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Sobolev spaces on multiple cones

P. Auscher
(1)

, N. Badr
(2)

ABSTRACT. — The purpose of this note is to discuss how various Sobolev
spaces defined on multiple cones behave with respect to density of smooth
functions, interpolation and extension/restriction to/from Rn. The anal-
ysis interestingly combines use of Poincaré inequalities and of some Hardy
type inequalities.

RÉSUMÉ. — L’objet de cet article est de décrire le comportement de
certaines familles d’espaces de Sobolev en ce qui concerne la densité des
fonctions régulières, l’interpolation, les propriétés d’extension et de res-
triction. Les méthodes combinent de façon intéressante les inégalités de
Poincaré et des inégalités de type Hardy.

1. Introduction

The theory of Sobolev spaces on domains of the Euclidean spaces is
well developed and numerous works and books are available. For multi-
connected open sets, there is apparently nothing to say. However, depending
on the topology of the boundary, the closure of the space of test functions
(ie. compactly supported in Rn) might be a subtle thing. We propose here
to investigate the Sobolev spaces on multiple cones with common vertex as
unique common point of their boundaries. Surprisingly, we did not find a
treatment in the literature.
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Our motivation comes from Badr’s PhD thesis where interpolation re-
sults for Sobolev spaces on complete metric-measure spaces are proved upon
the doubling property and families of Poincaré inequalities. A question re-
mained unsettled, namely whether the result is sharp, that is whether the
conclusion is best possible given the hypotheses. Multiple (closed) cones are
sets where doubling (for Lebesgue measure) holds and Lp-Poincaré inequali-
ties hold for some but not all p, more precisely for p greater than dimension.
Cones are therefore simple but important examples for this matter. The
study of Sobolev spaces on such sets provides us with the positive answer to
our question and, in addition, we complete the interpolation result in this
specific situation. As we shall see, these Sobolev spaces can be identified
with the closure of test functions in the classical Sobolev space on open
multiple cones.

For simplicity, we work on Ω the Euclidean (double) cone defined by x2
1+

. . .+ x2
n−1 < x

2
n, n � 2, but all the material extends right away to multiple

cones with common vertex point (see Section 7 for natural extensions),
and the cones need not be of revolution type. Consider W 1

p (Ω) the usual
first order Sobolev space on Ω and W̃ 1

p (Ω), the closure of smooth compactly
supported functions in Rn inW 1

p (Ω) if p <∞, and the space of bounded and
Lipschitz functions on Ω that extend continuously at the origin if p =∞.

The question we ask is: how do they behave with respect to density of
smooth functions, interpolation and extension/restriction to/from R

n?

Our results (Sections 2,3,4 and 5) exhibit the specific role of the vertex
point. This role translates into a critical exponent (equal to dimension) and
the Lp Sobolev spaces have different behaviors with respect to the various
actions listed above. The following list illustrates their properties :

1. The space W̃ 1
p (Ω) coincides with W 1

p (Ω) if 1 � p � n but is of
codimension 1 in W 1

p (Ω) for n < p �∞. (Section 2)

2. The spaces W 1
p (Ω), 1 � p � ∞, form a real interpolation family

(Section 3)

3. The spaces W̃ 1
p (Ω), 1 � p � ∞, do not form a real interpolation

family. To obtain such a family, one needs to replace W̃ 1
n(Ω) by a

strict and dense subspace of it described in the text. (Sections 3, 4)

4. For p ∈ [1,∞], p �= n, the restriction operator to Ω maps W 1
p (Rn)

continuously onto W̃ 1
p (Ω) and there exists a common linear contin-

uous extension operator from W̃ 1
p (Ω) to W 1

p (Rn). For p = n, these

– 708 –



Sobolev spaces on multiple cones

results hold with W̃ 1
n(Ω) replaced by the strict and dense subspace

mentioned above. In particular, Ω has the extension property for W 1
p

if and only if 1 � p < n. (Section 5)

Of course, some of these results are known and we give references along
the way when we have been able to locate them. But some results, like the
interpolation results, are new. We also point out that we give two proofs of
the interpolation result. Although the one presented in Section 5 using re-
striction/extension looks more natural to users of Sobolev spaces on subsets
of the Euclidean space, we prefer the one done in Sections 3 and 4, because
it is more in the spirit of analysis on metric spaces and contains ideas that
we believe could be used in this context elsewhere. In particular, a special
feature is that it allows to pass below the Poincaré exponent threshold by
using Hardy type inequalities.

We shall make use of the Sobolev space H1
p (X) arising from geometric

measure theory on X = Ω. It is defined as the completion for the W 1
p (Ω)

norm of the space of Lipschitz functions with compact support for p < ∞
and as the space of bounded and Lipschitz functions in X for p = ∞. It is
easy to show it agrees with W̃ 1

p (Ω) and it turns out that it will be easier to
work with the former in Section 3. Finally, we make a connection with the
Hajlasz-Sobolev spaceM1,p(X). In particular, we will show (Section 5) that
the Hajlasz-Sobolev space M1,n(X) is a strict subspace of H1

n(X), which
can be surprising.

In Section 6, we shortly describe the situation pertaining to these ques-
tions for homogeneous Sobolev spaces.

2. Density

Let 1 � p �∞ and O an open set of Rn. Define W 1
p (O) as the space of

functions1 f ∈ Lp(O) such that

‖f‖W 1
p (O) = ‖f‖Lp(O) + ‖∇f‖Lp(O) <∞.

The gradient is defined in the distributional sense in O. For p <∞, denote
by W̃ 1

p (O) the closure of the space of C∞0 (Rn) (the subscript 0 means com-
pact support) functions restricted to O in W 1

p (O). Among classical texts,
we quote [1, 10, 16, 17, 21, 23].

If n < p < ∞, recall that the Morrey-Sobolev embedding implies that
if f ∈ W 1

p (Ω) then f is Hölder continuous on each connected component

(1) We consider real functions but everything is valid for complex functions.
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Ω± of Ω, the half-cones defined by x ∈ Ω and sign(xn) = ±1. Hence f has
limits in 0 from Ω+ and Ω−. These limits, which we call f(0+) and f(0−),
may be different.

This lemma is classical and we include a proof for convenience.

Lemma 2.1. — Let 1 � p < ∞ and f ∈ W 1
p (Ω). Assume 1 � p � n

or n < p < ∞ and f(0+) = f(0−) = 0. Then there exists a sequence of
C∞0 (Rn) functions (ϕk) with support away from 0 such that ‖f −ϕk‖W 1

p (Ω)

tends to 0.

Proof. — First, it is enough to consider f ∈ W 1
p (Ω+), with f(0) = 0

if p > n. Second, we may also assume f bounded by using the truncations
fN = hN (f) and N → ∞, where hN (t) = −N if t � −N , hN (t) = t
if −N � t � N and hN (t) = N if t � N . Next, we claim that we can
approximate f by a function in g ∈ W 1

p (Ω+) supported away from a ball
centered at 0. Assuming this claim, it suffices to convolve this approximation
with a smooth mollifying function which has compact support inside Ω+ to
conclude.

It remains to prove the above claim. Take χ ∈ C∞0 (Rn) a positive, radial
function, bounded by 1, supported in the unit ball with χ = 1 in the half-
unit ball. For ε > 0, define χε(x) = χ(xε ) and take fε(x) = f(x)(1− χε(x)).
Every fε = 0 on the ball of radius ε/2. We distinguish between 3 cases:

Case 1 � p < n: By dominated convergence fε converges to f in Lp(Ω+).
For the gradient, as f is bounded and ‖∇χε‖p � Cεn/p−1, we conclude that
∇fε converges to ∇f in Lp(Ω+).

Case p = n: The function fε does not converge to f in this case and we
have to modify the construction. For 0 < δ < 1, we introduce the function
ηδ(x) = | ln δ|

| ln |x|| if |x| � δ and ηδ(x) = 1 if |x| > δ. Take fε,δ = fηδ(1−χε) =
fεηδ with δk = ε and k > 0 large. It is easy to show that fε,δ converges to f
in Ln(Ω+) for ε → 0 and any k fixed. For the gradient, using |1 − χε| � 1,
we have

|∇(f − fε,δ)| � |(1− ηδ)∇f |+ |χε∇f |+ |f∇ηδ|+ |fηδ∇χε|.

We observe that we assumed f bounded. A computation shows that ‖ηδ∇χε‖n
is bounded by C/k. So we pick and fix k big enough. Next, ‖∇ηδ‖n goes
to 0 as ε → 0 and the remaining term ‖(1 − ηδ)∇f‖n + ‖χε∇f‖n → 0 by
dominated convergence.

Case p > n: By dominated convergence, fε converges to f in Lp(Ω+). For
the gradient, we have (1−χε)∇f converges to ∇f in Lp(Ω+) by dominated
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convergence. It remains to prove that ‖f∇χε‖Lp(Ω+) tends to 0. By Morrey’s
theorem and recalling that f(0) = 0 we have for every x ∈ Ω+, |x| < ε,∣∣∣∣f(x)ε

∣∣∣∣ � C (
|x|
ε

)1−n/p
(∫
{|y|<2ε}∩Ω+

|∇f |p(y)dy
)1/p

. (2.1)

This implies∫
Ω+

|f(x)∇χε(x)|pdx �
∫
{|x|�ε}∩Ω+

∣∣∣∣f(x)ε
∣∣∣∣p dx

�
∫
{|x|�ε}∩Ω+

(
|x|
ε

)p−n
dx

1
εn

∫
{|y|�2ε}∩Ω+

|∇f |p(y)dy

� C
∫
{|y|�2ε}∩Ω+

|∇f |p(y)dy.

We conclude noting that the last integral converges to 0 when ε→ 0 by the
dominated convergence theorem. �

Remark. — The density of functions in W 1
n(Ω±) supported away from

a ball centered at 0 was also proved in [8, Lemma 2.4] for the special case
of dimension n equals 2 (We are thankful to Monique Dauge for indicating
this work). Their proof applies mutatis mutandis for dimensions higher.

Corollary 2.2. — Let 1 � p � ∞. If p � n, W̃ 1
p (Ω) = W 1

p (Ω) and if
n < p, W̃ 1

p (Ω) = {f ∈ W 1
p (Ω) ; f(0+) = f(0−)}, and hence is of codimen-

sion 1 in W 1
p (Ω).

Proof. — For 1 � p � n, the equality follows immediately from Lemma
2.1. Assume now n < p �∞. Trivially W̃ 1

p (Ω) ⊂
{
f ∈W 1

p (Ω); f(0+) = f(0−)
}
.

Conversely let f ∈ W 1
p (Ω), f(0+) = f(0−) := f(0). Then g = f − f(0)χ,

with χ ∈ C∞0 (Rn) supported in the unit ball with χ ≡ 1 in a neighborhood
of 0 verifies g(0+) = g(0−) = 0. By lemma 2.1 for p <∞ and by definition
for p =∞, this yields g ∈ W̃ 1

p (Ω) and therefore f = g + f(0)χ. �

3. Real interpolation

As far as W 1
p (Ω) is concerned, we have if 1 � p � ∞ that W 1

p (Ω) =
W 1
p (Ω+)⊕W 1

p (Ω−) using restriction to Ω± and extension by 0 from Ω± to
Ω. That is, if f ∈W 1

p (Ω), we write

f = 1Ω+f + 1Ω−f. (3.1)
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Since Ω± is a Lipschitz domain, it is known [9] that the family of Sobolev
spaces (W 1

p (Ω±))1�p�∞ forms a scale of interpolation spaces for the real
interpolation method. Hence the same is true for (W 1

p (Ω))1�p�∞.

There is a second chain of spaces appearing in the axiomatic theory
of Sobolev spaces on a metric-measure space ([11], [12], [14]). Let X be
the closure of Ω. Then X equipped with Euclidean distance and Lebesgue
measure, which we denote by λ, is a complete metric-measure space. The
balls are the restriction to X of Euclidean balls centered in X. For 1 � p <
∞, we denote by H1

p (X) the completion for the norm W 1
p (Ω) of Lip0(X),

the space of Lipschitz functions in X with compact support. For p =∞, we
set H1

∞(X) = Lip(X) ∩ L∞(X). Identifying a Lipschitz function on Ω with
its unique extension to X, H1

∞(X) =
{
f ∈W 1

∞(Ω); f(0+) = f(0−)
}
. There

are also other Sobolev spaces of interest, like the Hajlasz spaces M1,p(X).
We shall come back to this in Section 5.

We recall the definitions of doubling property and Poincaré inequality:

Definition (Doubling property). — Let (E, d, µ) be a metric-measure
space. One says that E satisfies the doubling property (D) if there exists a
constant C <∞ such that for all x ∈ E, r > 0 we have

0 < µ(B(x, 2r)) � Cµ(B(x, r)). (D)

Definition (Poincaré Inequality). — A (complete) metric-measure space
(E, d, µ) admits a q-Poincaré inequality for some 1 � q <∞, if there exists
a positive constant C < ∞, such that for every continuous function u and
upper gradient g of u, and for every ball B of radius r > 0 the following
inequality holds: (∫

B

|u− uB |q dµ
) 1
q

� Cr
(∫
B

gq dµ

) 1
q

. (Pq)

There are weaker ways of defining the Poincaré inequalities but it
amounts to this one when the space is complete. See [12] for more on this
and definition of upper gradients. On X, |∇u| is an upper gradient of u.

Let us recall Badr’s theorem in this context ([3], Theorem 7.11). On
a metric-measure space there is a definition H1

p (E) for p � ∞ which, for
X = E, is equivalent to the one given here.

Theorem 3.1 (Badr). — Let 1 � q0 <∞. Assume (E, d, µ) is a comple-
te metric-measure space with the doubling property and q-Poincaré inequa-

– 712 –



Sobolev spaces on multiple cones

lities with q > q0. Then for q0 < p0 < p1 �∞ and 1/p = (1− θ)/p0 + θ/p1,

(H1
p0(E), H1

p1(E))θ,p = H1
p (E). (3.2)

The space (X, d, λ) has the doubling property and, as shown in [12] p.17,
it supports a q-Poincaré inequality if and only if n < q. Thus, (H1

p (X))n<p�∞
is a scale of interpolation spaces for the real interpolation method. As ob-
served and proved in [2], Chapter 4 (see also Section 9 of [3]), with arguments
we reproduce here, H1

p (X) = W 1
p (Ω) when 1 � p < n, and this allowed her

to identify H1
p (X) as the interpolation space (H1

p0(X), H1
p1(X))θ,p when

1 � p0 < p < p1 �∞ and 1/p = (1− θ)/p0 + θ/p1 with the restriction that
either n < p or p1 < n.

The missing cases are somehow intriguing and for the sake of curiosity
we provide a complete picture in the following result. More interestingly, we
provide two proofs that cover all cases at once.

Theorem 3.2. — If 1 � p0 < p < p1 �∞ and 1/p = (1− θ)/p0 + θ/p1,
then

(H1
p0(X), H1

p1(X))θ,p =
{
H1
p (X), if p �= n,

Ĥ1
n(X), if p = n.

(3.3)

We shall see that Ĥ1
n(X) is a strict subspace of H1

n(X). This implies
in particular that Badr’s interpolation result is sharp in the class of
Sobolev spaces on metric-measure spaces: in this example, the infimum of
Poincaré exponents is also the smallest exponent p0 for which the family
(H1

p (X))p0<p�∞ is a scale of interpolation spaces for the real interpolation
method. Hence, she could not get a better conclusion in general. See sec-
tion 5 for a further discussion on this.

The space Ĥ1
n(X) will incorporate a sort of Hardy inequality with respect

to the vertex point. To describe it, we need the following definition.

Definition. — For a function f :X → R, we define its radial part fr
and its anti-radial part fa as follows: fr(x) is the mean of f on the sphere
S|x| of radius |x| restricted to Ω with respect to surface measure and fa(x) =
f(x)− fr(x).

The number fr(x) depends only on the distance of x to the origin, hence
the terminology radial (even if Ω is not invariant by rotations). But note
that both fr and fa depend on Ω. Note that f �→ fr is a contraction on
H1
p (X). Denote by r:Rn → R, r(x) = |x|.
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Definition. — Ĥ1
n(X) = {f ∈ H1

n(X) ; fa/r ∈ Ln(X)} with norm

‖f‖
Ĥ1
n(X)

= ‖f‖H1
n(X) + ‖fa/r‖Ln(X).

The following example shows that Ĥ1
n(X) is a strict subspace of H1

n(X).
Assume n = 2 and β > 0, and consider the function f on X, supported on
r � 1/2, C∞ away from 0, which is sign(x2)| ln r|−β for r � 1/4. It is easy
to check that f ∈ H1

2 (X) for all β > 0. Clearly, f = fa and f/r ∈ L2(X) if
and only if β > 1/2. Hence for 0 < β � 1/2 we have f /∈ Ĥ1

2 (X).

Before we move on, the relation between H1
p (X) and W 1

p (Ω) is the fol-
lowing.

Lemma 3.3. — For 1 � p �∞, H1
p (X) = W̃ 1

p (Ω) with the same norm.

Proof. — The equality at p = ∞ is obvious. Assume next that p < ∞.
It is clear that W̃ 1

p (Ω) ⊂ H1
p (X) ⊂ W 1

p (Ω). Thanks to Corollary 2.2, we
have our conclusion if 1 � p � n. Assume further n < p. Then functions
in Lip0(X) satisfy f(0+) = f(0−). Since f �→ f(0±) are continuous on
W 1
p (Ω), this passes to H1

p (X). Applying again Corollary 2.2, we deduce
that H1

p (X) ⊂ W̃ 1
p (Ω). �

To prove our theorem, we first introduce the following spaces.

Definition. — For 1 � p � ∞, set H̃1
p (X) = {f ∈ H1

p (X) ; f/r ∈
Lp(X)} with norm

‖f‖
H̃1
p(X)

= ‖f‖H1
p(X) + ‖f/r‖Lp(X) = ‖f‖W 1

p (Ω) + ‖f/r‖Lp(Ω).

Lemma 3.4. — For 1 � p �∞, H̃1
p (X) is a Banach space which can be

identified isometrically to {f ∈W 1
p (Ω) ; f/r ∈ Lp(Ω)}.

Proof. — There is nothing to prove if 1 � p � n thanks to Corollary 2.2
and Lemma 3.3. Assume next n < p � ∞. Let f ∈ H̃1

p (X), then the
restriction of f to Ω belongs to {f ∈ W 1

p (Ω) ; f/r ∈ Lp(Ω)}. Conversely if
f ∈ W 1

p (Ω) and f/r ∈ Lp(Ω), then f has a unique extension to a Hölder
(Lipschitz if p =∞) continuous function in both Ω±. The condition f/r ∈
Lp(Ω) forces f(0+) = f(0−) = 0. Hence this extension is in H1

p (X) and thus
in H̃1

p (X). �

The next result is the main step.
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Theorem 3.5. — The family (H̃1
p (X))1�p�∞ is a scale of interpolation

spaces for the real interpolation method.

This result is proved in the next section. We continue with

Proposition 3.6. — If 1 � p < n, H̃1
p (X) = H1

p (X). If n < p � ∞,
H̃1
p (X) = {f ∈ H1

p (X) ; f(0) = 0} and has codimension 1 in H1
p (X).

Before we prove this proposition we need the following Hardy type in-
equality (we thank Michel Pierre for indicating a simple proof):

Lemma 3.7. — Let 1 � p �∞ with p �= n. Then there exists a constant
C = C(p,Ω) such that ∫

Ω

∣∣∣∣fr
∣∣∣∣p dx � C ∫

Ω

|∇f |p dx (3.4)

for every f ∈ H1
p (X) with, in addition, f(0) = 0 if p > n, and (3.4) is

understood with L∞ norms if p =∞.

The example above shows that the lemma is false when p = n.

Proof. — Assume first 1 � p < n. Take f ∈ Lip0(X). We have∫
Ω+

∣∣∣∣fr
∣∣∣∣p dx =

∫
Ω+∩S1

∫ ∞
0

rn−1−p|f(r, θ)|pdrdσ(θ)

=
∫

Ω+∩S1

[
1

n− pr
n−p|f(r, θ)|p

]∞
0

dσ(θ)

−
∫

Ω+∩S1

∫ ∞
0

1
n− pr

n−pp|f |p−1 signf
∂f

∂r
drdσ(θ)

= − p

n− p

∫
Ω+∩S1

∫ ∞
0

∣∣∣∣fr
∣∣∣∣p−1

signf
∂f

∂r
rn−1drdσ(θ)

� p

n− p

(∫
Ω+∩S1

∫ ∞
0

∣∣∣∣fr
∣∣∣∣p rn−1drdσ(θ)

) p−1
p

×
(∫

Ω+∩S1

∫ ∞
0

∣∣∣∣∂f∂r
∣∣∣∣p rn−1drdσ(θ)

) 1
p

.

After simplification, we get (3.4) on Ω+. We do the same for the integral on
Ω− and therefore (3.4) holds for every f ∈ Lip0(X). By density, (3.4) holds
for every f ∈ H1

p (X).
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Assume next n < p < ∞. Let f ∈ Lip0(X) such that f(0) = 0. We
denote A =

∫
Ω+∩{|x|>ε}

∣∣ f
r

∣∣pdx, where ε > 0. By Morrey’s theorem, we have
for every x ∈ Ω, |f(x)| � C‖ |∇f | ‖p|x|α with α = 1 − n/p. Repeating the
computation of (3.4) and since f has a compact support, one obtains

A =
∫

Ω+∩S1

∫ ∞
ε

rn−1−p|f(r, θ)|pdrdσ(θ)

=
∫

Ω+∩S1

[
1

n− pr
n−p|f(r, θ)|p

]∞
ε

dσ(θ)

−
∫

Ω+∩S1

∫ ∞
ε

1
n− pr

n−pp|f |p−1signf
∂f

∂r
dσ(θ)dr

=
εn−p

p− n

∫
Ω+∩S1

|f(ε, θ)|pdσ(θ)

+
p

p− n

∫
Ω+∩S1

∫ ∞
ε

∣∣∣∣fr
∣∣∣∣p−1

signf
∂f

∂r
rn−1drdσ(θ) � Cp‖∇f‖pp

+
p

p− n

(∫
Ω+∩S1

∫ ∞
ε

∣∣∣∣fr
∣∣∣∣prn−1drdσ(θ)

) p−1
p
(∫

Ω+∩S1

∫ ∞
ε

∣∣∣∣∂f∂r
∣∣∣∣prn−1drdσ(θ)

) 1
p

.

This yields
A � Cp‖ |∇f | ‖pp +

p

p− nA
p−1
p ‖ |∇f | ‖p.

Plugging

A
p−1
p ‖ |∇f | ‖p �

δp
′
A

p′
+

1
pδp
‖ |∇f | ‖pp

for every δ > 0, with p′ = p
p−1 , one obtains

A(1− pδp
′

(p− n)p′ ) � (Cp +
1

(p− n)δp )‖ |∇f | ‖pp.

Choosing δ small enough, we deduce that∫
Ω+∩{|x|>ε}

∣∣∣∣fr
∣∣∣∣p dx � C ∫

Ω+

|∇f |pdx.

We then let ε → 0. We do the same for the integral on Ω− and therefore
(3.4) holds for every f ∈ Lip0(X) such that f(0) = 0. By density, (3.4)
holds for every f ∈ H1

p (X) such that f(0) = 0.
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When p = ∞, (3.4) is a direct consequence of the definition of H1
∞(X)

and that f(0) = 0 with the mean value theorem. �

Proof of Proposition 3.6. — When 1 � p < n, Lemma 3.7 shows that
H1
p (X) ⊂ H̃1

p (X) and the proposition follows. Now, when p > n, Lemma
3.7 yields

{
f ∈ H1

p (X); f(0) = 0
}
⊂ H̃1

p (X). Conversely if f ∈ H̃1
p (X), by

the continuity of f at 0 and the Lp integrability of f/r we easily see that
f(0) = 0.

It remains to prove that H̃1
p (X) is of codimension 1 in H1

p (X). This
follows by writing f ∈ H1

p (X) as f = f−f(0)χ+f(0)χ, where χ ∈ C∞0 (Rn),
suppχ ⊂ B(0, 1) and χ = 1 in a neighborhood of 0, and using the above
characterization of H̃1

p (X). �

Although this is a simple description of H̃1
p (X), the jump at p = n does

not allow us to use this result to conclude for Theorem 3.2. We need to
further analyze the radial and antiradial parts of a function.

Lemma 3.8. — Let 1 � p �∞.

1. For a function f depending only on the distance to the origin, f ∈
H1
p (X)⇐⇒ f ∈W 1

p (Rn) with same norm up to a constant.

2. Assume p �= n. For a function f :X → R and fa = f − fr, we have
fa ∈ H̃1

p (X)⇐⇒ fa ∈ H1
p (X) with comparable norms.

Proof. — The first item is trivial. The constant is the ratio of the surface
measure of Ω inside the unit sphere divided by the surface measure of the
unit sphere.

As for the second item, it follows from the previous proposition directly
if p < n and by observing that fa(0) = 0 if p > n. �

Let us recall the following definition:

Definition . — Let f be a measurable function on a measure space (X,µ).
The decreasing rearrangement of f is the function f∗ defined for every t � 0
by

f∗(t) = inf {λ : µ({x : |f(x)| > λ}) � t} .
The maximal decreasing rearrangement of f is the function f∗∗ defined for
every t > 0 by

f∗∗(t) =
1
t

∫ t

0

f∗(s)ds.
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Remark. — It is known that (Mf)∗ ∼ f∗∗ withM the Hardy-Littlewood
maximal operator, ‖f∗∗‖p ∼ ‖f‖p for all p > 1 (see [22], Chapter V,
Lemma 3.21, p.191 and Theorem 3.21, p.201) and µ({x : |f(x)| > f∗(t)}) �
t for all t > 0. We refer to [4], [5] for other properties of f∗ and f∗∗.

We can now complete the proof of Theorem 3.2.

Proof. — Let us examine the case where neither p0, p1 is n. By the
reiteration theorem, this reduces further to p0 = 1, p1 = ∞. Set Fp =
(H1

1 (X), H1
∞(X))θ,p with θ = 1− 1/p.

Let f ∈ Fp. Since f �→ fr is contracting on H1
q (X) for all 1 � q � ∞

and using Lemma 3.8, one has that

K(fr, t,W 1
1 (Rn),W 1

∞(Rn)) � CK(f, t,H1
1 (X), H1

∞(X)).

K is the K-functional of interpolation defined as in [4], [5]. Hence fr ∈
W 1
p (Rn) by classical interpolation for the W 1

p (Rn). Thus fr ∈ H1
p (X) by

Lemma 3.8. We also have by Lemma 3.8 again,

K(fa, t, H̃1
1 (X), H̃1

∞(X)) � CK(f, t,H1
1 (X), H1

∞(X)).

Theorem 3.5 shows then that fa ∈ H̃1
p (X). We conclude that f ∈ H1

p (X) if
p �= n and f ∈ Ĥ1

n(X) if p = n.

Reciprocally, let f ∈ H1
p (X) if p �= n and f ∈ Ĥ1

n(X) if p = n. By Lemma
3.8, whatever p is, we have that fr ∈W 1

p (Rn) and fa ∈ H̃1
p (X). By Theorem

3.5, fa ∈ (H̃1
1 (X), H̃1

∞(X))θ,p with θ = 1 − 1/p. Hence fa ∈ Fp. For the
radial part, for each t > 0, one can find a decomposition fr = gt+ht almost
minimizing for K(fr, t,W 1

1 (Rn),W 1
∞(Rn)) and one can assume both gt and

ht are radial. Thus Lemma 3.8 implies that gt ∈ H1
1 (X) and ht ∈ H1

∞(X),
hence fr ∈ Fp.

It remains to study the case where p0 or p1 is equal to n. Let us consider
the case p1 = n as the other one is similar. It is also enough to look at the
result when p0 = 1. As we know all interpolation spaces between H1

1 (X)
and H1

∞(X), by the reiteration theorem, if 1 < p < n and 1
p = 1− θ+ θ

n we

have (H1
1 (X), Ĥ1

n(X))θ,p = H1
p (X). Hence, we have

H1
p (X) = (H1

1 (X), Ĥ1
n(X))θ,p ⊂ (H1

1 (X), H1
n(X))θ,p ⊂ H1

p (X).

The last inclusion is the easy part of the interpolation: we recall that

K(f, t,H1
1 (X), H1

n(X)) � K(f, t, L1, Ln) +K(|∇f |, t, L1, Ln)
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and that

K(f, t, L1, Ln) ∼
∫ tα

0

f∗(u) du+ t
(∫ ∞

tα
f∗(u)n du

) 1
n

,

where 1
α = 1− 1

n . Integrating, using the definition of the maximal rearrange-
ment function and its properties in the Remark above, we deduce that

‖f‖p
(H1

1 (X),H1
n(X))θ,p

=
∫ ∞

0

(
t−θK(f, t,H1

1 (X), H1
n(X))

)p dt
t
� C‖f‖pH1

p(X)

and therefore (H1
1 (X), H1

n(X))θ,p ⊂ H1
p (X).

This concludes the proof. �

Remark. — The inclusion Ĥ1
n(X) ⊂ H1

n(X) is dense. This is due to the
fact that as H1

n(X) = W 1
n(Ω), the space of restrictions to X of smooth

functions on Rn with compact support in Rn \ {0}, a subspace of Ĥ1
n(X),

is dense in H1
n(X). Note that the last part of the argument shows that

(H1
p0(X), H1

p1(X))θ,p = H1
p (X) for the appropriate p whenever p0 or p1 is

equal to n. In particular, when p0 = n this furnishes an endpoint to Badr’s
result for the case of E = X.

Remark. — AsX is symmetric with respect to S : x �→ −x, we can define
Ĥ1
n(X) differently by doing an analysis with even and odd parts. Define the

even and odd parts fe and fo of a function f :X → R as fe = 1
2 (f + f ◦ S)

and fo = 1
2 (f−f ◦S). We have that Ĥ1

n(X) = {f ∈ H1
n(X) ; fo/r ∈ Ln(X)}.

Let f ∈ H1
n(X). Write fo = (fr)o + (fa)o and easily (fr)o = 0. Hence

fa ∈ H̃1
n(X) =⇒ (fa)o ∈ H̃1

n(X) =⇒ fo ∈ H̃1
n(X).

Next, write fa = (fe)a + (fo)a. We claim that (fe)a/r ∈ Ln(X). Hence,

fo ∈ H̃1
n(X) =⇒ (fo)a ∈ H̃1

n(X) =⇒ fa ∈ H̃1
n(X).

To see the claim, we observe that the evenness of fe implies that (fe)r(x)
is also equal to the mean of fe on Ω+ ∩ S|x|. Thus (fe)a is an even function
with mean value 0 on each Ω± ∩ S|x|. Applying the classical (with gradient
instead of upper gradient) Poincaré inequalities (Pn) for spherical caps (that
is geodesic balls) with respect to surface measure on S|x|, we obtain∫

Ω±∩S|x|
|(fe)a|ndσ(θ) � C(n,Ω±)|x|n

∫
Ω±∩S|x|

|∇θ(fe)a|ndσ(θ)

where∇θ is the tangential gradient on S|x|. Notice that |∇θ(fe)a| � |∇(fe)a|
on Ω∩S|x|. So adding the two inequalities, multiplying by r−n = |x|−n and

– 719 –



P. Auscher, N. Badr

integrating with respect to dr we obtain∫
Ω

|(fe)a|n
rn

dx � C(n,Ω)
∫

Ω

|∇(fe)a|ndx.

Hence (fe)a/r ∈ Ln(X) as claimed.

Remark. — We have used Poincaré inequalities (Pn) for spherical caps
on spheres. Equipped with geodesic distance and surface measure, they are
spaces of homogeneous type. Actually, (Pp) hold for all p � 1 and all geodesic
balls (including the sphere itself):∫

B

|f(θ)−mBf |pdσ(θ) � c(p, n)diam(B)p
∫
B

|∇θf(θ)|pdσ(θ).

We have not been able to locate this result explicitly in the literature, nei-
ther can we say who proved it first. But it is not a new fact. It can be
obtained from [15] seeing them as submanifold in Rn. One can also apply
results in [19, Theorem B.10]. One can also relate this to isoperimetry and
Sobolev inequalities (see, e.g., [6, Chapter IV]), especially if, unlike us, one
is after best constants. A pedestrian approach to prove Poincaré inequalities
for spherical caps (or more general Lipschitz subdomains of the sphere) is to
pullback integrals

∫
B
|f(θ)−a|pdσ(θ), a constant, via a stereographic projec-

tion and use Poincaré inequalities on balls (or bounded Lipschitz domains)
of Rn. This easily works if B is contained in a hemisphere by choosing an
opposite pole. If this is not the case, cut B in two equal parts along an
equator and use the argument above for each part, using again Poincaré
inequalities for bounded Lipschitz domains of Rn.

4. Proof of Theorem 3.5

For the proof of Theorem 3.5, we need a Calderón-Zygmund decompo-
sition as in [3]. We incorporate here a further control to take care of the
vertex point.

Let 1 < p < ∞ and f ∈ H̃1
p (X). Identifying f to its restriction to Ω,

write f = f |Ω+ + f |Ω− = f+ + f−. We establish the following Calderón-
Zygmund decomposition for f+ and the same decomposition holds for f−.

Proposition 4.1 (Calderón-Zygmund lemma). — Let α > 0. Then one
can find a collection of balls (Bi+)i of Ω+, functions bi+ and a Lipschitz
function g+ such that the following properties hold:

f+ = g+ +
∑
i

bi+ on Ω+ (4.1)
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|g+(x)|+ |g+(x)|
|x| + |∇g+(x)| � Cα λ− a.e x ∈ Ω+ (4.2)

supp bi+ ⊂ Bi+,
∫
Bi+

(
|bi+|+

|bi+|
|x| + |∇bi+|

)
dx � Cα (4.3)

∑
i

λ(Bi+) � Cα−p
∫

Ω+

(
|f+|+

|f+|
|x| + |∇f+|

)p
dx (4.4)

∑
i

χBi+ � N. (4.5)

The constants C and N only depend on p and on the constants in (D) and
(P1) in Ω+.

A ball of Ω+ is the restriction to Ω+ of an open ball of Rn having center
in Ω+.

Proof. — To simplify the exposition, we omit the index + keeping it
only for Ω+. For x ∈ Rn, denote r(x) = |x|. Consider

U =
{
x ∈ Ω+ :MΩ+(|f |+ |f |

r
+ |∇f |)(x) > α

}
with

MΩ+f(x) = sup
B: x∈B

1
λ(B)

∫
B

|f |dx

where B ranges over all balls of Ω+. Recall thatMΩ+ is of weak type (1, 1)
and bounded on Lp(Ω+, λ), 1 < p �∞. If U = ∅, then set

g = f , bi = 0 for all i

so that (4.2) is satisfied according to the Lebesgue differentiation theorem.
Otherwise the maximal theorem gives us

λ(U) � Cα−p
∫

Ω+

(
|f |+ |f |

r
+ |∇f |

)p
dx <∞ (4.6)

In particular U �= Ω+ as λ(Ω+) = ∞. Let F be the complement of U in
Ω+. Since U is an open set distinct of Ω+, we use a Whitney decomposition
of U ([7]): one can find pairwise disjoint balls Bi of Ω+ and two constants
C2 > C1 > 1, such that

1. U = ∪iBi with Bi = C1Bi and the balls Bi have the bounded overlap
property;
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2. ri = r(Bi) = 1
2d(xi, F ) and xi is the center of Bi;

3. each ball Bi = C2Bi intersects F (C2 = 4C1 works).

Recall that the above balls are balls of Ω+, that is Bi = B(xi, ri/C1)∩Ω+,
Bi = B(xi, ri) ∩ Ω+, Bi = B(xi, riC2) ∩ Ω+ and xi ∈ Ω+ where B(x, r)
denotes an Euclidean open ball in Rn. Condition (4.5) is nothing but the
bounded overlap property of the Bi’s and (4.4) follows from (4.5) and (4.6).

Since λ(Bi) � Cλ(Bi) (the doubling property for Ω+) and Bi ∩ F �= ∅
for all i, we have∫

Bi

(|f |+ |f |
r

+ |∇f |)dx �
∫
Bi

(|f |+ |f |
r

+ |∇f |)dx � Cαλ(Bi). (4.7)

Let us derive some useful properties. For x ∈ U , denote Ix = {i : x ∈ Bi}.
By the bounded overlap property of the balls Bi, we have that 8Ix � N .
Fixing j ∈ Ix and using the properties of the Bi’s, we easily see that 1

3ri �
rj � 3ri for all i ∈ Ix. In particular, Bi ⊂ 7Bj for all i ∈ Ix. We can deduce
from that |fBj − fBi | � Crjα with C independent of i, j ∈ Ix and x ∈ U .
Indeed, we use that Bi and Bj are contained in 7Bj , Poincaré inequality
(P1) on balls of Ω+ (here 7Bj), the comparability of ri and rj , and the
control of the gradient term in (4.7).

Let us now define the functions bi and prove (4.3). Let (χi)i be a parti-
tion of unity of U subordinated to the covering (Bi), such that for all i, χi

is a Lipschitz function supported inBi with ‖ |∇χi| ‖∞ �
C

ri
. To this end it is

enough to choose for x ∈ Ω+, χi(x) = ψ
(C1d(xi, x)

ri

)(∑
k

ψ(
C1d(xk, x)

rk
)
)−1

,

where ψ is a smooth function, ψ = 1 on [0, 1], ψ = 0 on [1+C1
2 ,+∞[ and

0 � ψ � 1. We declare Bi of type 1 if 4ri � d(Bi, 0) and of type 2 otherwise.
Here d(Bi, 0) is the distance from Bi to 0. Indeed, it could well be that one
Bi even touches the origin. We set bi = (f − fBi)χi if Bi is of type 1 and
bi = fχi if f is of type 2. It is clear that suppbi ⊂ Bi.

We first begin the proof of the estimates on bi by assuming Bi of type
1. We remark that for all x ∈ Bi we have ri � |x|/4 = r/4 from the type 1.
We have∫

Bi

|bi|dx =
∫
Bi

|(f − fBi)χi|dx � 2
∫
Bi

|f |dx � Cαλ(Bi).
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We applied (4.7) in the last step. For |bi|r , we use 1/r � 1/4ri on Bi and the
Poincaré inequality (P1) on Bi:∫

Bi

|bi|
r
dx �

∫
Bi

|f − fBi |
4ri

dx � C
∫
Bi

|∇f |dx � Cαλ(Bi),

using (4.7) again. For ∇bi, since ∇
(
(f − fBi)χi

)
= χi∇f + (f − fBi)∇χi,

the Poincaré inequality (P1) on Bi and (4.7) yield∫
Bi

|∇bi|dx � C
(∫

Bi

|χi∇f |dx+
∫
Bi

|f − fBi | |∇χi|dx
)

� C‖χi‖∞αλ(Bi) + C‖∇χi‖∞ri
∫
Bi

|∇f |dx

� Cαλ(Bi).
Therefore (4.3) is proved if Bi is a type 1 ball.

If Bi is a type 2 ball, the control of
∫
Bi
|bi|dx and

∫
Bi

|bi|
r dx is direct from

definition and (4.7). For
∫
Bi
|∇bi|dx, the only term requiring an argument is∫

Bi
|f∇χi|dx. We remark that the type 2 implies |x| � 2ri + d(Bi, 0) � 6ri

for x ∈ Bi. Hence, we have |∇χi(x)| � C/ri � 6C/r on Bi and we can use
(4.7) again. Therefore (4.3) is proved if Bi is a type 2 ball. Remark that we
proved ∫

Bi

|bi|dx � Cαriλ(Bi) (4.8)

for all i and also |fBi | � Cαriλ(Bi) for type 2 balls.

Set g = f −
∑
i bi so that (4.1) is granted and it remains to establish

(4.2). We begin by some observations. Since the sum is locally finite on U ,
g is defined almost everywhere on Ω and g = f on F . Observe that g is a
locally integrable function on Ω. Indeed, let ϕ ∈ L∞ with compact support.
Since d(x, F ) � ri for x ∈ supp bi and

∑
λ(Bi) � Cλ(U) by using doubling

and the disjointness of the balls Bi, we obtain, using (4.8),∫ ∑
i

|bi| |ϕ| dx �
(∫ ∑

i

|bi|
ri
dx

)
sup
x∈Ω+

(
d(x, F )|ϕ(x)|

)
� Cαλ(U) supx∈Ω+

(
d(x, F )|ϕ(x)|

)
.

Since f ∈ L1
loc(Ω+), we deduce that g ∈ L1

loc(Ω+)2. We also note that by
Lebesgue differentiation theorem, we have

|f |+ |f |
r

+ |∇f | � α, λ− a.e. on F. (4.9)

(2) Note that since b ∈ L1 in our case, we can say directly that g ∈ L1
loc. However,

this way of doing applies to the homogeneous case presented in Section 6.
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We turn to proving the estimate ‖g‖∞ � Cα. Using that
∑
i χi = 1 on

U and 0 on F , we have

g = f11F +
∑

Bi type 1

fBiχi.

By (4.9), it remains to estimate the series. By (4.7), |fBi | � Cα and we
conclude using

∑
i χi � 1.

We continue with the estimate ‖g/r‖∞ � Cα. We use the same decom-
position for g as above. On F , |g|/r � α. Let x, y ∈ Bi with Bi a type 1
ball. We have ri � |y|/4 by type 1 definition. We also have |x − y| � 2ri.
Hence we deduce that |y| � 2ri + |x| � |y|/2 + |x|, so that |y| � 2|x| and

|fBi |
|x| � 2

∫
Bi

|f(y)|
|y| dy � Cα.

Then let x ∈ U . Considering only the balls Bi containing x, we have:

|g(x)|
|x| �

∑
i∈Ix:Bi type 1

|fBi |
|x| χi(x) � Cα

∑
i∈Ix

χi(x) = Cα.

It remains to prove ‖∇g‖∞ � Cα. For that, we use the original repre-
sentation of g, differentiate in the sense of distributions and calculate

∇g = ∇f −
∑
i

∇bi = ∇f −
( ∑

i

χi

)
∇f − h = 11F (∇f)− h

with
h =

∑
Bi type 1

(f − fBi)∇χi + f
∑

Bi type 2

∇χi.

By (4.9), |11F (∇f)| � α λ-a.e.. We claim that a similar estimate holds for h,
i.e. |h(x)| � Cα for all x ∈ Ω+. For this, note first that h vanishes on F .
Then fix x ∈ U . Observe that

∑
i∇χi(x) = 0, and by the definition of Ix,

the sum reduces to i ∈ Ix. Pick j ∈ Ix with Bj of type 2 if there is one such
ball, otherwise any j ∈ Ix will do. We have

h(x) =
∑

i∈Ix:Bi type 1

(fBj − fBi)∇χi(x) + fBj
∑

i∈Ix:Bi type 2

∇χi(x)

because the difference with the previous equation is

(f(x)− fBj )
∑
i∈Ix

∇χi(x) = 0.
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We have seen that |fBj − fBi | � Crjα � 3Criα with C independent of
i, j ∈ Ix and x ∈ U . Since |∇χi(x)| � C/ri and Ix has cardinal bounded
by N , we are done for the the first term in the right hand side. For the
second term, either no i ∈ Ix are such that Bi is of type 2, in which case
this term is 0. In the opposite case, we know that |fBj | � Cαrj since Bj is
of type 2 and we conclude using |∇χi(x)| � C/ri � 3C/rj for i ∈ Ix and
that Ix has cardinal bounded by N . From these estimates we deduce that
|∇g(x)| � Cα λ− a.e.. �

We are now able to characterize the K-functional of interpolation be-
tween H̃1

1 (X) and H̃1
∞(X).

Theorem 4.2. — We have that

K(f, t, H̃1
1 , H̃

1
∞) ∼ t

(
f∗∗(t) +

(
|f |
r

)∗∗
(t) + |∇f |∗∗(t)

)

for every f ∈ H̃1
1 (X) + H̃1

∞(X) and t > 0. The implicit constants are
independent of f and t.

Proof. — The lower bound follows from the fact that K(g, t, L1, L∞) ∼
tg∗∗(t) for g ∈ L1 + L∞. Now for the upper bound, consider first the case
when f ∈ H̃1

p (X). Identifying f to its restriction to Ω, write f = f+ + f−
and take the above Calderón-Zygmund decomposition for each f+ and f−
for α > 0 to be chosen. We obtain open subsets U± and functions g±, b±.
We assume that U± are nonempty; the easy modifications otherwise are left
to the reader.

Here is the point of working with the H̃ spaces instead of the H spaces.
As g+(0+) = g−(0−) = 0, if we define g = g+ on Ω+ and g− on Ω−, then g
can be extended to a Lipschitz function on X = Ω with ‖ gr ‖∞ � Cα. Hence
g ∈ H̃1

∞(X) with norm controlled by Cα.

Therefore we can write f ∈ H̃1
p (X) as f = g + b with b ∈ W 1

1 (Ω) =
H̃1

1 (X) and g ∈ H̃1
∞(X). We have ‖g‖

H̃1
∞(X)

� Cα and ‖b‖
H̃1

1 (X)
�

Cα(λ(U+) + λ(U−)). Let

α±(t) =
(
MΩ±(|f±|+

|f±|
r

+ |∇f±|)
)∗

(t), α = max(α+(t), α−(t)).
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Remark that

α+(t) �
(
|f+|∗∗ +

(
|f+|
r

)∗∗
+ |∇f+|∗∗

)
(t)

�
(
|f |∗∗ +

(
|f |
r

)∗∗
+ |∇f |∗∗

)
(t)

where the implicit constant depends only on the doubling constant of Ω+.
We used the fact that {x ∈ Ω+; |f+(x)| > λ} ⊂ {x ∈ Ω; |f(x)| > λ}, hence
f∗+(t) � f∗(t). Similarly, ( f+r )∗(t) � ( fr )

∗(t) and |∇f+|∗(t) � |∇f |∗(t).

As U+ is contained in{
x ∈ Ω+;MΩ+(|f+|+

|f+|
r

+ |∇f+|)(x) > α+(t)
}

we have λ(U+) � t. Similarly we get λ(U−) � t. This yields

K(f, t, H̃1
1 , H̃

1
∞) � ‖b‖

H̃1
1

+ t‖g‖
H̃1
∞

� Ct
(
f∗∗(t) +

(
|f |
r

)∗∗
(t) + |∇f |∗∗(t)

)
.

For the general case when f ∈ H̃1
1 (X)+H̃1

∞(X), we apply a similar argument
to that of [9] to obtain the upper bound. We omit details. �

Proof of Theorem 3.5. Set H̃1
p,1(X) = (H̃1

1 (X), H̃1
∞(X))1−1/p,p. By the reit-

eration theorem, it suffices to establish H̃1
p,1(X) = H̃1

p (X) with equivalent
norms.

First, from the Calderón-Zygmund decomposition, we have H̃1
p (X) ⊂

H̃1
1 (X) + H̃1

∞(X) for 1 < p <∞ where the inclusion is continuous.

From the previous results we have that for f ∈ H̃1
1 (X) + H̃1

∞(X)

‖f‖1−1/p,p ∼
{∫ ∞

0

(
|f |∗∗(t) +

(
|f |
r

)∗∗
+ |∇f |∗∗(t)

)p
dt

}1/p

∼ ‖f∗∗‖p +
∥∥∥∥(
|f |
r

)∗∗∥∥∥∥
p

+ +‖ |∇f |∗∗‖p

∼ ‖f‖p +
∥∥∥∥fr

∥∥∥∥
p

+ ‖ |∇f | ‖p

∼ ‖f‖H̃1
p
,

where we used that for l > 1, ‖f∗∗‖l ∼ ‖f‖l. �

– 726 –



Sobolev spaces on multiple cones

5. Restriction/Extension from/to Rn

We study the restriction operator onto Ω and construct an extension
that is p independent. The subject of restriction and extension has been
very studied for Sobolev spaces on domains (that is, connected open sets).
For some definite answers see [13] and the references therein. But recall that
the double cone is not a domain. For references closer to what we are doing
here, see [18] which considers the Bessel-Sobolev spaces in subsets of Rn

and [20] which treats the Hajlasz-Sobolev spaces in spaces of homogeneous
type. Let us first state our result.

Theorem 5.1. — Let 1 � p �∞.

• The restriction operator is bounded from W 1
p (Rn) into H1

p (X). Fur-
ther, it is onto for p �= n and for p = n, its range is Ĥ1

n(X).

• There exists a linear extension operator E that is bounded from H1
p (X)

to W 1
p (Rn) if p �= n and from Ĥ1

n(X) to W 1
n(Rn).

The interesting part of this result is p = n. Observe also that this shows
that H1

n(X) does not have the extension property.

In accordance with the cited references, the second item is closely related
to ontoness in the first. It could well be a direct consequence but we prefer
producing an explicit extension operator.

In [20], the author studies restrictions onto regular sets in a space of
homogeneous type. Note that the double cone is a regular set in Rn. For
such sets, he proves the following interesting theorem (Theorem 1.3). For all
1 < p �∞, the restriction ofM1,p(Rn) to Ω equalsM1,p(X) and there exists
a linear continuous extension from the latter space to the first one. Here,
M1,p is the Hajlasz-Sobolev space. Given the fact thatW 1

p (Rn) =M1,p(Rn)
with equivalent norms for 1 < p � ∞ ([12]), this implies that M1,p(X)
interpolate for 1 < p � ∞. But combining this with our result gives the
following corollary.

Corollary 5.2. — For 1 < p � ∞, M1,p(X) = H1
p (X) if p �= n and

M1,n(X) = Ĥ1
n(X).

The result for p > n is known (see [11]): it follows from the fact that
X is complete and satisfies Poincaré inequality for any p > n. Not much
more can be said in general without these two conditions so this corollary is
seemingly new for p � n. The interesting case is the identification for p = n:
M1,n(X) is a strict subspace of H1

n(X).
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This study of restriction/extension properties uses the decomposition
into radial and anti-radial parts defined earlier. It also possible to reprove
the interpolation property of the H1

p (X) spaces by this method.

We first study the restriction operator, then construct the extension. We
next prove the ontoness and conclude with the application to interpolation.

5.1. Restriction

The restriction operator R is defined by R(f) = f |Ω. Let 1 � p <∞. It
is obvious that if f ∈W 1

p (Rn) then R(f) ∈W 1
p (Ω), and that R :W 1

p (Rn)→
W 1
p (Ω) is bounded. As C∞0 (Rn) is dense in W 1

p (Rn), the range is contained
in W̃ 1

p (Ω) = H1
p (X).

For p = n, we show that R maps into Ĥ1
n(X). Let f ∈ W 1

n(Rn) and let
g = R(f). Since we already know that g ∈ H1

n(X), it remains to show that
ga/r ∈ Ln(X). Write f = fρ + fα where fρ(x) is here the average of f on
the whole sphere of radius |x|. Identifying fρ with its restriction to Ω, we see
that (fρ)r = fρ and (fρ)a = 0. Thus, if we write g = gr + ga, we conclude
that ga = (fα|Ω)a, i.e ga(x) = fα(x)−

∫
Ω∩S|x| fα dσ(θ) for x ∈ Ω. Thus

∫
Ω∩S|x|

|ga|n dσ(θ) � 2n
∫

Ω∩S|x|
|fα|n dσ(θ)

� 2n
∫
S|x|

|fα|n dσ(θ)

� C|x|n
∫
S|x|

|∇θfα|ndσ(θ)

where the last inequality is Poincaré inequality (Pn) on the sphere S|x| since
fα has mean value 0 on it, and ∇θ is the tangential gradient (see the last
remark in Section 3). Since r(x) = |x| it follows that∫

Ω

∣∣∣ga
r

∣∣∣n dx =
∫ +∞

0

∫
Ω∩Sr

∣∣∣ga
r

∣∣∣n dσ(θ)dr
� C

∫ +∞

0

∫
Sr

|∇θfα|ndσ(θ)dr

= C
∫ +∞

0

∫
Sr

|∇fα|ndσ(θ)dr

� C
∫
Rn

|∇f |ndx <∞.
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We used that ∇θfα = ∇θf since fρ does not depend on θ and then |∇fα| �
|∇f |. Therefore R(f) = g ∈ Ĥ1

n(X).

For p =∞, it is obvious that R is bounded from W 1
∞(Rn) into H1

∞(X)
(and it is onto by Whitney’s extension theorem).

5.2. Extension

Let 1 � p � ∞. Let f ∈ H1
p (X) if p �= n (resp. f ∈ Ĥ1

n(X)). Write
f = fr+fa as in Section 3. Lemma 3.8 yields fr ∈W 1

p (Rn) and fa ∈ H̃1
p (X).

It remains to extend fa. We write fa = fa|Ω+ +fa|Ω− = fa++fa−. We treat
fa+, the same analysis applying to fa−. Our strategy is to enlarge Ω+ to a
slightly bigger half-cone Ω̃+, then we map them with a smooth bilipschitz
map onto the upper half-space Rn+ and a slightly bigger version R̃n+. We
use the reflection principle for Sobolev spaces to extend from the upper-half
space to the full space, localise on R̃n+ with a homogeneous cut-off and finish
by mapping back onto Ω̃+. There are many ways to do that. Here are the
details.

Let w < π/2 be the half-angle of Ω+ with respect to the vertical axis
and let Ω̃+ be an open half-cone with half-angle ω + ε < π/2 for some
small ε with same vertex point and rotation axis. Using the spherical angle
θ ∈ [0, π) defined by θ = arccos xn|x| by writing x = (x′, xn), x′ ∈ Rn−1, xn ∈
R, the map ψ+(x) = y with y =

( sin(2ωθ/π)
sin θ x′, cos(2ωθ/π)

cos θ xn
)

is a smooth
bilipschitz (this is somewhat tedious to check carefully but it reduces to
a planar estimate) map, leaving the norm invariant (|ψ+(x)| = |x|), from
R
n
+ onto Ω+ and from R̃n+ onto Ω̃+ where R̃n+ is a half-cone with half-angle

π(w+ε)
2ω > π

2 . We consider now the even extension ζ+ :W 1
p (Rn+)→W 1

p (Rn).
Let m+ ∈ C∞(Rn \ {0}) ∩ L∞(Rn), homogeneous of degree 0, such that
m+ = 1 on Rn+ and suppm+ ⊂ R̃n+ ∪ {0}. With these ingredients we define
the extension ξ+(fa+) of fa+ as

ξ+(fa+) =
[
m+ζ+(fa+ ◦ ψ+)] ◦ ψ−1

+ .

It readily follows from the properties of m+ that∥∥∥m+ g

r

∥∥∥
p
�

∥∥∥g
r

∥∥∥
p

and
‖ |∇(m+g)|‖p � ‖ |∇g|‖p +

∥∥∥g
r

∥∥∥
p
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for all g ∈W 1
p (Rn). Using this fact, that bilipschitz maps preserve Sobolev

spaces and density of Lipschitz functions, we obtain that ξ+(fa+) ∈W 1
p (Rn)

with supp ξ+(fa+) ⊂ Ω̃+ ∪ {0} and ‖ξ+(fa+)‖W 1
p (Rn) � C‖fa+‖H̃1

p(X)
. We

conclude that ξ(fa) = ξ+(fa+) + ξ−(fa−) ∈ W 1
p (Rn) is an extension of fa

to W 1
p (Rn).

Therefore, E(f) defined by

E(f) = fr + ξ(fa)

is an extension of f toW 1
p (Rn). We have shown that the map E is H1

p (X)→
W 1
p (Rn)-bounded if p �= n and Ĥ1

n(X)→W 1
n(Rn)-bounded if p = n.

5.3. Ontoness and relation to interpolation for H1
p (X)

From the previous subsections, we deduce that R◦E operates boundedly
on H1

p (X) for p �= n and on Ĥ1
n(X) as the identity map. In particular, R

acting on W 1
p (Rn) is onto H1

p (X) for p �= n and onto Ĥ1
n(X) for p = n.

Using the preservation of interpolation properties for retract diagrams, it
follows that

(H1
1 (X), H1

∞(X))1−1/p,p = R(W 1
1 (Rn),W 1

∞(Rn))1−1/p,p) = R(W 1
p (Rn)).

Therefore (H1
1 (X), H1

∞(X))1−1/p,p = H1
p (X) for p �= n and Ĥ1

n(X) for
p = n.

6. Homogeneous versions

Homogeneous Sobolev spaces are defined up to a constant, removing
control on the Lp norms on f . Since the vertex point plays a specific role,
it is best here to fix the floatting constant by imposing control at this
vertex point. We adopt the following definitions. Let Lip0(X) be the space
of Lipschitz functions in X vanishing at 0. For 1 � p �∞, we set

Ep = {f ∈ Lip0(X) ; ‖ |∇f |‖Lp(X) <∞},

Ẽp = {f ∈ Lip0(X) ; ‖ |∇f |‖Lp(X) + ‖f/r‖Lp(X) <∞}.

Then Ep and Ẽp are normed spaces and we call H1
p(X) and H̃1

p(X) their
completions. Clearly Ẽ∞ = H̃1

∞(X) = E∞ = H1
∞(X) = Lip0(X).

It is easy to show that H1
p(X) is composed of locally p-integrable func-

tions. For p > n, one has (2.1) from the Morrey embedding and f(0) = 0.
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It is clear that H̃1
p(X) ⊂ H1

p(X) but for 1 � p � n the inclusion is
strict3. Indeed a Lipschitz function supported away from 0 which agrees
with ei|x|

−α
for |x| � 1 satisfies ‖f/r‖p = ∞ and belongs to Ep if α > 0 is

large enough. For p > n, the inclusion is an equality as we shall see.

Lemma 6.1. — For 1 � p <∞, Lip0(X) ∩ Lip0(X) is dense in H̃1
p(X).

Proof. — If f ∈ Ẽp, consider fk = fχ(r/k), k ∈ N∗, where χ : [0,∞)→
[0, 1] is a smooth function which is 1 on [0, 1] with support in [0, 2]. It is
easy to show that ‖ |∇(f − fk)|‖p and ‖(f − fk)/r‖p tend to 0 as k tends to
∞. �

Remark. — From there, one can see that the restrictions to Ω of functions
in C∞0 (Rn) that vanish at 0 form a dense subspace of H̃1

p(X).

Corollary 6.2. —

• For 1 � p < n, (3.4) holds on H̃1
p(X).

• For n < p <∞, (3.4) holds on H1
p(X) and H1

p(X) = H̃1
p(X).

Proof. — Assume first that 1 � p < n. Then by the previous lemma,
one can assume that f ∈ Lip0(X) for which the argument of (3.4) applies.

Assume now n < p < ∞. Let f ∈ Lip0(X). For 0 < ε < R < ∞,
set A =

∫
Ω+∩{R>|x|>ε}

∣∣ f
r

∣∣pdx. Then argue as in the proof of (3.4). In the
integration by parts, one picks an extra term which has a negative sign
because n− p < 0. Thus one can cancel it and obtain A � C‖|∇f |‖pLp(X+)

with C independent of ε, R. Taking limits and doing the same thing on Ω−
shows that f ∈ Ẽp and we are done. �

The first item also show that the closure in H1
p(X) of Lip0(X)∩Lip0(X)

is H̃1
p(X).

Theorem 6.3. — The family (H̃1
p(X))1�p�∞ is an interpolation family

for the real method. Hence the same is true for (H1
p(X))n<p�∞.

The proof for the spaces H̃1
p(X) is a minor adapatation of the one of

Theorem 3.5 and is left to the reader. The second point follows from the
above corollary.

Interpolation for the spaces H1
p(X) for p � n is unclear.

(3) In contrast with the inhomogeneous case for p < n.
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7. Some remarks and generalizations

Remark (some explicit extensions). — There are many extension opera-
tors. The following example was communicated to us by Michel Pierre. For
the (double) cone of R2 consisting of the 2 quadrants defined by xy > 0,
then one can take

Ef(x, y) =


f(x, y), if xy > 0,

x2f(x,−y) + y2f(−x, y)
x2 + y2

, if xy < 0.

Remark (central role of the vertex). — The analysis in this article does
not use the fact that the cone Ω is symmetric under x �→ −x and also does
not use the specific opening angle. This means that the upper and lower
(open) half-cones can be replaced by two half-cones located independently
of one another provided they share the same vertex and that they are strictly
separated by a hyperplane passing through the vertex and not containing
any direction of the boundaries. Also the (finite) number of disjoint half-
cones is not limited to 2 provided each pair satisfies the above requirements.

Remark (other types of cones). — The half-cones can be replaced by
R
∗
+×N where N is a Lipschitz domain on the unit sphere. On such domains,

one has Poincaré inequalities with any exponents (adapt the proof sketched
in the last remark of Section 3) and this allows to adapt the arguments.

Remark (local geometry). — Of course, the analysis done with inhomo-
geneous norms is stable by (smooth) truncation of the cone away from the
vertex point. For example, if one wants to work on a truncated cone by re-
quiring r < 1, then one can use local variants as in Badr’s thesis [2]. Details
are left to the reader.
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