd_1® /\S’{)
(<F07...,Fq,1>,Fq) — dFo/\.../\qufl/\qu

is in fact regular everywhere. Indeed, regularity is an open condition; the
map is invariant under the natural action of GL,1; and is regular at the
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representative ((zo, ..., 24 1), 73 "2o) of the unique closed orbit. Thus the
sought for degree can be computed by Schubert calculus in the following

manner. Set
g=qir+1—-¢q)=dimG

o= (T () 6

so that presently the dimension of the component is § = N +g. The pullback
of the hyperplane class from P(S;_1® A S7) is equal to h + g1, where h

stands for the relative hyperplane class of the projective bundle X — G
and q; = ¢1Q. By general principles, the degree is given by

/}((h+ql)“=zz:(f>/Gw*(h5—i)qg:zg:(‘;)/csg_i.qg.

0

Here s; = ¢;(SymyR,). For ¢ = 2, r = 3 we find
d*(d —1)(d+3)(d* + 2)(d* + 4d + 6)(d + 2)*(d + 1) /(2° - 3°),

a polynomial of degree 12 in d. For ¢ = 2; r = 4,5,6, 7,8 we find polynomial
formulas of respective degrees 24,40, 60, 84, 112. This suggests a polynomial
degree like 2r(r — 1). Now for ¢ = 3, r = 4,5,6,7,8 we get polynomial
formulas of degrees 3r(r —2) with respect to d. Further experiments (cf. [17])
suggest polynomial formulas of degrees gr(r — ¢ + 1). Here is a sample for
small values of 7, ¢q, d.

(riq) = (5.2)
d 2 3 4 5
deg | 2390850 | 10457430102 | 9654013512864 | 3099059696318355

(r,q) = (6,2)
[d ] 2 [ 3 [ 1 \ 5 |
[deg | 1139133688 | 91451421683006 | 1118409272891730004 | 3524857658574891999976 |
(r,q) = (6,3)
2 [ 3 [ 7 [ 5

|
| 8983484048 | 9350781792221835 | 1060759743612735149417 | 22044166363067583367287424 |

5.6. (2,2m +1)

Assume ¢ = 1, dyp = 2 and d; = 2m + 1. Set for short X = P(S3) x

P (Sam+1). Put as before Ny = (r —cil_ d) — 1. We have

dim X = No + Noppi1-
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The indeterminacy locus of

2
ﬁ! X --> P ng+1® /\SI
(F,G) +— dF NdG.

is, set-theoretically, the “bi-Veronese”,

V = {(L? L") | L € P(S))}.

There is compelling computer algebra evidence indicating that the inde-
terminacy locus of the rational map p is a thickening of B. Blowing up the
reduced structure, the new indeterminacy locus, B’, of the induced ratio-

nal map X'--> P(So,41® /Q\S’{) is reduced only for m = 1. Nevertheless,
it still is a rather manageable complete intersection. In fact, we find local
equations of B’ of the form e™, f1, ..., fu, with e denoting the equation of
the exceptional divisor, and the f;’s define a projective subbundle of the
exceptional divisor. We find that the reduced structure B; 4 = P(Np(g,)/B)
is the projectivization of the normal bundle of P (Sy) in B, as indicated in
the diagram

TP(S,)) —— TP(S))

]

TB >——> TX —— Ng (rank=dim P(S,))

| P

Nes g == Npis)x — Ng,

all restricted to P (S7). Using this, we find the following table for the first
few degrees in dimensions 3 and 4. Details can be read in [5].

]degR(r,do =2,d) = 2m+1)‘

dy | deg (P?) dy | deg (P*)

5 | 27500627268 5 | 5858652068789831804

7 | 19062120397608 7 | 2734930355086609774678630

9 | 3910289698588916 9 | 118796991387599661786404269060

11 | 341013122932980120 11 | 955667356931740162987705236374200
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Interpolating the first few values of odd d;, we find for P? the polynomial
(t—1) (t25+55t2°+1450t2* +24616t%3+305020t2% 42961172t 42356 1656120+
15839296019 4+-918866662t'8 44670514826t 7+21033417148t16+84615935632t1°
+305921226844¢'*+998318576836¢'3+2949392111320t'24-7903552056256 1 +
19229223618721t104+41774679574903t°+72390849730794%+15945324910344¢7
— 541088235621216t° — 2539188961011216¢> — 315410776482528t*

+ 14933666207688192t% + 85822791395378688t% — 247712474710388736t +
162893498195312640) /3656994324480.

It fits all values of deg R(3,2,t), t = 2m+1, up to m = 35, presently the
physical limit of our computer’s memory. It should be noted that
_ [ Nat+No—1Y\ o [(Not+Na—1
degR(3,2,2t) = N, 5 Ny 1
in ¢ of the same degree 27 as in (19) above.

) is a polynomial
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