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Nonlinear Maps between Besov and Sobolev spaces

Philip Brenner
(1)

, Peter Kumlin
(2)

RÉSUMÉ. — Notre résultat principal est que pour une grande famille
d’applications non linéaires entre espaces de Besov et de Sobolev, l’interpo-
lation est un phénomène propre aux petites dimensions. Ceci prolonge des
résultats obtenus précédemment par Kumlin [13] pour des applications
analytiques au cas d’applications Hölder continues ou encore Lipschitz
(Corollaires 1 and 2), et qui remontent aux idées de B.E.J. Dahlberg [8].

ABSTRACT. — Our main result shows that for a large class of nonlinear
local mappings between Besov and Sobolev space, interpolation is an ex-
ceptional low dimensional phenomenon. This extends previous results by
Kumlin [13] from the case of analytic mappings to Lipschitz and Hölder
continuous maps (Corollaries 1 and 2), and which go back to ideas of the
late B.E.J. Dahlberg [8].

1. Main result

Our main result shows that for a large class of nonlinear local mappings
between Besov and Sobolev space, interpolation is an exceptional low di-
mensional phenomenon. We give results which are extensions of previous
results by Kumlin [13] from the case of analytic mappings to Lipschitz and
Hölder continuous maps (Corollaries 1 and 2), and which go back to ideas
of the late B.E.J. Dahlberg [8].
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(1) IT-university of Göteborg, University of Gothenburg and Chalmers University of

Technology SE-412 96 Göteborg Sweden
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First an important definition in this context: In the formulation of the
Main Theorem we use a notion of “a set of mappings F admitting interpo-
lation on scales of Banach spaces” which is given by

Definition 1.1. — Let A = {Aθ}θ∈Θ=[s0,s1] and A′ = {A′
θ′}θ′∈Θ′=[s′0,s

′
1]

be ordered scales of Banach spaces, i.e. Aθ1 ⊂ Aθ2 whenever θ1 > θ2 and
A′
θ′1

⊂ A′
θ′2

whenever θ′1 > θ′2 respectively. We say that a family F admits
interpolation on the ordered scales (A,A′) if for every F ∈ F

1. F (u) ∈ A′
s′0

for all u ∈ As0 ,

2. F (u) ∈ A′
s′1

for all u ∈ As1 , and

3. the increasing function s′F (s) = sup{t ∈ [s′0, s′1] : F (u) ∈ A′
t all

u ∈ As} is a mapping of (s0, s1) onto (s′0, s′1).

In the following we look at scales of interpolation spaces as the scales of
Banach spaces and, in particular, we consider scales of Sobolev and Besov
spaces. Here and in the following we assume that 1 � p � 2 � p′ are dual
exponents, i.e. 1

p + 1
p′ = 1, and that 1 � r � ∞. The Besov space (we

refer to section 3 for those unfamiliar with these spaces) Bs,q
p (Ω) will be

written simply Bs,q
p in case Ω = Rn. The same convention will be used for

the Sobolev spaces Hs
2 discussed below.

Notice that the space dimension n will play an important role
in the results. All functions u below are defined on Rn.

Definition 1.2. — A family F of mappings is said to admit interpola-
tion on the scale of Besov spaces (Bs+1,r

p , Bs′,r
p′ ), 0 � s � σ, 0 � s′ � σ′ if

for every F ∈ F

1. F (u) ∈ Lp′ for all u ∈ B1,r
p ,

2. F (u) ∈ Bσ′,r
p′ for all u ∈ Bσ+1,r

p , and

3. there exists a realvalued function r′ = r′F (s), r′F (s) � r, such that the
the increasing function

s′F (s) = sup{t ∈ [0, σ′] : F (u) ∈ Bt,r′

p′ all u ∈ Bs+1,r
p }

is a mapping of (0, σ) onto (0, σ′).

In the linear case, familiar interpolation methods give r = r′ and with
s = θσ that s′ = θσ′ for 0 < θ < 1. In case of nonlinear mappings, the
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interpolation may result in s′T (s) < s even when σ = σ′ as we will see
in Theorem 2.1 below. We will (as in the references above) study the case
when F = {F} is a singleton set. Here F is a local mapping consisting
of the composition u �→ f(u) with a reasonably smooth function f . If as
above F admits interpolation we say, for short, that the mapping F admits
interpolation. Notice that in the case of compositions, necessarily σ′ � σ+1.
Here, and in the following [x] denotes the integer part of x ∈ R.

Theorem 1.3 (Main Theorem). — Let f ∈ C [σ′]+1 where σ′ > 1+2p
p′

and 1 � p � 2 � p′ with dual exponents p, p′. Assume that the mapping

F : u �→ f(u)

admits interpolation on the scale of Besov spaces (Bs+1,r
p , Bs′,r

p′ ), 0 � s � σ,
0 � s′ � σ′. Moreover assume that there exists a β > 0 such that

s′F (s) � βs for 0 < s < σ,

where s′F (s) is defined above. Set φ(p) = 2(p − 1)(1 + 2p) and let n(p, β) =
max(φ(p)

β , 2 + 2p) − 1. Then either the space dimension n � n(p, β) or else
f(z) = Dz for some constant D.

Notice that the result is independent of the interpolation method used.

Remark 1.4. — The proof of the Main Theorem provides more detailed
information: There is a strictly increasing function p(β) of β , 1 < p(β) �
1+

√
5

2 such that
n(p, β) = 1 + 2p for 1 � p < p(β)

and

n(p, β) =
φ(p)

β
− 1 for p(β) � p � 2.

In addition p(β) = 1 + O(β) as β → 0.

In particular n(2, β) = 10
β − 1 and we get the following important special

case:

Theorem 1.5 (Main Theorem L2 case). — Let f ∈ C [σ′]+1, with σ′ >
5
2 , be a function such that the mapping

F : u �→ f(u)

admits interpolation on the scale of Sobolev spaces (Hs+1
2 , Hs′

2 ), 0 � s � σ,
0 � s′ � σ′. Assume that there is a β > 0 such that s′F , the function defined
above, satisfies the inequality

s′F (s) � βs for 0 < s < σ.
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Then either the space dimension n � 10
β − 1 or else f(z) = Dz for some

constant D.

Remark 1.6. — In the Main Theorem “L2 case”, the existence of a β > 0
such that

s′F (s) � βs for 0 < s < σ

follows for, say, f sufficiently smooth satisfying |f(x)| � C|x|, |f ′(x)| � C
for all x ∈ Rn. Here clearly s′F (s) � 1

σ s holds for 0 < s < σ.

For local mappings, the Main Theorem applies to the interpolation re-
sults of Heintz and von Wahl for analytic mappings [11], those of Peetre [18]
for Lipschitz mappings and of Maligranda [16] for Hölder continuous map-
pings. In all cases, the Main theorem tells that for a large class of nonlinear
mappings, interpolation is an exceptional, low dimensional phenomenon.
We demonstrate this in two corollaries, which are consequences of the main
theorem and Theorem 2.1 in section 2.

We say that the mapping H1
2 � u �→ f(u) ∈ L2 is Hölder continuous of

order α, Lipschitz continuous if α = 1, if

‖f(u) − f(v)‖L2 � g(‖u‖H1
2
, ‖v‖H1

2
)‖u − v‖αH1

2
for u, v ∈ H1

2 , (1.1)

where g(., .) is a locally bounded function on R2
+, increasing in each of its

arguments.

Corollary 1.7. — Let σ > 0, σ′ > 5
2 and let f ∈ C [σ′]+1. Assume that

H1
2 � u �→ f(u) ∈ L2

is Lipschitz continuous and that

‖f(u)‖Hσ′
2

� h(‖u‖H1
2
)‖u‖Hσ+1

2
for u ∈ Hσ+1

2 , (1.2)

where h(·) is a locally bounded increasing function on R+. Then either n <
10 or else f(z) = Dz for some constant D.

We may weaken the assumptions on the mapping properties of f and
still get results that are consequences of the Main Theorem, as we will prove
below.

Corollary 1.8. — Let σ > 0, σ′ > 5
2 and let f ∈ C [σ′]+1. Assume that

H1
2 � u �→ f(u) ∈ L2
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is Hölder continuous of order α, 0 < α < 1 and that the mapping

Hσ+1
2 � u �→ f(u) ∈ Hσ′

2

has at most power growth, i.e.

‖f(u)‖Hσ′
2

� h(‖u‖H1
2
)‖u‖µ

Hσ+1
2

, for u ∈ Hσ+1
2 , (1.3)

where h(·) is a locally bounded increasing function on R+. Assume that
µ � α. Then there exists an integer n(α) such that either n < n(α) or else
f(z) = Dz for some constant D. Moreover n(α) � O( 1

α ) as α → 0.

In many cases, the growth condition (1.3) can be derived in low dimen-
sions from (a possibly local version of) the inequality

sup
|γ|=[s′]

‖∂γ
xf(u)‖L2 �

C max(‖f (l)(u)‖Lr‖u‖
(l−1)
L∞

: 1 � l � [s′]) sup
|γ|=[s′]+1

‖∂γ
xu‖L2 , (1.4)

valid for r > n. Here we denote ∂γ
x = ∂γ1

x1
∂γ2

x2
. . . ∂γn

xn
with γ = (γ1, γ2, . . . , γn)

and |γ| = Σn
i=1γi. The inequality (1.4) follows from the Sobolev lemma and

the Gagliardo-Nirenberg inequality (see [9], [17], and also e.g. Hörmander
[12], Corollary 6.4.5). Conditions under which u �→ f(u) is bounded as a
mapping between Besov spaces (or between Lizorkin-Triebel spaces) are
given e.g. in Bourdaud et al. [4] (see also Kumlin [13] and Dahlberg [8], and
the references given in [4]).

Examples of nonlinear, non-local mappings between Besov and Sobolev
spaces generated by local nonlinear maps have been extensively studied in
the context of initial value problems for nonlinear Klein-Gordon and Wave
equations:

∂2
t u − ∆xu + m2u + f(u) = 0, t > 0, x ∈ Rn.

In the case of not necessarily small initial data, f is usually assumed to have
at most polynomial growth of the form f(u) 	 |u|ρ−1u. In the subcritical
and critical case (i.e. ρ � 1+ 4

n−2 ), the solution operators are Lipschitz con-
tinuous mappings from H1

2 to L2 (cf. [10], [5] and [1]). Using constructions
and ideas similar to those of Theorem 2.6 in the present paper, the authors
proved in [6] that the solution operators for these nonlinear equations are
not Lipschitz continuous as mappings from H1

2 to L2 for supercritical expo-
nents ρ (ρ > 1 + 4

n−2 ). Related results for polynomial nonlinearities f have
been obtained by Lebeau [14], [15].

– 109 –



Philip Brenner, Peter Kumlin

2. Nonlinear maps and nonlinear interpolation

In order to prove our results for α � 1 we have to introduce and use
the Besov spaces Bs,q

p , Bs′,q′

p′ and real interpolation based on Peetre’s K-
function (see [2], [3] and [7]), in fact mainly for p = p′ = 2. In general p
and p′ are assumed to be dual exponents, 1

p + 1
p′ = 1, 1 � p � 2 and the

standard inclusions (again see [3] pp. 142 and 152-153) between Besov and
Sobolev spaces

Bs,p
p ⊂ Hs

p ⊂ Bs,2
p

Bs,p′

p′ ⊃ Hs
p′ ⊃ Bs,2

p′

make the L2-results below to be consequences of the corresponding Besov
space results.

The following is a variation of results by Peetre [18] (for α = 1) and
Maligranda [16].

Theorem 2.1. — Let 0 < α � 1, and let f satisfy (1.1) and also the
conditions of either Corollary 1.7 or Corollary 1.8, so that

Hσ+1
2 (Rn) � u �→ f(u) ∈ Hσ′

2 (Rn)

with the estimate (1.2) for α = 1, i.e.

‖f(u)‖Hσ′
2

� h(‖u‖H1
2
)‖u‖Hσ+1

2
for u ∈ Hσ+1

2 ,

or the estimate (1.3) in case 0 < α < 1, i.e.

‖f(u)‖Hσ′
2

� h(‖u‖H1
2
)‖u‖µ

Hσ+1
2

for u ∈ Hσ+1
2 ,

with µ � α. Here h(·) denotes a locally bounded increasing function on R+.
For θ ∈ (0, 1) let s = σθ, s′ = σ′θ and let r � 1. Then the inclusion

Bs+1,r
2 (Rn) � u �→ f(u) ∈ B

α
µ s′, r

α

2 (Rn),

where µ = 1 if α = 1, holds.

Corollary 2.2. — Under the assumptions of Theorem 3, with σ = σ′,
the inclusion

Hs+1
2 (Rn) � u �→ f(u) ∈ Hs′

2 (Rn) (2.1)

holds for 0 < s < s0 = n
2 − 1 and any s′ < α

µs for α < 1, and with s′ = s if
α = 1.
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The corollary follows as mentioned directly from Theorem 2.1 and the
inclusions between Besov spaces above. Notice that in general, σ′ � σ + 1,
and scaling gives the result in this slightly more general case.

Remark 2.3. — The result of Theorem 2.1 is sufficient for our purposes,
places in our context natural restrictions on f , and allows a simple proof.
The results of Maligranda will in our context replace α

µ s̄ with α̃s̄ where

α̃ = α(µ − s

s0
(µ − α))−1 � α

µ

again by assumption with µ = 1 if α = 1.

Correspondingly, in Corollary 2.2 s′ < α
µs can be replaced by s′ < α̃s.

This can be used to give more detailed asymptotic estimates of n(α) as
α → 0 in Corollary 1.8.

The Lp-version of the following result due to Kumlin [13] is the main
ingredient in the proof of the Main Theorem.

Theorem 2.4 (Kumlin [13]). — Assume that n is a positive integer
and s, s′ � 0 satisfy

1. 0 < s + 1 < n
2 ,

2. 3
2 < s′ < n

2 ,

3. n > 4ss′−2s−2
2s′−3 , and

4. there exists an integer k � 2 such that n > 2s + 2 + 2 s−s′+1
k−1 .

If under these assumptions f ∈ C [s′]+1 and

Hs+1
2 (Rn) � u �→ f(u) ∈ Hs′

2 (Rn) (2.2)

then f is a polynomial of degree at most min([s′], k − 1) and f(0) = 0.

Condition 4. in Theorem 2.4 is motivated by the following observation:

Proposition 2.5. — Let Φ ∈ C∞
o (Rn), Φ(0) �= 0 and define Hτ (x) =

|x|τΦ(x). Then Hτ ∈ H s̄
2 if and only if s̄ < τ + n

2 .

We refer the reader to [7] (Proposition 4.2) for the straightforward proof of
this proposition.

Next we give a sketch of the proof of Theorem 2.4. For a complete proof
we refer to the Appendix.
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Proof. — (of Theorem 2.4): Assume that f(z) is a polynomial of degree
k or higher in z. Since 4) holds for k̄ � k if it holds for k, we may assume
that the coefficient of zk is nonzero, and that f(z) is of degree k. Take
z = Hτ ∈ Hs+1

2 such that Hτ (x)k ∼ |x|τkΦ(x)k /∈ Hs′

2 . By the proposition
this is the case if

τk +
n

2
− s′ < 0 < τ +

n

2
− s − 1

which follows from 4) with a suitable choice of τ . It remains to prove that 1)
through 3) imply that f is a polynomial of degree at most [s′]. We construct
a function v (to use as a counterexample) as follows. Compare Dahlberg [8].
Let yj = (10j, 0, . . . , 0) ∈ Rn and let u ∈ C∞

0 with support in {|x| � 2} and
such that u(x) = x1 in {|x| � 1}. Define

v(x) =
∞∑
j=1

Aju(
x − yj

εj
), x ∈ Rn, (2.3)

where 0 < Aj ↑ ∞ and εj = A−λ
j with λ > 0 to be chosen later. We note

that v ∈ C∞. If ∑
j

A2
jε

n−2(s+1)
j < ∞ (2.4)

then a straightforward computation (at least for integers s and for fractional
s see the Appendix) shows that v ∈ Hs+1

2 (Rn). If f is not a polynomial
of degree at most [s′], then there is an interval [a, b], a < b, such that
|f ([s′]+1)(t)| > 0 for a � t � b. If we use the special form of our function u,
we find that

‖f(v)‖2
Hs′

2
� C

∑
j

A2s′−1
j εn−2s′

j .

See Claim 2 in the Appendix. If then∑
j

A2s′−1
j εn−2s′

j = ∞ (2.5)

this contradicts the mapping property (2.2), i.e.

f(Hs+1
2 (Rn)) ⊂ Hs′

2 (Rn)

and our Theorem will be proved. Assumptions 1) through 3) imply that it
is possible to choose {Aj} and λ so that the properties (2.4) and (2.5) are
satisfied. This completes the proof of Theorem 2.4. �

In the proof of Theorem 2.4 above, it is easy to see what happens if we
replace the H2-spaces by Hp, Hp′ -spaces. Using the definition of the Besov
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spaces in terms of moduli of continuity below (again, see [3],[2] and section
3), the construction and the proof via the Lp versions of (2.4) and (2.5)
is essentially the same, although more technical (see Appendix or [13]), as
that already given of Theorem 2.4.

Theorem 2.6 (Kumlin [13]). — Assume that n is a positive integer,
1 � p � 2 � p′ where 1

p + 1
p′ = 1, q � 1 and s, s′ � 0 satisfy

1. 0 < s + 1 < n
p ,

2. 1+p
p′ < s′ < n

p′ ,

3. n > (p − 1) ss
′p′−s−1

s′− 1+p

p′
, and

4. there exists an integer k � 2 such that n( 1
p − 1

k
1
p′ ) > s + 1 − s′

k .

If under these assumptions f ∈ C [s′]+1 and

Bs+1,q
p (Rn) � u �→ f(u) ∈ Bs′,q

p′ (Rn) (2.6)

then f is a polynomial of degree at most min([s′], k − 1) and f(0) = 0.

We are now in position to give the proof of the Main Theorem.

Proof. — Since conditions in Theorem 2.6 are all strict inequalities, it
is enough to prove the result with s′ replaced by βs, with 0 < β � 1, in
1) through 4). Take s = 1+2p

p′β so that s′ = 1+2p
p′ , which is allowed since by

assumption σ′ > 1+2p
p′ .

Let us now refer to Theorem 2.6 conditions 1) through 4). With our choice of
s′, and with φ(p) = 2(p−1)(1+2p) and k = 2, by elementary computations
these are satisfied if

1. n > φ1(p, β) ≡ φ(p)
2β + p

2. n > φ2(p) ≡ 1 + 2p

3. n > φ3(p, β) ≡ φ(p)
β − 1

4. n > φ4(p, β) ≡ φ(p)
(3−p)β + (p − p2+2p−1

3−p )
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Here 1),2) and 4) are exact reformulations of the corresponding inequalities
in Theorem 2.6, while in 3) the exact expression φ(p)

β − 1
p−1 has been re-

placed by φ3(p, β) = φ(p)
β − 1. This more restrictive choice will simplify the

computations and results below.

Notice that φ, and so φ1, φ2 and φ3 are strictly increasing functions of
p. We first concentrate on the inequalities 1) through 3). Straightforward
computations show that φ1 = φ2 = φ3 for p = p(β), 1 < p(β) < 2 the
solution of

p2 = (1 + p)
1 + β

2
Differentiating, we see that p(β) is strictly increasing, and so

1 < p(β) � p(1) =
1 +

√
5

2
.

We also have p(β) = 1 + O(β) as β → 0. Since φ(p) is a second order
polynomial in p with zeros − 1

2 and 1, we get

φ3 � φ1 � φ2 for p(β) � p � 2,

φ3 � φ1 � φ2 for p(β) � p � 1.

Thus 1) through 3) hold if n > max(φ3, φ2). We next show that φ4 �
max(φ3, φ2), and hence also 4) holds if n > max(φ3, φ2). If we use that

φ(p)
β

� 2 + 2p for 1 � p � p(β),

φ(p)
β

� 2 + 2p for p(β) � p � 2,

straightforward computations show that

φ4 = φ(p)
(3−p)β + (p − p2+2p−1

3−p ) � 1 + 2p = φ2 for 1 � p � p(β),

φ4 = φ(p)
(3−p)β + (p − p2+2p−1

3−p ) � φ(p)
β − 1 = φ3 for p(β) � p � 2.

Thus 1) through 4) hold for

n > max(φ3, φ2) = max(φ(p)
β − 1, 1 + 2p) = max(φ(p)

β , 2 + 2p) − 1.

Since we have assumed that the mapping u �→ f(u) admits interpolation,
the condition (2.6) in Theorem 2.6 is also satisfied, and the main theorem
is proved. �

For the convenience of the reader we will give a proof of Theorem 2.1
in next section and in that context also a very short introduction to the
necessary concepts of real interpolation and Besov spaces.
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3. Besov spaces, real interpolation and the proof of Theorem 2.1

In this section we will shortly remind of the basic definitions and prop-
erties of real interpolation and Besov spaces. The basic references are [2],
[3] and [7], to which we refer the reader for additional information.

Let C1 ⊂ C0 be a Banach space couple. Then the K-functional
K(t, φ; C0, C1) is defined by

K(t, φ; C0, C1) = inf{‖φ0‖C0 + t‖φ1‖C1 : φ = φ0 + φ1, φi ∈ Ci},

where φ ∈ C1 and t � 0. Notice that

K(t, φ; Co, C1) � ‖φ‖C0 for t � 1. (3.1)

We define Cθ,q = (C0, C1)θ,q as the completion of C1 in the norm

‖φ‖Cθ,q
= (

∫ ∞

0

(t−θK(t, φ; C0, C1))q
dt

t
)1/q.

If C1 = Hs1
p , C0 = Hs0

p , s1 > s0, then Cθ,q defines the Besov space Bs,q
p ,

where s = (1 − θ)s0 + θs1. By definition, the family of Besov spaces have a
number of natural convexity and inclusion properties, as mentioned earlier,
for which we refer the reader to the already given basic references, and in
particular to [3]. In this context let us remind of the following well-known
interpolation result: This is important in the proof of Theorems 2.4 and 2.6,
when we want to translate the effect of a lower bound of the derivatives of
f in terms of bounds on Besov space norms. Bs,q

p has the intrinsic norm
(among many)

‖v‖Bs,q
p

�
∑

|α|=[s]

(∫ ∞

0

(t−s+[s]ω(r)
p (t, ∂αv))q

dt

t

) 1
q

+ ‖v‖Lp
, (3.2)

where [s] = sup{m ∈ Z : m � s} and r � 1 and we let ω
(r)
p (t, v) denote the

r-th modulus of continuity of v in Lp, i.e.

ω(r)
p (t, v) = sup

|h|�t
‖

r∑
k=0

rk(−1)r−kv(· + kh)‖Lp . (3.3)

We may now begin the proof of Theorem 2.1.

Proof. — In the following we let c denote a locally bounded function of
the H1

2 -norm of u, or a constant, where c may be different at each occurence.
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Similarily we let C denote constants that may vary from line to line. Set
K(t, v) ≡ K(t, v; H1

2 , Hσ+1
2 ) and K ′(t, v) ≡ K(t, v; L2, Hσ′

2 ). Choose e(t) ∈
Hσ+1

2 such that

‖u − e(t)‖H1
2

+ t‖e(t)‖Hσ+1
2

� 2K(t, u) (3.4)

In particular, by (3.4) we have

‖e(t)‖H1
2

� ‖u − e(t)‖H1
2

+ ‖u‖H1
2

� 3‖u‖H1
2
. (3.5)

By (1.1) and (1.3) we get

K ′(tµ, f(u)) � ‖f(u) − f(e)‖L2 + tµ‖f(e)‖Hσ′
2

� g(‖u‖H1
2
, ‖e(t)‖H1

2
)‖u − e‖αH1

2
+ h(‖e(t)‖H1

2
)tµ(‖e‖Hσ+1

2
)µ

and by the bound (3.5) and since by assumption, g is a locally bounded
function increasing in both variables and h is a locally bounded increasing
function

g(‖u‖H1
2
, ‖e(t)‖H1

2
) � c, h(‖e(t)‖H1

2
) � c,

where c, as remarked above, denotes a locally bounded function of ‖u‖H1
2
.

Then by the choice of e(t),

K ′(tµ, f(u)) � cK(t, u)α + cK(t, u)µ

Thus we get∫ ∞

0

(t−θαK ′(tµ, f(u)))
r
α

dt

t
� c

∫ ∞

0

(t−θK(t, u))r
dt

t

+ c

∫ ∞

0

(t−θ α
µ K(t, u))

rµ
α

dt

t

A change of variable in the first integral yields∫ ∞

0

(t−θαK ′(tµ, f(u)))
r
α

dt

t
=

1
µ

∫ ∞

0

(t−θ α
µ K ′(t, f(u)))

r
α

dt

t

and hence we obtain∫ ∞

0

(t−θ α
µ K ′(t, f(u)))

r
α

dt

t
� c

∫ ∞

0

(t−θK(t, u))r
dt

t

+ c

∫ ∞

0

(t−θ α
µ K(t, u))

rµ
α

dt

t
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By the definition and the inclusions between the Besov spaces, noting that
α
µ � 1 with equality only if α = µ = 1, this finally ends up as

‖f(u)‖
B

s′ α
µ

, r
α

2

� c(‖u‖Bs+1,r
2

)α + c(‖u‖
B

s α
µ

+1,r
µ
α

2

)µ

� c(‖u‖Bs+1,r
2

)α + c(‖u‖Bs+1,r
2

)µ.

This completes the proof of Theorem 2.1. �

Before we end, let us notice that we have wasted information in a number
of places in the proof of Theorem 2.1, in order to avoid technical arguments
involving advanced properties of real interpolation. For a more careful and
complete discussion see Maligranda [16].

4. Appendix

In the appendix we supply the full proof of Theorems 2.4 and 2.6, where
we use the formulation of the Besov norm given in (3.2). Theorem 2.4 is a
special case of Theorem 2.6 so it is enough to prove the later one. Moreover
we use the embeddings

Bs,q
p ⊂ Bs̃,q̃

p

for 1 � p � ∞, 1 � q � q̃ � ∞ and s � s̃. See [3].

Proof. — Since conditions 1)-4) in Theorem 2.6 only involve strict in-
equalities we can without loss of generality assume that s, s′ ∈ R+ \N due
to the embeddings above.

Set (as already mentioned in section 3)

v(x) =
∞∑
j=1

Aju(
x − yj

εj
), x ∈ Rn,

where u ∈ C∞
0 with support in {|x| � 2} such that u(x) = x1 in {|x| � 1},

yj = (10j, 0, . . . , 0) ∈ Rn and with 0 < Aj ↑ ∞ and εj = A−λ
j , λ > 0, to be

choosen later. We note that v ∈ C∞. It remains to prove that if f is not a
polynomial of degree at most [s′] there exists a λ > 0 such that{

v ∈ C∞(Rn)
⋂

Bs+1,p
p (Rn)

f(v) �∈ Bs′,p′

p′ (Rn)

provided conditions 1)-3) in Theorem 2.6 are fullfilled. Note that we have
used the first embedding result above here. The full statement of the theo-
rem is then a direct consequence of Proposition 2.5.
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Claim 1. — Σ∞
j=1Ap

j ε
n−(s+1)p
j < ∞ implies that v ∈ Bs+1,p

p (Rn).

Proof. — Consider ω
(1)
p (t, ∂αv) ≡ sup|η|�t ‖∂αv(·+ η)− ∂αv(·)‖Lp

where
|α| = [s + 1] = s + 1 − σ.

For 0 < t < 1 we have

(t−σω
(1)
p (t, ∂αv))p = sup|η|�t

∫
Rn |∂

α
x v(x+η)−∂α

x v(x)
tσ |pdx �

� Σ∞
j=1Ap

j sup|η|�t
∫
Rn |

∂α
x u( x+η−yj

εj
)−∂α

x u( x−yj

εj
)

tσ |pdx =

= Σ∞
j=1Ap

j ε
n−[s+1]p−σp
j sup|η|�t

∫
Rn |

∂α
x u(x− yj−η

εj
)−∂α

x u(x− yj

εj
)

( t
εj

)σ |pdx

where

sup
|η|�t

∫
Rn

|
∂αx u(x − yj−η

εj
) − ∂αx u(x − yj

εj
)

( t
εj

)σ
|pdx � C min((

t

εj
)(1−σ)p, (

t

εj
)−σp)

by the mean value theorem. This yields∫ 1

0
(t−σω

(1)
p (t, ∂αv))p dtt �

� Σ∞
j=1Ap

j ε
n−(s+1)p
j

∫ 1

0
min(( t

εj
)(1−σ)p, ( t

εj
)−σp) dt

t �

� CΣ∞
j=1Ap

j ε
n−(s+1)p
j .

For 1 � t we have

ω(1)
p (t, ∂αv) � Σ∞

j=12Ajε
n
p −[s+1]

j (
∫
Rn

|∂αx v(x)|p dx)
1
p � CΣ∞

j=1Ajε
n
p −[s+1]

j .

But Σ∞
j=1Ap

j ε
n−(s+1)p
j < ∞ implies that Σ∞

j=1Ajε
n
p −[s+1]

j < ∞ assuming
that εj = A−λ

j = 2−λj for some λ > 0. Thus∫ ∞

1

(t−σω(1)
p (t, ∂αv))p

dt

t
< ∞.

This gives

‖v‖Bs+1,p
p

� ‖v‖Lp + Σ|α|=[s+1](
∫ ∞

0

(t−σω(1)
p (t, ∂αv))p

dt

t
)

1
p < ∞.
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Claim 2. — Σ∞
j=1As′p′−1

j εn−s′p′

j < ∞ implies that f is a polynomial of
degree at most [s′].

Proof. — Set s′ = [s′] + σ′. Assume that f is not a polynomial of degree at
most [s′]. Then there exists a and b, a < b, such that

d(a, b) ≡ inf
t∈[a,b]

|f ([s′]+1)(t)| > 0.

Set

Sj(η) = {x ∈ Rn : |x + η − yj | < εj and a <
Aj

εj
(x1 + η1 − yj1) < b}.

Since Aj

εj
↑ ∞ as j → ∞ it follows that the volume measure of Sj(0)

⋂
Sj(η)

is � 1
2

εn
j

Aj
, where |η| � tj ≡ εj

Aj

b−a
10 , for j large enough, say j � j0. Then we

get for tj+1 � t � tj , j � j0,

(t−σ′
ω

(1)
p′ (t, ∂([s′],0,0,...,0)f(v)))p

′
=

= sup|η|�t
∫
Rn |

∂([s′],0,0,...,0)
x1

f(Σ∞
j=1Aju( x+η−yj

εj
))−∂([s′],0,0,...,0)

x1
f(Σ∞

j=1Aju( x−yj

εj
))

tσ′ |p′ dx

� sup|η|�t Σ
j
k=j0

A
[s′]p′

k ε
−[s′]p′

k

∫
Sk(0)

⋂
Sk(η)

|
f([s′])(Ak

x1+η1−yk
1

εk
)−f([s′])(Ak

x1−yk
1

εk
)

tσ′ |p′ dx

� CΣj
k=j0

A
[s′]p′+p′

k ε
−[s′]p′−p′

k t(1−σ′)p′ ε
n
k

Ak
.

Thus we get

‖f(v)‖
Bs′,p′

p′
� (

∫ ∞
0

(t−σ′
ω

(1)
p′ (t, ∂([s′],0,0,...,0)f(v)))p

′ dt
t )

1
p′

� C(Σ∞
j=1

∫ tj
tj+1

(t−σ′
ω

(1)
p′ (t, ∂([s′],0,0,...,0)f(v)))p

′ dt
t )

1
p′

� C(Σ∞
j=1{(Σ

j
k=j0

A
p′([s′]+1)−1
k ε

n−p′([s′]+1)
k )(( εj

Aj
)(1−σ′)p′ − ( εj+1

Aj+1
)(1−σ′)p′)})

1
p′

� C(Σ∞
j=j0+1As′p′−1

j εn−s′p′

j )
1
p′ = ∞.

This yields a contradiction by the assumption

Bs+1,p
p � v �→ f(v) ∈ Bs′,p′

p′

in the theorem. Hence d(a, b) = 0 for all a < b and f is a polynomial of
degree at most [s′]. �
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