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Moduli of Germs of Legendrian Curves

ANTONIO ARAUJOM) | ORLANDO NETO(?)

RESUME. — Nous construisons la composante générique de l’espace des
modules de germes de courbes legendriennes dont la projection sur un
plan générique est topologiquement équivalente a la courbe y™ = z™.

ABSTRACT. — We construct the generic component of the moduli space of
the germs of Legendrian curves with generic plane projection topologically
equivalent to a curve y” = z™.

1. Introduction

Zariski [8] initiated the construction of the moduli of plane curve sin-
gularities. Delorme [2] organized in a systematic way the ideas of Zariski,
obtaining general results o the case of curves with one characteristic expo-
nent in the generic case (see also [7]). Greuel, Laudal and Pfister (see the
bibliography of [3]) stratified the space versal deformations of plane curves,
constructing moduli spaces on each stratum. Arnold [1] initiated the study
the simple curves on contact manifolds. Neto [6] showed that it is quite
reasonable to define the equisingularity type of a germ of Legendrian curve
as the topological type of its generic plane projection.

In this paper we initiate the study of the moduli of Legendrian curve
singularities. We construct the moduli space of generic irreducible Legen-
drian singularities with equisingularity type equal to the topological type of
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the plane curve y™ = 2™, (n,m) = 1. Our method is based on the analysis
of the action of the group of infinitesimal contact transformations on the
set of Puiseux expansions of the germs of plane curves.

In section 2 we associate to each pair of positive integers n, m such that
(n,m) = 1 a semigroup I'(n, m). We show that the semigroup of a generic
element of this equisingularity class equals I'(n, m). In section 3 we classify
the infinitesimal contact transformations on a contact threefold and study
its action on the Puiseux expansion of a plane curve. In section 4 we discuss
some simple examples of moduli of germs of Legendrian curves. In section 5
we show that the generic components of the moduli of germs of Legendrian
curves with fixed equisingularity class are the points of a Zariski open subset
of a weighted projective space.

2. Plane curves versus Legendrian curves

Let A be the germ at o of an irreducible space curve. A local parametriza-
tion ¢ : (C,0) — (A, 0) defines a morphism ¢+* from the local ring O, , into
its normalization C{t}. The semigroup of A equals the set I" of the orders
of the series that belong to the image of +*. There is an integer k such that
[ € T for all [ > k. The smallest integer k& with this property is denoted by
¢ and called the conductor of T'.

Let C be the germ at the origin of a singular irreducible plane curve C
parametrized by

z=1t", y= Zaiti, (2.1)

with a,, # 0 and (n,m) = 1. The pair (n,m) determines the topological
type of C.

Let M be a complex manifold of dimension n. The cotangent bundle
s T*M — M of M is endowed of a canonical 1-form 6. The differential
form (df)""™ never vanishes on M. Hence d0 is a symplectic form on T*M.
Given a system of local coordinates (x1,...,2,) on an open set U of X,
there are holomorphic functions &, ..., &, on m;}(U) such that 6 |ﬂ;11(U):

fldxl +--+ gndxn-

Let X be a complex threefold. Let Q’}“( denote the sheaf of differential
forms of degree k on X. A local section of QY is called a contact form if
w A dw never vanishes. Let £ be a subsheaf of the sheaf QY. The sheaf £
is called a contact structure on X if L is locally generated by a contact
form. A pair (X, £), where £ is a contact structure on X, is called a contact
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threefold. Let (X;,L;), i = 1,2, be two contact threefolds. A holomorphic
map ¢ : X7 — X5 is called a contact transformation if ¢* Lo = L.

Let P*C? = C2 x P! = {(z,4, (€ : 1)) : 29,6, € C, (6,1) # (0,0)} be
the projective cotangent bundle of C2. Let 7 : P*C? — C? be the canonical
projection. Let U and V be the open sets of P*C? defined respectively by
n# 0and & # 0. Set p = —¢/n, ¢ = —n/&. The sheaf L defined by
L |, = Oy(dy — pdx) and L |, = Oy (dz — gdy) is a contact structure on
P*C2. By the Darboux theorem every contact threefold is locally isomorphic
to (U, Oy (dy—pdzx)). We call infinitesimal contact transformation to a germ
of a contact transformation @ : (U,0) — (U,0).

A curve A on a contact manifold (X, £) is called Legendrian if the re-
striction of w to the regular part of A vanishes for each section w of L. Let
C = {f = 0} be a plane curve. Let A be the closure on P*C? of the graph
of the Gauss map G : {a € C : df(a) # 0} — P! defined by G(a) = (df(a)).
The set A is a Legendrian curve. We call A the conormal of the curve C. If
C is irreducible and parametrized by (2.1) then A is parametrized by

n = ) dy -~ i i—n
x=1t", y:Zait, p:%:Zﬁait . (2.2)

=m

Given a Legendrian curve A of P*C? such that A does not contain any fibre
of , m(A) is a plane curve. Moreover, A equals the conormal of w(A).

Let (X, L) be a contact threefold. A holomorphic map ¢ : (X,0) —
(C2,0) is called a Legendrian map if Dp(o) is surjective and the fibers of
@ are smooth Legendrian curves. The map ¢ is Legendrian if and only if
there is a contact transformation v : (X, 0) — (P*C2, (0,0, (0 : 1)) such that

p =m.

Let (A, o) be a Legendrian curve of X. Let C,(A) be the tangent cone of A
at 0. We say that a Legendrian map ¢ : (X, 0) — (C?,0) is generic relatively
to (A, o) if it verifies the transversality condition T, 1(0) N C,(A) = {0}.
We say that a Legendrian curve (A, o) of P*C? is in strong generic position
if 7 : (P*C?,0) — (C2%,7(0)) is generic relatively to (A, 0). The Legendrian
curve A parametrized by (2.2) is in strong generic position if and only if
m = 2n+ 1. Given a Legendrian curve (A, o) of a contact threefold X there
is a contact transformation v : (X,0) — (P*C? (0,0,(0 : 1)) such that
(1(A), 0) is in strong generic position (cf [4], section 1).

Following [6] we say that two germs of Legendrian curves are equisingular
if their images by generic Legendrian maps have the same topological type.

- 799 -



Anténio Araidjo, Orlando Neto

3. Infinitesimal Contact Transformations

Let m be the maximal ideal of the ring C{z,y,p}. Let G denote the
group of infinitesimal contact transformations ® such that the derivative of
® leaves invariant the tangent space at the origin of the curve {y = p = 0}.
Let J be the group of infinitesimal contact transformations

(z,y,p) = (x+a,y+B,p+7) (3.1)

such that o, 3,7, 0c/0x,03/0y,0v/0p € m. Set H = {¥y, : \,u € C*},
where

\I’)\,u(x7yap) = (Ax7/’(’ya §p> . (32)

Let P denote the group of paraboloidal contact transformations (see [5])

a b
c d

1 1
(x,y,p) — (ax+bp,y——acm2—§bdp2—bca?p, cx+dp), ‘ =1. (3.3)

2
The contact transformation (3.3) belongs to G if and only if ¢ = 0. The
paraboloidal contact transformation

Is called the Legendre transformation.

THEOREM 3.1. — The group J is an invariant subgroup of G. Moreover,
the quotient G/J is isomorphic to H.

Proof. —If H € Hand ® € 7, HPH ' € J. Hence it is enough to show
that each element of G is a composition of elements of H and J. Let ® € G
be the infinitesimal contact transformation (z,y,p) — (2',4’,p’). There is
¢ € C{z,y,p} such that ©(0) # 0 and

dy' — p'dx’ = p(dy — pdz). (3.5)

Composing ® with H € H we can assume that ¢(0) = 1. Let ® be the germ
of the symplectic transformation (x,y,p;n) — (z/,y', —np’; o~ 'n). Notice
that <i>(07 0;0,1) = (0,0;0,1). Since D<i>(0, 0;0, 1) leaves invariant the linear
subspace p generated by (0,0;0,1), D@(O, 0;0,1) induces a linear symplectic
transformation on the linear symplectic space it /u. There is a paraboloidal
contact transformation P such that le’(0,0;O, 1) equals D@(0,0;O, 1) on
p* /. Since D(P~1)(0,0;0,1) induces the identity map on p'/p, P~1® is
an infinitesimal contact transformation of the type (z,y,p) — (x+a,y',p+
v), where

Oda Jda Oy 0Oy

9x’ 0p’ 9z Op €m. (3.6)
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Set =1y —y. It follows from (3.5) and (3.6) that (93/9y)(0) = 0. Hence
P~1® € J. Since ® and P~'® € G, P € G. Therefore p is the composition
of an element of H and an element of 7. O

THEOREM 3.2. — Let a € C{z,y,p}, Bo € C{z,y} be power series such

that 9
«, 503 ﬂ eEm
dy

There are 3,7 € C{z,y,p} such that 8 — By € (p), v € m and a,f,7
define an infinitesimal contact transformation @, g, of type (3.1). The power
series 3 and v are uniquely determined by these conditions. Moreover, (3.1)
belongs to J if and only if

(3.7)

00 08 b _
Ox’ Oz OxOp m

(3.8)

Proof.— The map (3.1) is a contact transformation if and only if there
is p € C{x,y,p} such that ¢(0) # 0 and

d(y + B) = (p+7)d(z + a) = ¢(dy — pdz). (3.9)
The equation (3.9) is equivalent to the system
op da
- s (3.10)
B s da
o = 1+ 2y (p+7) 3y (3.11)
o da

By (3.11) and (3.12),

op da  Oa v\ _
5~ P T7) <1 + - +pa—y> +p (1 + 8_y> =0, (3.13)

By (3.10) and (3.13),
( da aa) 9B 0adp  O0adB _ Oa

— =p—. .14
Op p(?p(?y Op Ox pap (3.14)

1422 bt
+ or +p8y

By the Cauchy-Kowalevsky theorem there is one and only one solution § of
(3.14) such that 8 — By € (p). It follows from (3.13) that

B da  da\ "' (9P 9 da  da
=(egeeg) (s -5 org)) 6w
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Since 06y/0y € m, 06/Jy € m. By (3.11), ¢(0) # 0.
(ii) Since 90y/dx € m, 93/0x € m. By (3.15), v € m. By (3.15),

“e(azhaﬂaa )
dp

Oxdp Oy oz
By (3.7) and (3.8), 0v/dp € m. O

COROLLARY 3.3. — The elements of J are the infinitesimal contact trans-
formations @, g, such that «, By verify (3.7) and (3.8).

LEMMA 3.4. — Given A € C and w € T'(m,n) such that w = m + n,

there are «, By verifying the conditions of theorem 3.2 such that 1*(8—pa) =
AtY 4

Proof.— By (5.1) there is b € C{x,y,p} such that +*b = At¥ + ---,
b= >0 brp® and v(by) = v(b) — v(x) — kv(p) + 1. Set o = —3b/Ip,

Bo = bg. Set a = Z,@O app®, 8 = 21@0 Brp", where ay, Bx € C{x,y}. By
(3.14),

Al 8ak j aOék —j—1
kBr + Z]ﬂj Oz 3y =

k—1

= (k—1)ay- 1+ko¢k—+z (86k j 85k—j_1>7

Oy

for k > 1. Since ay = —(l + 1)byyq for I > 1, v(ajp yzw+ 1, if j < k—2.
Moreover, v(ag_1p*) > w + 1 —n and v(akp yZw+1—m. Therefore

k—1

dak_; Do
k‘ﬁkpk—l—Zjﬁj( Choj y TRk 1) = (k—1Dap_1p" +(k—1)og_1 —— 9
j=1

Ox

or dy

mod (tw“) for k > 1. We show by induction in k that
EBip® = (k — 1)ap_1p" mod(t¥ ™), for k> 1
Hence 8 — pa = b mod (t¥+1). O

There is an action of J into the set of germs of plane curves C such that
the tangent cone to the conormal of C equals {y = p = 0}. Given ® € J we
associate to C the image by 7® of the conormal of C. Given integers n,m
such that (m,n) =1 and m > 2n+ 1, J acts on the series of type (2.1).
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Given an infinitesimal contact transformation (3.1) there is s € C{t} such
that s™ =¢" +« and for each 7 > 1

deo (e o (L) () ),

LEMMA 3.5. — If v(fo) = v(a) +v(p), the contact transformation (3.1)
takes (2.1) into the plane curve parametrized by x = s™, y = y(s) + B(s) —
p(s)a(s) + €, where v(e) = 2v(a) +m — 2n.

Proof.— Since t' = s* — (i/n)t" "a(t) + (i(i — n)/n?)a(t)? =2 + ...

y(t) = Y ars’ — a(t) Y Sait "+ & = y(s) — alt)plt) + <

p(t)a(t) = p(s)a(t) — aft)? Z(%)Qaiti_Qm +e" =p(s)a(s) +&",

where v(e’),v(e”),v(e") = 2v(a) + m — 2n. O

4. Examples

Example 4.1. — If m odd all plane curves topologicaly equivalent to 3% =
™ are analyticaly equivalent to y? = x™ (cf. [8]). Hence all Legendrian
curves with generical plane projection y2 = =™ are contact equivalent to
the conormal of y? = 2™.

Example 4.2. — Let m, s, € be positive integers. Assume that m = 3s+e,
1 < e< 2. Let C3,,,, be the plane curve parametrized by
T = t3 Y= tm 4 tm+3u+e—3.

By [8] a plane curve topologically equivalent to y*> = z™ is analyticaly

equivalent to > = 2™ or to one of the curves C3mpy, 1 <v<s—1. The
infinitesimal contact transformation

(x,9,p) = (& = 2p,y + p*, p)
takes the plane curve C3 ,, s—1 into the plane curve C’ parametrized by
3z =3t —mt™ 3 — ... y=1t"
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By Lemma 3.5, the curve C’ admits a parametrization of the type z = s2,
y = 8™+ 0, where v(d) = m+ 3s+ e — 6. By [8], the curve C” is analyticaly
equivalent to the plane curve y® = z™.

The semigroup of the conormal of the plane curve 3® = z™ equals
'3 mo = (3,m — 3). The semigroup of the conormal of the curve Cs,, .,
equals I's ,, = 3,m —3,m+3v+e¢), 1 <v <s—1 The map from
{0,1,...,s—2} into P(N) that takes v into I's,, , is injective. Hence there
are s — 1 analytic equivalence classes of plane curves topologicaly equivalent
to y3 = 2™ and s — 2 equivalence contact classes of Legendrian curves with
generical plane projection ¥ = 2™. In this case the semigroup of a curve is
an analytic invariant that classifies the contact equivalence classes of Leg-
endrian curves. We will see that in the general case there are no discrete
invariants that can classify the contact equivalence classes of Legendrian
curves.

Given a plane curve

il':t?’, y:tm—|— Z ait, (41)

>m-te

the semigroup of the conormal of (4.1) equals I's ,, 1 if and only if @y,4.e # 0.
It is therefore natural to call I'(3,m) := I's ,,, 1 the generic semigroup of the
family of Legendrian curves with generic plane projection y? = z™.

5. The generic semigroup of an equisingularity class
of irreducible Legendrian curves

We will associate to a pair (n,m) such that m > 2n + 1 and (m,n) =1
a semigroup I'(n,m). Let (k1,...,k,) be the submonoid of (N, +) generated
by ki,...,k.. Let ¢ be the conductor of the semigroup of the plane curve
(2.1). Set ', = (n)U{c,c+1,...}. We say that the trajectory of k > ¢ equals
{k,k+1,...}. Let us assume that we have defined I'; and the trajectory
of j for some j € (n,m —n) \ ', 7 > m. Let ¢ be the biggest element
of (n,m —n) \T;. Let ; be the minimum of the cardinality of the set of
monomials of C[z,y, p] of valuation ¢ and the cardinality of {4,i+1,...}\I';.
Let w; be the #;-th element of {i,i+1,...}\I';. We call trajectory of i to the
set m; ={i,i+1,...,w;}\ (n). Set T'; = 7; JI';. Set I'(n,m) = T'y,—p,. The
main purpose of this section is to prove theorem 5.2. Let us show that

w; <i+n—2. (5.1)

fw >2i+n—-1,T;2{i...,i+n—1}. HenceI'; D {i,i+1,...} and i > c.
Therefore (5.1) holds.
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Let X =", Y =3, ¢ ampit™ ", P =3, o (u+i)amyit™ " be power
series with coefficients in the ring Z[anm, ..., ac_1, p]. Given J = (i,7,1) €
N2, set v(J) = v(2'y'p!). Let N = {J € N3 j+i>1and v(J) <c—1}.
Let Y= (Yyx), J €N, m <k <c—1 be the matrlx such that

Xyipl = Z Tith  (mod (t°)). (5.2)

k=m

Since 0Y/0p =0 and XO0P/ou =Y,

dX'iyipt i
= XU lyitptl o and 2R = T, (5.3)
ou ou ’

where 9(i + 1,4,0+ 1) = (4,5 + 1,1). Moreover,

Tk = Z Z ]' l' ao‘u77 (5.4)

acA(k) véG(a, l)

where A(k) = {a = (Qmy ooy Q1) |a| =j+land Y _,  sa, =k—(i—1)n},
Gla) ={y: |7 =1land 0 < v < a} and p7 = HS:m(u m+ s)7=.
Let us prove (5.4). We can assume that ¢ = [. Since G(a, N) = {a} and
XNPN =% o tF e N/ a)p*a® , (5.4) holds for J = (N,0, N). Let
us show by induction in j that (5.4) holds when j 4+ 1= N. Set e; = (ds,),
0< 5,7 < N.Giveny € G(a,1—1), set () = y+es. Set AY = 1if v, < a.
Otherwise, set AY = 0. Since

Py GRS S e

I _
veGla) & M On ~EG(ai—1) s=m 75) s)!

= > 7(j!(l - 1,)! W z_:(as ~ %)

_ |
YEG(a,l—1) & ’y)"y s=m
_ oy Gre-b,
YEG(al—1) (@ =)

the induction step follows from (5.3). We will consider in the polynomial
ring Cla,,, . ..,a.—1] the order a® < a? if there is an integer ¢ such that
ag < By and o; = G; for ¢ > ¢+ 1. Set w(P) = sup{i : a; occurs in P}.

LEMMA 5.1. — Let M,N,q € Z such that 0 < M < N and g+ N > 0.
If)\ = (/\Lk), where M <1< N, k> O, /\lyk = TJJC and J = (qul,Nfl,l),
the minors of A with N — M + 1 columns different from zero do not vanish
at p=m.
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Proof. — One can assume that ¢ = 0. When we multiply the left-hand
side of (5.2) by P the coefficients of T are shifted and multiplied by an
invertible matrix. Hence one can assume that M = 0. Set Z = (Z, ), where
Zik = (i)/ﬂ_’ﬁ 0 < j,k < N. Notice that Z is lower diagonal, det(Z) =1

and o7
it g e o

Let us show that
Z7IN = A|u=o- (5.6)

Since Ay i is a polynomial of degree N in the variable p with coefficients in
the ring Z[am,, . . ., ac—1], there are polynomials Z; . € Q[am,, . . ., ac—1] such
that Ay = S o (V) Zixu™N " Set Z = (Zi4), 0<i <N, 0<k<c— 1

i

Since Z|,—o = Id, it is enough to show that ZZ = \. By construction,

N
Nk =Y Z;iZik (5.7)
=0

when j = N. By (5.3) and (5.5) statement (5.7) holds for all j. Remark that
Aw( ) +klp=0 =0 if and only if k<. (5.8)

Let 0, 1, be the leading monomial of A\; ;. When k > [,
Oroyir =ah tampr  if 1=0, (5.9)

el’ru('])Jrk = a%‘laﬁgj_laerk_Hl if > 1. (5.10)
Let us prove (5.10). Set ag = j, @1 = I—1, ag—;+1 = 1 and a,; = 0 otherwise.
By (5.4), a € A(k) and there is one and only one v € G(a, j) such that
Yo = 0, the tuple @ given by ay = 0 and @; = «; if 7 # 0. Since

1

it LIRS §
Z (= (a—a)la! l H s% = (k =1+ 1)l mod p,
YEG(a,l) s=0

the coefficient of a%_lalrrjilak_l+1 does not vanish. By (5.4), ax—;4r # 0

for some r > 1 implies that v9 > 0 for all v € G(«,1). Hence (5.10) holds.

Let X be the square submatrix of A with columns g¢) + Nm, 0 < g(0) <
oo < g(). By (5.6), det(N|,—0) = det(Z'N) = det(Z) *det \' = det N
Hence det X does not depend on p and det(N|,=m) = det(N|,=0). Set
det(X) = 3=, sgn(m)Ar, where Ar = [[1Lg N, ;) I Ax # 0, let 0 be the
leading monomial of A.
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Let & be the following permutation of {0,..., N}. Assume that ¢ is de-
fined for 0 < 7 < [ — 1. Let p; and ¢ be respectively the maximum and
the minimum of {0,..., N} \ e(o,....t—1}). If Ny14 = 0, set e) = ¢
Otherwise, set e() = p;. Let us show that (5.8) implies that A, # 0. It
is enough to show that X; ,, # 0 for all 4. Since g(0) > 0, Ag,q, # 0. As-
sume that [ > 1 and A; 4, # 0 for 0 < ¢ < I — 1. Hence g(a—1) = 1 — 1.
If Aig,_; # 0 then N g # 0. If Njy,_, = 0 then e —1) = ¢;—1. Therefore
gla) = gla-1+1) = gla—1) +1 2> 1Tand N4 # 0.

Let us show that 6. is the leading monomial of det(\'|,=o). Let m be a
permutation of {1,..., N}. Assume that 7(i) = (i) if 0 <4 <[ —1 and
w(l) # e(l). If N\i,q,_, = 0 then w(l) # ¢ and Ay = 0. If A\; 4, # O then
(1) # p; and W(Hi]\;z i) < w(HﬁL Aie(iy)- Therefore A\ < Ac. O

The semigroup of the legendrian curve (2.2) only depends on (ap,, - . ., Gc—1).
We will denote it by I'¢,, ... .ac_1)-

THEOREM 5.2. — There is a dense Zariski open subset U of C™™ such
that if (am, ... 6c-1) €U, T, .. au_y) = L'(n,m).

Proof. — Since U is defined by the non vanishing of several determinants,
it is enough to show that U # 0. Let j € (n,m —n), j = m. Set ¢ = §(7;).
Assume that we associate to j a family of triples Iy,...,I; € N such that
v(Is) > j, 1 < s < g, and if E is the linear subspace of Clan,, ..., a.—1]{t}
spanned by Y7 xlu=m, 1 < s < ¢, v(E) = 7; U {occ}. Let i be the biggest
element of (n, m—n)\I';. Assume that 7;17; # (). Hence 7; contains 7;. Since
v(E) = 15 U{oo} and §(7;) = ¢, the determinant D’ of the matrix (Y, 1),
1< s<gq, k €Ty, does not vanish at y = m. In order to prove the theorem
it is enough to show that there are Iyy1,. .., Ig4s, € N such that v([,) =1,
g+1 < s < g+, and the determinant D of the matrix (Y, 1), 1 < s < g+14;,
k € 1;, does not vanish at y = m. Set Ij4s41 = (M—s,5,N—s), M < s < N,
where i = v(zMpN). By (5.8), (5.9) and (5.10),

9(Yr, x) <g(Tr.k) if k>i and s<gqg<r. (5.11)

Set N = (Yr, 1), q+1 < s< g+, k€ 7\7;. By lemma 5.1, det(N|,=m) #
0. Set T, = HZ:ﬂl Ty, cs) for each bijection ¢ : {1,...,¢ + #;} — 7. By
(5.11), g(Ye) < g(D'N|y=m) if e{g+1,..., ¢+ #:}) # 73 \ 7;. Since

D'N|y=m = Z sign(e)Ye,
e{g+1,..., g+t )=mi\1;

the product of the leading monomials of D’|,—,, and X'|,=,, is the leading
monomial of D|,—p,. O
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6. The moduli

Set s = s(n,m) = inf(T'(n, m)\(n,m—n)). We say that (2.1) is in Legen-
drian short form if a,, = 1 and if a; # 0 and 7 € T'(n,m), i € {m, s(n,m)}.

Ifn=2orifn=3and me {7,8}, T'(n,m) = (n,m—n) D {m,...} and
x =1t", y =t is the only curve in Legendrian normal form such that the
semigroup of its conormal equals I'(n,m). If n =3 and m > 10 or if n > 4,
(n,m—m) 2 {m,...,m+n—1} and s(m,n) € {m,...,m+n—1}.

LEMMA 6.1. — If (2.1) is in Legendrian normal form, T'(n,m) # (n,m—
n) and the semigroup of the conormal of (2.1) equals I'(n,m), Gy(n,m) 7# 0.

Proof.— Each f € C{z,y,p} is congruent to a linear combination of the
series

Yy, nrp —my, xia pjv U(zi)vv(pj) < S (612)

modulo (¢*). Since the series (6.12) have different valuations, one of these
series must have valuation s, s € I'(n,m) \ (n,m — n) and nxp — my =
sagt® + -+, as # 0. O

Let X, ,,, denote the set of plane curves (2.1) such that (2.1) is in Leg-
endrian normal form and the semigroup of the conormal of (2.1) equals
I'(n,m). Let W,, be the group of n-roots of unity. There is an action of W,
on X, that takes (2.1) into z = t", y = >, 0" ™a;t’, for each 6 € W,,.
The quotient X, .,/W,, is an orbifold of dimension equal to the cardinality
of the set {m, .. }\(T'(n,m) \ {s(n,m)}).

THEOREM 6.2. — The set of isomorphism classes of generic Legendrian
curves with equisingularity type (n,m) is isomorphic to Xy m /Wy,

Proof.— Let A be a germ of an irreducible Legendrian curve. There is
a Legendrian map m such that w(A) has maximal contact with the curve
{y = 0} and the tangent cone of the conormal of A equals {y = p = 0}.
Moreover, we can assume that 7(A) has a parametrization of type (2.1),
with a,, = 1. Assume that there is ¢ € I'(m,n) such that i # m,s(m,n)
and a; # 0. Let k be the smallest integer ¢ verifying the previous condition.
By lemmata 3.4 and 3.5 there are a € C{z,y,p} and ® € J such that
1*a = apt® + -+ and ® takes (2.1) into the plane curve z = s", y = y(s) —
a(s) + 6, where v(d) > 2v(a) + m — 2n. Hence we can assume that a; = 0
if i € T'(m,n), i # m,s(m,n), and ¢ is smaller then the conductor o of
the plane curve (2.1). There is a germ of diffeomorphism ¢ of the plane
that takes the curve (2.1) into the curve z = t*, y = S7_ " a;t* (cf. [8]).

i=m
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This curve is in Legendrian normal form. The diffeomorphism ¢ induces an
element of G.

Let ® be a contact transformation such ®(X) = X. Since the tangent

cone of the conormal of an element of X equals {y = p =0}, ® € G. By
theorem 3.1, ® = WV, ,, where ¥ € J and A\, u € C*. Moreover, A € W,
and p = A™. By lemmata 3.4 and 3.5, ¥ = Id. (]
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