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A Liouville theorem
for plurisubharmonic currents
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(1)

, Souad Mimouni
(2)

ABSTRACT. — The goal of this paper is to extend the concepts of alge-
braic and Liouville currents, previously defined for positive closed currents
by M. Blel, S. Mimouni and G. Raby, to psh currents on Cn. Thus, we
study the growth of the projective mass of positive currents on Cn whose
support is contained in a tubular neighborhood of an algebraic subvari-
ety. We also give a sufficient condition guaranteeing that a negative psh
current is Liouville. Moreover, we prove that every negative psh algebraic
current is Liouville. For the particular case of closed currents, under ade-
quate support conditions, we obtain a structure theorem.

RÉSUMÉ. — Le but de ces papiers est d’étendre les concepts de courants
algébrique et Liouville précédemment définis pour les courants positifs
fermés par M. Blel, S. Mimouni et G. Raby aux courants psh surCn. Nous
étudions alors la croissance de la masse projective des courants positifs
définis sur Cn dont le support est contenu dans un voisinage tubulaire
d’une sous-variété algébrique. Ensuite, nous donnons une condition suff-
isante, garantissant qu’un courant négatif et psh soit Liouville. De plus,
on montre que tout courant négative psh et algébrique est Liouville. Dans
le cas particulier des courants fermés, et sous des conditions adéquates
sur le support, nous obtenons un théorème de structure.
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1. Introduction

The class of positive, or negative plurisubharmonic (psh for short) cur-
rents appears today as a tool for the study of analytic objects and as a
natural extension of plurisubharmonic functions [Ga], [D-L], [D-E-E]... In
[D-S], the authors used negative psh currents to describe polynomial hulls
of compact sets in Cn. In particular, positive pluriharmonic currents have so
many important application in non Kähler geometry [H-L],[A-B] and also
for the study of laminations with singularities of a compact set in P2 [F-S].
In the present work, we deal with the algebraic and Liouville properties of
this class of currents related with certain support conditions. The following
definition will be useful.

Definition 1.1. — Let T be a current of order zero and of bidimension
(p, p) on Cn. One says that T is algebraic if there exists a current T̃ of order
zero on Pn such that T̃ = T on Cn and T̃ = 0 on the hyperplane at infinity
H∞.

Let ωFS be the Fubini-Study Kähler form on Pn, its restriction to Cn is
given by ωFS = ddc log(1 + |z|2) up to a constant. The topic of our paper
is positive algebraic currents, i.e. currents T on Cn ⊂ Pn that have finite
mass locally near the hyperplane at infinity. This is equivalently formulated

by saying that the projective mass ‖T‖p.m =
∫
Cn

T ∧ ωpFS is finite, (p, p)

denoting the bidimension of T . Note that T ∧ωpFS is the trace measure of T
with respect to the Fubini-Study Kähler form ωFS . On the other hand if we
extend the concept of the degree for positive currents, then it is clear that
there is a one-to-one correspondence between the class of positive algebraic
currents and those of finite projective mass or equivalently of finite degrees.

Thanks to the Demailly-Lelong-Jensen formula [De], a positive plurihar-
monic current T is algebraic if and only if the quantity νT (r) := σT ({|z|<r})

τpp!r2p

is bounded independently of r, where σT := T ∧ βp is the trace of T with
respect to the flat metric β = ddc|z|2. Then, one recovers the definition
given by [B-M-R] in case when T is closed.

Example 1.2 of positive algebraic currents. —

1. Let L = {v ∈ psh(C2), v(z, w) � log+ ||(z, w)|| + O(1) at infinity}.
By [Le], for all v ∈ L the current ddcv is algebraic. Conversely, all al-
gebraic closed positive current of bidegree (1, 1) on C2 can be written
cddcv with c � 0 and v ∈ L.
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2. Let g be the Hénon map defined by g(z, w) = (z2 + c + aw, z), with
(a, c) ∈ C∗×C. We denote by G+(z, w) = lim

n→∞
(1/2n) log+ ||gn(z, w)||

and G−(z, w) = lim
n→∞

(1/2n) log+ ||g−n(z, w)||. By [B-S], we have G
+ ∈

L. It follows that the currents T± = ddcG± are algebraic on C2. These
currents, which are also called Green currents, play a central role in
the theory of complex dynamics. Let be T̃− the trivial extension of
T− on P2 and ϕ a negative quasi-psh function on P2. By [C-G], one
has ϕ ∈ L1(T̃−∧ωFS). It follows that the current ϕ|C2T− is negative
and algebraic on C2.

3. Let χ ∈ D([0, 1]), ψ(z, w) = χ(|z|2) + iχ(|w|2), with (z, w) ∈ C2,
and T = i∂ψ ∧ ∂ψ. Then, T is a positive pluriharmonic current on
C2. Moreover, it is not hard to see that T has a total finite pro-
jective mass on C2, therefore it is algebraic and the trivial exten-
sion T̃ is a positive pluriharmonic current on P2 (see [D-E-E]). Let
us note here that in [F-S], the authors give explicitly the current
T̃ and used it for the evaluation of the infimum of the energy (i.e.
inf{

∫
P2 T ∧ T, T � 0 on P2, ddcT = 0,

∫
P2 T ∧ ωFS = 1}).

By [B-M-R], a closed positive current of bidegree (1, 1) and with tubular
support (i.e. included in {|P | � cte} where P is a non constant polynomial
in C[z1, ..., zn]) is shown to be an algebraic current. In the first section of
the present work, we will consider positive currents T whose support is
contained in the tube {|P1| + . . . + |Ps| � cte}. With adequate conditions
on the polynomials Pj , j = 1, ..., s, we study the growth of the projective
mass of T and the quantity νT according to whether T or −T is psh. In
particular, we show that if ddcT = 0, then T is algebraic. More precisely we
prove :

Theorem 1.3. — Let P1, ..., Ps, (s+k = n) be polynomials in C[z1, ..., zn]
having the same degree δ. Suppose that the intersection of the zeros of their
homogeneous parts of top degrees form an algebraic subset of codimension s
in Pn−1. Let T be a positive current with bidimension (p, p) on Cn such that
p � k. Assume that ddcT is negative and that SuppT ⊂ {|P1|+...+|Ps| � 1}.
Then, there exists a constant c > 0 such that for all r � 1 we have :
νT (r) � c. If furthermore T is also pluriharmonic, then T is an algebraic
current.

In the special case where T is a negative plurisubharmonic function,
Theorem 1.3 is classical without any assumption on the support. Notice
that in [E-M], the authors establish Theorem 1.3 in the case when P1 =
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zδk+1, ..., Ps = zδn (i.e. the support of T is contained in a strip). In the con-
text of dynamics, this class of currents is interesting and many of them
can be constructed as the invariant currents of certain polynomial endo-
morphisms [Du],... Furthermore, S. Giret shows in his thesis [Gi] that the
class of positive closed currents with support in a strip are well preserved
by pulling-back by a blow up with smooth center.

On the other hand, it is important to point out that Theorem 1.3 deals
with a much larger class of currents than the class of closed currents. In fact
when T is d−closed, Theorem 1.3 is an immediate consequence of Theorem
2.4 in [B-M-R], by almost the same proof as in corollary 2.5 of that paper.
Indeed, the condition that the algebraic hypersurfaces {Pi = 0} intersect
properly at infinity is clearly preserved by taking the intersection with a
general hyperplane H of Cn.

Denote by ‖T‖p.m(r) =
∫
{|z|�r} T ∧w

p
FS the projective mass of T carried

by {|z| � r} and by NT (r) =
∫ r
1
νT (t)/t dt the counting map associated

to T . As indicated in the introduction if T is positive and pluriharmonic
the quantity νT (r) coincides with ‖T‖p.m(r), hence a direct computation
shows that T is algebraic if and only if νT (r) = O(1) or, equivalently,
NT (r) = O(log r) (this equivalence will be proved later). In the general
situation, we obtain the following estimates:

Proposition 1.4. — Let T be a positive current of bidimension (p, p)
on Cn.

1. In both cases when T is psh or ddcT is negative, we have the growth
estimate νddcT (r) = O(νT (

√
2r)). In particular, if νT is bounded then

ddcT has finite total projective mass i.e. ddcT is algebraic.

2. If T is psh then ‖T‖p.m(r) = O(νT (r)). In particular, when νT is
bounded or equivalently, NT has logarithmic growth, then T is alge-
braic. If ddcT is negative, then there exists c, c′ > 0 such that for
every r � 2, we have : ‖T‖p.m(r) � c + c′(νT (r) + NT (

√
2r)). In

particular if νT is bounded, then the projective mass of T carried by
{|z| � r} has at most logarithmic growth i.e. ‖T‖p.m(r) = O(log r).

Let T be a positive current on Cn, we say that T is Liouville if for
every holomorphic function f on Cn, bounded on the support of T one has:
T ∧ ddc|f |2 = 0. The previous definition coincides then with the definition
given in [B-M-R] when T is closed. In the same paper, the authors prove
that a closed positive algebraic current is a Liouville current. For negative
psh currents we obtain our second main result:
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Theorem 1.5. — Let T be a negative psh current of bidimension (p, p)
on Cn. Let u be a C2 plurisubharmonic function on Cn and bounded on
the support of T . Assume that we have the following growth condition:
‖T‖p.m(r) = O((log log r)s) for some s � 0, then the currents T ∧ du ∧ dcu
and T ∧ ddcu vanish, and therefore T is Liouville. In particular, every alge-
braic negative psh current is Liouville.

Notice that Theorem 1.5 asserts the following elementary statement:
there are no negative psh compactly supported currents of bi-dimension
(p, p), if p > 0 (we will take u = |z|2 and remark that T has a globally finite
projective mass).

Another immediate consequence of Theorem 1.5 is the following: let P is
a non constant polynomial in C[z1, ..., zn] and T be a negative psh current
of bi-dimension (p, p) on Cn with support contained in {|P | � 1}. Then
the current T ∧ dP ∧ dP vanishes when T is algebraic (Theorem 1.5 for
u = |P |2). This allows us to prove a structure theorem: if F : Cn → Ck

is a equi-dimensional polynomial map and T is a closed positive algebraic
current of bidegree (k, k) on Cn supported on the inverse image by F of a
compact subset of Ck, then T can be split into two currents, the first of
which can be written as an average of integration currents on components
of fibres of F and the other is supported by an algebraic set containing the
critical points of F . More precisely, we prove the following theorem:

Theorem 1.6. — Let F = (P1, ..., Pk) : Cn → Ck be a polynomial map-
ping such that for all t ∈ Ck the codimension of the fiber F−1(t) in Cn is
k. Let T be a positive closed algebraic current of bidegree (k, k) on Cn such
that SuppT ⊂ {|P1| + ... + |Pk| � 1}. Denote by V the space of connected
components of different fibers P−1(t) in Cn, t ∈ Ck � F (X), where X is
the set of critical values of F , then there exists a unique positive measure
µ on V and a positive closed algebraic current R supported by an algebraic
set containing the critical points of F such that T =

∫
v∈V [P−1(t)]vdµ(v)+R.

In the following result, we give conditions on T weaker than those on
the support, guaranteeing that T is a Liouville current. Let π : Cn → C

be the orthogonal projection. By [B-E], the slice 〈T, π, z′〉 exists outside of
a pluripolar set in C. Let us denote by β′ = ddc|z′|2, β′′ = ddc|z′′|2 and
vε(z′, z′′) = |z′|2 + ε|z′′|2 for ε > 0.

Theorem 1.7. — Let T be a closed positive current of bidegree (1, 1)
on Cn. Assume that for all R > 0 there exists a function ε(R) such that
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0 < ε(R) −→ 0 if R −→ ∞, with
∫
{vε(R)<R} T ∧ β′′n−1 = o(R

n−1

ε(R) ) and a
constant γ > 0 such that for almost all z′, the mass ||〈T, π, z′〉||({vε(R) <

R}) = O(Rn−2−γ). Then, for all positive psh function u on Cn and bounded
on the support of T , we have T ∧ ddcu = 0. In particular, T is a Liouville
current.

Example 1.8. — In C2, the class of closed positive currents (and in the
same way negative psh) of bidegree (1, 1) and having a support in a strip
{|z′′| � 1} satisfies the hypothesis of theorem 1.7.

2. Preliminaries

Let Ω be an open set of Cn. As usual Dp,q(Ω) denotes the space of
smooth and compactly supported (p, q)−form on Ω. The dual D

′
p,q(Ω) is

the space of currents of bidimension (p, q) or of bidegree (n− p, n− q). For
T ∈ D

′
p,p(Ω), one says that T is positive if for all α1, ..., αp in D1,0(Ω),

the distribution T ∧ iα1 ∧ α1 ∧ ... ∧ iαp ∧ αp determines a positive measure
on Ω. We say that T is plurisubharmonic (psh for short) if the current
ddcT is positive, and pluriharmonic if ddcT = 0. Let β = ddc|z|2, (where
d = ∂ + ∂, dc = (i/2)(∂ − ∂)), be the Kähler form on Cn. Let T ∈D

′
p,p(Ω)

be of order zero on Ω. Then

T = i(n−p)
2 ∑
|I|=|J|=n−p

TIJdzI ∧ dz̄J ,

with TIJ are complex measures. One defines the mass measure of the current
T by ‖T‖ =

∑
|I|=|J|=n−p |TIJ |, and the trace measure by:

σT =
1

4pp!
T ∧ βp = (2−p

∑
|I|=n−p

TII)τn.

Let A be a closed subset in Ω and T a current of order zero on Ω � A.
Let T̃ be the trivial extension of T by zero across A. We say that T̃ exists
if T has locally finite mass on Ω. In the remaining part of this paper, we
denote by ‖T‖p.m(r) =

∫
{|z|�r} T ∧ wpFS the projective mass of T carried

by {|z| � r} and ‖T‖p.m =
∫
Cn

T ∧ wpFS the total projective mass on Cn.
Let T be a positive current of bidimension (p, p) such that the measure
ddcT ∧ βp−1 is positive on Ω. Let ϕ be a C2 function on Ω such that logϕ
is plurisubharmonic on {z ∈ Ω; ϕ(z) > 0}. Let

B(r) = {z ∈ Ω; ϕ(z) < r}, w = ddcϕ and α = ddc logϕ.
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For 0 < r1 < r2 such that SuppT ∩ B(r2) is relatively compact in Ω, one
has the following Lelong-Jensen formula [De] which is our basic tool in this
paper:

1
rp2

∫
B(r2)

T ∧ wp − 1
rp1

∫
B(r1)

T ∧ wp =
∫
B(r1,r2)

T ∧ αp

+
∫ r2

r1

( 1
tp
− 1

rp2

) ∫
B(t)

ddcT ∧ wp−1

+
( 1
rp1
− 1

rp2

) ∫ r1

0

dt

∫
B(t)

ddcT ∧ wp−1.

Recall that a homogeneous polynomial of degree δ in n variables depends
on (δ + n − 1)!/δ!(n − 1)!) coefficients. Hence, a polynomial homogeneous
map F = (F1, ..., Fn) can be identified with an an element of CN , where
N = n(δ + n − 1)!/δ!(n − 1)!. Moreover, by [G-K-Z] p.427, there exists a
unique polynomial Res(F1, ..., Fn) in the coefficients of F1, ..., Fn, such that
Res(F1, ..., Fn) = 0 if and only if the map F in degenerate. With the last
identification, the space of all homogeneous, non degenerate, polynomial
maps of degree δ on Cn is an open subset of CN .

We thank Prof. H. El Mir and J.-P. Demailly for a number of remarks
which contributed to improve this article. We also would like to thank the
referee for valuable comments.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 is divided into two steps :

Proof. — Step 1: case when P1 = zδk+1, ..., Ps = zδn.
First let us suppose that p = k, otherwise T vanishes. In fact, the current
T is C−flat, therefore if π is the projection on Ck, the slice 〈T, π, z′〉 exists
for almost all z′ ∈ Ck and it is a positive current having a negative ddc and
a compact support in Cn. By [D-E-E], we have 〈T, π, z′〉 = 0 for almost all
z′ and also T = 0 by applying the slicing formula for the C−flat currents.
Let us now continue the proof for the interesting case p = k. For instance
assume that T is smooth. Let χ ∈ D(R), χ(t) = 1 if |t| � 1 and χ = 0
if |t| > 2. Let β′ = ddc|z′|2, and for a = (a1, ..., ap) ∈ Cp, let us denote

g(a) =
∫
Cn

T ∧ χ(|z′ + a|2)β′p. Then
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2i
∂2g

∂a1∂a1

=
∫
Cn

T ∧ 2i∂2

∂a1∂a1

χ(|z′ + a|2)β′p

=
∫
Cn

T ∧ 2i∂2

∂z1∂z1

χ(|z′ + a|2)β′p

=
∫
Cn

T ∧ ddc
(
χ(|z′ + a|2) i

2
dz2 ∧ dz2 ∧ ... ∧ i

2
dzp ∧ dzp

)

=
∫
Cn

χ(|z′ + a|2)ddcT ∧ i

2
dz2 ∧ dz2 ∧ ... ∧ i

2
dzp ∧ dzp

Taking into account the fact that ddcT is negative, the last integral is nega-
tive. Hence the function a1 �→ −g(a1, a2, ..., ap) is negative and subharmonic
on C, therefore it is constant with respect to a1 and is equal to g(0, a2, ..., ap).
By iteration, one shows that g is independent from the variables a1, ..., ap.

Then, g(a) = g(0) =
∫
Cn

T ∧χ(|z′|2)β′p. Thus, there exists a constant C > 0

such that
∫
|z′|�1,z′′ T ∧ β′p � C. let be j ∈ {p + 1, ..., n}, then∫

Cn
T ∧ χ2(|z′|2)ddc|zj |2 ∧ β′p−1 =

∫
Cn

T ∧ ddc(|zj |2χ2(|z′|2)β′p−1)

−
∫
Cn
|zj |2T ∧ ddc(χ2(|z′|2)) ∧ β′p−1

−
∫
Cn

T ∧ dχ2(|z′|2) ∧ dc|zj |2 ∧ β′p−1

−
∫
Cn

T ∧ d|zj |2 ∧ dcχ2(|z′|2) ∧ β′p−1

= (1) + (2) + (3) + (3).

On the other hand, using Stokes’s theorem and the fact that |zj |2χ2(|z′|2)β′p−1

has a compact support relatively to T , we find

(1) =
∫
Cn

T ∧ddc
(
|zj |2χ2(|z′|2)β′p−1

)
=

∫
Cn

ddcT ∧|zj |2χ2(|z′|2)β′p−1 � 0.

Hence, we get the inequality

∫
Cn

T ∧ χ2(|z′|2)ddc|zj |2 ∧ β′p−1 � (2) + (3) + (3). (3.1)
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The term numbered (2) satisfies:

(2) = −
∫
Cn
|zj |2T ∧ ddc(χ2(|z′|2)) ∧ β′p−1 � C

∫
1�|z′|�2

T ∧ β′p � C1.

The existence of constant C follows from the fact that |zj | is bounded on
the support of T , observing that |χ|, |χ′| and |χ′′| are bounded. To obtain
C1, we may slightly modify χ by taking χ(t) = 1 if |t| � 2 and χ = 0 if
|t| > 3 and repeat the above argument. Let ϕ ∈D(R), 0 � ϕ � 1 and ϕ = 1
on Suppχ. According to the Cauchy-Schwarz inequality, we have:∣∣∣(3)

∣∣∣ �
∣∣∣ ∫
Cn

T ∧ 2χ(|z′|2)ϕ(|z′|2)dχ(|z′|2) ∧ dc|zj |2 ∧ β′p−1
∣∣∣

� (1/ε)
∫
Cn

T ∧ 2ϕ2(|z′|2)dχ(|z′|2) ∧ dcχ(|z′|2) ∧ β′p−1

+ ε

∫
Cn

T ∧ 2χ2(|z′|2)d|zj |2 ∧ dc|zj |2 ∧ β′p−1

� (C2/ε)
∫

1�|z′|�2

T ∧ β′p + 4ε
∫
Cn

T ∧ χ2(|z′|2)dzj ∧ dzj ∧ β′p−1.

Choosing ε = 1/8 and by (3.1), we get:∫
Cn

T∧χ2(|z′|2)ddc|zj |2∧β′p−1 � C1+8C2+
1
2

∫
Cn

T∧χ2(|z′|2)ddc|zj |2∧β′p−1.

Put C3 = 2(C1 + 8C2). As ddc|z′′|2 =
∑n

j=p+1 dd
c|zj |2, we have:∫

Cn
T ∧ χ2(|z′|2)ddc|z′′|2 ∧ β′p−1 � (n− p)C3.

In order to show that the integral
∫
Cn

T ∧ χ2(|z′|2)(ddc|z′′|2)2 ∧ β′p−2 is
finite, we use the last inequality and we rewrite the previous proof with
β′p−1 replaced by ddc|z′′|2∧β′p−2. While proceeding by induction, we show
that there exists a constant C4 > 0 such that for 1 � s � p we have:∫

Cn
T ∧ χ2(|z′|2)(ddc|z′′|2)s ∧ β′p−s � C4.

It follows that there exists C5 > 0 such that:∫
|z′|�1,|z′′|�1

T ∧ βp �
∫
Cn

T ∧ χ2(|z′|2)βp � C5.

By the above induction argument, in order to prove the last inequality for

T not smooth, we get the following
∫
|z′|�1,z′′

T ∧ β′p � C. In fact let Tε
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be a regularization of T and let gε be the function associated with Tε.
The sequence Tε converges weakly to T , and it is not hard to see that the
sequence gε(a) tends to g(a) (we may replace χ(|z′+a|2)β′p by χ(|z′′|)χ(|z′+
a|2)β′p to get a compactly supported test form, and we observe that the
integral is unchanged since T has support in a strip). By the above argument
we find that gε is constant with respect to a, thus g is constant as well and
therefore the desired inequality follows. For r > 1, one can cover {z, |z′| < r}
by at most ([r] + 1)2p unit cubes, where [r] denotes the integer part of r.
Therefore

∫
B(0,r)

T ∧ βp � C5([r] + 1)2p.

Step 2: general case. The hypothesis implies that there exists an ho-
mogeneous polynomial system (Qα1 , ..., Qαp) of C[z1, ..., zn] such that each
polynomial Qαj is of degree δ and so that the homogeneous parts of higher
degrees of the polynomials Qα1 , ..., Qαp , P1, ..., Ps vanish simultaneously at
the single point 0. Therefore, the map fα defined on Cn by

fα(z) := (Qα1(z), ..., Qαp(z), P1(z), ..., Ps(z)),

is proper and finite. The current (fα)∗T is positive of bidimension (k, k)
with negative ddc on Cn. Moreover, Supp(fα)∗T ⊂ {|zp+1|+ ...+ |zn| � 1}.
Let |α| = |(α1, ..., αp)| = α1+...+αp. We claim that: There exists a different
system of homogeneous polynomial (Qα1 , ..., Qαk)1�|α|�µ, that each of one
satisfy the above condition of the map fα and such that :

|z|2pδ−2p(ddc|z|2)p �
∑

1�|α|�µ
dQα1 ∧ dQα1

∧ ... ∧ dQαp ∧ dQαp .

In fact, in view of the characterization of the non degenerate polynomial
homogeneous maps (see the end of section 2), one can makes an appropri-
ate large choice of different system (Qα1 , ..., Qαk)1�|α|�µ (µ is big enough)
so that the homogeneous part of degree δ of the map fα is non degener-
ate and all the monomials of degree δ appear in the decomposition of the
product dQα1 ∧ dQα1

∧ ... ∧ dQαp ∧ dQαp . More precisely, for a sufficiently
large selection of different coefficients of Qα1 , we can obtain the inequality:∑

α1
dQα1 ∧ dQα1

� |z|2δ−2ddc|z|2, and similarly for the other αj . Let us
now continue the proof of step 2. Let r � 1, we have :∫

B(r)

T ∧ |z|2pδ−2p(ddc|z|2)p �
∫
B(r)

T ∧
∑

1�|α|�µ
dQα1 ∧ dQα1

∧ ... ∧ dQαp ∧ dQαp

�
∫
B(r)

T ∧
∑

1�|α|�µ
f∗α(ddc|w|2)p

=
∑

1�|α|�µ

∫
fα(B(r))

(fα)∗T ∧ (ddc|w|2)p.
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Let

|fα| =
s∑
j=1

|Pj |+
p∑
l=1

|Qαl |.

So, we have |fα(z)| � cα(1+|z|2)δ for suitable constants cα > 0. This implies
that B(r) ⊂ Kr =

⋂
1�|α|�µ f−1

α (B(c1αr
δ)), where c1α are positive constants.

By replacing r with c1αr
δ in the previous inequality, we obtain:∫

B(r)

T ∧ |z|2pδ−2p(ddc|z|2)p �
∫
Kr

T ∧ |z|2pδ−2p(ddc|z|2)p

�
∑

1�|α|�µ

∫
fα(Kr)

(fα)∗T ∧ (ddc|w|2)p

�
∑

1�|α|�µ

∫
B(c1αr

δ)

(fα)∗T ∧ (ddc|w|2)p.

Let be j0 ∈ N∗ such that r/2j0 � 1 and for j = 1, ..., j0, setting B(r/2j , r/2j−1)
= B(r/2j−1)�B(r/2j). Then,

(r/2j)2pδ−2p

∫
B(r/2j ,r/2j−1)

T ∧ (ddc|z|2)p

�
∫
B(r/2j ,r/2j−1)

T ∧ |z|2pδ−2p(ddc|z|2)p

�
∑

1�|α|�µ

∫
B(c1α(r/2j−1)δ)

(fα)∗T ∧ (ddc|w|2)p

� (r/2j−1)
2pδ

c
∑

1�|α|�µ
(c1α)2p.

The last inequality is a consequence of step 1 (one can choose c1α big enough
so that c1α

(
r/2j0−1

)δ � 1). We put c1 = c
∑

1�|α|�µ(c
1
α)2p, therefore∫

B(r/2j−1,r/2j)
T ∧ (ddc|z|2)p � c1(r/2j)

2p−2pδ(r/2j−1)2pδ

= c122p−2pδr2p(1/2j−1)2p.

As B(r, r/2j0) = ∪j0j=1B(r/2j−1, r/2j) and r/2j0 � 1, it is easy to see that :∫
B(r)�B(1)

T ∧ (ddc|z|2)p �
∫
B(r,r/2j0 )

T ∧ (ddc|z|2)p � c1r
2p.

Now, we conclude the proof by an enough perturbation of the center so
that we cover all the balls B(r). In particular, if T is pluriharmonic, then
according to the Lelong-Jensen formula, it is easy to see that T has a finite
total projective mass, therefore it is algebraic. �
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Remark 3.1. — In Theorem 1.3, the hypothesis that ddcT � 0 is neces-
sary as the following example shows: let D(0, 1) be the unit disk in C and
let h be a positive subharmonic function on C. Pick f, g ∈ D(D(0, 1)) � 0
such that g(z2)ddc|z2|2 � −ddcf(z2), and

T = f(z2)ddc|z1|2 + g(z2)(h(z1) + |z1|2)ddc|z2|2.

Then T is a positive psh current of bidegree (1, 1) having a support in the
strip {(z1, z2) ∈ C2, |z2| < 1}, but νT (r) is not bounded.

As mentioned above, the logarithmic growth of the counting function
NT (r) characterizes algebraic positive pluriharmonic currents on Cn. The
following result clarifies the relation between the growths of the projective
mass of T on {|z| < r} and the quantity νT (r), when T is a positive or
negative psh current.

Proposition 3.2. — Let T be a positive current of bidimension (p, p)
on Cn.

1. In both cases when T is psh or ddcT is negative, we have the growth
estimate νddcT (r) = O(νT (

√
2r)). In particular, if νT is bounded then

ddcT has finite total projective mass i.e. ddcT is algebraic.

2. If T is psh then ‖T‖p.m(r) = O(νT (r)). In particular, when νT is
bounded or equivalently, NT has logarithmic growth, then T is alge-
braic. If ddcT is negative, then there exists c, c′ > 0 such that for
every r � 2, we have : ‖T‖p.m(r) � c + c′(νT (r) + NT (

√
2r)). In

particular if νT is bounded, then the projective mass of T carried by
{|z| � r} has at most logarithmic growth, i.e. ‖T‖p.m(r) = O(log r).

Proof. — (1) Assume that ddcT is negative and consider a function
χ ∈ D(R) such that χ(t) = 1 if |t| � 1, and χ = 0 if |t| > 2. Let be
νddcT (r) = 1

r2p−2

∫
B(0,r)

ddcT ∧ βp−1. Thanks to Stokes’ theorem we have:

νddcT (r) � 1
r2p−2

∫
B(0,
√

2r)

ddcT ∧ χ(
|z|2
r2

)βp−1

=
1

r2p−2

∫
B(0,
√

2r)

T ∧ ddcχ(
|z|2
r2

) ∧ βp−1

=
1

r2p−2

∫
B(0,
√

2r)

T ∧ χ′(
|z|2
r2

)
βp

r2

+
1

r2p−2

∫
B(0,
√

2r)

T ∧ χ′′(
|z|2
r2

)
d|z|2 ∧ dc|z|2

r4
∧ βp−1
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=
1
r2p

∫
B(0,
√

2r)

T ∧ χ′(
|z|2
r2

)βp

+
1
r2p

∫
B(0,
√

2r)

T ∧ χ′′(
|z|2
r2

)
d|z|2 ∧ dc|z|2

r2
∧ βp−1.

As |χ′| and |χ′′| are bounded, and d|z|2 ∧ dc|z|2 � |z|2ddc|z|2, then

νddcT (r) � −cνT (
√

2r)− c′νT (
√

2r) � −c′′νT (
√

2r).

In the case of a psh current, we can reverse the above inequalities. Thus
the desired estimate follows. In particular, if νT is bounded then the cur-
rent ddcT is algebraic (since it is closed). Observe that the fact that νT is
bounded is equivalent to NT having logarithmic growth. Indeed, since T is
psh, then νT is increasing, so we have NT (r) � νT (r) log r �

∫ r2
r

νT (t)/t dt �
NT (r2).

(2) Assume that T is psh. By applying the Lelong-Jensen formula [De]
to the function ϕ(z) = 1+ |z|2, one easily shows that the projective mass of
T growth at most as νT (since the quantities involving ddcT are positive).
Assume now that ddcT is negative and choose c > 0 such that νddcT (r) �
−cνT (

√
2r), for all r > 0. Let 2 � r1 � t � r2, we denote by B(t) = {ϕ(z) <

t} and B(r1, r2) = {r1 < ϕ(z) < r2}. Using the negativity of the measure
ddcT ∧ βp−1, a direct computation gives :∫ r2

r1

(
1
tp
− 1

rp2

)
dt

∫
B(t)

ddcT ∧ βp−1

� −c
∫ r2

2

(t− 1)
tp

p−1

νT (
√

2t− 2)dt

� −2c
∫ √2r2−2

1

νT (t)/tdt = −2cNT (
√

2r2 − 2).

(
1
rp1
− 1

rp2

) ∫ r1

1

dt

∫
B(t)

ddcT ∧ βp−1

� c1 −
c

rp1

∫ r1

2

(t− 1)p−1νT (
√

2t− 2)dt

� c1 − cNT (
√

2r1 − 2) � c1 − cNT (
√

2r2 − 2),

where c1 = 1
2p

∫ 2

1
dt

∫
B(t)

ddcT ∧ βp−1. Thus using the Lelong-Jensen for-
mula, we deduce the following estimate:∫
B(r1,r2)

T ∧ (ddc log(1 + |z|2))p � −c1 + νT (
√
r2 − 1) + 3cNT (

√
2r2 − 2).
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For r1 = 2 and r2 = r2 +1, we have ‖T‖p.m(r) � c2 + c3(νT (r)+NT (
√

2r)).
In particular if νT is bounded, it is clear that NT (r) = O(log r). Thus, the
projective mass has at most logarithmic growth. �

It is a classical fact that closed positive currents on Pn can be described
as conical currents on Cn+1. For negative psh currents, the following result
is an immediate consequence of proposition 3.2:

Corollary 3.3. — Let T be an algebraic negative psh current of bidi-
mension (p, p) on Cn, then there exists a positive pluriharmonic current
Θ of bidimension (p + 1, p + 1) and conical on Cn+1, which is the trivial
extension of π∗(T̃ ) across 0, π is canonic projection π : Cn+1 � {0} → Pn.

Proof. — By considering the current −T instead, we may assume that
T is positive. Since T is algebraic, by the Lelong-Jensen formula νT must be
bounded then according to proposition 3.2, the current ddcT is algebraic.
By [D-E-E], the residual current S = d̃dcT − ddcT̃ is positive and closed,
and supported by H∞. This implies that the current ddcT̃ is negative on
Pn. Thanks to Stokes’ theorem, we have 0 =

∫
Pn

ddcT̃ ∧ωp−1
FS � 0. Then the

current T̃ is positive and pluriharmonic on Pn. Let π : Cn+1� {0} → Pn be
the canonical submersion. Then the current π∗(T̃ ) is positive pluriharmonic
of bidimension (p+1, p+1) on Cn+1�{0}, and by [D-E-E] it can be extended
to a positive pluriharmonic current Θ on Cn+1. It is clear that the current
Θ is conical, i.e. h∗rΘ = Θ, for every r ∈ C∗, with hr(z) = rz. It follows
that νΘ(r) ≡ is constant for all r > 0. The Lelong-Jensen formula implies
therefore Θ ∧ (ddc log |z|)p+1 = 0 on Cn+1 � {0}. �

Remark 3.4. — Let T be a positive psh current of bidimension (p, p) on
Cn. Assume that νT (r) is bounded. Then by proposition 3.2. the currents T

and ddcT are algebraic. As a consequence, the trivial extension currents T̃

and d̃dcT are of order zero on Pn. By [D-E-E], there exists a closed positive
current S supported by H∞ such that ddcT̃ = d̃dcT − S. Then, T̃ is a dsh
current (a current T is said dsh if T = T1−T2 and ddcTi = Ω+

i −Ω−i , i = 1, 2.
with Ti negative and Ω±i are positive closed). The class of dsh currents
recently introduced in complex dynamics turns out to be very useful. It is
easy to see that the current π∗(T̃ ) can be extended to a dsh and conical
current on Cn+1.
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4. Proof of Theorem 1.5

Before we give the proof of Theorem 1.5, let us state the following re-
mark:

Remark 4.1. — (1) Notice that the problem of defining the wedge prod-
uct T∧ddcu for a locally bounded psh function u and a negative (or positive)
psh current T is still open. For this raison we add the assumption that u is
C2 in Theorem 1.5. However, by a regularization argument we could replace
this hypothesis by assuming merely that u is C1 psh function on Cn (resp.
that u is locally bounded psh function on Cn), under the extra assumption
that T is normal, i.e. dT is of order zero (resp. that T is closed).

(2) Thanks to proposition 1.4, if νT (r) + NT (
√

2r) = O((log log r)s) for
some s � 0, then T is Liouville. Moreover, If T is pluriharmonic, it suffice
to assume that NT (r) = O((log log r)s) for some s � 0. Indeed, since νT is
positive and increasing, we have (log r)νT (r) � NT (r2).

Proof of Theorem 1.5. — There is no restriction in assuming that T is
positive and ddcT is negative and that u ∈ [0, 1/2] on support of T . Let χ ∈
C∞(R,R), such that χ = 1 on ]−∞, 1.1], χ = 0 on [1.9,+∞[ and 0 � −χ′ �
2. We consider the sequence (ψj)j∈N defined by ψj(z) = χ(2−j−1ψ(z)) with
ψ(z) = log(1+|z|2) and Kj = {z ∈ Cn; ψ(z) � 2j+1}. Then

⋃
Kj = Cn and

Kj is contained in
◦
Kj+1 = the interior of Kj+1 for all j. Since 2−j−1ψ(z) is

bounded above by 1 on Kj and bounded below by 2 on Cn�Kj+1, one has

0 � ψj � 1, ψj = 1 on a neighborhood of Kj included in
◦
Kj+1. It is easy to

see that there exists a constant c > 0 depending only on |χ′| and |χ′′| such
that −ddcψj � c

(
1

22(j+1) dψ ∧ dcψ + 1
2j+1 dd

cψ
)
. Since dψj ∧ dcψj is positive,

we infer

−ddcψ2
j = −2ψjddcψj − 2dψj ∧ dcψj � −2ψjddcψj

� 2c
( 1
22(j+1)

dψ ∧ dcψ +
1

2j+1
ddcψ

)
.

Putting α = ddcψ, we find

∫
Cn

ddc log(1+u2)∧T ∧αp−1 = lim
j→∞

∫
Cn

ψ2
jdd

c log(1+u2)∧T ∧αp−1. (4.1)

To simplify the notation, we denote by Bj =
◦
Kj+1 �

◦
Kj = {2j+1 � ψ <

2j+2}. Since ψj = 0 on Cn�
◦
Kj+1, and ψj = 1 on

◦
Kj , a simple computation
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yields

∫
Cn

ddc(ψ2
j log(1 + u2)) ∧ T ∧ αp−1

=
∫
◦
Kj+1

ψ2
jdd

c log(1 + u2) ∧ T ∧ αp−1

+
∫
Bj

log(1 + u2)ddcψ2
j ∧ T ∧ αp−1

− 2
∫
Bj

ψjd
c log(1 + u2) ∧ dψj ∧ T ∧ αp−1

+ 2
∫
Bj

ψjd log(1 + u2) ∧ dcψj ∧ T ∧ αp−1.

Observe that the form ψ2
j log(1 + u2) has a compact support. Thus by

Stokes’s theorem, we get

∫
Cn

ddc(ψ2
j log(1 + u2))∧ T ∧αp−1 =

∫
Cn

ψ2
j log(1 + u2)∧ ddcT ∧αp−1 � 0.

It follows that∫
◦
Kj+1

ψ2
jdd

c log(1 + u2) ∧ T ∧ αp−1

�
∫
Bj

− log(1 + u2)ddcψ2
j ∧ T ∧ αp−1

+ 2
∫
Bj

ψjd
c log(1 + u2) ∧ dψj ∧ T ∧ αp−1

− 2
∫
Bj

ψjd log(1 + u2) ∧ dcψj ∧ T ∧ αp−1.

(4.2)

Since log(1 + u2) is bounded on SuppT, according to the domination of
−ddcψ2

j , there exists a constant c1 > 0 such that :

∫
Bj

− log(1 + u2)ddcψ2
j ∧ T ∧ αp−1 � c1

22(j+1)

∫
Bj

dψ ∧ dcψ ∧ T ∧ αp−1

+ c1
2j+1

∫
Bj

T ∧ αp.

(4.3)
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Assume for instance that T is smooth. Then applying Stokes theorem and
using the equality −dcψ ∧ dT ∧ αp−1 = dψ ∧ dcT ∧ αp−1, we obtain

−
∫
{ψ<t}

dcψ ∧ dT ∧ αp−1 =
∫
{ψ<t}

d(ψ − t) ∧ dcT ∧ αp−1

=
∫
{ψ<t}

(t− ψ) ∧ ddcT ∧ αp−1.

The form ddcT is negative, so the last integral is also nonpositive. Hence,
for 0 < r1 < r2, we deduce∫

{r1�ψ<r2}
dψ ∧ dcψ ∧ T ∧ αp−1 =

∫ r2

r1

dt

∫
{ψ=t}

dcψ ∧ T ∧ αp−1

=
∫ r2

r1

dt

∫
{ψ<t}

T ∧ αp −
∫ r2

r1

dt

∫
{ψ<t}

dcψ ∧ dT ∧ αp−1

�
∫ r2

r1

dt

∫
{ψ<t}

T ∧ αp � (r2 − r1)
∫
{ψ<r2}

T ∧ αp.

(4.4)

If T is not smooth, we consider a regularization Tε of T and we use the
classical fact that the sequence

∫
{ψ<r} Tε∧ϕ tends to

∫
{ψ<r} T ∧ϕ for every

smooth differential form ϕ on Cn and for every r such that {ψ = r} is not
charged by the mass of T . Observe that the r’s not satisfying the previous
condition are at most a countable set. Moreover, the last integrals in (4.4) are
left continuous with respect to r1 and r2. Therefore, we obtain the desired
statement by considering two sequences rk1 , r

k
2 converging respectively to

r1, r2 and passing to the limit. Let us continue the proof : by hypothesis,
there exists c > 0 such that

∫
|z|<t T ∧ αp � c(log(log t))s. Then, we get the

inequality

(<)
∫
{ψ<t}

T ∧ αp =
∫
{|z|<et−1}

T ∧ αp � c(log t)s.

Taking account the above inequalities, we then have∫
Bj

dψ ∧ dcψ ∧ T ∧ αp−1 � 2j+1(c(j + 2)s(log 2)s). (4.5)

Moreover, we have

c1
2j+1

∫
Bj

T ∧ αp � c1
2j+1

∫
{ψ<2j+2}

T ∧ αp � c1c(j + 2)s(log 2)s

2j+1
.
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Summing up (4.3) and (4.5), we can find c2 > 0 such that∫
Bj

− log(1 + u2)ddcψ2
j ∧ T ∧ αp−1 � c2j

s

2j+1
. (4.6)

By (4.5) and the inequality of Cauchy-Schwarz, for ε > 0, we can estimate
the second term of the right member of the inequality (4.2) as follows :∣∣∣ ∫

Bj

ψjd
c log(1 + u2) ∧ dψj ∧ T ∧ αp−1

∣∣∣
� ε

∫
Bj

ψ2
jd log(1 + u2) ∧ dc log(1 + u2) ∧ T ∧ αp−1

+
1
ε

∫
Bj

dψj ∧ dcψj ∧ T ∧ αp−1

� ε

∫
Bj

ψ2
jdu ∧ dcu ∧ T ∧ αp−1

+
1

22(j+1)ε

∫
Bj

χ′2(2−j−1ψ(z))dψ ∧ dcψ ∧ T ∧ αp−1

� ε

∫
Bj

ψ2
jdu ∧ dcu ∧ T ∧ αp−1 +

c3j
s

2j+1ε
.

(4.7)

The latter inequality is derived from (4.5) and the fact that χ′2 is bounded.
The second and the third terms of the second member of (4.2) are conjugate.
Then by using (4.2),(4.6) and (4.7) we get :∫

◦
Kj+1

ψ2
jdd

c log(1 + u2) ∧ T ∧ αp−1

� 2ε
∫
Bj

ψ2
jdu ∧ dcu ∧ T ∧ αp−1 +

2c3js

2j+1ε
+

c2j
s

2j+1

(4.8)

A simple computation shows that ddc log(1 + u2) � 2(1−u2)du∧dcu
(1+u2)2 �

(24/25)du ∧ dcu on SuppT (since u ∈ [0, 1/2]). Observe that the last inte-

gral on Bj is bounded from above by the same integral on
◦
Kj+1. Consider

ε = 23/100, then

1
2

∫
◦
Kj+1

ψ2
jdu ∧ dcu ∧ T ∧ αp−1 � c4j

s

2j+1
. (4.9)

As ψj is equal to 1 on Kj , it is clear that 1
2

∫
Kj

du∧dcu∧T ∧αp−1 � c4j
s

2j+1
.

By letting j go to infinity, one gets the equality
∫
Cn
du ∧ dcu∧T ∧αp−1 = 0.
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We repeat the same argument and take into account that the integral in
the right hand side of (4.8) vanishes, and in this way we obtain ddc log(1 +
u2) ∧ T = 0. On the other hand, by the hypotheses on u, it is easy to
see that (8/5)u ddcu � ddc log(1 + u2) on SuppT . Hence, we conclude that
u ddcu∧T = 0 and also ddcu∧T = 0 (replace u by (u+1/2)/2). This implies
in particular that T is Liouville. When T is algebraic we may take s = 0 in
the inequality (<), since T has a globally finite projective mass. �

Remark 4.2. — Observe that in the proof of Theorem 1.5 we essentially
need the fact ‖T‖p.m(e2j ) = o(2j). Such an hypothesis is obviously true
when the projective mass of T has growth ‖T‖p.m(r) = O(log(log r))s.

5. Case of closed currents

This section is reserved to the case of closed positive currents, and we
prove here Theorems 1.6 and 1.7. For the proof of Theorem 1.6, we need
the following lemma cf. [De].

Lemma 5.1. — Let T be a closed positive current of bidimension (p, p)
on an open subset U of Cn, such that dzj ∧ dzj ∧ T = 0 for j = p + 1, ..., n.
Let π : z �→ z′′ = (zp+1, ..., zn) be the canonical projection on Cn−p. Assume
that the fibers π−1(t) are connected. Then T =

∫
π(U)

[z′′ = t]dµU (t) where
µU is a positive Radon measure on π(U).

Proof. — Let T = i(n−p)
2 ∑

|I|=|J|=n−p TIJdzI∧dzJ . For j = p+1, ..., n,
one has dzj ∧ dzj ∧ T = 0. This imply that TIJ = 0 for all I, J such that it
exists j ∈ {p + 1, ..., n} satisfying j �∈ (I ∪ J). Therefore, if {p + 1, ..., n} �⊂
(I∪J), we have TIJ = 0. We suppose that I, J verify (I∪J)∩{1, ..., p} �= ∅.
For λ = (λ1, ..., λn) ∈ Cn and S = (sp+1, ..., sn), let λS = λsp+1 ...λsn
and consider I0 = (p + 1, ..., n). Thanks to a standard inequality (see e.g.
Demailly [De]), we get:

λIλJ |TIJ | � 2p
∑

I∩J⊂M⊂I∪J
λ2
MTMM

= 2pλ2
I0
TI0I0 + 2p

∑
M,M∩{1,...,p}�=∅

λ2
MTMM

= 2pλ2
I0
TI0I0 .

(5.1)

Indeed, to show the second equality, we consider the set M such that M ∩
{1, ..., p} �= ∅. As |M | = n−p, there exists necessarily j ∈ {p+1, ..., n}�M .
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According to the above, we have TMM = 0. Then, λIλJ |TIJ | � 2pλ2
I0
TI0I0 .

Let s ∈ (I ∪ J)∩ {1, ..., p}, λs = 1/ε and λm = 1 for m �= s. By using (5.1),
we find

|TIJ | �
{

2pεTI0I0 si s �∈ I ∩ J
2pε2TI0I0 si s ∈ I ∩ J.

It follows that the only non vanishing coefficients of T are the TIJ satisfying
(I ∪J)∩{1, ..., p} = ∅. As |I| = |J | = n− p, one necessarily has I = J = I0,
therefore

T = i(n−p)
2
TI0I0dzI0 ∧ dzI0 = TI0I0idzp+1 ∧ dzp+1 ∧ ... ∧ idzn ∧ dzn.

Since T is d−closed, for j = 1, ..., p, we obtain ∂TI0I0/∂zj = ∂TI0I0/∂zj =
0, thus TI0I0 is independent of the variables z1, ..., zp. Therefore, for ψ ∈
Dp,p(U), we have:

〈T, ψ〉 =
∫
U

TI0I0idzp+1 ∧ dzp+1 ∧ ... ∧ idzn ∧ dzn

=
∫
π(U)

( ∫
Cp×{z′′}

ψ
)
TI0I0idzp+1 ∧ dzp+1 ∧ ... ∧ idzn ∧ dzn

=
∫
π(U)

( ∫
{z′′=t}

ψ
)
dµ(t).

�

Proof of Theorem 1.6. — Since T is algebraic, by theorem 1.5 we have
dPj∧dP j∧T = 0 for all j ∈ {1, ..., k}. Let a ∈ Cn be such that rank(dF (a)) =
k. Then one can suppose that∣∣∣( ∂Pi

∂zn+j−k
(a)

)
1�i,j�k

∣∣∣ �= 0.

The property remains true on a neighborhood U of a such that the map
f(z) =

(
z1, ..., zn−k, P (z)

)
is biholomorphic on U . Then, for all j ∈ {1, ..., k},

f∗(dzn+j−k ∧ dzn+j−k ∧ f∗T ) = dPj ∧ dP j ∧ T = 0 on U.

Hence, for all j ∈ {1, ..., k}, we have: dzn+j−k ∧ dzn+j−k ∧ f∗T = 0 on
f(U). On the other hand for ψ ∈ Dp,p(U), one has 〈T, ψ〉 = 〈T, f∗f∗ψ〉 =
〈f∗T, f∗ψ〉. Therefore, according to lemma 5.1, there exists a unique positive
Radon measure µU on π(f(U)) = F (U) such that :

〈T, ψ〉 =
∫
F (U)

〈[z′′ = t], f∗ψ〉dµU (t) =
∫
F (U)

〈f∗[z′′ = t], ψ〉dµU (t)

=
∫
P (U)

〈[F = t], ψ〉dµU (t).

(5.2)
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Let X = {a ∈ Cn, rank(dF(a)) � k − 1}. We endow the set
Cn � F−1(F (X)) with the relation ∼ such that z ∼ z′ if and only if z
and z′ are in the same connected component of F−1(F (z)). The quotient
space (Cn � F−1(F (X)))/ ∼ endowed with the induced topology can be
identified with the space V of connected components of the fibers F−1(t),
t ∈ Ck�F (X). Let us consider the covering F|V : V → Ck�F (X). When we
let a vary on the same connected component v of F−1(t), and then let t vary
on a neighborhood of F (a), the uniqueness of the measures µU [where U
covers a sufficiently small saturated neighborhood of v in Cn�F−1(F (X))]
implies that the family (µU )U match together and define a single measure
on this neighborhood. This allows us to define a unique measure ν on the
connected component of V containing v. By using (5.2), it follows that

T|Cn�F−1(F (X)) =
∫
v∈V

[F−1(t)]vdν(v) .

As the subset X is algebraic, F (X) is contained in a union of at most count-
ably many algebraic subsets, each of which are of codimension � 1 in Ck

[Ch, p.41]. Then F−1(F (X)) ⊂ Z = ∪jZj , where Zj is an algebraic subset
of codimension � 1. Since T is of locally finite mass in Cn, then by the El
Mir’s Theorem [El] the trivial extension T̃ of T|Cn�Z exists and is a closed
positive current. Let R = T − T̃ , then R is also a positive and closed current
on Cn of dimension n− k, and supported by the algebraic set Z. Moreover,
since νR(r) � νT (r) for r > 0, it is clear that R is algebraic. Finally, we
have : T = T̃ + R =

∫
v∈V [F−1(t)]vdν(v) + R. �

Remark 5.2. — If k = 1, using the support theorem of Federer, the cur-
rent R is proportional to the current of integration on the algebraic set Z
and then we recover a result of [B-M-R].

Let z = (z′, z′′) ∈ Cn = C × Cn−1. We denote by β′ = ddc|z′|2, β′′ =
ddc|z′′|2 and vε(z′, z′′) = |z′|2 + ε|z′′|2 for ε > 0. Replacing the support
condition by another one related to the growth of the trace measure of the
slices carried by a cylinder, we obtain then Theorem 1.7.

Proof of Theorem 1.7. — By applying the formula of Lelong-Jensen [De]
to the positive psh current uT and to the exhaustive function vε = vε(R),
and by using the fact that ddc(uT ) = T ∧ ddcu � 0, for 0 < r < R, we
obtain the inequalities
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∫
{vε<r}

T ∧ ddcu ∧ (ddcvε)n−2

∫ R

r

(
1

tn−1
− 1

Rn−1

)
dt

�
∫ R

r

(
1

tn−1
− 1

Rn−1

)
dt

∫
{vε<t}

T ∧ ddcu ∧ (ddcvε)n−2

� 1
Rn−1

∫
{vε<R}

uT ∧ (ddcvε)n−1.

Let us put An(r,R) =
∫ R
r

( 1
tn−1 − 1

Rn−1 )dt, for n > 2. We get

An(r,R)
∫
{vε<r}

T ∧ ddcu ∧ (ddcvε)n−2 � 1
Rn−1

∫
{vε<R}

uT ∧ (ddcvε)n−1.

Since (ddcvε)n−2 = (n − 2)εn−3β′ ∧ β′′n−3 + εn−2β′′n−2 and (ddcvε)n−1 =
εn−2β′ ∧ β′′n−2 + εn−1β′′n−1, it follows that

An(r,R)εn−2

∫
{vε<r}

T ∧ ddcu ∧ β′′n−2 � 1
Rn−1

∫
{vε<R}

uT ∧ (ddcvε)n−1

� εn−1

Rn−1

∫
{vε<R}

uT ∧ β′′n−1

+
εn−2

Rn−1

∫
{vε<R}

uT ∧ β′ ∧ β′′n−2.

Let us consider M = sup{u(z), z ∈ SuppT}. Then we get

An(r,R)
∫
{vε<r}

T ∧ ddcu ∧ β′′n−2

� Mε

Rn−1

∫
{vε<R}

T ∧ β′′n−1 +
M

Rn−1

∫
{vε<R}

T ∧ β′ ∧ β′′n−2

� Mε

Rn−1

∫
{vε<R}

T ∧ β′′n−1+

+
M

Rn−1

∫
{|z′|2<R}

〈T, π, z′〉(1l{vε<R}β
′′n−2)β′

� Mε

Rn−1

∫
{vε<R}

T ∧ β′′n−1 + MπR−γ .

(5.3)
For n > 2, we have An(r,R) = 1

(n−2) (
1−n
Rn−2 + 1

rn−2 ) + r
Rn−1 . By considering

the hypothesis on T and letting R tend to +∞, we obtain∫
{|z′|2<r}

T ∧ ddcu ∧ β′′n−2 = 0 ∀ r > 0.
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We obtain the equality T ∧ ddcu∧ β′′n−2 = 0. Now, we use the first term in
the expression of (ddcvε)n−2 and get

(n−2)An(r,R)εn−3

∫
{vε<r}

T∧ddcu∧β′∧β′′n−3 � 1
Rn−1

∫
{vε<R}

uT∧(ddcvε)n−1.

Replacing β′′n−2 by β′ ∧ β′′n−3 in the inequalities (5.3) we get

An(r,R)
∫
{vε<r}

T∧ddcu∧β′∧β′′n−3 � Mε2

Rn−1

∫
{vε<R}

T∧β′′n−1+MεπR−γ .

It follows also that T∧ddcu∧β′∧β′′n−3 ≡ 0. Since β = β′+β′′, it is clear that
βn−2 = (n−2)β′∧β′′n−3+β′′n−2, and this implies that T ∧ddcu∧βn−2 ≡ 0.
The case n = 2 can be proved in the same way. �
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