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RÉSUMÉ. — Cet article donne une application du principe de fonctorialité
de Langlands au problème classique suivant : quels groupes finis, en par-
ticulier quels groupes simples, apparaissent comme groupes de Galois sur
Q ? Soit � une nombre premier et t un entier positif. Nous montrons que
les groupes finis simples de type de Lie Bn(�k) = 3DSO2n+1(F�k )der

lorsque � ≡ 3, 5 (mod 8) et G2(�k) sont des groupes de Galois sur Q
pour un entier k divisant t. En particulier, pour chacun de ces deux types
de Lie et pour un entier � fixé, nous construisons une infinité de groupes
de Galois, mais nous n’avons pas de contrôle précis sur k.

ABSTRACT. — This paper contains an application of Langlands’ func-
toriality principle to the following classical problem: which finite groups,
in particular which simple groups appear as Galois groups over Q? Let �
be a prime and t a positive integer. We show that that the finite simple
groups of Lie type Bn(�k) = 3DSO2n+1(F�k )der if � ≡ 3, 5 (mod 8)
and G2(�k) appear as Galois groups over Q, for some k divisible by t. In
particular, for each of the two Lie types and fixed � we construct infinitely
many Galois groups but we do not have a precise control of k.
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1. Introduction

1.1. Earlier work

Let � be a prime. In our previous work [KLS], which generalised a result of
Wiese [W], the Langlands functoriality principle was used to show that for
every positive integer t there exists a positive integer k divisible by t such
that either the finite simple group Cn(�k) = PSp2n(F�k) or PGSp2n(F�k)
(see also §13) is the Galois group of an extension of Q unramified outside
{�, q,∞} where q �= 2 is a prime that depends on t. The construction is
based on the following three steps.

1. Starting with a cuspidal automorphic representation on the split
group SO2n+1 constructed using the Poincaré series, we use the global
lift of Cogdell, Kim, Piatetski-Shapiro and Shahidi [CKPS] and re-
sults of Jiang and Soudry [JS1] to obtain a self-dual cuspidal auto-
morphic representation Π of GL2n(A), with A the adeles of Q, such
that the following three conditions hold:

• Π∞ is cohomological.
• Πq is a supercuspidal representation of depth 0.
• Πv is unramified for all primes v �= �, q.

2. The work of Kottwitz, Clozel, Harris-Taylor and Taylor-Yoshida yields
the following theorem (see [Ty, Th. 3.6] or [Ha, Th. 1.1]). We use the
conventions and notations of [Ha, §1].

Theorem 1.1. — Let m be a positive integer, and let Π be a self-
dual cuspidal automorphic representation Π of GLm(A) such that Π∞
is cohomological. Assume that for some finite place v0 of Q, Πv0 is
square integrable. Then attached to Π and a choice of an embedding
ι : Q̄ ↪→ Q̄�, there is an irreducible �-adic representation r′Π : GQ →
GLm(Q̄�) of the Galois group GQ of Q such that for all primes v of
Q of residue characteristic �= � we have:

WDv(r′Π)Frob−ss = L(Πv ⊗ | |
1−m

2
v ).

Here WDv(r′Π) is the Weil-Deligne parameter of r′Π|Dv
with Dv a

decomposition group at v, L is the normalised local Langlands corre-
spondence, and Frob− ss denotes Frobenius semi-simplification.

Remark. — Let χ� be the �-adic cyclotomic character. If m = 2n + 1
we consider a twist rΠ = r′Π ⊗ χn

� and note that we have

WDv(rΠ)Frob−ss = L(Πv).
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3. The last step consists of reducing r′Π modulo �. The parameter of Πq

can be picked so that rΠ(GQq
) is a metacyclic group deeply embedded

in r′Π(GQ) [KW]. That is, for some large positive integer d, r′Π(GQq
)

is contained in every normal subgroup of r′Π(GQ) of index less than or
equal to d. This property is crucial to assure, using the main result of
[LP], that the reduction modulo � is a group either of type PSp2n(F�k)
or PGSp2n(F�k).

1.2. Main theorem

The purpose of this work is to extend these results and to construct finite
simple groups of type Bn and G2 as Galois groups over Q. In the case of
G2, our result depends on a recent technical improvement of Theorem 1.1
due to Shin [Sh] in the case that m is odd. He shows that we may drop the
hypothesis of the existence of a place v0 such that Πv0 is square integrable.
The resulting representation r′Π is semi-simple although it is expected to be
irreducible.

We can state our main theorem:

Theorem 1.2. — Let t be a positive integer.

1. Let � be a prime. Then there exists an integer k divisible by t such
that the simple group G2(F�k) appears as a Galois group over Q.

2. Let � be an odd prime. Then there exists an integer k divisible by t
such that the finite simple group SO2n+1(F�k)der or the finite classical
group SO2n+1(F�k) appears as a Galois group over Q.

3. If � ≡ 3, 5 (mod 8), then there exists an integer k divisible by t such
that the finite simple group SO2n+1(F�k)der appears as a Galois group
over Q.

1.3. Sketch of proof

The construction of Galois groups in Theorem 1.2 is based on the func-
torial lift from Sp2n to GL2n+1 [CKPS] plus the lift from G2 to Sp6 using
the theta correspondence arising from the minimal representation of the ex-
ceptional group E7 (see [Sa1] for a definition of the minimal representation).
The main new technical difficulty in implementing the strategy of [KLS] in
the present case, is that GL2n+1(Qp) has self-dual supercuspidal represen-
tations only if p = 2. Thus, while we can still construct a self-dual cuspidal
automorphic representation Π of GL2n+1 which should give rise to our de-
sired Galois groups, the local component Πq cannot be supercuspidal. For
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groups of type Bn we can remedy the situation by requiring that the local
component Π2 be supercuspidal (which we pick to be of positive depth).
Existence of a global Π with such local component Π2 is again obtained
using the global lift from Sp2n plus the recently announced backward lift
from GL2n+1 to Sp2n by Jiang and Soudry [JS2]. The local component Π2

not only assures us of the existence of the �-adic representation rΠ, without
using new results of Shin, but it also gives us a certain control of the Galois
group obtained by reducing rΠ modulo �. More precisely, Π2 can be picked
so that the image of the local Langlands parameter at 2 is a finite group I
in GL2n+1(C) with the following properties:

• I/[I, I] ∼= Z/(2n + 1)Z.

• [I, I] ∼= (Z/2Z)2n.

If � ≡ 3, 5 (mod 8) then the first property of I implies that the Galois
group is SO2n+1(F�k)der and not SO2n+1(F�k). If n = 3 then the second
property of I implies that Π2 is not a lift from G2(Q2) and the Galois group
is not G2(F�k).

Acknowledgments. — We would like to thank Dick Gross and Guy
Henniart for helping us with irreducible supercuspidal parameters and Mark
Reeder for his help with small representations of reductive groups. Thanks
are also due to the referee for a careful reading of the paper and helpful
suggestions.

2. Local discrete series parameters

Let k be a local field and G a connected reductive and split group over
k. Conjecturally, representations of G(k) correspond to (certain) homomor-
phisms

φ : WDk → G∗(C)

of the Weil-Deligne group into the Langlands dual group G∗(C). In this
paper we shall be concerned with the following cases:

G GLn Sp2n PGSp6 G2

G∗ GLn SO2n+1 Spin7 G2

If G = Sp2n, it will be convenient to realize the dual group as SO(U) for
some choice of a non-degenerate complex orthogonal space U of dimension
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2n + 1. Then a discrete series parameter for Sp2n(k) is a homomorphism
φ : WDk → SO(U) such that, under the action of WDk, the orthogonal
space U decomposes into irreducible summands

U = U1 ⊕ · · · ⊕ Us,

where each Ui is a non-degenerate orthogonal subspace of U . Moreover, if φi

denotes the representation of WDk on Ui, then φi
∼= φj if and only if i = j.

In other words, we are requiring that the image of WDk is not contained in
a proper Levi factor in G∗.

Consider now the case k = R. In this case the Weil-Deligne group is
the same as the Weil group WR. For every non-zero integer a let ηa be a
character of WC

∼= C× defined by

ηa(z) =
(z

z̄

)a

.

Let
φ(a) = IndWR

WC
ηa.

This is an irreducible and orthogonal 2-dimensional representation of WR.
Its determinant is the unique non-trivial quadratic character χ∞ of W ab

R
∼=

R×. Write φ(a1, . . . , an)) for a direct sum φ(a1)⊕· · ·⊕φ(an) where a1, . . . , an
are non-zero integers. If ai �= ±aj for i �= j then

φ(a1, . . . , an) ⊕ χn
∞

is a discrete series parameter for the group Sp2n(R). Note that the choice of
exponent n in the last summand is made so that the image of the parameter
is contained in SO2n+1(C). Note also that the parameter is determined by,
and determines, the ai’s up to permutation of indices and change of signs.
If n = 3, then the image of the parameter is contained in G2(C) ⊂ SO7(C)
if and only if

a1 + a2 + a3 = 0

for some choices of signs of ai’s. Let σ∞ be a generic discrete series repre-
sentation of Sp2n(R) (or of G2(R)) corresponding to this parameter.

Let Π∞ be the lift of σ∞ to GL2n+1(R). The infinitesimal character of
Π∞ is represented by a 2n + 1-tuple

(a1, . . . , an,−a1, . . . ,−an, 0).

In particular, Π∞ is cohomological, as defined by Clozel [Cl].
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3. Depth zero generic supercuspidal representations

Let q be an odd prime. Let Ωq′ denote the set of all complex roots of
unity of order prime to q. The Frobenius acts on Ωq′ by

F (τ) = τ q

for every τ in Ωq′ . Note that all F -orbits are finite. These orbits play a key
role in the description of tame parameters.

Lemma 3.1. — Let τ be a root of 1 different from ±1. Assume that the
F -orbit of τ has m different elements:

τ, τ q, . . . , τ qm−1
.

If τ−1 is on this list, that is, if τ−1 = τ qn

for some n < m then m = 2n.

Proof. — First of all, note that 0 < n since τ �= ±1. Raising τ−1 = τ qn

to the qn-th power gives τ = τ q2n

. Since τ = τ qk

if and only if k is a multiple
of m, and 0 < 2n < 2m, it follows that m = 2n, as claimed. �

We are now ready to define irreducible tame self-dual parameters of
Sp2n(Qq). Let Qq2n be the unique unramified extension of Qq of degree 2n.
Then

Q×
q2n = 〈q〉 × F×

q2n × U1

where U1 is the maximal pro q-subgroup of Q×
q2n . A character of Q×

q2n is
called tame if it is trivial on U1. Let ζ2n be a primitive root in F×

q2n . Pick τ ,
a complex root of 1 such that the F -orbit τ, τ q, . . . has precisely 2n distinct
elements and τ qn

= τ−1. (For example, τ can be picked a primitive root of
order qn + 1.) Then τ defines a tame character η of Q×

q2n by

{
η(ζ2n) = τ
η(q) = 1.

Let WQq
and WQq2n

be the local Weil groups of Qq and Qq2n . Recall that

WQq
/WQq2n

∼= Gal(Fq2n/Fq).

Via local class field theory we have an identification W ab
Qq2n

∼= Q×
q2n . Note

that η ◦ F i �= η for 1 < i � 2n and η ◦ Fn = η̄. In particular, the character
η defines an irreducible, orthogonal 2n-dimensional representation

φ(τ) = Ind
WQq

WQ
q2n

(η).
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of WQq
. We note that the determinant of φ(τ) is the unique unramified

quadratic character χq of W ab
Qq

∼= Q×
q .

Pick a sequence τ1, . . . , τs of roots in Ωq′ belonging to different F -orbits
of order 2n1, . . . , 2ns such that τ qni+1 = 1 for every i and 2n1 + · · ·+2ns =
2n. Corresponding to this we have a tame regular discrete series parameter
for the split group Sp2n(Qq)

φ = φ(τ1, . . . , τs) ⊕ χs
q

where, as in the case of real groups, the exponent s is picked to assure that
the image of the parameter is contained in SO2n+1(C). Note that the image
φ(Iq) of the inertia subgroup Iq ⊆ WQq

is contained in a maximal torus of
SO2n+1(C) and φ(F ) is an elliptic element of the Weyl group. If s = 1, for
example, then the image of the inertia is a cyclic group generated by an
element whose eigenvalues are

τ, τ q, . . . , τ qn

, τ−1, . . . , τ−qn

, 1

and φ(F ) correspond to the Coxeter element in the Weyl group.

Proposition 3.2. — The image of a tame regular discrete series pa-
rameter φ = φ(τ1, . . . , τs)⊕χs

q of Sp6(Qq) is contained in G2(C) if and only
if one of the following two conditions holds:

1. s = 3 and τ1τ2τ3 = 1, for some choices of τ±i (F -orbit of τi consists
of τi and τ−1

i ).

2. s = 1 and τ satisfies τ q2−q+1 = 1. (Recall that τ , a priori, satisfies a
weaker condition τ q3+1 = 1.)

Proof. — The weights of the 7-dimensional representation of G2(C) are
0 and six short roots. Pick three short roots α1, α2 and α3 such that α1 +
α2 +α3 = 0. If t is a semi-simple element in G2(C), put λ±

i = ±αi(t). Then
λ±

1 , λ±
2 , λ±

3 and 1 are the eigenvalues of t in the 7-dimensional representation.
Note that λ1λ2λ3 = 1.

If the parameter φ is contained in G2(C) then φ(F ) corresponds to a
Weyl group element in G2 of even order. Since 2 and 6 are the only even
orders of elements in the Weyl group of G2, we see that s = 1 or 3. If
s = 3 then φ(F ) corresponds to −1 in the Weyl group and the condition
λ1λ2λ3 = 1 translates into τ1τ2τ3 = 1. If s = 1 then φ(F ) corresponds to
the Coxeter element. We can pick the Coxeter element (or alternatively the
roots αi) so that it cyclically permutes the roots

α1,−α2, α3,−α1, α2,−α3.
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On the other hand, φ(Iq) is generated by a semi-simple element t with non-
trvial eigenvalues τ, τ q, τ q2

, τ−1, τ−q, τ−q2
which φ(F ) permutes cyclically

in the given order. In particular, the condition λ1λ2λ3 = 1 translates into
τ1−q+q2

= 1, as desired. Conversely, if the parameter satisfies the conditions
of (1) and (2) then we can factor φ through G2(C) since -1 and the Coxeter
element can be lifted from the Weyl group to G2(C). �

Let σq be a generic supercuspidal representation of Sp2n(Qq) (or of
G2(Qq)) corresponding, via DeBacker-Reeder, to a tame parameter as above.
Then the lift of σq to GL2n+1(Qq) [Sa2] is

Π1 × · · · × Πs × χs
q.

This is a tempered representation parabolically induced from supercuspi-
dal representations Π1, . . . ,Πs corresponding to irreducible tame paramters
φ(τ1), . . . , φ(τs) by the local Langlands correspondence [HT]. We note that
the recipe of DeBacker-Reeder [DR] involves picking a hyperspecial com-
pact subgroup of Sp2n(Qp). Since there are two non-conjugate hyperspecial
maximal compact subgroups here, there are two possible σq. They have the
same lift to GL2n+1(Qp) (by [Sa2]).

Of interest to us is the parameter of type φ(τ) ⊕ χq where q and τ are
picked using the following lemma (Lemma 3.4 in [KLS]):

Lemma 3.3. — Given a positive integer m = 2n, a prime �, a finite
Galois extension K of Q, and positive integers t and d, there exists odd
primes p and q such that:

1. The primes �, p and q are all distinct.

2. The prime p is greater than d.

3. If SO2n+1(F�k) contains an element of order p then F�k contains F�t .
In particular, t divides k.

4. The prime q splits completely in K.

5. The order of q in F×
p is exactly m.

We shall now explain how to construct tame discrete series parameters
using Lemma 3.3. Fix a positive integer m = 2n, a prime �, and two positive
integers t and d. Let K be the composite of all Galois extensions of Q of
degree � d and unramified outside {2, �,∞}. This is a finite degree Galois
extension of Q unramified outside 2, �,∞. Let p and q be the primes given
by Lemma 3.3 applied to this field K. Let τ be a primitive p-th root of 1.

– 44 –



Functoriality and the Inverse Galois problem II

Since the order of q in F×
p is precisely 2n, the Frq-orbit of τ gives rise to a

tame parameter φ(τ) ⊕ χq. Moreover, if n = 3 then τ q2−q+1 = 1 since τ is
of order p and p, by construction, divides Φ6(q) = q2 − q + 1. In particular,
this parameter is automatically a G2-parameter. In any case, we note that
the image of the inertia subgroup Iq is a cyclic group of order p. The image
of the Weil group is a semi-direct product of the cyclic group Z/pZ and
the cyclic group Z/2nZ. This group is also called a metacyclic group and
denoted by Γ2n,p.

4. Irreducible supercuspidal parameters

As we have seen in the previous section, the image of a tame supercusp-
idal parameter ϕ : Wk → G∗ is not irreducible when acting on the standard
representation U of G∗. In particular, the lift to GLn(k) (n = dim(U)) of the
corresponding supercuspidal representation is not supercuspidal. In order to
remedy this, we need to introduce certain wildly ramified parameters. This
will be done using (so-called) Jordan subgroups of the complex reductive
group G∗. A Jordan subgroup J of G∗ is an elementary abelian p-subgroup
such that its normalizer N in G∗ is a finite subgroup and J is a minimal
normal subgroup of N (see [KT], page 505). The following is a partial list
of Jordan subgroups.

G∗ J N/J
SO2n+1 (F2)2n S2n+1

G2 (F2)3 SL3(2)

Here S2n+1 is the symmetric group of 2n + 1 letters. We note that the
conjugation action of N/J on J given by the standard representation of N/J
on J . (In the first case we mean by this the restriction of the permutation
representation of S2n+1 on F2n+1

2 to the hyperplane given by
∑2n+1

i=1 xi = 0.)
However the extension of N/J by J is not necessarily split.

We shall now construct a map ϕ : WQp
→ G∗ such that the image

of the wild inertia is J (in particular p = 2) and the image of WQp
is

an intermediate subgroup J ⊆ I ⊆ N acting irreducibly on the standard
representation of G∗.

Let us consider the case G∗ = SO2n+1(C) first. Let us abbreviate m =
2n + 1, and let Q2m be the unramified extension of Q2 of degree m. Then

Q×
2m = 〈2〉 × F×

2m × U

where U is a pro-2 group with a filtration U ⊃ U1 ⊃ U2 . . . such that
U/U1

∼= F2m . Let e be a primitive element in F2m . Let ei = Fri−1
2 (e). Then
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e = e1, e2, . . . , em give a basis of F2m over F2. In particular, we have fixed
an isomorphism

U/U1
∼= (F2)m.

In this way any character of U/U1 can be viewed as an m-tuple of signs. Let
χ be the character corresponding to the m-tuple (−,−,+, . . . ,+). We extend
χ to Q×

2m so that it is trivial on the first two factors. Since W ab
Q2m

∼= Q×
2m

we can view χ as a character of WQ2m . Define

φ2 = IndWQ2
WQ2m

(χ).

Since the conjugates χ ◦ Fri2, for i = 1, . . . ,m, are mutually distinct this
representation is irreducible by Mackey’s criterion. Since χ is quadratic the
representation φ2 is also delf-dual and, since m is odd, it is orthogonal. Thus
φ2 defines a self-dual supercuspidal representation Π2 of GL2n+1(Q2) by the
local Langlands correspondence.

For later purposes we need to describe the image of the representation
φ2. Note that the intersection of the kernels of χ ◦ Fri2 is equal to ∆F2, the
diagonal in Fm

2 .

Proposition 4.1. — Recall that m = 2n+1. Let I be the image of WQ2

under the representation φ2. Then

1. I/[I, I] ∼= Z/mZ.

2. [I, I] ∼= Fm
2 /∆(F2).

3. I is contained in a special orthogonal group.

4. If m = 7 then I is not contained in G2.

Proof. — Since WQ2
/WQ2m is a cyclic group of order m, in order to

prove the first two statements, it suffices to show that [I, I] is given by the
image of WQ2m . Note that the commutator of ei and Fr2 (for 1 � i � m)
in WQ2

is equal to ei + ei+1 (where by convention we set em+1 = e1),
considered as an element of U/U1

∼= Fm
2 . Since m is odd, these elements

generate Fm
2 /∆(F2). The first two statements now follow. Since the deter-

minant character is of order two and I/[I, I] has odd order, it has to be
trivial on I. This shows the third statement. Finally, if m = 7, then φ2(ei)
has eigenvalues 1 (with multiplicity 5) and −1 (with multiplicity 2). Thus
the eigenvalues cannot be written as λ±1

1 , λ±1
2 , λ±1

3 and 1, with λ1λ2λ3 = 1.
The proposition is proved. �

We now consider the Jordan subgroup in G2(C). This is used only in
§12, and thus the reader interested only in the proof of Theorem 1.2 may
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skip the rest of the section. Pick I, the intermediate group J ⊆ I ⊆ N , in
advance so that I/J is the normalizer of an elliptic torus in N/J ∼= SL3(2).
In particular, if we identify J with F23 then I/J can be identified as a semi-
direct product of Gal(F23/F2) and F×

23 . Since the order of I/J is prime to J
one easily checks that this extension splits. Note that I/J acts transitively
on the set of non-trivial characters of J . Let ψ be a non-trivial additive
character of F2. Then the composition of ψ with the trace map Tr : F23 → F2

is an additive character of F23 ; its stabilizer in I/J is Gal(F23/F2). It follows,
from Mackey’s theory, that I has three irreducible faithful representations,
all of dimension 7, corresponding to three characters of Gal(F23/F2). In
particular, only one of these three representations is self-dual.

Proposition 4.2. — Let ϕ : WQ2
→ G2(C) be a parameter with the

image I. Let φ2 : WQ2
→ GL7(C) obtained by natural inclusion G2(C) ⊆

GL7(C). Then φ2 is a self-dual, irreducible representation of WQ2
.

Proof. — We know that any irreducible, complex representation of I
either has J in the kernel or is faithful; in the latter case it is of dimension
23 − 1 = 7. The group I, as seen above, has three faithful, irreducible,
complex representations (only one of which is self-dual). Since the restriction
of the standard 7-dimensional representation of G2(C) to I is faithful and
self-dual, it must be isomorphic to the unique irreducible, faithful, self-dual
representation of I of dimension 7. �

It remains to show that the group I can be obtained as the image of the
Weil group WQ2

. Let L be the Galois extension of Q2 given as the totally
ramified extension of Q23 of degree 7. In other words, L is the splitting field
of the polynomial

X7 − 2 = 0.

Note that the Galois group of L is isomorphic to I/J . Let 1 be a uniformizer
in L, U ⊆ L× the maximal pro-2 subgroup and U ⊇ U1 ⊇ . . . the usual
filtration. Then

L× = 〈1〉 × F×
23 × U.

Let χ be a character of W ab
L

∼= L× which is trivial on the the first two
factors of L× and a non-trivial character of U/U1

∼= F23 . Consider the
induced representation

IndWQ2
WL

(χ).

This representation breaks up as a sum of three irreducible representations
of dimension 7, one of which is self-dual. Let WK be the kernel of this self
dual representation. Then the Galois group of K over Q2 is isomorphic to I.
In other words, we have constructed map ϕ : WQ2

→ G2(C) with image I.
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5. Local lift from G2 to PGSp6

The dual group of PGSp6(Qp) is Spin7(C). The group Spin7(C) has a
unique open orbit on the 8-dimensional spin representation. The stabilizer
of a point in the open orbit is isomorphic to G2(C). This gives an embedding

f : G2(C) → Spin7(C)

of dual groups, indicating that there should be a functorial, but non-endo-
scopic, lift of representations from G2(Qp) to PGSp6(Qp), once local Lang-
lands parametrizations for the two groups are established. The Langlands
parameterization is essentially known for depth zero representations. We
shall now spell out some special cases of our interest.

In order to simplify notation let G = G2(Qp) and G′ = PGSp6(Qp).
Recall that a complex root of unity τ such that τp2−p+1 = 1 defines a 7-
dimensional orthogonal parameter φ(τ) ⊕ χp which is contained in G2(C).
Therefore, it defines a generic supercuspidal representation σ(τ) of G and,
by composing this parameter with the inclusion f , a generic supercuspidal
representation σ′(τ) of G′. The representation σ′(τ), when restricted to
Sp6(Qp), breaks up as a sum of two representations in the L-packet for the
parameter φ(τ) ⊕ χp.

We have the following:

• The functorial lift of the supercuspidal representation σ(τ) is the
supercuspidal representation σ′(τ).

• The functorial lift of the Steinberg representation stG is the Steinberg
representation stG′ .

• Let σ be an unramified representation of G corresponding to a semi-
simple conjugacy class (Satake parameter) s ∈ G2(C). Then the lift
of σ is σ′, an unramified representation of G′ corresponding to the
parameter s′ = f(s).

Although the local parameterizations for G and G′ are not complete,
a lift from G to G′ is given by a correspondence arising from the mini-
mal representation Σ of the split, adjoint E7(Qp). More precisely, if σ is an
irreducible representation of G, then we define Θ(σ) to be the set of isomor-
phism classes of all irreducible representations σ′ of G′ such that σ ⊗ σ′ is
a quotient of Σ.

Let ψ : U → C× be a Whittaker character for G, where U is a maximal
unipotent subgroup of G. Recall that a representation σ of G is ψ-generic (or
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simply generic) if σU,ψ, the space of ψ-twisted U -coinvariants, is nonzero. We
have the same definition for representations of G′ with respect to a Whit-
taker character ψ′ : U ′ → C×, where U ′ is a maximal unipotent subgroup of
G′. Let Θgen(σ) be the subset of Θ(σ) consisting of generic representations.
This set is somewhat easier to determine.

Proposition 5.1. — Let σ be an irreducible representation of G = G2(Qp).
Then Θgen(σ) �= 0 only if σ is generic. Moreover, Θgen(σ) contains at most
one element.

Proof. — Let σ′ be in Θgen(σ). Then σ ⊗ σ′ is a quotient of Σ. Since
σ′
U ′,ψ′ is one dimensional, we see that σ is a quotient of ΣU ′,ψ′ . Since

([Ga, Th. 7.1])
ΣU ′,ψ′ = indG

U (ψ),

as a G-module, it follows that σ is indeed generic. Moreover, since

HomG(indG
U (ψ), σ)

is one-dimensional for any generic representation σ (by uniqueness of the
Whittaker functional), the second part follows immediately. The proposition
is proved. �

Given a generic representation σ, the above proposition allows us to
show that Θgen(σ) = {σ′} by simply showing that σ⊗σ′ is a quotient of Σ.

Proposition 5.2. — Assume that σ is an irreducible representation of
G = G2(Qp), belonging to either of the following two families:

1. Supercuspidal representations σ(τ).

2. Generic unramified representations.

Then Θgen(σ) �= ∅ and the unique representation in Θgen(σ) is the func-
torial lift of σ, as described above.

Proof. — The supercuspidal representation σ(τ) is induced from a cus-
pidal representation ρ of the finite group G2(Fp), inflated to a hyperspecial
maximal compact subgroup of G. Similarly, σ′(τ) is induced from a cuspidal
representation ρ′ of PGSp6(Fp). Gan shows in [Ga] that ρ ⊗ ρ′ is a sum-
mand of the minimal representation of the adjoint group E7(Fp). By [Sa1]
the minimal representation of E7(Fp) appears as the first non-trivial K-type
of the minimal representation of E7(Qp). (Here K is a hyperspecial maximal
compact subgroup in E7(Qp). In particular, E7(Fp) is a quotient of K by
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the first congruence subgroup, and the K-type is obtained by inflating the
minimal representation of E7(Fp) to K.) It follows, by Frobenius reciprocity,
that σ(τ)⊗σ′(τ) is a summand of Σ. This shows that Θgen(σ(τ)) = {σ′(τ)}
as desired.

Finally, assume that σ is an unramified representation. Let B = TU
be a Borel subgroup of G. Then σ is a subquotient of IndG

B(χ) for some
unramified character χ of T . (The induction is normalized here.) Recall
that any root α defines a co-root homomorphism t �→ hα(t) from Q×

p into
T . Let α1, α2, α3 be three short roots for G such that

α1 + α2 + α3 = 0.

This choice is unique up to the action of the Weyl group of G2. We can now
compose χ with the co-root homomophisms for αi. In this way we get 3
characters χ1, χ2, χ3 of Q×

p such that χ1χ2χ3 = 1. Now, if σ is generic then
(and only then) the whole induced representation is irreducible. According
to a result of Muić ([Mu, Prop. 3.1]) this happens if and only if

χi �= | · |±1 and χi/χj �= | · |±1, 1 � i < j � 3.

Next, consider the representation π = χ1 × χ2 × χ3 of GL3(Qp) (here we
use the notation of Bernstein and Zelevinski). Let P = MN be a maximal
parabolic of G′ such that M ∼= GL3(Qp) (see [MaS]). Then the local lift of σ
is the unique unramified quotient σ′ of the representation of G′ obtained by
inducing π. By a result of Tadić ([Ta, Th. 7.1]) this induced representation is
irreducible if and only if the same conditions as those of Muić are satisfied.
In other words, an unramified representation σ is generic if and only if
its local lift σ′ is, and both are equal to a fully induced principal series
representation. In particular, σ′ = IndG′

P (π) (normalized induction). By
Frobenius reciprocity, we have

HomG×G′(Σ, σ ⊗ σ′) = HomG×M (ΣN , σ ⊗ π)

where ΣN is the (normalized) Jacquet functor. Next, we recall that the
minimal representation of E6(Qp) is a quotient of ΣN [MaS] and that σ⊗π
is a quotient of the minimal representation of E6(Qp) [GaS2]. It follows that
HomG×M (ΣN , σ ⊗ π) �= 0 and σ ⊗ σ′ is a quotient of Σ, as desired. �

6. Global forms

In this section G will denote the split Sp2n or G2 over Q. Fix a prime �,
and q an odd prime different from �. By Theorem 4.5 [KLS] there exists a
globally generic cuspidal automorphic representation σ of G(A) such that
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• σ∞ is a generic integrable discrete series representation.

• σq is a tame supercuspidal generic representation; σq = σ(τ) if
G = G2.

• σv is unramified for all v �= 2, q, �.

• If G = G2 then σ2 is unramified, and if G = Sp2n, σ2 is the Jiang-
Soudry descent of the self-dual supercuspidal representation of Π2

introduced in Section 4.

The form σ lifts to an irreducible, self-dual, automorphic representation
GL2n+1(A) or GL7(A), with trivial central character. This uses the lift of
[CKPS] if G is Sp2n. If G is G2 we first use the exceptional theta lift [GRS]
to obtain a non-zero generic automorphic form σ′ on PGSp6(A). The form
σ′ is cuspidal if the lift of σ to PGL3(A) (via the minimal representation
of E6) is 0. This holds since σ∞ is a discrete series representation and it
cannot appear as a local component in the lift from PGL3(A) [GaS1]. Thus,
σ′ is a generic cuspidal automorphic representation and its local p-adic com-
ponents are determined by Proposition 5.2. The infinitesimal character of
the real component σ′

∞ is integral and regular by the matching of infinites-
imal characters in [HPS]. Next, we restrict σ′ to Sp6(A) and use the lift of
[CKPS] to obtain an automorphic representation Π of GL7(A).

Recall that χq is the unique non-trivial quadratic unramified character
of the local Weil group. The local components of Π satisfy:

• Π∞ has a regular and integral infinitesimal character.

• Πq has the parameter φ(τ) ⊕ χq.

• Πv is unramified for all v �= 2, q, �.

• If G = G2 then Π2 is unramified, and if G = Sp2n then Π2 has the
irreducible parameter φ2.

Note that if Πv is unramified then the eigenvalues of its Satake parameter
are

λ±1
1 , . . . , λ±1

n , 1.

Moreover, if G is G2 then we have one additional relation:

λ1λ2λ3 = 1,

for some choice of sign, i.e., replacing λi by λ−1
i if necessary for each i ∈

{1, 2, 3}. If Π2 is the self-dual supercuspidal representation of GL2n+1(Q2)
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with the parameter φ2 then the lift Π is clearly cuspidal. If Π2 is unramified
then, since the parameter of Πq is not irreducible, the global representation
Π might not be cuspidal. We give a criterion which guarantees that it is
cuspidal. Note that the conditions of the following proposition are automat-
ically satisfied if q and the parameter φ(τ)⊕χq are picked using Lemma 3.3.

Proposition 6.1. — Assume that σ is a globally generic cuspidal auto-
morphic representation of Sp2n(A), such that σv is unramified at all (finite)
primes v �= �, q and σq corresponds to the parameter φ(τ)⊕χq. If q splits in
all quadratic extensions of Q unramified outside {�,∞}, then Π, the global
lift of σ to GL2n+1(A), is cuspidal.

Proof. — If Π is not cuspidal then by [CKPS], and the nature of the
local parameter of Πq, we have an isobaric sum

Π = Σ � χ

where Σ is a cuspidal self-dual automorphic representation of GL2n(A) and
χ is a quadratic character of GL1(A). The local component χv of χ is clearly
unramified for all primes v �= �, q. It is also unramified and non-trivial at q
since it corresponds, via local class field theory, to the one-dimensional sum-
mand of the parameter of Πq (denoted by the same symbol χq). By global
class field theory χ corresponds to a quadratic extension of Q unramified
outside {�,∞}, such that q is inert in it. This is a contradiction. �

7. Minuscule and almost minuscule representations

Let G be a connected reductive group over an algebraically closed field
of characteristic different from 2, and let T be a maximal torus in G. An
irreducible algebraic representation V of G is called almost minuscule if
V T �= 0 and the Weyl group acts transitively on the set of non-trivial
weights of V . (Recall that an irreducible algebraic representation V of G is
called minuscule if the Weyl group acts transitively on the set of weights of
V .) These representations can be easily classified for an almost simple G.
Assume first that the field characteristic is 0. Since V T �= 0 then, by Lie
algebra action, V contains a root as a weight. All non-zero weights are now
Weyl-group conjugates of that root. Therefore, if G is simply laced then V
is the adjoint representation of G. If G is multiply laced then the weights
are all short roots. We tabulate possible cases:

G dim(V ) dim(V T )
Bn 2n + 1 1
Cn 2n2 − n− 1 n− 1
G2 7 1
F4 26 2
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It is interesting to note that dimension of V T is equal to the number of
short simple roots. The Weyl group acts, naturally, on V T . The action of
long root reflections is trivial, while V T is a reflection representation for the
subgroup generated by simple short root reflections.

Proposition 7.1. — Let G be an almost simple group over an alge-
braically closed field of characteristic � > 2. Then:

1. Any minuscule representation is isomorphic to a Frobenius twist of a
representation with a minuscule weight as the highest weight.

2. Assume first that � �= 3 if G = G2. Then any almost minuscule repre-
sentation is a Frobenius twist of the almost minuscule representation
with the highest weight equal to a short root. If � = 3 and G = G2 then
there is one additional family of minuscule representations. It consists
of Frobenius twists of the representation with the highest weight equal
to a long root. In any case, the almost minuscule representations of
G2 are 7-dimensional.

Proof. — Let α1, . . . , αr be the simple roots for G. We shall first char-
acterize minuscule (and then almost minuscule) representations with the
highest weight λ which is �-restricted, i.e., 0 � 〈λ, α∨

i 〉 � �− 1 for all i. The
general case will be later easily deduced from the Steinberg tensor product
theorem.

For any root α, the group G contains a subgroup isomorphic to (a quo-
tient of) SL2. If 〈λ, α∨〉 = n � � − 1 then the action of SL2 on the highest
weight vector will give rise to the weights λ, λ−α, . . . λ−nα. By examining
the lengths of these weights we see that only the last one is in the Weyl
group orbit of λ. This forces n = 0 or 1 if the representation is to be mi-
nuscule. In particular, if we write ni = 〈λ, α∨

i 〉, then ni = 0 or 1 for all i.
Next, we claim that only one ni could be 1. Otherwise, we can pick a path
in the Dynkin diagram αi, αi+1, . . . , αj such that ni = nj = 1 and nk = 0
for any αk between αi and αj . Consider the root α = αi + αi+1 + · · · + αj .
Since 〈λ, α∨〉 = 2, this is a contradiction. (Note that we have just used the
condition � �= 2.) Finally, if the weight λ is fundamental but not minuscule
then there exists a positive root α such that 〈λ, α∨〉 = 2. This is again a
contradiction.

The proof of (2) is similar, except when 〈λ, α∨〉 = 2. Then λ, λ− α and
λ− 2α are weights with λ−α the shortest length among the three weights.
Since 0 is the only other orbit of weights, we must have λ = α. If α is a
long highest root, and the root system is of the type Bn, Cn or F4 then
there exists a short root β such that 〈α, β∨〉 = 2. This implies that the
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short root α − β is also a weight, and the representation cannot be almost
minuscule. If � = 3 and G = G2 then this argument breaks down. The
adjoint representation breaks up as 14 = 7+7′ where 7 is the representation
whose non-trivial weights are short roots, while 7′ is a representation whose
non-trivial weights are long roots.

It remains to deal with highest weights which are non necessarily �-
restricted. We need the following lemma.

Lemma 7.2. — Let V1 and V2 be two non trivial and irreductible repre-
sentations of G with such that V1 is not isomorphic to the dual of V2. Then
the tensor product V1 ⊗V2 has two non-trivial Weyl group orbits of weights.

Proof. — Let λ1 and λ2 be the highest weights of V1 and V2. Let λ−
2 be

the lowest weight of V2. Then λ1 + λ2 and λ1 + λ−
2 are weights of V1 ⊗ V2

of different lengths. The latter of these two weights is non-zero since V1 is
not isomorphic to the dual of V2, by our assumption. �

Any highest weight λ can be written as λ = λ0 + �λ1 + · · · + �sλs

for some �-restricted highest weights λ1, . . . , λs. By the Steinberg tensor
product theorem, the unique irreducible representation V with the highest
weight λ is isomorphic to

V0 ⊗ V
[1]
1 ⊗ · · · ⊗ V [s]

s

where Vi is the irreducible representation with the highest weight λi and
V

[i]
i is the i-th Frobenius twist of Vi. Lemma 7.2 implies that V can be

(almost) minuscule only if V is a Frobenius twist of representation with an
�-restricted highest weight. The proposition is proved. �

It should be noted that the dimension of V T is not necessarily the same
as in the characteristic 0. For example, if � = 3 then any almost minuscule
representation V of F4 has dimension 25 and dim(V T ) = 1. The main result
of this section is the following:

Proposition 7.3. — Let G be a connected reductive group over an alge-
braically closed field of characteristic � different from 2. Let V be a faithful
and irreducible algebraic representation of G of dimension 2n+1, preserving
a non-degenerate bilinear form. Assume that there exist 2n different weights
in V permuted cyclically by a Weyl group element. Then G = SO2n+1 if
n �= 3, and is either SO7 or G2 if n = 3.

Proof. — Let Z be the connected component of the center of G. The
characters of Z form a lattice. In particular, the only self-dual character is
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the trivial character. This shows, since V is faithful and irreducible, that
Z is trivial. Therefore G is semi-simple. Since weights of a self-dual repre-
sentation come in pairs {µ,−µ}, and the Weyl group preserves the length
of weights, the weight outside the cycle (of length 2n permuted by the
Weyl group element of the statement of the proposition) must be trivial,
so dim(V T ) = 1. Next, let G1 × · · · × Gk be a product of almost simple
groups isogenous to G such that V = V1 ⊗ · · · ⊗ Vk is a tensor product
of irreducible, non-trivial representations of G1, . . . , Gk. Since V T �= 0, the
zero weight must appear in each V1, . . . , Vk. But then V can be almost mi-
nuscule only if k = 1. Since the groups of type Bn and G2, and no other
groups, have a Weyl group element that permutes all short roots, V must
be a Frobenius twist of the standard representation of SO2n+1 or it is a
7-dimensional representation of G2. This completes the proof. �

8. Galois representations

Let Π be the self-dual cuspidal automorphic representation of GL2n+1(A)
constructed by lifting from G(A) = Sp2n(A), or from G(A) = G2(A) in
Section 6. In particular,

• The infinitesimal character of Π∞ is regular and integral.

• The local component Πv is unramified for all v �= �, q.

• The local parameter of Πq is φ(τ)⊕χq where q splits in any quadratic
extension of Q ramified at � only.

• If G = G2 then Π2 is unramified, and if G = Sp2n then Π2 is super-
cuspidal with parameter the irreducible representation φ2 of §4.

By the generalization of Theorem 1.1 due to Shin [Sh], and the remark
after Thorem 1.1, one can attach a semi-simple Galois representation to Π:

rΠ : GQ → GL2n+1(Q̄�)

such that for every prime v �= � the restriction of rΠ to the decomposi-
tion group Dv gives the Langlands parameter of Πv, up to Frobenius semi-
simplification. Indeed, when the Weil-Deligne parameter L(Πv) for all v �= �
has monodromy N = 0, we can state Theorem 1.1 as

rΠ|Frob−ss
Dv

= L(Πv)

where L(Πv) may be regarded, using the embedding ι : Q̄ ↪→ Q̄�, as a rep-
resentation of the decomposition group Dv at v with values in GL2n+1(Q̄�).

– 55 –



C. Khare, M. Larsen, G. Savin

Let us concentrate on the prime q. Here Πq is the lift of a supercuspidal
representation of Sp2n(Qq) whose parameter, when restricted to the inertia
group IQq

, is a direct sum of 2n + 1 one dimensional characters. One is
trivial and the other 2n are cyclically permuted by Frq. It follows that
rΠ(Fr2nq ) commutes with rΠ(Iq). This shows that rΠ(Fr2nq ) and rΠ(Frq) must
be semi-simple. In other words, r gives exactly the parameter of Πq. The
same argument shows that the restriction of rΠ to D2 gives the parameter
of Π2 if Π2 is supercuspidal.

Proposition 8.1. — If Π satisfies the above conditions at places ∞, 2
and q then the Galois representation rΠ is irreducible and orthogonal.

Proof. — If Π2 is supercuspidal, then the local parameter is irreducible
and rΠ is irreducible. Thus assume that Π2 is unramified. If rΠ is reducible
then rΠ has two irreducible summands of dimensions 2n and 1. Since the
eigenvalues of rΠ(Frv) are 1, λ±

i , (1 � i � n) the representation rΠ is self-
dual. In particular, the one-dimensional summand is a quadratic character
χ unramified outside {�,∞} and such that χ(Frq) = −1. This implies that
there exists a quadratic extension unramified outside {�,∞} and such that
q stays inert in it. This is a contradiction since q is picked so that it splits
completely in every such quadratic extension. Therefore rΠ is irreducible.
Since it is self-dual and of odd dimension, it is orthogonal as well. �

9. Zariski closure

Fix a prime �, and positive integers d and t. (The integer t will not play
any particular role in this section.) Let K be the composite of all Galois
extensions of degree � d that are unramified outside {2, �,∞}. Let p and
q be the odd primes attached to m = 2n, �, d, t and K by Lemma 3.3. In
particular, p > d and q splits completely in K. Let Π be as in Section 6
where the parameter φ(τ)⊕χq of the local component Πq of Π is constructed
by the recipe following Lemma 3.3. In particular, the representation rΠ is
unramified at all primes different from 2, � and q, and rΠ(Iq) is of order p.

Lemma 9.1. — Let Γ = rΠ(GQ) and let Γd be the intersection of all
normal subgroups of Γ of index � d. Then rΠ(Dq) is contained in Γd.

Proof. — Let Γ′ be a normal subgroup of Γ of index � d. We must show
that the image of Dq lands in Γ′. Let L be the Galois extension of Q cor-
responding to Γ′. Obviously, L is unramified outside {2, �, q,∞}. Moreover,
since rΠ(Iq) is of order p and p > d, it follows that L is unramified at q as
well. Thus, L is contained in K (which by definition is the compositum of
all Galois extensions unramified outside {2, �,∞} and of degree � d). This
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implies that q splits completely in L (as it does so in K) and rΠ(Dq) is
therefore contained in Γ′, as desired. �

The above lemma shows that if Πq is constructed by means of Lemma 3.3
then Γ2n,p, the image of the decomposition group Dq, sits deeply embedded
in Γ = rΠ(GQ). This property is crucial in controling the size of the image
Γ of the Galois group.

Theorem 9.2. — There exists a function I : N → N such that if Π is a
self-dual cuspidal automorphic representation of GL2n+1(A), as in Section
6, and such that the local parameter of Πq is constructed by means of Lemma
3.3 with d > I(n) then the Zariski closure of rΠ(GQ) is isomorphic to
SO2n+1(Q̄�) if n �= 3, and either SO7(Q̄�) or G2(Q̄�) if n = 3.

Proof. — Let G be the Zariski closure of rΠ(GQ). Since rΠ is irreducible
this is a reductive group. Let G◦ be its connected component. Recall that
the image of the inertia subgroup Iq contains an element s in GL2n+1(Q̄�) of
order p. We want to show that s is contained in G◦. We need the following
(Lem. 6.3 of [KLS]):

Lemma 9.3. — There exists a function J : N → N such that for every
integer n > 0 and every algebraic subgroup H ⊂ GLn over a field of charac-
teristic zero, there is normal subgroup H1 ⊆ H of index � J(n) containing
H◦, the connected component, such that H1/H

◦ is abelian.

We apply Lemma 9.3 to G ⊆ GL2n+1(Q̄�), the Zariski closure of rΠ(GQ).
Let G1 be the normal subgroup of G of index � J(2n + 1), containing G◦

and such that G1/G
◦ is abelian. If we pick d > J(2n + 1) then, by Lemma

9.1, the image of Dq must be contained in G1. Since Γ2n,p is a semi-direct
product of Z/pZ and Z/2nZ ⊂ Aut (Z/pZ) ∼= Z/(p − 1)Z one easily sees
that the commutator subgroup of rΠ(Dq) is rΠ(Iq) ∼= Z/pZ. This shows
that the projection of rΠ(Dq) to the abelian quotient G1/G

◦ must contain
s in the kernel. In other words, s is in G◦.

Recall that the eigenvalues of s are

τ, τ q, . . . , τ qn−1
, τ−1, τ−q, . . . , τ−qn−1

, 1.

where τ is a pth root of one. Moreover, these eigenvaules are distinct. It
follows that the the centralizer of s in GL2n+1 is a torus. Thus, s is a regular
semi-simple element in G◦ and the centralizer of s in G◦ is a maximal torus
T . Next, note that the centralizer of s in G◦ is the same as the centralizer
of rΠ(Frq) · s · rΠ(Fr−1

q ) (since it is so in GL2n+1). It follows that rΠ(Frq)
normalizes T . We need the following lemma.
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Lemma 9.4. — There exists a function J ′: N → N such that for every
integer n > 0 and every reductive group H of rank n over an algebraically
closed field of characteristic zero, there is a normal subgroup H ′

1 ⊆ H of in-
dex � J ′(n) containing H◦, the connected component, such that conjugation
of H◦ by any element in H ′

1 is inner.

Proof. — The conjugation action of H on H◦ gives a homomorphism
from a finite group H/H◦ to Aut (H◦)/Inn (H◦). The latter group is con-
tained in the group of automorphisms of a root datum (X,∆, X∨,∆∨) of
H◦. It follows that H/H◦ maps into GL(X) ∼= GLn(Z). Since there is a
torsion-free congruence subgroup in GLn(Z), the order of any finite sub-
group in GLn(Z) is bounded by the index of the torsion-free congruence
subgroup. This proves the lemma. �

We apply Lemma 9.4 to G ⊆ GL2n+1(Q̄�), the Zariski closure of rΠ(GQ).
Let G′

1 be a normal subgroup of G of index � J ′(2n + 1), containing G◦

and such that G′
1 acts on G◦ as inner automorphisms. Now if we pick

d > J ′(2n + 1), in addition to d > J(2n + 1), then rΠ(Dq) must be con-
tained in G′

1, by Lemma 9.1. This shows that the conjugation by rΠ(Frq) is
an inner automorphism. Hence the normalizer of the torus T in G◦ contains
an element of order 2n which cyclically permutes the weights correspond-
ing to the 2n eigenvalues of s different from 1. This shows that rΠ, under
the action of G◦, has at most two irreducible summands. If there are two
summands, then they have dimensions 2n and 1. But, since G◦ is a normal
subgroup and G acts irreducibly, G◦ cannot act with two summands of dif-
ferent dimensions. Hence G◦ acts irreducibly as well. Since rΠ is self-dual, it
follows that G◦ satisfies conditions of Proposition 7.3, so it must be either
SO2n+1 or G2. It remains to show that G = G◦. First, rΠ is an irreducible
2n+1-dimensional representation of G which restricts to the standard repre-
sentation of G◦. Second, since SO2n+1 and G2 have no outer automorphisms,
every connected component of G contains an element commuting with G◦.
Combining the two, it follows that any connected component of G contains
a homothety by a scalar λ. On the other hand, since rΠ(Frv) has 1 as one
of the eigenvalues for almost all primes v, by Čebotarev’s density theorem
the function det(1− rΠ(g)) must be 0 for all elements g in G. In particular,
λ must be equal to 1 and this shows that G = G◦. The theorem is proved
with I(n) = max(J(2n + 1), J ′(2n + 1)). �

According to Theorem 9.2 there are two possibilities for the Zariski clo-
sure if n = 3. The following two corollaries give us more precise statements
in this case.

Corollary 9.5. — Assume that Π comes from G2(A), as in Section 6.
Then the Zariski closure of rΠ(GQ) is G2(Q̄�).
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Proof. — Let G be the Zariski closure. We know that G is either SO7

or G2. It suffices to show that the rank of the maximal torus T is at most
2. To see this, recall that the eigenvalues of rΠ(Frv) are 1, λ±

i (i = 1, 2, 3)
for v �= q, �. Therefore the characteristic polynomial of rΠ(Frv) is f(x) =
(x− 1)g(x) with

g(x) = x6 + ax5 + bx4 + cx3 + bx2 + ax + 1

a palindromic polynomial of degree 6. Moreover, the condition λ1λ2λ3 = 1
gives one algebraic relation on the three coefficients a, b and c. By Čebotarev’s
density theorem, the same holds for the characteristic polynomial of all ele-
ments in the image of r and, therefore, for all elements in T . In particular,
the dimension of T is less than or equal to 2. �

Corollary 9.6. — Assume that Π2, the local component of Π, is the ir-
reducible self-dual cuspidal representation of GL7(Q2) introduced in Section
4. Then the Zariski closure of rΠ is SO7(Q̄�).

Proof. — This follows as the image of the inertia subgroup I2 contains
elements in SO7(Q̄�) which are not contained in G2. �

Remark. — The method of proof of Theorem 9.2 can be used to give
an alternate argument to prove the result of §6 of [KLS] that the Zariski
closure of ρΠ is GSp2n. This would avoid the use of the crutch of reduction
modulo � that is used in [KLS].

10. A group-theoretic criterion

In this section we develop criteria which give us control over the image of
�-adic representations in the case of exceptional groups. As such, this section
is somewhat more general then what is needed for the main results in this
paper. However, the results of this section might have future applications.
A possibility in this direction is presented in Section 12.

Let Γ be a profinite group and d � 2 an integer. We define Γd as the
intersection of all open normal subgroups of Γ of index � d.

Lemma 10.1. — If Γ is a profinite group, ∆ a closed normal subgroup,
and d a positive integer, then the image of Γd in Γ/∆ is (Γ/∆)d.

Proof. — The image in Γ/∆ of every open subgroup of Γ of index � d
is again open of index � d, and conversely, all open index � d subgroups of
Γ/∆ arise as images of open index � d subgroups of Γ. �

Let n � 2 be an integer and p a prime congruent to 1 (mod n).
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Definition 10.2. — By a group of type (n, p), we mean any finite
group Γ with a normal subgroup ∆ isomorphic to Z/pZ such that the image
of Inn Γ in Aut ∆ is isomorphic to Z/nZ.

As noted in the introduction, this is slightly different from the terminol-
ogy in [KLS]. If � �= p is prime, a group of type (n, p, �) will mean a (possibly
finite) profinite group which is the extension of a group of type (n, p) by a
pro-� group.

Lemma 10.3. — If 0 → Γ1 → Γ2 → Γ3 → 0 is a short exact sequence of
profinite groups, n � 2, � and p are distinct primes, and Γ1 is pro-�, then
Γ2 contains a subgroup of type (n, p, �) if and only if Γ3 does.

Proof. — Any extension of a group of type (n, p, �) by a pro-� group is
again of type (n, p, �), so one direction is trivial.

For the other, let ∆2 be a closed subgroup of Γ2 and ∆′
2 an open normal

pro-� subgroup of ∆2 such that ∆′′
2 := ∆2/∆′

2 is of type (n, p). Let ∆1 :=
∆2 ∩ Γ1, ∆′

1 := ∆′
2 ∩ Γ1, and ∆′′

1 := ∆1/∆′
1. By the snake lemma, we have

a right-exact sequence

∆′
2/∆

′
1 → ∆2/∆1 → coker (∆′′

1 → ∆′′
2) → 0.

As ∆′
2 is pro-�, so is every quotient thereof, so ∆2/∆1 is an extension of

coker (∆′′
1 → ∆′′

2) by a pro-� group.

Every quotient of a group Γn,p of type (n, p) by an �-group is again of
type (n, p). Indeed, the quotient map preserves the normal subgroup of Γn,p

isomorphic to Z/pZ and therefore the image of Inn Γn,p → (Z/pZ)×. �

We remark that for the non-trivial direction, the proof uses only the fact
that Γ1 is the inverse limit of finite groups of prime-to-p order.

Theorem 10.4. — Let � be a prime and G a connected reductive alge-
braic group over F̄�. There exists a constant B, independent of �, such that

1. If rkG � 2 and p > B is a prime distinct from � and G(F̄�) contains
a subgroup of type (6, p, �), then G is of type G2.

2. If rkG � 4 and p1, p2 > B are primes distinct from � and G(F̄�)
contains subgroups of type (8, p1, �) and (12, p2, �), then G is of type
F4.

3. If rkG � 6 and p > B is a prime distinct from � and G(F̄�) contains
a subgroup of type (9, p, �), then G is of type E6.
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4. If rkG � 7 and p1, p2 > B are primes distinct from � and G(F̄�)
contains subgroups of type (18, p1, �) and (30, p2, �), then G is of type
E7.

5. If rkG � 8 and p1, p2, p3 > B are primes distinct from � and G(F̄�)
contains subgroups of type (18, p1, �), (20, p2, �), and (30, p3, �), then
G is of type E8.

Proof. — We claim that the root systems of type G2, F4, E6, E7, and E8

respectively are the only root systems of rank less than or equal to 2, 4, 6, 7,
and 8 respectively, which have Weyl group elements of order 6; 8 and 12; 9;
18 and 30; and 18, 20, and 30, respectively. To see that this is so, we compile
a table of the orders of Weyl group elements for root systems of rank � 8.
We write each root system as a sum of irreducible root systems, each coded
as a single letter and a single digit, and arranged alphabetically. We order
root systems first by rank and within rank, alphabetically. A root system
is exceptional if it is simple of type G2, F4, E6, E7, or E8. For brevity, we
omit those root systems for which the set of possible Weyl element orders
is a proper subset of that for some non-exceptional root system of equal
or inferior rank. In case of equality, we print only the lexicographically
smallest example. (For example, in our table, no root system of type Cn

appears, since Bn is lexicographically inferior to it and has the same set
of Weyl group orders. Likewise, A1 + A4 does not appear because its set
of Weyl group orders is strictly dominated by that of B5, which, though
lexicographically superior, has the same rank.) Since the set of orders of
elements of a finite group is determined by its subset of maximal elements
with respect to divisibility, we exhibit only this subset.

Now, let Γn,p,� be a subgroup of G(F̄�) of type (n, p, �) for some n � 2 and
some prime p �= �. Let ∆� ⊂ Γn,p,� denote a normal �-subgroup such that
the corresponding quotient group Γn,p is of type (n, p). Now, ∆� ⊂ G(F�k)
for some k, and so it is contained in a Sylow �-subgroup of G(F�k). Such
a subgroup is the group of F�k -points of the unipotent radical of a Borel
subgroup of G. By §30.3 of [Hu1], the normalizer of ∆� in G is contained in a
parabolic subgroup P , proper if ∆� is non-trivial. If N denotes the unipotent
radical of P , then N(F̄�)∩Γn,p,� is an �-group, so by Lemma 10.3, the image
of Γn,p,� in the Levi factor M(F̄�) is again of type (n, p, �). The rank of M is
equal to that of G, while the dimension is strictly less. Iterating this process
we end up with a connected reductive group, which we again denote M ,
of the same rank as G such that M(F̄�) contains a subgroup Γn,p of type
(n, p). If M is an exceptional group, then G = M , since in each rank r, the
exceptional group, if one exists, is the connected reductive group of maximal
dimension in rank r.
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Root System Maximal Elements
A1 2
A2 2, 3
B2 4
G2 6
B3 4, 6

A2 + B2 12
A4 4, 5, 6
B4 4, 6, 8
F4 8, 12
B5 8, 10, 12

A2 + B4 24
A4 + B2 12, 20
A4 + G2 12, 30

A6 7, 10, 12
E6 8, 9, 10, 12

A1 + E6 8, 10, 12, 18
A2 + B5 24, 30
A4 + B3 12, 20, 30

A7 7, 8, 10, 12, 15
B7 14, 20, 24
E7 8, 12, 14, 18, 30

A2 + E6 18, 24, 30
A4 + F4 24, 40, 60
A6 + B2 12, 20, 28
A6 + G2 12, 30, 42

A8 8, 9, 12, 14, 15, 20
B2 + E6 8, 20, 36

B8 14, 16, 20, 24, 30
E8 14, 18, 20, 24, 30

Let Γn,p be a subgroup of type (n, p) of M(F̄�) for some integer n, let x
denote the image of a generator of the normal subgroup of Γn,p isomorphic
to Z/pZ, and let a ∈ Z be such that its image in Z/pZ is of order n in
(Z/pZ)×. As x and xa are conjugate in Γn,p, x and xa are conjugate in
M(F̄�). Since p �= �, they are semi-simple elements, and if B < p is taken
to be larger than the maximal number of components of the centralizer of
any semi-simple element in any reductive connected group of rank � 8, it
follows that x and xa belong to a common maximal torus T ⊂ M . By a
well-known theorem (cf. §3.1 of [Hu2]), there exists w ∈ NM (T )(F̄�) such
that wxw−1 = xa. However, this implies that the order of the image of
w in the Weyl group of M with respect to T is divisible by n. From our
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analysis of orders of elements in Weyl groups in rank � 8, it follows that M
is exceptional and therefore that G is exceptional. �

Theorem 10.5. — There exist constants A and B such that if

1. d > A is an integer,

2. p1, p2, p3 > B and � �∈ {p1, p2, p3} are primes,

3. K is an �-adic field,

4. G is a connected reductive algebraic group over K such that
(a) rkG � 2,

(b) rkG � 4,

(c) rkG � 6,

(d) rkG � 7, or

(e) rkG � 8,

5. Γ ⊂ G(K) is a profinite subgroup such that (respectively)

(a) Γd has a subgroup of type (6, p1, �),

(b) Γd has a subgroup of type (8, p1, �) and (12, p2, �),

(c) Γd has a subgroup of type (9, p1, �),

(d) Γd has subgroups of type (18, p1, �) and (30, p2, �), or

(e) Γd has subgroups of type (18, p1, �), (20, p2, �), and (30, p3, �),

then some finite quotient Γ̄ of Γ satisfies

(Had(F̄�)F )der ⊂ Γ̄ ⊂ Had(F̄�)F , (10.1)

where F is a Frobenius map and Had is a simple adjoint algebraic group of
type G2, F4, E6, E7, or E8 respectively. In particular, in the first, second,
and fifth case, Γ̄ is simple.

Proof. — Replacing K by a finite extension, we may assume first that
G is split, and second that Γ fixes a hyperspecial vertex of the building
of G over K (see, e.g., [La], and the remark below). Thus, there exists a
smooth group scheme G over the ring of integers O of K whose generic fiber
is G, whose special fiber is again reductive and connected, and such that
Γ ⊂ G(O). The root datum of the special fiber of G is the same as that of
G. Let H := GF̄


denote the geometric special fiber. Thus, Γ maps to H(F̄�)
with finite image and pro-� kernel. Replacing Γ by its image in H(F̄�), by
Lemma 10.1 and Lemma 10.3, we still have that Γd has subgroups of the
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specified types. By Theorem 10.4, H is almost simple of type G2, F4, E6, E7,
or E8 according as we are in case (a), (b), (c), (d), or (e). Assuming B > 3,
the image Γ̄ of Γ in Had(F̄�) again has the property that Γ̄d has subgroups
of the specified types. By Th. 0.5 of [LP], it follows that either Γ̄ satisfies
the condition (10.1) for some Frobenius map or that Γ̄ is contained in a
proper algebraic subgroup of I ⊂ Had with a component group I/I◦ whose
order is bounded above by an absolute constant A. As d > A, it follows
that Γ̄d ⊂ I◦(F̄�). If N denotes the unipotent radical of I◦, the image of Γ̄d

in (I/N)(F̄�) contains a subgroup of type (n, p, �). As I/N is reductive of
rank less than or equal to the rank r of Had (which equals the rank of G)
and as dim I/N � dim I < dimHad = dimG, it follows that I/N cannot
be exceptional of rank r, which contradicts Theorem 10.4. �

Remark. — If G is of type G2, F4 or E8 then G(K) is always split and
simply connected. The profinite subgroup Γ is contained in a maximal para-
horic subgroup of G(K). The quotient of this maximal parahoric subgroup
by its pro-� radical is a simply connected semi-simple group H of rank r
over the residual field of K. Let Γ̄ be the projection of Γ into H. If Γ con-
tains groups of type (n, p, �) as specified in Theorem 10.5, then so does Γ̄.
By Theorem 10.4 H must be of the same type as G. This shows that the
maximal parahoric subgroup containing Γ is hyperspecial.

11. Main Theorem

We are now ready to construct finite Galois groups over Q. Let rΠ :
GQ → G(Q̄�) be the Galois representation attached to a self-dual cuspidal
representation Π constructed in Section 6. Recall that Π is constructed so
that the image of Dq in Γ = rΠ(GQ) is a group of type (2n, p), denoted by
Γ2n,p, and contained in Γd. Let G be the Zariski closure of Γ. By Theorem
9.2 and its corollaries, if d > I(n) then:

– G = G2 if Π is a lift from G2

– G = SO2n+1 if Π is a lift from Sp2n and the local component Π2 is the
supercuspidal representation defined in Section 4.

Note that by assumption � > 2 if G = SO2n+1. If G = G2 then by
Theorem 10.5, Γ has a quotient isomorphic to G2(F�k) (or a Ree group if
� = 3) for some k provided that d > max(A,B) where A and B are in the
statement of Theorem 10.5.

Assume now that G = SO2n+1, and hence � > 2, Π is a lift from Sp2n,
and the local component Π2 is the supercuspidal representation defined in
Section 4.
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Theorem 11.1. — There exists a function d : N → N such that if Πq is
picked with d > d(n) then Γ = rΠ(GQ) has a quotient Γ̄ such that

(SO2n+1(F̄�)F )der ⊂ Γ̄ ⊂ SO2n+1(F̄�)F , (11.2)

where F is a Frobenius map.

Proof. — By enlarging the field K we can assume that G is split and that
Γ is contained in a hyperspecial maximal parahoric subgroup. This means
that G can be written as G = SO(V,Q) where V is a linear space over K and
Q a split quadratic form, and there exists a lattice L stabilized by Γ such
that Q takes integral values on L. Moreover, if V̄ is the reduction modulo
� of L, then the quadratic form Q reduces modulo � to a non-degenerate
quadratic form Q̄ on V̄ . In other words, the pair (L,Q) defines a smooth
group scheme over the ring of integers of K whose generic fiber is G and such
that H := SO(V̄ , Q̄) is the special fiber. Let Γ̄ be the image of Γ in H(F̄�).
By Th. 0.5 of [LP], it follows that either Γ̄ satisfies the condition (11.2) for
some Frobenius map or that Γ̄ is contained in a proper algebraic subgroup
of I ⊂ H with a component group I/I◦ whose order is bounded above by an
absolute constant A(n). If we pick d > A(n) then Γ̄d ⊂ I◦(F̄�). It follows that
Γ2n,p is contained in I◦. Under the action of Γ2n,p, the orthogonal space V̄
decomposes as a sum of two irreducible mutually orthogonal representations
of dimensions 2n and 1. This implies that the nilpotent radical of I◦ is
trivial. Indeed, if N is a non-trivial unipotent radical of I◦,then there exists
a non-trivial subspace Ū of V̄ fixed by N . Since Γ2n,p normailizes N , Ū must
be one of the two mutually orthogonal Γ2n,p-summands. By orthogonality,
N must preserve the other summand. Since that summand is also Γ2n,p-
irreducible, N must be trivial, a contradiction. Thus, I◦ is reductive. We
claim that V̄ is an irreducible I◦-module. If not, then I◦ admits a 2n-
dimensional orthogonal representation such that there exists a Weyl group
element in I◦ permuting transitively all weights. We need the following:

Lemma 11.2. — Let G be a connected reductive group over an alge-
braically closed field of characteristic �= 2. Then G has no minuscule or-
thogonal representations of even dimension such that there exists a Weyl
group element permuting transitively all weights.

Proof. — We may assume that G is semi-simple and that G = G1×· · ·×
Gk, a product of almost simple groups. If V is a minuscule, self-dual repre-
sentation of G then V = V1 ⊗ · · · ⊗ Vk where Vi are minuscule and self-dual
representations of Gi. If G has a Weyl group element w = w1 × · · · × wk

permuting transitively all weights of V , then wi must permute transitively
all weights of Vi and dimensions of Vi must be pairwise relatively prime.
If G is simple, an argument in §2 of [KLS] shows that the only minuscule,
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self-dual representations with such Weyl group element is the standard rep-
resentation of Sp2n and its Frobenius twists. (The list there includes also
the standard representation of SO2n, but this can be excluded by a di-
rect inspection.) Since even numbers are never pairwise relatively prime,
we conclude that G is simple and that the representation is the standard
representation of Sp2n. This representation is not orthogonal, however, and
the lemma follows. �

The lemma implies that V̄ is an irreducible representation of I◦. There-
fore, the pair (I◦, V̄ ) satisfies conditions of Proposition 7.3. It follows that
I◦ = H or, if n = 3, I◦ = G2(F̄�). Since G2 has trivial center, no outer
automorphisms, and it acts irreducibly on V̄ , any element of I/I◦ is repre-
sented by a scalar matrix. However, by Čebotarev’s density theorem, any
element in Γ̄ has 1 as an eigenvalue. It follows that I = I◦ in all cases. Since
the image of the local decomposition group D2 contains elements of order
2 which are not contained in G2 we see that I cannot be G2. Thus we have
I◦ = H in all cases. This is a contradiction. The theorem is proved with
d(n) = max(A(n), I(n)). �

Summarizing, we have shown that mod � reduction of the representa-
tions rΠ give rise to G2(F�k) (or a Ree group if � = 3), SO2n+1(F�k)der or
SO2n+1(F�k) as Galois groups. In other words we have essentially proved
the following theorem that we stated in the introduction:

Theorem 11.3. — Let t be a positive integer.

1. Let � be a prime. Then there exists an integer k divisible by t such
that the simple group G2(F�k) appears as a Galois group over Q.

2. Let � be an odd prime. Then there exists an integer k divisible by t
such that the finite simple group SO2n+1(F�k)der or the finite classical
group SO2n+1(F�k) appears as a Galois group over Q.

3. If � ≡ 3, 5 (mod 8), then there exists an integer k divisible by t such
that the finite simple group SO2n+1(F�k)der appears as a Galois group
over Q.

Proof. — Since rΠ(Iq) has order p, the divisibility of k by t follows from
part (3) of Lemma 3.3. If n = 3, � = 3, and we assume that t is even as we
may, then no Ree group 2G2(F32f+1) contains an element of order p. Indeed,

2G2(F32f+1) < G2(F32f+1) < SO7(F32f+1),

and t does not divide 2f + 1. This shows that the reduction of rΠ modulo �
cannot be a Ree group. It remains to deal with the third statement. Assume
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now that the Galois group given by part (2) is SO2n+1(F�k). Then the
subgroup SO2n+1(F�k)der of index 2 defines a quadratic field L. This field is
unramified outside {2, �, q,∞}, since the same holds for the representation
rΠ. Since the image of the inertia Iq is of order p, it lands in the subgroup
SO2n+1(F�k)der. Thus, L is unramified at q also. Moreover, by Proposition
4.1, the image of the decomposition group D2 is a group such that the
quotient by its commutator is odd. Such a group must be contained in the
subgroup SO2n+1(F�k)der. This shows not only that that L is unramified at
2, but moreover 2 splits in L. We remind the reader that for an odd prime
� the unique quadratic field unramified outside {�,∞} is Q(

√
�) if � ≡ 1

(mod 4) and Q(
√
−�) if � ≡ 3 (mod 4). However, since 2 splits in this field

if and only if � ≡ 1, 7 (mod 8) we see that if � ≡ 3, 5 (mod 8) the Galois
group constructed in part (2) is in fact SO2n+1(Fk

� )
der. �

12. On future directions

One difficulty that we needed to address in this paper came from the fact
that the group GL2n+1(Qp) has no self-dual supercuspidal representation
unless p = 2. In order to construct Galois groups of type Bn this problem
was resolved by introducing the self-dual supercuspidal representation Π2

of GL2n+1(Q2) whose parameter contains a Jordan subgroup of SO2n+1(C).
For Galois groups of type G2 the construction is based on a technical im-
provement of Theorem 1.1 due to Shin, which is based on the fundamental
lemma for unitary groups. Another way, which avoids the use of the funda-
mental lemma, would be to pick Π2 so that its parameter comes from the
Jordan subgroup in G2. More precisely the parameter of Π2 should be the
homomorphism φ2 : WQ2

→ G2 described in Proposition 4.2. In order to
obtain a global lift from G2 to GL7 with this Π2 as a local component one
would need to complete the following (doable) program:

• Define, via induction from an open compact subgroup, a generic su-
percuspidal representation σ2 of G2(Q2) corresponding to the param-
eter φ2.

• Compute the theta lift of σ2 to PGSp6(Q2).

• Show, using the method of [Sa2], that the further lift to GL7(Q2) is
Π2.

A construction of supercuspidal representations attached to parameters
arising from Jordan subgroups is a subject of the forthcoming paper by
Gross and Reeder [GR]. The completion of the three step program would
give Galois groups of type G2 except in the residual characteristic 2 without
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using results of Shin [Sh]. There is yet another approach which removes the
restriction � �= 2, but introduces a different conjecture. Let G denote Sp2n

or G2. Then using the trace formula it is possible to show that there exists
a cuspidal automorphic representation σ of G(A) unramified at all primes
different from �, q and such that

• σ∞ is a discrete series representation with a large (unspecified) pa-
rameter (weight).

• σq is a specified supercuspidal representation.

• σ� is the Steinberg representation.

Assuming that σ is globally generic then Π, the lift of σ to GL2n+1(A),
is automatically cuspidal and has a discrete series representation at one
local place, since Π� is the Steinberg representation of GL2n+1(Q�). (We
use here that the theta lift of the Steinberg representation of G2(Q�) is the
Steinberg representation of PGSp6(Q�), see [GrS].) Since matrix coefficients
of the Steinberg representation are in L1+ε(G) and therefore not integrable,
we note that the method of Poincaré series cannot be used to construct
such σ.

In principle our method could be extended to other groups. The main
limitation at the moment is the lack of �-adic representations attached to
automorphic representations. If we assume, for example, that one can attach
a 26-dimensional �-adic representation to an algebraic automorphic form of
the exceptional group F4 then we would be able to construct finite groups
of type F4 as Galois groups over Q. Indeed, to this end one would pick a
cuspidal automorphic representation σ of F4 such that for two primes p1 and
p2 the local components σp1 and σp2 are tame supercuspidal representations
whose parameters have groups of type (8, p1) and (12, p2), respectively, as
the image. Thus, if the two parameters at p1 and p2 are picked so that
the images of the local decomposition groups are deeply embedded, then
the results of Section 10 imply that the restriction modulo � of the �-adic
representation attached to σ will give finite groups of type F4(F�k) as Galois
groups over Q.

13. Errata to [KLS]

• With the definition of the group of type (n, p) in [KLS], to ensure
that ρ̄(Dq) in §5.2 be of type (n, p) we should ask that the K of
§3.3 also contain Q(ζ�), in addition to the other conditions there.
Alternatively, and better, the definition of a group of type (n, p) in
[KLS] could be modified (and made less restrictive) as in Definition
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10.2 below. All relevant statements in [KLS] then go through with
this altered definition, with obvious modifications in their proof.

• L. Dieulefait and G. Wiese pointed out a mistake in the arguments
of [KLS] because of which the main theorem of loc. cit. has to be
weakened as follows:

Theorem 13.1. — If we fix a prime � and integers n, t � 1 with
n = 2m even, the finite simple group PSpn(F�k) or PGSpn(F�k) oc-
curs as a Galois group over Q for some integer k divisible by t.

The mistakes in the arguments are:

– The last sentence of Corollary 2.6 is wrong, as also is the last
sentence of its proof. Both should be disregarded.

– The last paragraph of §5.2 is wrong and should be disregarded.

– Remark (iii) on page 561 should be disregarded.
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