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Ahlfors’ currents in higher dimension

Henry de Thélin
(1)

RÉSUMÉ. — On considère une application holomorphe non dégénérée
f : V �→ X o (X, ω) est une variété Hermitienne compacte de dimension
supérieure ou égale à k et V est une variété complexe, connexe, ouverte de
dimension k. Dans cet article, nous donnons des critères qui permettent
de construire des courants d’Ahlfors dans X.

ABSTRACT. — We consider a nondegenerate holomorphic map f : V �→ X
where (X, ω) is a compact Hermitian manifold of dimension larger than or
equal to k and V is an open connected complex manifold of dimension k.
In this article we give criteria which permit to construct Ahlfors’ currents
in X.

0. Introduction

Let f : V �→ X be a nondegenerate holomorphic map between an open
connected complex manifold V (non-compact) of dimension k and a com-
pact Hermitian manifold (X,ω) of dimension larger than or equal to k. We
consider an exhaustion function τ on V . This means that (see [14]):

(i) τ : V �→ [0,+∞[ is C1.

(ii) τ is proper (i.e. τ−1(compact) = compact).

(iii) There exists r0 > 0 such that τ has only isolated critical points in
τ−1([r0,+∞[).

In this article we will employ the notation V (r) = τ−1([0, r[).

(∗) Reçu le 06/10/08, accepté le 09/07/09
(1) Université Paris-Sud (Paris 11) Mathématique, Bât. 425 91405 Orsay France.
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The first important example is V = C
k and τ = ‖z‖2. When k = 1 we

are studying entire cuves in X. Another example is that of a pseudoconvex
domain V in C

k. If τ0 is its exhaustion function, we can easily transform τ0
into a function τ which satisfies the previous hypothesis (see [11] p. 63-65).

The goal of this article is to construct Ahlfors’ currents in X starting
from V and f . By definition, an Ahlfors’ current is a closed positive current
of bidimension (k, k) which is the limit of a sequence f∗[V (rn)]

volume(f(V (rn)))
(here

rn → +∞ and volume(f(V (rn))) :=
∫

V (rn)
f∗ωk is the volume of f(V (rn))

counted with multiplicity). When V = C and τ = ‖z‖2, M. McQuillan con-
structed such currents in [10] (see [1] too). These currents are fundamental
tools in the study of the hyperbolicity of X (see for example [6]). When
the dimension of V is larger than or equal to 2 it is not always possible to
produce Ahlfors’ currents. Indeed, for example, there exist domains Ω in C

2

which are biholomorphic to C
2 and such that Ω �= C

2 (Fatou-Bieberbach
domains). As a consequence, to produce Ahlfors’ currents it is necessary to
add a hypothesis on f .

When the dimension of X is equal to k, there exist criteria which imply
that f(V ) is dense in X (see [3], [13], [14], [8], [7], [2] and [12]). These criteria
use the degrees of f (see [3]) or the growth of the function f .

Our goal is to give criteria which use these degrees in order to produce
Ahlfors’ currents in X. Of course, in the case where the dimension of X is
equal to k, the existence of such currents will automatically imply that f(V )
is dense in X. Indeed, [X] is the only positive closed current of bidimension
(k, k) in X (up to normalization).

In this article, we will use the following degrees (tk−1 will be slightly
different from Chern’s one):

tk(r) =
∫

V (r)

f∗ωk,

which is the volume of f(V (r)) counted with multiplicity, and

tk−1(r) =
∫

V (r)

i∂τ ∧ ∂τ ∧ f∗ωk−1.

Let C be the set of critical values of τ in [r0,+∞[. V is connected and
non-compact so we can suppose that [r0,+∞[⊂ τ(V ).

The criteria that we will give on tk and tk−1 will strongly use the fol-
lowing inequality:
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Ahlfors’ currents in higher dimension

Theorem 0.1. — The functions tk and tk−1 are C1 on ]r0,+∞[\C and
C0 on ]r0,+∞[. If r ∈]r0,+∞[\C then

‖∂f∗[V (r)]‖2 � K(X)t′k−1(r)t
′
k(r).

Here K(X) is a constant which depends only on (X,ω) and

‖∂f∗[V (r)]‖ := sup
Ψ∈F(k−1,k)

|〈∂f∗[V (r)],Ψ〉|

where F(k − 1, k) is the set of smooth (k − 1, k) forms Ψ with ‖Ψ‖ :=
maxx∈X ‖Ψ(x)‖ � 1.

By using the previous inequality we can prove some criteria which imply
the existence of Ahlfors’ currents. Indeed, the difficulty for the construction
of Ahlfors’ currents is the closedness of a limit of f∗[V (rn)]

volume(f(V (rn)))
and the

previous Theorem gives an estimate for ‖∂f∗[V (rn)]‖. Here we give the
following two criteria:

Theorem 0.2. — We suppose that f is nondegenerate and of finite-type
(i.e. there exist C1, C2, r1 > 0 such that volume(f(V (r))) � C1r

C2 for
r � r1).

If

lim sup
r→+∞

tk−1(r)
r2tk(r)

= 0

then there exists a sequence rn which goes to infinity such that f∗[V (rn)]

volume(f(V (rn)))

converges to a closed positive current with bidimension (k, k) and mass equal
to 1.

When V = C and τ = ‖z‖2, the finite-type hypothesis holds modulo a
Brody renormalization (see for example [9]).

We now give one criterion which does not use this hypothesis.

Theorem 0.3. — If f is nondegenerate and if there exist ε > 0 and
L > 0 such that:

lim sup
r/∈C, r→+∞

t′k−1(r)
rtk(r)1−ε

� L

then there exists a sequence rn which goes to infinity such that f∗[V (rn)]

volume(f(V (rn)))

converges to a closed positive current with bidimension (k, k) and mass equal
to 1.
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The plan of this article is the following: in the first part we prove the
inequality (Theorem 0.1), in the second one we give the proof of both criteria
(Theorems 0.2 and 0.3). In the third part, we give a new formulation of the
criteria in the special case where V = C

k.

1. Proof of the inequality

Let C be the set of critical values of τ in [r0,+∞[. We recall that we
can suppose [r0,+∞[⊂ τ(V ). Notice that point (iii) in the hypothesis on τ
implies that C is discrete. When r ∈]r0,+∞[ and r /∈ C then τ : τ−1(]r −
ε, r+ε[) �→]r−ε, r+ε[ is a submersion for ε > 0 small enough. In particular,
τ−1(r) is a submanifold of V and ∂V (r) = τ−1(r). When r ∈ C, then τ−1(r)
is a compact set which is a submanifold of V outside a neighbourhood of a
finite number of points.

We begin now with the following lemma:

Lemma 1.1. — The functions tk and tk−1 are C1 on ]r0,+∞[\C and C0

on ]r0,+∞[.

Proof. — The form f∗ωk is positive and smooth and i∂τ∧∂τ∧f∗ωk−1 is
positive and continuous (τ is C1) so it is enough to show that t(r) =

∫
V (r)

Φ
is C1 on ]r0,+∞[\C and C0 on ]r0,+∞[ with Φ a positive continuous form
of bidegree (k, k).

We take r ∈]r0,+∞[\C and ε > 0 such that τ : τ−1(]r − ε, r + ε[) �→
]r − ε, r + ε[ is a submersion. Now, if r′ ∈]r − ε, r[, we have:

t(r) − t(r′)
r − r′ =

1
r − r′

∫
τ−1([r′,r[)

Φ =
1

r − r′
∫

[r′,r[

τ∗Φ.

The form τ∗Φ is continuous so it is equal to α(s)ds with α in C0(]r −
ε, r + ε[). We obtain:

t(r) − t(r′)
r − r′ =

1
r − r′

∫ r

r′
α(s)ds

which converges to α(r) when r′ → r. The same thing happens when we
consider r′ ∈]r, r+ε[, so the function t is differentiable at r and t′(r) = α(r).
In particular t is C1 on ]r0,+∞[\C.

Remark 1.2. — Notice that here we did not use that Φ is positive. We
will use this remark in the proof of Theorem 0.1.

– 124 –



Ahlfors’ currents in higher dimension

Now, consider r ∈ C. If we take ε > 0, then we can find two neighbour-
hoods Wε � W2ε of the (finite) number of the critical points in {τ = r}
such that

∫
W2ε

Φ � ε (because Φ is continuous). Now, let ψ be a C∞ func-
tion which is equal to 1 in a neighbourhood of Wε and to 0 outside W2ε

(0 � ψ � 1). Then, if r′ < r,

t(r)− t(r′) =
∫

V (r)\V (r′)

ψΦ+
∫

V (r)\V (r′)

(1−ψ)Φ � ε+
∫

V (r)\V (r′)

(1−ψ)Φ.

If α > 0 is small then τ is a submersion on τ−1(]r−α, r+α[)∩ (V \Wε).
In particular the function

r′ �→
∫

V (r)\V (r′)

(1 − ψ)Φ =
∫ r

r′
τ∗((1 − ψ)Φ)

goes to 0 when r′ → r. The same thing happens when we take r′ > r. As a
consequence, there exists δ > 0 such that if |r−r′| < δ then |t(r)−t(r′)| � 2ε,
i.e. t is continuous at r. �

We give now the proof of Theorem 0.1.

We take r ∈]r0,+∞[\C. We have:

‖∂f∗[V (r)]‖ = sup
Ψ∈F(k−1,k)

|〈∂f∗[V (r)],Ψ〉|

where F(k − 1, k) is the set of smooth (k − 1, k) forms Ψ with ‖Ψ‖ =
maxx∈X ‖Ψ(x)‖ � 1. If Ψ ∈ F(k − 1, k) then we can write (see for example
[5] chapter III Lemma 1.4)

Ψ =
K(X)∑
i=1

θi ∧ Ωi

where K(X) is a constant which depends only on X, the θi are smooth
forms of bidegree (0, 1) with ‖θi‖ � 1 and the Ωi are (strongly) positive
smooth forms of bidegree (k − 1, k − 1) with ‖Ωi‖ � K(X). So, to prove
the inequality it is sufficient to bound from above |〈∂f∗[V (r)], θ ∧ Ω〉|2 by
K ′(X)t′k−1(r)t

′
k(r) with θ a smooth form of bidegree (0, 1) with ‖θ‖ � 1, Ω

a positive smooth form of bidegree (k − 1, k − 1) with ‖Ω‖ � 1 and K ′(X)
a constant which depends only on (X,ω).

If ε > 0 is small then τ : τ−1(]r−ε, r+ε[) �→]r−ε, r+ε[ is a submersion.
Now, if we take r′ ∈]r − ε, r[, we have:
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A(r′, r) :=
∣∣∣∣ 1
r − r′

∫ r

r′
〈∂f∗[V (s)], θ ∧ Ω〉ds

∣∣∣∣
=

∣∣∣∣ 1
r − r′

∫ r

r′
〈∂[V (s)], f∗θ ∧ f∗Ω〉ds

∣∣∣∣ .
If we use the Stokes’ Theorem, we have:

A(r′, r) =
∣∣∣∣ 1
r − r′

∫ r

r′
〈[∂V (s)], f∗θ ∧ f∗Ω〉ds

∣∣∣∣
=

∣∣∣∣ 1
r − r′

∫ r

r′
〈[τ = s], f∗θ ∧ f∗Ω〉 ds

∣∣∣∣ ,
because for s ∈]r − ε, r + ε[ the boundary of V (s) is {τ = s}.

We obtain:

A(r′, r) =
∣∣∣∣ 1
r − r′

∫ r

r′

(∫
τ=s

f∗θ ∧ f∗Ω
)
ds

∣∣∣∣ .

Now τ : τ−1(]r − ε, r + ε[) �→]r − ε, r + ε[ is a submersion, so by using
Fubini’s Theorem (see [4] p. 334), we have:

A(r′, r) =

∣∣∣∣∣ 1
r − r′

∫
V (r)\V (r′)

dτ ∧ f∗θ ∧ f∗Ω
∣∣∣∣∣

=

∣∣∣∣∣ 1
r − r′

∫
V (r)\V (r′)

∂τ ∧ f∗θ ∧ f∗Ω
∣∣∣∣∣ .

Now, if we consider,

{φ, ψ} :=
∫

V (r)\V (r′)

iφ ∧ ψ ∧ f∗Ω

where φ and ψ are continuous forms of bidegree (1, 0), then {φ, φ} � 0
(because Ω is positive) and so by using the proof of the Cauchy-Schwarz’s
inequality we obtain that:

|{φ, ψ}| � ({φ, φ})1/2({ψ,ψ})1/2.
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In particular,

A(r′, r)2 �
∣∣∣∣∣ 1
r − r′

∫
V (r)\V (r′)

i∂τ ∧ ∂τ ∧ f∗Ω
∣∣∣∣∣

×
∣∣∣∣∣ 1
r − r′

∫
V (r)\V (r′)

if∗θ ∧ f∗θ ∧ f∗Ω
∣∣∣∣∣ .

Now if∗θ∧f∗θ∧f∗Ω is equal to f∗(iθ∧θ∧Ω) and iθ∧θ∧Ω � K ′(X)ωk

(which means that K ′(X)ωk − iθ∧θ∧Ω is a (strongly) positive form). Here
K ′(X) depends only on (X,ω) because ‖θ‖ � 1 and ‖Ω‖ � 1.

As a consequence, we have:∣∣∣∣∣ 1
r − r′

∫
V (r)\V (r′)

if∗θ ∧ f∗θ ∧ f∗Ω
∣∣∣∣∣ � K ′(X)

∣∣∣∣∣ 1
r − r′

∫
V (r)\V (r′)

f∗ωk

∣∣∣∣∣
= K ′(X)

(
tk(r) − tk(r′)

r − r′

)
.

On the other hand, there exists a constantK ′′(X) with Ω � K ′′(X)ωk−1

(we use ‖Ω‖ � 1). So, we have∣∣∣∣∣ 1
r − r′

∫
V (r)\V (r′)

i∂τ ∧ ∂τ ∧ f∗Ω
∣∣∣∣∣ � K ′′(X)

(
tk−1(r) − tk−1(r′)

r − r′

)
.

We obtain:

A(r′, r)2 � K(X)
(
tk−1(r) − tk−1(r′)

r − r′

) (
tk(r) − tk(r′)

r − r′

)
. (1.1)

Now, when r′ → r

A(r′, r)2 → |〈∂f∗[V (r)], θ ∧ Ω〉|2

because the function s �→ 〈∂f∗[V (s)], θ ∧ Ω〉 = −
∫

V (s)
∂f∗(θ ∧ Ω) is contin-

uous on ]r − ε, r + ε[ (see remark 1.2).

Finally, if we take r′ → r in the inequality (1.1), we have:

|〈∂f∗[V (r)], θ ∧ Ω〉|2 � K(X)t′k−1(r)t
′
k(r)

which gives the desired inequality.
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2. Proof of Theorems 0.2 and 0.3

2.1. Proof of the first criterion

We begin with this lemma:

Lemma 2.1. — If f is nondegenerate and of finite-type then there exists
a constant K > 0 such that:

∀r2 > 0 ∃r � r2 with volume(f(V (2r))) � Kvolume(f(V (r))).

Proof. — The hypothesis implies that there exist C1, C2, r1 > 0 such
that volume(f(V (r))) � C1r

C2 for r � r1.

If the conclusion of the lemma fails then for all K > 0 there exists r2 > 0
such that for all r � r2 we have volume(f(V (2r))) � Kvolume(f(V (r))).

So, if we take K >> 2C2 then we obtain (if l is large enough):

C1(2lr2)C2 � volume(f(V (2lr2))) � Klvolume(f(V (r2))).

As a consequence we have

volume(f(V (r2))) � C1r
C2
2

(
2C2

K

)l

which implies that volume(f(V (r2))) = 0 when we take l → ∞. It contra-
dicts the fact that f is nondegenerate. �

By using this lemma, we can find a sequence Rn → +∞ which satisfies

volume(f(V (2Rn))) � Kvolume(f(V (Rn))).

Theorem 0.1 gives now that:

∫ 2Rn

Rn

‖∂f∗[V (r)]‖dr � K(X)
∫ 2Rn

Rn

√
t′k−1(r)

√
t′k(r)dr.

We give the following sense to the integrals: for example, if there is one
point an of C in [Rn, 2Rn], we consider

∫ 2Rn

Rn
= limε→0

∫
[Rn,an−ε]∪[an+ε,2Rn]

.
All the functions that we consider are non negative, so the limit exists in
[0,+∞].
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Now, by using the Cauchy-Schwarz’s inequality, the last integral is smaller
than

K(X)

(∫ 2Rn

Rn

t′k−1(r)dr

)1/2(∫ 2Rn

Rn

t′k(r)dr

)1/2

� K(X)
√
tk−1(2Rn)

√
tk(2Rn).

For the last inequality it is important to use that tk−1 and tk are con-
tinuous on ]r0,+∞[ (see Theorem 0.1).

It implies that there exists a sequence rn ∈ [Rn, 2Rn] such that:

‖∂f∗[V (rn)]‖ � K(X)
Rn

√
tk−1(2Rn)

√
tk(2Rn),

i.e.
‖∂f∗[V (rn)]‖

volume(f(V (rn)))
� 2K(X)

√
tk−1(2Rn)

(2Rn)2tk(2Rn)
× tk(2Rn)

tk(rn)

because volume(f(V (rn))) = tk(rn).

Now we have
tk(2Rn)
tk(rn)

� tk(2Rn)
tk(Rn)

� K

and by using the hypothesis,√
tk−1(2Rn)

(2Rn)2tk(2Rn)
→ 0.

So, we obtain that

‖∂f∗[V (rn)]‖
volume(f(V (rn)))

→ 0.

The current Tn := f∗[V (rn)]

volume(f(V (rn)))
is positive with bidimension (k, k)

and mass equal to 1, so there exists a subsequence of (Tn) which converges
to a positive current T with bidimension (k, k) and mass 1. Moreover,

‖∂Tn‖ =
‖∂f∗[V (rn)]‖

volume(f(V (rn)))
→ 0,

so the limit current T is closed. This proves the first criterion.
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2.2. Proof of the second criterion

Take ε > 0 and L > 0 such that

lim sup
r/∈C, r→+∞

t′k−1(r)
rtk(r)1−ε

� L.

Let Rn be a sequence of positive reals which goes to +∞. By using
Theorem 0.1, we have (see the proof of the last criterion for the definition
of the integrals):∫ Rn

r0+1

‖∂f∗[V (r)]‖2

t′k−1(r)tk(r)1+ε
dr � K(X)

∫ Rn

r0+1

t′k(r)
tk(r)1+ε

dr.

This last integral is smaller than K(X)
εtk(r0+1)ε � K ′(X, f) (here we use the

fact that 1
tk(r) is continuous on ]r0,+∞[).

So, we have ∫ +∞

r0+1

1
r

(
r‖∂f∗[V (r)]‖2

t′k−1(r)tk(r)1+ε

)
dr � K ′(X, f),

and
∫ +∞

r0+1
1
rdr = +∞ implies that there exists a sequence rn → +∞ such

that rn /∈ C and:

ε(n) :=
rn‖∂f∗[V (rn)]‖2

t′k−1(rn)tk(rn)1+ε
→ 0.

We obtain(
‖∂f∗[V (rn)]‖

volume(f(V (rn)))

)2

=
ε(n)
rn

t′k−1(rn)
tk(rn)1−ε

� (L+ 1)ε(n),

by hypothesis (for n large enough).

So,

‖∂f∗[V (rn)]‖
volume(f(V (rn)))

→ 0.

Now, by using exactly the same argument as in the proof of the previous
criterion, we obtain that there exists a subsequence of Tn := f∗[V (rn)]

volume(f(V (rn)))

which converges to a closed positive current of bidimension (k, k) and with
mass equal to 1.
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3. The special case V = C
k

In this paragraph we consider the special case where V = C
k.

Let β be the standard Kähler form in C
k. We want to transform our

previous criteria by using β instead of i∂τ ∧∂τ . More precisely, we consider:

ak(r) =
∫

B(0,r)

f∗ωk

and
ak−1(r) =

∫
B(0,r)

β ∧ f∗ωk−1.

Then we can prove a new formulation of our three Theorems:

Theorem 3.1. — The functions ak and ak−1 are C1 on ]0,+∞[ and for
r > 0 we have

‖∂f∗[B(0, r)]‖2 � K(X)a′k−1(r)a
′
k(r).

Here ‖.‖ is the norm in the sense of currents and K(X) is a constant
which depends only on (X,ω).

Proof. — We apply Theorem 0.1 with V = C
k and τ = ‖z‖2 (here we

have C = {0}) and then for r > 0:

‖∂f∗[V (r2)]‖2 � K ′(X)t′k−1(r
2)t′k(r2).

Now, ak(r) = tk(r2), so ak is C1 in ]0,+∞[ and

t′k(r2) =
a′k(r)
2r

.

The function ak−1(r) = t(r2) with t(r) =
∫

V (r)
β∧f∗ωk−1 so ak−1 is C1

in ]0,+∞[ (see proof of Lemma 1.1).

Moreover,

tk−1(r2) =
∫

V (r2)

i∂τ ∧ ∂τ ∧ f∗ωk−1 =
∫

B(0,r)

i∂τ ∧ ∂τ ∧ f∗ωk−1,

and i∂τ ∧ ∂τ = i
∑

i,j zizjdzi ∧ dzj .

On B(0, r) this last form is smaller than K(k)βr2.
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If we take 0 < r′ < r then

tk−1(r2) − tk−1(r′2) =
∫

B(0,r)\B(0,r′)

i∂τ ∧ ∂τ ∧ f∗ωk−1

� K(k)r2
∫

B(0,r)\B(0,r′)

β ∧ f∗ωk−1.

If we divide by r − r′ and take the limit r′ → r, we obtain:

2rt′k−1(r
2) � K(k)r2a′k−1(r).

Finally, we have:

‖∂f∗[B(0, r)]‖2 = ‖∂f∗[V (r2)]‖2 � K ′(X)t′k−1(r
2)t′k(r2) � K(X)a′k−1(r)a

′
k(r),

with K(X) = K(k)K ′(X) (we recall that the dimension of X is larger than
or equal to k). This is the inequality that we were looking for. �

Now if we replace in the proof of Theorems 0.2 and 0.3 the function tk−1

by ak−1, the function tk by ak and V (r) by B(0, r) then we obtain the two
following criteria:

Theorem 3.2. — We suppose that f is nondegenerate and with finite-
type (i.e. there exist C1, C2, r1 > 0 such that volume(f(B(0, r))) � C1r

C2

for r � r1).

If

lim sup
r→+∞

ak−1(r)
r2ak(r)

= 0

then there exists a sequence rn which goes to infinity such that f∗[B(0,rn)]

volume(f(B(0,rn)))

converges to a closed positive current with bidimension (k, k) and mass equal
to 1.

Theorem 3.3. — If f is nondegenerate and if there exist ε > 0 and
L > 0 such that:

lim sup
r→+∞

a′k−1(r)
rak(r)1−ε

� L

then there exists a sequence rn which goes to infinity such that f∗[B(0,rn)]

volume(f(B(0,rn)))

converges to a closed positive current with bidimension (k, k) and mass equal
to 1.

– 132 –



Ahlfors’ currents in higher dimension

Notice that when k = 1 then ak−1(r) = πr2 and therefore, in this con-
text, the hypothesis of this criterion is always fulfilled if f is nondegenerate.
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