ANNALES

DE LA FACULTE
DES SCIENCES

Mathématiques

D. LE PEUTREC
Small eigenvalues of the Neumann realization of the semiclassical Witten
Laplacian

Tome XIX, n° 3-4 (2010), p. 735-809.
<http://afst.cedram.org/item?id=AFST_2010_6_19_3-4_735_0>

© Université Paul Sabatier, Toulouse, 2010, tous droits réservés.

L’acces aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
I’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous quelque
forme que ce soit pour tout usage autre que I’utilisation a fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/



http://afst.cedram.org/item?id=AFST_2010_6_19_3-4_735_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la Faculté des Sciences de Toulouse Vol. XIX, n® 3-4, 2010
pp. 735-809

Small eigenvalues of the Neumann realization
of the semiclassical Witten Laplacian

D. L PEuTREC()

ABSTRACT. — This article follows the previous works [HeKINi, HeNi] by
Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible
diffusion processes via a Witten complex approach. Again, exponentially
small eigenvalues of some self-adjoint realization of Ai’% = —h2A +

|Vf(z)|?> — hAf(z) are considered as the small parameter h > 0 tends
to 0. The function f is assumed to be a Morse function on some bounded
domain  with boundary 9€2. Neumann type boundary conditions are con-
sidered. With these boundary conditions, some possible simplifications in
the Dirichlet problem studied in [HeNi] are no more possible. A finer treat-
ment of the three geometries involved in the boundary problem (boundary,
metric, Morse function) is here carried out.

REsuME. — Cet article est dans la continuation des travaux [HeKINi,
HeNi| de Helffer-Klein-Nier et Helffer-Nier sur I’étude de la métastabilité
dans des processus de diffusions réversibles via une approche de Witten.
Nous considérons encore ici les valeurs propres exponentionnellement pe-
tites d’une réalisation auto-adjointe de ASS,)_L = —h2A+|Vf(x) |2 —hAf(z)
lorsque le parametre h > 0 tend vers 0. La fonction f est une fonction
de Morse sur un domaine borné 2 de bord 992. Des conditions au bord
de type Neumann sont considérées ici. Avec ces conditions, certaines sim-
plifications utilisées pour 1’étude du probléme de Dirichlet dans [HeNi]
ne sont plus possibles. Un traitement plus fin des trois géométries inter-
venant dans le probleme & bord (bord, métrique, fonction de Morse) est
donc nécessaire.

(*) Regu le ?7/7?/207?, accepté le 30/03/2010
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

1. Introduction and result

In this work, we focus on the exponentially small eigenvalues of the
Neumann realization of the semiclassical Witten Laplacian A;Oz (acting
on 0O-forms) on a connected compact Riemannian manifold with regular

boundary.

Our purpose is to derive with the same accuracy as in [HeKINi] and
in [HeNi] asymptotic formulas for the smallest non zero eigenvalues of the

Neumann realization of ASCOZ

A similar problem was considered by many authors via a probabilistic
approach in [FrWe], [HoKuSt], [Mic], and [Kol]. More recently, in the case of
R™, accurate asymptotic forms of the exponentially small eigenvalues were
obtained in [BoEcGaKl] and [BoGaKI].

These results were improved and extended to the cases of boundaryless
compact manifolds in [HeKINi] and of compact manifolds with boundaries
for the Dirichlet realization of the Witten Laplacian in [HeNi].

We want here to extend these last results to the case of compact mani-
folds with boundaries for the Neumann realization of the Witten Laplacian,
that is with coherently deformed Neumann boundary conditions.

Let us also make mention of an other recent work, [KoPrSh], about
semiclassical asymptotics for the eigenvalues of the Witten Laplacian on
compact manifolds with boundary, and where some techniques developped
in [HeNi] are used. In [KoPrSh], the purpose is nevertheless quite different
and does not consist in giving full semiclassical asymptotic expansions like
it is done in [HeNi] and in the present paper.

The function f is assumed to be a Morse function on Q = Q U 99
with no critical points at the boundary. Furthermore, its restriction to the
boundary f|sq is also assumed to be a Morse function.

From [ChLi], which completed results yet obtained in the boundaryless
case (see [Sim][Wit][CyFrKiSi|[Hen][HeSj4][Hel3]), the number m,, of eigen-

values of the Neumann realization of the Witten Laplacian Agcp zb (acting on

p-forms) in some interval [0, Ch?] (for h > 0 small enough) relies closely on
the number of critical points of f with index p.

In the boundaryless case, these numbers are exactly the numbers of
critical points of f with index p in . Like in [HeNi], this definition has to
be generalized in the case with boundary, taking into account the structure
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of the function f at the boundary, flaQ. Note furthermore that mg is here
the number of local minima of f in €.

Moreover, the first eigenvalue in our case is 0 and the other smgll eigen-
values are actually exponentially small as h — 0, i.e. of order e &, where
C is a positive number independent of the small parameter h > 0.

The point of view of [HeKINi] and [HeNi] intensively uses, together with
the techniques of [HeSj4], the two facts that the Witten Laplacian is asso-
ciated with a cohomology complex and that the function x — exp —@ is
a distributional solution in the kernel of the Witten Laplacian on O-forms,
consequently allowing to construct very efficiently quasimodes.

Recall that the Witten Laplacian is defined as
Agn=dgndyy +dypdpn (1.0.1)
where dy j, is the distorted exterior differential
dpp = e F@/M (hd) el @/ = hd 4 df (z)A (1.0.2)

and where d7 j, is its adjoint for the L2-scalar product canonically associated
with the Rlemanman structure (see for example [GaHuLa][Gol][Sch]). The

restriction of dy, to p-forms is denoted by dgcp })l With these notations, the
Witten Laplacian on functions is

0
A;}L

In the Witten complex spirit and due to the relation

=dP)dy) . (1.0.3)

(0 1) 4(0)
dy A =A% pdy g (1.0.4)
it is more convenient to consider the singular values of the restricted differ-
ential d(o) : FO — FM)  The space F® is the my-dimensional spectral

subspace of Aj we L€ {0,1},
F® = Ran 1](h)(A%31) , (1.0.5)
with I(h) = [0,Ch?] and the property’

Ly (AW )Y, = dP) 10 (A1) . (1.0.6)

(1) The right end a(h) = Ch3 of the interval I(h) = [0,a(h)] is suitable for technical
reasons. What is important is that a(h) = o(h). The value of C > 0 does not play any
role provided h is small enough.
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

The restriction dfyh’ p Will be more shortly denoted by ﬂ](f];”

¢ ¢
5;,;1 = (d;,}t)/Fu) . (1.0.7)

We will mainly focus on the case £ = 0.

It appears that working with singular values of ﬂ](cog is efficient in order to

compute the eigenvalues of A(O,)l (which are their squares). Those quantities

agree better with the underlyfng Witten complex structure.

Note that in our case, 0 is the smallest eigenvalue of the (deformed)
Neumann realization of the Witten Laplacian on O-forms due to the fact that
T — exp —f(hx) belongs to the domain of this operator (see Proposition 2.7
for the exact definition).

Let us now state the main result. Let U/(°) and /() denote respectively
the set of local minima and the set of generalized critical points with index
1, or generalized saddle points, of the Morse function f on Q (see Defini-
tion 5.1 for the exact meaning of “generalized”). The analysis is easier under
a generic assumption which ensures that the exponentially small eigenval-
ues are simple with different logarithmic equivalent as h — 0. Although it
is possible to consider more general cases like in [HeKINi] and in [HeNi],
we will follow the point of view presented in [Nie] and work directly in a
generic case which avoids some technical and unnecessary considerations.

ASSUMPTION 1.1. — The critical values of f and f‘aﬂ are all distinct and
the quantities f(UM)—f(U ), with UMD cUUD) and U cU®) are distinct.
Following this assumption, a one to one mapping j can be defined from

ZAAN {Ul(o)} where UI(O) is the global minimum, into the set ("), The local

minima are denoted by UIEO), k e {1,...,mo}, and the generalized saddle

points by U;l), j €{1,...,m}. The ordering of the local minima as well
as the one to one mapping j will be specified in Subsection 5.3.

The following fundamental quantities will enter in the expression of the
final result.

DEFINITION 1.2. — Fork € {2,...,mg}, we define:

1
1

‘det Hess f(U,gO))
(=)

if U eq

Y (h) =

1
1

(0)
_2871](.([]150)) ‘det Hess floa (U, ") ;U con
h (wh) "% * ’

=
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Al

det Hess f(UJ((llz))‘ s g
B0 (1) ¥ Wi ©
ity \) = ) 1
~20,f(Uf))\ " |det Hess Flan(Ujg)) if U e o0
h (wh) o J(k) ’
and,
hz OHNE
hz (mh)= A7 _ iUl e
T2 (1) 2
det Hess f(U/}\)
P (1) = B o e
e 2 2
i Ul €09,

—20, f(U 7(lc) ‘dctHcssf|aQ(Uj((,3))
where /)\\}}V is the megative eigenvalue of Hess f|W(UJ((113)) for W = Q or
W = 0Q.

THEOREM 1.3. — Under Assumption 1.1 and after the ordering speci-

fied in Subsection 5.3, there exists hy such that, for h € (0, hg], the spectrum

in [0, h%) of the Neumann realization ofA( ,)L in Q consists of mg eigenvalues

0=MX(h) <...<Ano(h) of multiplicity 1

Moreover, the above mg— 1 non zero eigenvalues are exponentially small
and admit the following asymptotic expansions:

ey (0)
FUL D =F W)

Me(h) = 7i(R) 834 (h) 655y (h) €72 g (14 hej(h))
where i (h), 0;xy(h), and ;) (h) are defined in the above definition and
ci.(h) admits a complete expansion: cj(h) ~ > = h"™C .

This theorem is an extension to the case with Neumann boundary condi-
tions of the previous results of [BoGaKl] and its improvements in [HeKINi]
and [HeNi] (see also non-rigorous formal computations of [KoMa], who look
also at cases with symmetry and the books [FrWe] and [Kol] and references
therein).

To prove this theorem, we will follow the same strategy as in [HeKINi]
and in [HeNi] and some intermediary results will be reused without demon-
stration (what will be indicated in the article). Moreover, some proofs will be
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

improved (see for example the final proof reduced now to a simple Gaussian
elimination, explained in [Lepl]).

Finally, let us underline that the geometry of the Neumann case is dif-
ferent from the geometry of the above references. This leads to different
results (compare Theorem 1.3 and the main theorem of [HeNi]) and some
proofs have to be entirely reconsidered. In fact, the study of the Dirichlet
realization of the Witten Laplacian done in [HeNi] agreed better with the
local geometry near the boundary, which led to simpler computations (see
the local WKB construction in Section 4 for example).

The article is organized as follows.

In the second section, we analyze in detail the boundary complex adapted
to our analysis in order to keep the commutation relation (1.0.4). A part of
the answer already exists in the literature (see [Sch], [Duf], [DuSp], [Gue],
and [ChLi]) in connection with the analysis of the relative or absolute co-
homology as defined in [Gil].

The third section is devoted to the proof of rough estimates (to get a
first localization of the spectrum of the Laplacian) replacing the harmonic
oscillator approximation in the case without boundary.

These two sections bring no additional difficulties in comparison with
what was done in [HeNi].

In the fourth section, we give the WKB construction for an eigenform
of the Witten Laplacian on 1-forms localized near a critical point of the
boundary, according to the analysis done in [Lep2]. In the Dirichlet case,
it was possible to use only one single coordinate system for the WKB con-
struction but in the present case different coordinate systems arise naturally.
Lemma 3.18 will play a crucial role to juggle with these different coordinate
systems.

In the first part of the fifth section we label the local minima and we
construct the above injective map j under Assumption 1.1.

In the second part of this fifth section we build quasimodes adapted
to our analysis and we make some scalar estimates thanks to the Laplace
method. This leads directly to the proof of the final result in Section 6 using
aresult of [Lepl|. Again, we cannot use a single one coordinate system like in
[HeNi] and we must again call on Lemma 3.18 to be able to use the Laplace
method. This is due to the local geometry near a generalized critical point
with index 1 which is rather more complicated than in [HeNi.
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2. Witten Laplacian with Neumann boundary condition

2.1. Introduction and notations

This section is analogous to the second section of [HeNi| and we will use
the same notations that we recall here.

Let Q be a C*® connected compact oriented Riemannian n-dimensional
manifold. We will denote by go the given Riemannian metric on 2 ; 2 and
d9 will denote respectively its interior and its boundary.

The cotangent (resp. tangent) bundle on €2 is denoted by T*Q (resp.
TQ) and the exterior fiber bundle by AT*Q = @©p_(APT*Q (resp. ATQ =
en_yAPTS).

The fiber bundles ATOQ = @)ZjAPTOQ and AT*0Q = @p_) APT*0
are defined similarly.

The space of C*®, C§°, L?, H*® , etc. sections in any of these fiber bun-
dles, E, on O = Q or O = 99, will be denoted respectively by C*(O; E),
C(O; E), L*(0; E), H*(O; E), etc..

When no confusion is possible we will simply use the short notations
APC®® APCS°, APL? and APH® for E = APT*Q or E = APT*0N).

Note that the L? spaces are those associated with the unit volume form
for the Riemannian structure on  or 9Q (Q and 9 are oriented).

The notation C>®(Q; E) is used for the set of C* sections up to the
boundary.

Finally since 9Q is C*°, C*°(Q; E) is dense in H*(€2; E) for s > 0 and the
trace operator w — w|apn extends to a surjective operator from H*((; E)
onto H*~Y/2(9€); E) as soon as s > 1/2.

Let d be the exterior differential on C§°(€2; AT*Q)
( dP) ;3 (Q; APT™Q) — C° (2 APHIT*Q) )

and d* its formal adjoint with respect to the L2-scalar product inherited
from the Riemannian structure

(0 cC3 (@A T Q) - CR(QATTT) )

Remark 2.1. — Note that d and d* are both well defined on C>(Q; AT*Q) .
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

For a function f € C>®(Q;R) and h > 0, the distorted operators are
defined on C*(€2; AT*Q2) by:

din = e—f(@)/h (hd) ef@/h and dj ) = ef(@)/h (hd*) e~ f@/h

The Witten Laplacian is the differential operator defined on C>(€2; AT*(2)
by:
Afyh = d;yhdf,h + dfyhd}’h = (df,h + d},h)2 . (2.1.1)
Remark 2.2. — The last equality follows from the property dd = d*d* =

0 which implies:
df,hdf,h = d;,hd;,h - O. (2.1.2)

It means, by restriction to the p-forms in C*(Q; APT*Q):

®) _ ) (p) | A(p=1) s(p—1)
A, =dp, d?jh +dp, )dfz,)h ~

Note that (2.2) implies for all u in C*°(Q2; APT*Q) that:

AP = dP) AP u (2.1.3)
and
AL DEE Dy = P AP (2.1.4)

We end up this section by a few relations with exterior and interior
products (respectively denoted by A and i), gradients (denoted by V) and
Lie derivatives (denoted by £) which will be very useful:

(dfA)" = iyy (in L*(APT*Q)), (2.1.5)
dpn = hd+dfn, (2.1.6)
dj, = hd" +ivy, (2.1.7)
doix +ixod = Lx, (2.1.8)
App = W d+d)?+ VP +h(Lys + L), (2.1.9)

where X denotes a vector field on Q or €.
Remark 2.3. — We work here on a Riemannian manifold and the opera-

tors introduced depend on the Riemannian metric go. Nevertheless, we have
omitted here this dependence for conciseness.
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2.2. Stokes and Green formulas

In order to define suitably the self-adjoint Neumann realization of the
Witten Laplacian Ay}, we need variants from the Stokes and the Green
formulas.

For that, we use some notations and properties which are very convenient
for boundary problems and which are introduced for example in [Sch] and
recalled in [HeNi.

DEFINITION 2.4. — We denote by 1, the outgoing mormal at o € OS)
and by 7% the 1-form dual to 7i, for the Riemannian scalar product.

For any w € C>®(Q; APT*Q), the form tw is the element of C*(9€2; APT*Q)
defined by:

(tw)o (X1,..., Xp) =wo (X[ ,..., X)), Vo € 09,

with the decomposition into the tangential and normal components to 02
at o X; = X @ i,

Moreover,

(tw)e = ia, (M5 ANwy) .

The projected form tw, which depends on the choice of 7, (i.e. on go),
can be compared with the canonical pull-back j*w associated with the
imbedding j : 9Q — . Actually the exact relationship is j*w = j*(tw).
With an abuse of notation, the form j*(tw) will be simply written tw for
example in Stokes formula without any possible confusion.

The normal part of w on 9N is defined by:
nw =wlgg —tw € C®(IN; APT*Q).

If necessary tw and nw can be considered as elements of C>(€2; APT*Q)) by
a variant of the collar theorem (see [HeNi] or [Sch] for details).

The Hodge operator * is locally defined in a pointwise orthonormal frame
(E1,...,E,) by:

(w2 ) (Eg(pt1)s - -5 Eo(n)) = €(0) wa(Eoqr), -+ Eo(p)) 5

for wy € APT¥Q and with any permutation o € ¥(n) of {1,...,n} preserving
{1,...,p} (¢(0) denotes the signature of o).
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian
We recall the formulas:

x(xwy) = (~1)PPly, - Vw, € APTIQ, (2.2.1

<w1 |(U2>ApL2 = fQ w1 Axwg , Ywi,wg € APL? s (222

~— ~—

and:

*xd* P~ = (=1)Pd(nPic | 4 dP) = (—1)PFIgHmPy 0 (2.2.3)
*n=tx*, *t=mnx, (2.2.4)
td=dt, nd* =d" n. (2.2.5)

With the previous convention j*(tw) = tw, the Stokes formula writes:

Vw € C°(Q; APT*Q), /dw :/ Jrw :/ tw , (2.2.6)
Q Ty) 19)

and a first deformed Green formula given in [HeNi| states that

(dynwldsnm) avtipe + (dp pw | d} pm) av-—112 (2.2.7)

= (A | hargz + B /6 (1) 1 (o) — /8 (4} A ()

holds for all w € APH? and € APH* . This formulation of (2.2.7) does not
depend on the choice of an orientation. If i and pyq denote the volume forms
in Q and 01, the orientation is chosen such that (uga)e(X1,..., Xn—1) =
to (e, X1,. .., Xn—1). A simple computation in normal frames (see [Sch],
prop. 1.2.6) leads to:

twy A xnwz = (wy ‘iﬁOWQ>APT:Q dpaq (2.2.8)

for wy € C(Q; APT*Q) and wy € C°(Q; APHIT*Q).

DEFINITION 2.5. — We denote by %(0) or Onf (o) the normal deriva-
tive of f at o:
of

5.(0) =0 f(0) = (V[(0) | i)

As a consequence of (2.2.8) we get the following useful decomposition
formula.
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LEMMA 2.6 (Normal Green Formula). — The identity

2
2 2 2
ldg neclipinga + e, o = B2 IdolRonr 2+ 12 "l 3o o

+ V@l gz + h{(Lvs + Ly pw | w) v

of
h T | o d
+ /OQ<W|W>A T (677,) (0) duaq
holds for any w € APH' such that nw = 0.

Proof. — Since C*°(Q; APT*Q) is dense in APH', while both terms of
the identity are continuous on AP H 1 the form w can be assumed to be in
C>®(; APT*Q)).

We use the relation (2.2.7) with both f =0 (do,, = hd and dj ;, = hd*)
and a general f € C*>°(); R). We obtain:
2
gl s+ [5] = P21l = B2l =
(Afn —Dop)w|wharre + h [ (@) Axn(df Aw) — h [ (tivsw) A (xn)
= <(Af7h — Ao_’h)w | w>ApL2 + hfaﬂ<w | iﬁg (df A w)}AT;Q dpaq -
y (2.1.9):

(Apn = Don)w|wharre = IV Flwliore +h((Lvs + Lop)w|wharre -

For the integral term, we write:

i, (df Nw)(Xq,..., Xp) = (df Aw) (s 5 Xp)
= df(n,,) w(X1,...,X,) because nw =10
= (Vf(o)|7s) (Xl,...,Xp)
o (Tt
which proves the lemma. O

2.3. Normal Neumann realization

In this subsection, we specify the self-adjoint realization of Agc })L in which
we are interested. Like in [HeNi], we want this self-adjoint realization (de-
noted by A}\f ») to coincide with the Neumann realization on 0-forms and to
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian
preserve the complex structure:

(1+ AN =1gP) = a1+ AP
and
N,(p—1)\— —1),* —1),* N, —
1+ AP gl = gl AN

on the form domain of A?{}fp ).

Having in mind the works [Sch] and [ChLi] about cohomology complexes
and boundary problems, we introduce the space:

APHG, = Hj, (GAPTQ) = {w e H (GAPT*Q); nw =0} . (2.3.1)

In the case p = 0, it coincides with the space H'(Q), while for p > 1
the condition says only that the form vanishes on 02 when applied to non
tangential p-vectors. Since the boundary 0f2 is assumed to be regular, the
space

APCTS = Con (S APT*Q) = {we ™ (QAPT*Q); nw=0}

is dense in APHg . The following construction is a variant of known results
in the case f =0 (see [Sch]). We will use the notations:

Dy p(w,n) = (dfpw | dppn)ar+irz + {df pw | dF pn)ar-112
and

2 2
Dﬁh(w) = nyh(w’w) = ||df7thAp+1L2 + Hd;,thApflLQ .

PROPOSITION 2.7. —  The non negative quadratic form w — Dy p(w)
is closed on APH&H. The associated (self-adjoint) Friedrichs extension is

denoted by A}\{}L(p). Its domain is:

D(A%p)) = {ue A’H? nw=0and ndsuw=0},
and we have:

vwe DALY, AYPw=ANw nq.

Ik

)

Proof. — By the same argument as in the proof of Proposition 2.4 of
[HeNi], the space APHg ,, is isomorphic to the direct sum:

APH} @ tAP HY2(0Q; APT*Q)
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with continuous embedding. Hence, since 0f2 is a regular boundaryless man-
ifold, its dual is the direct sum of APH " and tAPH~/2(9; APT*Q):

(APHE ) = APH™ @ tAPH™V2(90; APT*Q) .

We have to check that w — D}{’})L(w) +C ||w||ipL2 is equivalent to the

square of the AP H' norm on APHj .. By (2.1.6)-(2.1.9) this is equivalent to
the same result for f = 0 and A = 1. This last case is known as Gaffney’s
inequality which is a consequence of the Weitzenbock formula (see [Sch],
Theorem 2.1.7).

Hence the quadratic form w — Dy p(w) is closed on APHg, and the
identity
Pyl (p) ()
Vn € APH ,, Df w(w,n) = (AP w,n)

defines an isomorphism A®) : APH{  — (APH{ ) .

,(p)

The self-adjoint Friedrichs extension A is then defined as the oper-

ator:
DANY) = {w e MW}, APw e iI2}, AT = AP
It remains to identify this domain and the explicit action of A®).
If w belongs to D(AN (p)) by the first Green formula (2.2.7) we get:
Vi € APCE, (] AVn) = D) (w.n) = (| Af)m)
The inequality:
DEL@. < Clellpoms Inllaosn -

together with the density of APCS® in AP H} implies that the current AP i hw €
D'(Q; APT*Q) is indeed the AP H~' component of AP)w

Assume that w belongs to A? Hj ,NA? H?; then the Green formula (2.2.7)
gives:

h / (t7) A (smdgpw) = DY) (w,n) — (AP w|n)arge , Vi € APHE, .
oN

By density, one can define, for any w in ApHO o such that A fp ,)Lw € APL2? a
trace of ndy jw by the previous identity, observing that the r.h.s. defines an
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antilinear continuous form with respect to n. With this generalized definition
of ndgcp})Lw we claim that:

D(A}\T}L(p)) = {w € ApH&n, Agff)lw € APL? and nd}”’zw = 0} )

The last point consists in observing that the boundary value problem

Agfj,)Lu =g, nu=g, ndgfl)lu = g9 (2.3.2)
satisfies the Lopatinski-Shapiro conditions. At the principal symbol level
(h > 0 fixed), these conditions are indeed the same as for

(dd* +d*d)Pu=g, nu=g;, ndPu=g,.

This is checked in [Sch]. Hence any solution to (2.3.2) with g € APL?
g1 = g2 = 0 belongs to APH?2. O

PROPOSITION 2.8. — For any p € {0,...,n}, the self-adjoint unbounded

,(P)
h

operator A}V introduced in Proposition 2.7 has a compact resolvent.

Moreover, if z € C\ Ry, the commutation relations
N,(p+1)y— N,(p)\—
(2 = AT a0 = df (= - AT o,
and

(z = AN 1Py = dP 0 (2 - AN )

hold for any v € APH{ ,, .

Proof. — The domain of the operator is contained in A?H?2, which is
compactly embedded in APL2, by Sobolev injections. This yields the first
statement.

Since APCGS, is dense in APHg ,, it is sufficient to consider the case when
v € APCGS,. For such a v and for z € C\ Ry, we set:

u=(z— A}\{}fp))_lv.

Due to the ellipticity of the associated boundary problem (the Lopatinski-
Shapiro conditions are verified) u belongs to C*°(2; APT*Q). The commu-
tation relations (2.1.3) and (2.1.4) can be applied since here f € C*(;R):
1
(== AP AP w = dP) (2 = AV yu = dF)v (2.3.3)
and

—1 —1),* —1),x —1),x
(== AP NaP D = dP 0 (2 = AP yu=dP Ve (2.3.4)
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Since u € D(A; (p)) we have nu = 0 and ndgpp,)lu =0.
Then, nd;pu = 0 and ndy pdypu = 0 imply dfpu € D(AN (p'H)) So by
(2.3.3) we have:

dP) (2 = AV e = dppu = (2 - AP0 w

In order to show the second commutation relation, we first use the rela-
tion (2.2.5) which implies:

nd} yu = hd*nu + n(ivu) = 0.
For the normal trace of the differential, we write (Afpu = zu — v):

l’ldf,h(d?hu) = zZnu — nv — nd;‘cvhdf,hu = 7d;,hl’ldf7hu = 0 .

Hence d(p )*u belongs to D(A}V (P 1)) and the identity (2.3.4) yields the
last commutatlon relation to show. O

DEFINITION 2.9. — For any Borel subset E CR and p € {0,...,n}, we

will denote by 1E(A§c\f}fp)) the spectral projection of A?{’h(p) on E.

From Proposition 2.8 and Stone’s Formula we deduce:

COROLLARY 2.10. — For any Borel subset E C R, the identities

N,(p+1 N
Lp(A7" v = df1s(A T

and

N,(p—1 —1),* —1),% N,
(AP )dy V= dP D 1 (AP

hold for all v € APHj ,,.

N.(p) corresponding to

In the particular case when v is an ezgem)ector ofA
the ezgenvalue )\ then d(phv (resp. d(p ) “v) belongs to the spectral subspace

Ran 1{,\}(A ) (resp. Ran I{A}(AN (= 1))).

Proposition 2.8 and Corollary 2.10 Were stated for p-forms v € APHj ,,(€2),

belonging to the form domain of A . It is convenient to work in this
framework because the multlphcatlon by any cut-off function preserves the
form domain AHO,H(Q):

(we AH}u(Q), x €C%(Q)) = (xw € AH ()
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while this property is no more true for D(A}V »)- In this spirit, we will often
refer to the following easy consequence of the spectral theorem.

LEMMA 2.11. — Let A be a non negative self-adjoint operator on a Hilbert
space H with associated quadratic form qa(x) = (x| Azx) and with form do-
main Q(A). Then for any a,b € (0,4+00), the implication

(aa(w) < @) = (|13 1o0(A)u]|” < %)

holds for any u € Q(A).

3. First localization of the spectrum

3.1. Introduction and result

Let us first recall that we are working with the fixed Riemannian met-
ric go on Q. Like in the third section of [HeNi] for their tangential Dirichlet
realization of the Witten Laplacian, we check here that the number of eigen-
values of A;Vh(p ) smaller than h3/2 equals a Morse index which involves in its
definition the boundary conditions. To this end, we will adapt [HeNi] which
uses techniques yet presented in [Sim], [CyFrKiSi|, [ChLi], [Bis], [Bur], and

in [Hell]. These techniques are also used in the same spirit in [KoPrSh].

In order to make the connection between the normal Neumann real-
ization of the Witten Laplacian A , and the Morse theory, we assume
additional properties for the functlon f up to the boundary 0f.

ASSUMPTION 3.1. — The real-valued function f € C®(Q) is a Morse
function on Q with no critical points in Q. In addition its restriction f|sq
is a Morse function on 0S).

Remark 3.2. — With this assumption, the function f has a finite number
of critical points with index p in 2. Note furthermore that the assumption
ensures that there is no critical point on 92, which implies that the outgoing

normal derivative %(U ) is not 0 when U is a critical point of f|sq.

DEFINITION 3.3. — For £ € {0,...,n}, the integer maQ is the number

of critical points U of flaaq with index ¢ such that df (U) < 0 (with the
additional convention maQ =0).

Forpe{0,...,n}, let

8Q

m—m+m

-egg|
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Remark 3.4. — In [HeNi], the authors worked with the tangential Dirich-
let conditions (tw = 0 and td} ,w = 0) and the corresponding definition

was similar with m?ﬁ and %(U ) < 0 replaced respectively by m?&ﬁ and
9Ly > 0.

The aim of this section is to prove the following theorem:
THEOREM 3.5. — Under Assumption 3.1, there exists hg > 0, such that

the normal Neumann realization of the Witten Laplacian A}\f 5, introduced in
Subsection 2.3 has, for h € (0, ho], the following property:

For any p € {0,...,n}, the spectral subspace F'P) = Ranl[o_’hs/z)(A}\f’h(p))

has rank: dim F®) = mg.

To prove this theorem, we will adapt for the normal Neumann realiza-
tion of the Witten Laplacian the proof given in [HeNi] for the tangential
Dirichlet realization. Many points of this demonstration do not require any
modification, so we will only recall these results without any demonstration.

The theorem will be proved in the Subsection 3.3.

3.2. A few preliminary lemmas

In this subsection, we recall some results of [HeNi] needed to prove The-
orem 3.5.

3.2.1 Variationnal results for the Witten Laplacian on R*

Let g be a C* metric on R* which equals the Euclidean metric outside
a compact set K.

ASSUMPTION 3.6 (g). — The function f is a Morse C* real-valued func-
tion and there exist C; > 0 and a compact K such that, for the metric g:

Vo e RF\K, |Vf(z)]>Cy' and [Hessf(z)| < C1|Vf(z)]* . (3.2.1)
Note that the above assumption ensures that f has a finite number of
critical points and m,, will denote the number of critical points with index p.

Let us recall the Propositions 3.6 and 3.7 of [HeNi|. They gather conse-
quences of Simader’s Theorem in [Sima] about the essential self-adjointness
of non negative Schrodinger operators, of Persson’s Lemma in [Per| about
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the localization of the essential spectrum and of the semiclassical analysis
a la Witten in [Wit] leading to Morse inequalities. We also refer the reader
to [CyFrKiSi|[Hen] [Hel3] or [Zha] for the Witten approach to Morse in-
equalities in the boundaryless case and to [Mill] and [Lau] for a topological
presentation of Morse theory.

PROPOSITION 3.7 — Under Assumption 8.6, there exist hg > 0, ¢g > 0
and ¢y > 0 such that the following properties are satisfied for any h € (0, hol:

i) The Witten Laplacian Ay}, considered as an unbounded operator on
L2(RF; AT*RF) is essentially self-adjoint on C§°(R¥; AT*RF) .

ii) For any Borel subset E in R, the identities

1
1p(AYNYdD e =dP)1p(AY)u
and (3.2.2)
1A )dP = dP ) 1A%

hold for any u belonging to the form domain of A;I?QL .

In particular, if v is an eigenvector of A(f% associated with the eigenvalue
A, then d;’j,)lv (resp. dgf,?l)"*v) belongs to the spectral subspace Ran 1, (ij;{l))
(resp. Ran 1{)\}(A§f’),:1))).

iii) The essential spectrum UESS(A;{)})I) is contained in [c1,+00).

iv) The range of 1[0,Coh)(A§f”,)l) has dimension my, , for all h € (0, ho] .

ProrosITION 3.8. — If the Morse function f satisfies Assumption 3.6
and admits a unique critical point at x = 0 with index py, so mp = 0p p,,
then there exist hg > 0 and co > 0, such that the following properties hold
for h € (0, hol:

i) For p # po, Agc’j})L > cohld.

i) If 1}}0 is a normalized eigenvector of the one dimensional spectral

subspace Ran 1[0’Coh)(A§f§)) , it satisfies
dppth =0, PV gk =0 and AYRYR =0,
so that Ran 1[0,coh)(A§fz)) = Ker A%’fl) . Moreover
(AP {0} € [eoh, 00)
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iii) If x € CS°(R¥) satisfies x = 1 in a neighborhood of 0, then there
exists Cy, > 1, such that, for all h € (0, ho/CY) , the inequality,

(L= AR (=) > O ="
holds in the sense of quadratic form on AP H(RF).

3.2.2 The model half-space problem

We work here on R" = R"! x (—00,0) with a Riemannian metric
Jo. Assume furthermore that there are coordinates = (2/,x,) such that
Go = 25 j—1 G5y (x)dida satisfies

Gin=20n;=0 fori<n (3.2.3)

s

and
Vo e RT\ Ky, 9y45;(x) =0, (3.2.4)

for some compact set K1 C R™.

In this paragraph, the coordinates (2',x,,) are fixed while different met-
rics on R™ are considered. The notation G(-) will be used for the matrix
valued map z — G(z) = 'G(z) = (¢ij(x))i; € GL™(R), which is assumed
to be a C* function. According to the standard notation, the coefficients of
G(z)~1 are written g% (z).

Consider also a function f which has a specific form in the same coor-
dinates (2/, z,,).

ASSUMPTION 3.9. — The function f € C>(R™) satisfies:

i) The estimates |V f(x)| > C™' and |99 f(x)| < Co hold, for all x €
R™ and all « € N, a # 0.

ii) The function f is the sum f(a',x,) = —3 f4(xn) + 5 f-(2') . Moreover,
there exists C1 > 0 such that

V(En € (—0070) 5 C;l < |aznf+(mn)| < Cl )

and f_ is a Morse function on R™"~! which satisfies Assumption 3.6
for the metric Zzlj;ll g?j(a:',())dxidxj and admits a unique critical
point at ' = 0 with index pg .

The boundedness of |09 f], 1 < |a| < 2, avoids any subtle questions
about the domains.
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PROPOSITION 3.10. — Under Assumption 3.9-i), the unbounded opera-
tor A?{h on L?*(R™; AT*R™) , with domain

D(A?{h) ={weAH*R"), nw=0, ndsw=0},
is self-adjoint.
If E is any Borel subset of R, the relations

LAYy dPw = dP) 1p(AY P,
and (3.2.5)

N,(p—1 —1),* —1),% N,
AL a0 D Al
hold for any u € APHj ,,(R™).

Proof. — The uniform estimate on Vf allows the same proof as for
Proposition 2.8 and Corollary 2.10 (here Cg, denotes the space of C> com-
pactly supported functions in R” with a vanishing normal component on

{zn=0}). O

We are looking for a result similar to Proposition 3.7 and Proposition 3.8
for the case with normal boundary condition on R™ (this result will be
stated in Subsection 3.2). One difficulty here comes from the metric which,
although diagonal in the coordinates (2',x,), is not constant. The general
case can be reduced to a simpler situation where g;;(xz) = g;;(z’) with
gnn = 1 after several steps.

We need some notations.

DEFINITION 3.11. — For a metric g which satisfies (3.2.4), the corre-
sponding H®-norm on the space AP H*(R™) is denoted by || ||, . , and the

notation || ||, s kept for the Euclidean metric go = >, da?.

,(p)
h

Similarly, the quadratic form associated with A;V is written

2 2
Dy, pn@) = g prllypoipa g + 1dsnlaprige g Vo € APHg n(R?)
where the codifferential d;,f,h also depends on g .

Remark 3.12. — For the considered metrics satisfying (3.2.3) and (3.2.4),
the different (L2, g)-norms are equivalent.

The required accuracy while comparing the quadratic forms Dy ¢ j, needs
some care.
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We will work further with partitions of unity and the following proposi-
tion, similar to the standard IMS localization formula (see [CyFrKiSi]), but
in the case with boundary, will be useful.

PROPOSITION 3.13 (IMS Localization Formula). — ForW = Q or W =
R™, consider {xx},  n a partition of unity of W (i.e. satisfying Efgvzl X: =
1 on W).

Let g and f be respectively a Riemannian metric and a C* function
(satisfying Assumption 8.9-1) in the case R™ ) on W.

The following IMS localization formula is then wvalid:

N
2
Vo € AH}n, Dypaw) = 3 Dy i) — 2 [Vl wld ey - (3.26)
k=1
Proof. — For clarity, we omit the dependence on ¢ in the proof.

Recall, from S5, x2 = 1, than for any 5 € AH®:

N N
ZXkka An =0, and by duality (2.1.5), ZinvXk_r] =0.(3.2.7)
k=1 k=1
Now, for any w € AHg, and k € {1,...,N},
I

2 *
Dy n(xaw) = lldgn Ocxw)lI” + [|d7 0 (xaw)

From (2.1.6) and (2.1.7),
d¢n(xew) = hdxr Aw+ xpdppw  and d}’h(ka) = hiyy,w + Xkd}’hw.

Hence, from Zgil Xz =1, (2.1.6), and (2.1.7), for any w € AH{ ,,,

N N
D Dinlxiaw) = Dyn(w) + > % ((dxe Aw | dxie Aw) + (ivy,w | ivy,w))
k=1 k=1

N

+> 2Re ((hdxi Aw | hxrdw + xidf Aw) + (hivy,w | hxed w + Xpivsw)) .
k=1
Using (3.2.7),

N

N
D Dpalxsw) = Dyn(w) + 52 Y " ({dxs Aw | dxe Aw) + (fvy,w | ivyw)) -
k=1 k=1
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At least, the identity
ix(anpB) = (ixa) AB+ (—1)E*a A (ixpB)
implies
(dxe Aw|dxr Aw) + (ivy,w | ivy,w) = (ivy, (dxe Aw) +dxe A (fvy,w) |w)
= ((iva ) |w) = ([Vxal*ww) |
which proves the proposition. O

Let us give now two lemmas whose proofs are the same than the proofs
of Lemmas 3.11 and 3.12 of [HeNi.

The first lemma provides a reduction to the case 9;,G = 0 and the
second allows us to consider again a simpler metric with g,, = 1.

LEMMA 3.14. — Let g1 and g be two metrics which satisfy (3.2.4) and
coincide on {x, = 0}. Let f be a function satisfying Assumption 3.9. There
exist constants C1o = 1 and hg > 0 such that the inequality,

Dyopn(w) = (1 = C12h*®) Dy, g n(w) = Cr2h™? w3 12 (3.2.8)

g1
holds for w € APH{ ,(R™), with p € {0,...,n} and h € (0,hg), as soon as
suppw C {:vn > —Coh2/5} .

LEMMA 3.15. — Let g1 and g2 be two conformal metrics (which satisfy
(3.2.4)) in the sense:
g2 = ew(w)!h :

Let f be a function satisfying Assumption 3.9. Then there exist constants
Ci2 =2 1 and hg > 0, such that the inequality,

Vo € APH (™), Dy () > 5y Dy g () = Crah® [l 2 s (3:2.9)

holds, for all p € {0,...,n} and all h € (0, hg) .
3.2.3 Small eigenvalues for the model half-space problem

Before giving the proof of Theorem 3.5, we state the main result for the
model half-space problem which is similar to Proposition 3.7 and Proposi-

tion 3.8.

PROPOSITION 3.16. — Assume that the metric go satisfies (3.2.3) and
(3.2.4) and let f be a Morse function satisfying Assumption 3.9 for some
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po € {0,...,n}. Then there exist constants hg > 0, cg > 0 and ¢; > 0,
such that the self-adjoint operator A}\{h satisfies the following properties for
h e (0, ho]

i) For p € {0,...,n}, the essential spectrum aess(A}\f’h(p)) is contained
in [c1,400).

ii) For p € {0,...,n}, the range of 1[0)Coh)(A;\f}fp)) has dimension

617»?0 Zf amnf(o) = _%amanr(O) <0,
0 Zf aw"f(o) = _%awanr(O) >0.

iii) In the first case,

Ran 1[0,00h)(A}\f’h(p°)) = Ker A;\f’h(p”) =Cyp",
where

[l — (ef+<f">/2h) U |lar e = O(RY10)

and wgo belongs to the kernel of a (n — 1)-dimensional Witten Laplacian
Ag?}, Jon N @ metric g', which is conformal to gl = ij;ll 39 (@', 0)dxydx;

on R 1,

iv) For any x € C°(R™) such that x = 1 in a neighborhood of 0, there
exists Cy, > 0 such that the lower bounds

(1= VAP A —x) > 1", 0<p<n,
hold, for any h € (0, ho/Cy), in the sense of quadratic forms on APHj ,, (R™) .

Remark 3.17. — This proposition is an adaptation of Proposition 3.13
of [HeNi] in the case with normal boundary conditions: we have mainly
replaced fi(x,) by —fy(x,) and pg + 1 by po and the proof is similar.

We also emphasize the fact that, as in [HeNi], there is no need of any
quadratic approximation to get these spectral results. The different approxi-
mations done are obtained by combination of the two previous lemmas with
different suitable metrics.

Proof. — The clue of this result is an accurate lower bound for the
quadratic form Dy, rx(n), when evaluated for n such that suppn C {z,, >
—Cyh?/5 . By Lemmas 3.14 and 3.15, one can find a metric g, which satisfies
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(3.2.3) and (3.2.4), with G(z) = G(2') independent of the x,-coordinate,
gnn = 1 and a constant C' > 1 such that

Do p.n(1) = C Dy .n(n) = CHT/® Il 12, - (3.2.10)

Take two cut-off functions x; € C*°(R), such that x1 € C°(R), x1 =1 in
a neighborhood of 0 such that Y2 + Y3 = 1.

By the IMS localization formula (3.2.6), for any w € AHj ,,(R™),

Do, £.0(w) = Do .0 (X1 (R 20)w) 4 Dy .0 (X2 (b2 P2y )w)

2
—ChS/5 ||W||AL2,g0 :

By (2.6), since [Vf(z)]> = C~! on R", the second term of the r.h.s. is

bounded from below by a constant times H)Zg(h_2/5xn))w”fw2 g, and we
get:

~ - 2
Do, f.h(w) = Dy, (X1 (™ Pan)w) — ChO/ |30 (R P o[ o o

Cc-1 2
o (W25, H .
* 2 HXQ( * )w AL2,Go

Finally after changing the constant C' > 1, the inequality (3.2.10) yields

Dyosn(w) = O Dy (Ra (=252, )w) — ChO/? || 71 (b |

_ 2

+C7 ey

(3.2.11)

where the L?-norms in the r.h.s. can be computed with the metric g or gy

while possibly adapting the constant C, owing to Remark 3.12. Here and in
the sequel, we omit the subscript (AL?,g) for L?>-norms.

Now the problem is reduced to the analysis of Dy 5 with the metric
g. The product structure of the metric g allows an explicit analysis of the
spectrum.

(a) The case n = 1.

We have © = x,, € R_, f(z) = —1 f{(2,,) . Here the metric is g = dz2. We
keep the reference to the index n for the later application.

The spaces AHj ,(R_) and A'Hj,,(R_) are respectively H'(R_) and
{B(zn) dz , B € HY(R-)} .
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By identity (2.6), for any 1-form 3 dz,, with 3 € H}(R_):

1 h
Dy gy 2B dan) = 12 |00, BI° + 7 100, S1B1” = {0, F1(xa)B | B) -
(3.2.12)
From (3.2.12), we get:

Dy, jon(B day) > (C~2 = hC) 18],

and deduce that there exist ¢1(9, f+,02, f+) = ¢1 > 0 and ho > 0 such
that, for all A € (0, hg],

(1)
o apzald. (3.2.13)

Again by identity (2.6), we have for any 0-form « € H'(R_):

1 h
Dy s, 2n(@) = W 05, 00" + 4 10s, fi al” + 5 (02, fo(xn)a | @)
h
~50:, [+ (0) (), (3.2.14)

and there are two subcases:

(al) Subcase 9,, f+(0) < 0:

In this case, identity (3.2.14) implies:
Vae A°HY ., Dy g, jon(@) = (C72 = h0) ||af? ,

which provides the existence of ¢1(0,, f+,02 fy) =c1 >0 and hg > 0 such
that:

AN, = eld, YA€ (0 ko] (3.2.15)

(a2) Subcase 9,, f+(0) > 0:

If AY;‘(S)/? p(@) = Apa, with Ay < ¢1, we have by Proposition 3.10:

N,(1) _
A—er/2,h(d—J‘+/2J10‘) = )‘hd—f+/2,ha .

Now suppose for a while that d_;, /5 a is not 0. Then it is an 1-eigenform

of Ajjf(j}Q , for Ap < c1, but this is in contradiction with (3.2.13). As a

consequence it is zero and we get by (2.1.6):
1
d_j, jon0 =h0;, a — 3 (O, f+)a=0.
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Hence:
afzy) = C ef+@n)/2h

Since the 0-form ef/+®@»)/2" helongs to Ker (A]j}(f}Q ) An = 01is the only
eigenvalue (with multiplicity one) of ANO " smaller than c;.

_f+/2vh

(b) The case n > 1.

First note that any w € APHj ,,(R™) is a sum

W= Z aj(x)dm’l/\dxn—&— Z ﬁJ(x)dx'J = aANdz,+ 0,
#I1=p—1 #J=p
with ar,3; € H'(R"), as(2',0) = 0, while o'’ = daj A--- Adaf,
I={i1 <...<igr} CA{l,...,n—1} and J = {ji < ... < jgs} C
{1,...,n—1}.

If in addition w € APH?(R"), the condition ndw = 0 reads, with the
metric g, 0, Bs(z',0) = 0.

Secondly, owing to the Weitzenbock formula with the product metric
g, the Riemannian connection, the Riemann tensor, R4 (see [CyFrKiSi]
pp. 266-267 for the definition of this operator) and therefore the Hodge
Laplacian split like direct sums:

VxY = V& Y, +ViY’,
Riem(gc,%z,t) = Riemn(xnaynvznytn) + Riem/(:v/,y/yz/,t') ’
Ruy = > Riemyju(dzin) oiva, o (dzkh) oiva, = Ry + Ry,
ijkl
(d“r d*)2 — (dz" + d;n)Q + (dwl + d;/)2 )

We also refer the reader to [GaHuLa] (p. 110 and p. 70) for details and more
general statements.

Thirdly, the decomposition f(z) = —1 f(z,)+4 f— (2) with the product
metric g gives

Vi = |V1znf\2 + |V fI? )
Log+ Ly = —3 (Cvn + ﬁ*v,«+) +3 (Efo +£*Vf—) :

Forw=aANdz,+ 5 € D(A?{h) (with the product metric g), we have
Dy, (@) = (W] Appeh = (W] Ao pw) + (W] AY_ o4 -
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Since the two operators A™ Fo/2.h (acting only in the variable z,) and

A}, /2.h (acting only in the variable a’) preserve the partial degree in dx,,
we get

Dy plw) = (o Adon | A" ;o (o ndea) )+ (BIA", 1, 0)

+ <a Adzy, |A}7/2,h(a A dxn)> + <5 \ A/f,/2,hﬁ>

(3.2.16)
Hence the variables (2/, x,) can be separated. The equivalence between the

norms HZ‘] ~vs(x') d:v’JH and >~ ; ||vs(2")| on APT*R™, where
J={j1 <...<jgsrC{l,...,n—1}, leads to ?):

Dy pnlw) =

1

E/n—l { Z Dy janloa(’,.) don) + Z DT—Lf_,_/Z,h(ﬂJ(x/,'))} dX(x")
#I=p—1 #J=p

0
[ DG a0l £ D oG o

(3.2.17)
where we used the notations D}7 /2.h for the quadratic form of the Witten

Laplacian on R" ! and D" Fi/2h for the quadratic form of the 1-dimensional
Witten Laplacian on R_ with boundary conditions. The measure d\(x’)
simply equals (det G(2/))*/? da’. The absence of a — 3 cross product term
is due to (3.2.16).

Again there are two subcases.

(b1) Subcase 9., f+(0) < 0:

The analysis of the one dimensional problem implies the existence of
c1 > 0 independent of x’ such that:

n 2
Dy joplar(a’,.) dzn) > e flar(a, )]
and

D", an(Bs(@) = e llBs(a’, )]

Hence there exists ¢ > 0 such that:

Vw € APHy o, Dy gal(w) = ez ol

(2) In [HeNi], at this level of the proof, one should read “Dy ¢ p(w) = % fRnil Lo
instead of “Dy ¢ (w) equals fRn—l --” accordingly to 2.
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and
A}\j’h(p) >cld, Vpe{0,...,n} .

(b2) Subcase 9,, f+(0) > 0:

Then there exists ¢; > 0 such that

Dy 1l /R“ZD /2B, )) AN

(3.2.18)
2
[ D B e ol
If w is a p-form with p # po (deg 8 = degw), the lower bound
b an(B) = CrR B
which was given in Proposition 3.8, yields:
Dy n(w) > C 7 hw]?
while the equality Dy sp(w) = 0 implies that p = po and that

w = c (ef+@)/2h) yh " where 1y, belongs to the kernel of the
(n — 1)-dimensional Witten Laplacian associated with the metric

n—1

= Z gij(@',0)dz;dz; .

i,j=1
We have now all the ingredients to check every statement for the metric go.
We focus on the subcase 9;, f1+(0) > 0, which covers all possibilities.
Statements i) and iv)

Statement i) is a consequence of iv) together with Persson’s Lemma in [Per].
It is sufficient to check that, for all R > 0, there exists cg > 0, such that,
for all w € APH{ ,(R™) supported in {min(|z'[,|z,[) > R}, one has

2
Dgo,11(w) = cr [|w]
The inequalities (3.2.11) and (3.2.18), together with the estimate

Do n(B(s@n)) = p|IBC,a)|* if suppw C {|a’| > R},
provided by Proposition 3.8-iii), yield the result.
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Statements ii) and iii)

If p # po the inequalities (3.2.11), (3.2.18) and the inequality

b pn(Blowa)) = CTHRIB( )|

imply
Dgo,5,n(w) = coh|w]®
and
AN > eoh1d . (3.2.19)
If p = po, by Proposition 3.10, the only possibility for A, € [0, coh) to be an
eigenvalue of A po) isAp,=0

Assume indeed Af A Dy = Apup with Ay € [0,coh) and [Jup| = 1.

By Proposition 3.10 and (3.2.19), d}pz)u = d;’,’z_l)’*uh = 0. Thus:

>\h = <A§\i}1(p0)uh |Uh> = ngf,h(uh) =0.

When the metric is g, the corresponding spectral subspace is one dimen-
sional and equals C (ef+(r")/2h) w;;o .

For the metric gg, equation A )w = 0 with ||w|| = 1 (which implies
Dg,.£.n(w) = 0) and inequality (3. 9 11) lead to:

2 2
C2R0/° H)Zl(h_2/5xn)wH > Dg7f,h(>21(h_2/5xn)w) + H)Zg(h_z/sxn)wH
Without the last term, Lemma 2.11 implies:
dist 12 (%1(h~2/52,)w, C (ef+<fn>/2h) W) < RV
The upper bound of the last term,
2 =4
H)Zz(hiz/%n)wH < C2R8/5

implies:
dist 2(w,C (/+50/20) gl ) = O(u!11)

It remains to check that Ker Ay (p °) is not reduced to {0} . The statements
of Lemma 3.14 and Lemma 3. 15 are symmetric with respect to the choice
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of the metric. Hence the reverse inequality of (3.2.11) (with exchange of g
and §0)7

Dy, p.n(w) = C Dy (X1 (W52 )w) — CRO/® || 1 (W2 |
2
+C7 Rt om)e . (3:2.20)

also holds for any w € AH&yn(R’j). We apply it with w = (ef+(””")/2h) ZO
and this leads to:

2
Dy, (51 (2P )es") < CW® |50 (B2 )|

The Min-Max principle then says that A;Vh(p °) admits an eigenvalue smaller
than ChS/5 . It has to be 0 due to the above argument. O

3.3. Proof of Theorem 3.5

We end here the proof of Theorem 3.5 by introducing, after a partition
of unity, convenient coordinates which allow the comparison with the model
half-space problem.

That proof is almost the same as the proof of the corresponding theorem
in [HeNi], but we recall it for completeness.

Proof of Theorem 3.5.— Let {Uy, 1 < k < K} denote the union of the
critical points of f and f|q. Consider a partition of unity of Q, Z]kvzl X: =1,
such that the C5°(€2) function Yy, identically equals 1 in a neighborhood of
Ur when 1 < k < K. A refinement of this partition of unity will be specified

later by the local construction of adapted coordinates.

We recall that the operator A}\{ 5, is the Friedrichs extension associated
with the quadratic form:

2
*,90
i LL)HALZ ’
»go

2
Do, () = gl 1o, + |

on AHj ,(€) . The IMS localization formula 3.2.6 gives, for any w € AHj ,, ,

N

2
Dyq,f1n(@) = D Do rn(xaw) = W |Vl wllare g, -
k=1

If supp x» does not meet the boundary, the term Dy, ¢ n(xrw) be-
haves like in the boundaryless case (see [HeKINi] for details):
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e If k > K, then we have
Vwe AH',  Dyy pnlxw) = C71 Ixawli e g, -

o If k < K and Uy is a critical point of f with index pyx # p, then
Vw e AH' | Dy pn(xnw) = C 0 xwwl3 2 g, -

o If k < K and Uy is a critical point of f with index py = p, then there
exists a fixed 1-dimensional space F,Ep ) (determined by Hess f(Uy))

such that,

Vwe AH' Dyq. 5.0 (X1w) < C'RS/5 ||ka||/2\PL2,go
implies

Vwe AR, dist (uw, ") < CRY ol pne g, -

Again like in the proof of Proposition 3.16-iii), this last statement
refers to Lemma 2.11 at the level of quadratic forms.

Consider now the case when supp x; N 9Q # (), with the support of
Xk centered around a point Uy € 0S2. There are two cases: Uy is a critical
point of flgq with %(U@) < 0 which is equivalent to —%(Uo) = |V f(Up)]
or Uy is not a critical points of f|sq with g—fl < 0 which is equivalent to
(—%)(U()) < |Vf(Up)|. Indeed, Uy is either a critical point of f|pqn with
g—fL(Uo) >0, ie. g—Z(UO) = |V f(Uy)| or Uy is not a critical point of f|sq, i.e.
9 (Uo)| < IV (o)l

Case 1) (—55) (o) < [Vf(T0)|-
Then the cut-off xj is chosen so that, in a neighborhood V of supp x« ,
of
on

for some § > 0. Locally it is possible to construct a function f such that
—o,f = |Vf] in Voo and ‘vf‘ — |Vf| in V. By setting @ = xw for
w € AHj ,,, the Green formula (2.6) and the inequality D, #n(@) > 0imply
(Lyy + LG, being a tensor)

_h/m@mmw;g (%) (o) do < —(1— 5)h/{m<@|@>mm <g—£> (o) do

~n2 % ~ (|2 ~ 12 ~12
< (1= 8) [ 40 pa + D2 10N s o+ NIV G N 12+ Crt 120

Yz eVNIN, (—=2)(z) < (1-268)|Vf(),
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o If k> K,

. 0 12
Vo eAH s Dgopn(xew) =Dy pn(@) > 3 IV FlI@le

_ 2
2 Cv1 ||ch‘*}||/\pL2 :

Case 2) ——(Uo) = |V f(Uo)|.

In this case we will conclude by applying Proposition 3.16. We recall
that Uy € 09 is a critical point of f|sq with %(UO) < 0 and with index pg.
Around Uy, we introduce adapted local coordinates, denoted by T = (T', Ty, ).
This coordinate system is provided by Lemma 3.18 below, applied with
fi = f and a = f|sany, - Then the function @ of Lemma 3.18 is nothing
but f and has the form f(Z) = —Z, + 3 f_(Z’). Moreover, () corresponds
locally to {Z, < 0}.

In order to apply Proposition 3.16, it remains to check that the function
f can be extended to R™, so that it satisfies Assumption 3.9 where Uj is a
critical point of f|aq.

We recall that we have not specified the choice of 7’ in the boundary. The
function floany, being a Morse function, we can choose in a small neigh-
borhood V§ C 9Q of Uy = (0, ...,0) Morse coordinates T = (T1,...,Tn-1)
for f— which are normal at Uy for the metric }; ;_,, ¢;;(¥', 0)dz;dT;. With
these coordinates, f has the form, in a small neighborhood V{ of 0:

f(T) :—xn+Z)\ .+ F(Uy) . (3.3.1)

We choose xj, such that supp x C V(.
Choosing a cut-off y»~1 € C§°(R"™1), x"~! = 1 near supp x, N 99, f
is extended to R™ by:

~ 1_ nl

f@) =-Z,+ | X" @)+ 7} ZA + f(Uy) . (3.3.2)

Moreover, choosing another cut-off " € C§° (@) , X" = 1 near supp xx, we
extend gg to R™ by:

g=x"g0+(1-x")ge, (3.3.3)

where g, is the Euclidian metric on R”.
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With these coordinates, the quantity ngvh(x;fw) = Dy,.7.n(Xrw) attains
the form discussed in Proposition 3.16.

We can now discuss the lower bound of D ¢ »(xww), depending on the
localization by the cut-off xy, such that supp xx N 9N # 0.

o If k < K, the origin of the coordinate system is Uy = Uy. If Uy, is not
a critical point of f|sq with index pj, = p and 9L (Uy) < 0, then

Vo€ AHs,  Dyp,law) = C hibawl}pe, -

e If k < K and Uy, is a critical point of f|sn with index pr = p and
g—fl(Uk) < 0, then according to Proposition 3.16-iii) there exists a

fixed 1-dimensional space F ,gp ) such that the inequality,
_ 2
Vw € APHg,, Dy jnlaw) < CTHRP awlio e,

implies:
dist (ka,F,ﬁp)) < C R0 ||XkWHApL2,g .

We now introduce the set A, of indices k, 1 < k < K, such that

e cither Uy, is a critical point of f with index p,

e or Uy is a critical point of f|pq with index p such that %(Uk) <0.

For w € APHj ,(Q) with [lw]lpz2, =1, we get

(Dgo,f,h(w) < C_1h6/5) = | dist (w, Y FP) < Ch1O
kEA,

Hence the dimension of the spectral subspace,

F(p) = Ranl[o’hsm)(AIf\f}fp)) C Ranl[oﬁhc/S)(A}\f;fp)) s
is at most #A, = m?.

We next verify that dim F' ® > #A, = mg. According to the Min-Max

principle, it suffices to find an orthonormal set of p-forms w,’; € APH&’H(Q) ,
k € A, , such that

Dyq. £.1(wit) = o(h*/?) .
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Indeed it is enough to take a truncated element of the kernel of the local

model for A ’(p ) around U, k € A,. We give the details for the case
Ui € 09.

Take two cut-off x1 5 € C5° ( ) X1 r = 1 near 0 (with supp x1,x C
supp xx) and X2 such that xl,k + X27k = 1. With the same coordinate
system as above, we write on R” ,using the IMS localization formula (3.2.6)
and Proposition 3.16-iv),

— 2 2
Dy, 7on@) = Dy, 7 (aww) + 07 xzgwll” = OB Y I Vil vl

i=1,2

where g, and fk are defined on R™ according to the previous construc-
tion and coincide with gg and f in a neighborhood of supp xx. Accord-
ing to Proposition 3.16, there exists o' € APH(}H(R") in the domain of
the associated Witten Laplacian, such that D 7 (0 ") = 0. By taking

wp = ||x1k nf;”fl X1,6 ML, we obtain the existence of hg > 0, C' and C”
such that, for h € (0, hol:

I nt]|* < 02 [l
and, consequently,
Ik ]|*
vl

Do pn(w) < O'R?—EL_— < O"R? .

O

The following lemma, which provides in different situations the suitable
coordinate systems, simply makes use of the standard solution to Hamilton-
Jacobi equations in the non characteristic case. It is proved in [Lep2] (this
is indeed also Lemma 3.4 of [Lep2]).

LEMMA 3.18. — 1) Let be f1 € C*°(,R) and Uy € 9Q a critical point
of filaa with %(Uo) £0.

Assume furthermore o € C> (O, R) be a local solution to |Vral> =
IVrfil? around Up.

Then there exists a neighborhood Vo of Uy in Q such that the eikonal
equation:

Vol = VA
(on the boundary, it means |0, ®+|? + |Vr®+|® = |0, /12 + |V fi]?)
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with the boundary conditions

df1
Diloonv, =, On®Pilaony, = i%bmvo

admits a unique local smooth real-valued solution.

2) There ezists local coordinates (1, ..., x,) = (z',2,) in a neighborhood
of Up in Q with (z',x,)(Up) = 0 where the function ®y and the metric go
have the form:

n—1
Oy = Fa, +a(z') and go = gun(z) d2’ + Z gij () dxidx; .
ij=1

Moreover, the boundary 0X2 is locally defined by {x,, = 0} and Q corresponds
to {sgn (%(U@)) Ty > 0}.

Remark 3.19. — Lemma 3.18 will be used with various functions f; and
« and will provide several coordinate systems:

e We have already introduced the coordinate system Z = (Z, T,,) asso-
ciated with f; = f and a = f|,, .

e The coordinate system denoted simply by =z = (2/,z,) will be as-
sociated with f; = f and a = ¢, where ¢ is the Agmon distance
along the boundary. This system will be used to give the simple
form ® = &, = —z, + p(z’) to the Agmon distance @, solving
V@[> = |V f|* with the boundary condition ,® = 8, f. Agmon dis-
tances are specified in Section 4 below.

e Finally the coordinate system Z = (&’,%,) will be associated with
fi=({f+®)and a = f’ag—l-ap and will be used in the final application
of the Laplace method.

4. Accurate WKB analysis near the boundary for AS}?L

4.1. Introduction

We work here under Assumption 3.1. Like in [HeNi], we have shown
that for 0 < p < n, some quasimodes of A;V’h(p) being near the spectral

subspace in 1[0 . %)(A;\{ }l(p)) are localized near the boundary 02 and more

precisely near critical points of f|sq with index p such that g—£ <0.In
the boundaryless case ([HeKINi]) and in the case with tangential Dirichlet
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boundary conditions ([HeNi]), the WKB analysis done in [HeSj4] and in
[HeNi] says that the small eigenvalues are of order O(e~¢/") and provides

an accurate approximate basis of Ranl[oﬁs/z)(A;p;) .

In order to get a similar result, we need an accurate WKB analysis at
the boundary, and like in [HeNi], we restrict our attention on the case p = 1
because our motivation is to analyze the Witten Laplacian on 0-forms.

For an accurate comparison between eigenvectors and WKB quasimodes
near a critical point U of f|sq with index 1 and %(Ul) < 0, we introduce

another self-adjoint realization of AS}% in a neighborhood Qy, , with mixed
boundary conditions: Neumann boundary conditions on 0Qy, , N 92 and
full Dirichlet boundary conditions on 9Q, , \ 0.

4.2. Local WKB construction

Take U; a critical point of f|aQ with index 1 such that %(Ul) < 0.
According to Definition 3.1 and Proposition 3.2 of [Lep2], there exists a

local coordinate system (z;,...,z,) = (2/, z,) which satisfies the following
properties:
i) dz,,...,dz, is an orthonormal basis of T (Q) positively oriented.

ii) The boundary 02 corresponds locally to z,, = 0 and the interior {2
to z,, <O0.

iii) %‘BQ = 11, the outgoing normal at the boundary. Moreover, % is

unitary and normal to {z,, = Constant}.

Moreover, the choice of the coordinates (z,...,,,_1) (centered at Uy
such that dz,,...,dz, is an orthonormal basis of Tp; (2)) in the boundary

is arbitrary.

Let ¢ be the Agmon distance to U; on the boundary (i.e. associated
with the metric |V, f(z/,0)?dz’?). Recall that ¢ satisfies

IVrfl? = Vel

on the boundary and that ¢ is smooth near Uy (see [HeSjl]). Apply now
the first point of Lemma 3.18 with f; = f and a = ¢ and denote by ® the
function @4 of the lemma (@ is the Agmon distance to Uy, i.e. associated
with the metric |V, f(z)[?dz?). Hence the following equalities are locally
satisfied:

0,02 + |Vre* = VO] =|Vf[°,
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Plan = o,
0
871@|8Q = % o -

According to [HeSj4] pp. 279-280, there exist Morse coordinates
(v1,...,0p-1) for f’Q centered at Uy and such that dvy (Uy),. .., dv,—1(Uy),
7y, is orthonormal and positively oriented. With these coordinates

A An—
f@,0) = Foite+ Tl + f(U) (4.2.1)
and
A An—
@(U) = HU% —+ + l 1|’U721_1 s (422)
2 2
with Ay < 0.
Moreover, (21, ..., 2Z,—1) can be chosen equal to (v1, ..., v,—1) in the bound-

ary. Hence, Theorem 1.1 of [Lep2] (about the Neumann case) implies the
following proposition:

PROPOSITION 4.1. — Consider around Uy the above system of coordi-
nates x = (2/,x,) which satisfies (4.2.1)(4.2.2) with Ay < 0. There exists
locally, in a neighborhood of x =0, a C* solution ut"*® to

AQ uykt = =R O(h) (4.2.3)
nu* =0 on 9Q (4.2.4)
nd; pu* =0 on 0, (4.2.5)
where u’k® has the form:
ut = a(z, h)e_% )
with a(xz,h) ~ Zak(g)hk and a®(0) = dz, .
k

4.3. Another local Neumann realization of Agclzl

Let Uy be a critical point of f|sg with index 1 and %(Ul) < 0 and let
introduce a new system of local coordinates.

We apply Lemma 3.18 with f; = f and o = ¢, the Agmon distance to
Uy on the boundary. The function ®, of the lemma is then ¢, the Agmon
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distance to U and we have the existence of local coordinates (z', x,,) around
U, where @ and the metric gg have the form:

O =—x,+¢@) and gy = gnn(z) dz? + Z gij(x) dz;dx; .

4,j=1
Moreover, the boundary 02 is locally defined by {z,, = 0} and § corre-
sponds to {z, < 0}.

We work now with the local coordinate system defined above and x +— ||
is the Euclidean norm in these coordinates.

As in [HeNi], we consider the domain, for p > 0,

Q,p={lo = OVF <p?+1, 20 <0},

which has the shape of a thin lens stuck on 92 with radius p and thickness
O(p?). Its boundary splits into

Ip:=0,,N0= {\z— (0, 1)|2 =p*+ 1,1, < O}
and
I'np = 0Qu,,, NOQ = {|2'] < p,z =0} .

On this domain, we introduce the functional space
AlH&;o,n(QUl,p) = {u € AlHl(QU1,p)§ nU|FND =0, u‘FD = O} .
The Friedrichs extension associated with the quadratic form:
2 2
AIHO om(Qu, p) dw— Dy fh( w) = |ldgpwl]” + Hd;,th

is denoted by A;\{’hD’(l). The domain of A;\{’,ID’O) can be embedded in
A H?(Qu, ) for any 0 < p/ < p.
An element w € D(AN b (1)) satisfies indeed:

(ANP Do | gy = (dppw | dpan) + (d5pw | d5 ) = Dy pn(w,n) |

for all n € Al H00na taking w = 7 = 0 outside Qy, ,. By testing with
n € C° (N, ,p), this gives Afjpw € AML2(Qp, ,) and therefore w admits a
second trace on I'yp thanks to the Green formula. By testing with any
n e CS?O’H(QULP), we get:

ndf’hw|pND =0.
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Along I'yp, w solves an elliptic boundary value problem Agclzbw € A'L?,
nw = 0, ndspw = 0, which provides the H? regularity in Qu, , for any
p<p.

We now prove:

PROPOSITION 4.2. — For p > 0 small enough, there exist h, > 0 and
Cy, > 0, such that the self-adjoint operator A;V}LD’(D satisfies the following

properties:

N,D,(l))

a) For h € (0, h,], the spectral projection i pa/2y(Ay ), has rank 1.

b) Any family of L?-normalized eigenvectors (Uh)he(o,hp] of Aj:{;lD"(l)
such that the corresponding eigenvalue E(h) is O(h), satisfies

Vp' < p,Ya e N*, AN, € N, 3C, ,» > 0 such that, Yo € Qu, p ,

|02uP ()| < Corh™Ne exp (_@) . (4.3.1)

c) There exists €, > 0 such that the first eigenvalue E1(h) of A]fv’hD’(l)
satisfies

Ey(h) = O(e~=e/My |
d) If ul' denotes the eigenvector of A}\{;lD"(l) associated with eigenvalue

E;(h) and normalized by the condition tu}(0) = tu?’**(0), then

Vp' < p,Ya e N*, VN €N, 3Cn o, > 0 such that, Vo € Qu, v,
08w — ™) ()] < Oy b exp (—22)

(4.3.2)

Once this is proved, one easily gets rough exponentially small upper
bounds for the m$! first eigenvalues of A;V;l(e) (¢ € {0,1}) on £, by con-

structing quasimodes suitably localized near each of the critical points.

The next subsections are devoted to the proof of Proposition 4.2. A
fondamental ingredient for the proof is a variant of the integration by parts
formula of Lemma 2.6.

LEMMA 4.3. — Let p > 0 and let v be a real-valued Lipschitz function
on Qy, p. The relation
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2
W ¥
Re DY, (w,e?ww) = h? ||derw .+ h? d*ehw
g7f) A2L A0L2

+H(VfI? = VY| + hLyy + hﬁvf)ehw | e w)A1L2

—|—h/F (wlw)arrso 245 (%) (o) do
A (4.3.3)

holds for any w € A Hg. n(Qu, ).

Moreover, whenw € D(A}\T}LD’(D) , the left-hand side equals Re <62%A§%])1w | w).

Proof. — Forwin A'Hj., ,(Qu, ), we have & := 2% win A Hion(Quy )
and the same computations as the ones done in [HeNi| to prove Lemma 4.3
lead to:

N 2
Dy pnlw,e

e

W) = DNp,(@.8) - (VeLo| o)
—(dY AN@ | dfp@) + (dpp@ | dip A D)
Hivyw [ d} p@0) — (df @ | ivy) -
By taking the real part, we obtain:

Re DY} ), (w, e*Fw) = DYy, (@,0) — (IVy @ | &) .

w
We conclude by applying Lemma 2.6. g

4.4. Exponential decay of eigenvectors of A}\T}LD’(D

As in [HeNi], the pointwise estimate, 0%u”(x) = (’)(h’N‘le’w) , which
is stated in Proposition 4.2-b), will be proved in several steps. We will first
consider H'-estimates and deduce afterwards higher order estimates from
elliptic regularity.

Even for H'-estimates we need two steps: we prove first the exponential
decay along the boundary I'yp by applying Lemma 4.3 with the function
1) similar to ¢ introduced above ; then the exponential decay in the interior
of Qu, , is obtained with ¢ similar to ® once the boundary term is well
controlled.

Proof of a) and b) in Proposition 4.2.—
Statement a)

Actually it is a simple comparison with the full half-space problem via
Min-Max principle as we did for Theorem 3.5. Any w € A'Hg ,(Qu, p)
can indeed be viewed as an element of AlH0 2(R™) by setting w = 0 on
RZ \ QUI’P
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Statement b)
Let u" € D(A;\f}lD’(l)) satisfy

ANt = B(hyu" |, E(h) = O(h) , [ju"]| =1.

We will use the notation .
~ L
Wt =emul.

The integration by parts formula (4.3.3) will be applied with ¢ = " where
Y™ will be similar to ¢ or similar to ®.

Let us recall

2 2 g o aj ’ _ ’
IVfI" =V, 5 = o and ®(2',x,) = —z, +@(z'), (4.4.1)

where 2’ = 0 is a local minimum for ¢ with ¢(0) = 0. Moreover we have
Va, - Ve(a') =0 so that:

VI = Ve = [Va,|* + Vel . (4.4.2)

We will first show the decay along the boundary before we propagate the
decay in the normal direction inside Q (see [HeSj5] and [HeNi| for referen-
ces).

Step 1: Decay along I'yp .
We take:

D ) = cp(x')fC’hlog%zl) , ifp(2’) > Ch
p(z') — ChlogC if p(2') <Ch,

where the constant C > 1 will be fixed later.

We associate the sets:

O = {z = (¢, 2,) € Q5 9(a’) < Ch}
and
Q" ={z = (2, 2,) € W, ,; p(x') > Ch} .

The condition E(h) = O(h) the formula (4.3.3), (4.4.1) and (4.4.2) imply
the existence of C7 > 0 such that:

) 2 . ~R12 h~
Cih ||uh||A1L2(Q’1) > [|hdi || o g + [|hd* @ [ o o + ([ Van Q" [@") a0 e
h o~ oz, -
[ e (G ) do o+ (196 - [TUR )
~Cih(lgn (z)a" |y | (4.4.3)
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with C; determined by f and the upper bound of E(h).

Furthermore,
ChV
VUl = Vip Loy (o) = 2,

so we have:

2 _ 2 |V<P|2 2 2|V90|2
[VY"|" = Vel + g1 () —2ChT+Ch |

Consequently,
2 2 |12 Rt~
Cih HuhHAlm(Qﬁ) > ||hduhHA2L2 +[|hd uhHAOB + (Vg Pa" [3") a1 g2
ox
*h/ <’llh|ﬂh>A1 *() <n) (O') do
T'np 13 on
2Ch  C?h?
2 ~h | ~h
w[wer (222 - ) - cunf 1y et
For x € Qi ,

9 27,2
Ch_Cil )ﬁ(sinceQG—cﬁ?aVGE[oalD
¥ ¥ ®

then, ¢ being a positive Morse function, there exists Cy > 0 which is deter-
mined by ¢ such that, for all x € QQL_,

Vo(@)? | -
e
and we get:
_hi2 B2 . R I2
Cih HuhHAlLZ(Q’_‘) Z thuhHAsz +||hd uhHAUL2
+<|V£Un|2’l:l/h |’EL}L>A1L2 - h/ <’l7,h ‘ah>A1T*Q (%) (O’) do
'np 7 (971

+(CC = C1) h(lgn (x)a" |a"). (4.4.4)

Since O, f (U1) = O, (Uy) # 0, we can choose p small enough such that:
Cs > |V:1cn|2 > C;l on Qu, p,
where Cj is a stricly positive constant.
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Hence we get, by adding the term (CCy' — C1)h(lgn (z)a" [a") to
(4.4.4):
a2 . lI2
Z ||hduh||A2L2 +||hd uhHAOL?

OC; R |51 o

+ (1 + 25(C)h) (\V:L’n|2ﬁh | ﬁh>A1L2
ox,

_h/FNth Wh>A1T;sz (%> (U) do,

where 6(C) = $C51(CCy " — Cy) is positive and large for C' large enough.
At least, we have on Q" by the definitions:
’ﬂh’ < eClul| ae.
and the condition ||uh|| =1 leads to:

5(C)h = ||hdah||3, o + [|hd*@t |30 1o + (1 + 26(C)R) (| Vg |20 | @) g g2

ox
—h/ a | @) par g —) (o) do,
FND( [a) iz | 5, ) (@)

] (4.4.5)
where 0(C) = e2¢CC; L.

We now apply (4.3.3) to @" with ¢» = 0, f and h replaced respectively
by —z, and ﬁ in order to get,

(14 8(C)h 1thuhHA2Lz+(1+5( )h)~ th* hHAOL2

+(1 + 6(CYR){(|Va,|Pa" | @) h/ | @) A1 (%) (o) do
I'np

+hC4 ||ﬂh||i1L2 2 0 )
(4.4.6)
with Cy4 > 0 independent of C'.

The difference (4.4.5)—(4.4.6) yields:

5(CYR? 2
e A FOPR

~hll2 ~
d*uhHAOLz] — hCy HuhH?\le

FO(CY |V 28 | M) < 3(C)h.

We choose C' > 1 large enough such that §(C)Cy* — Cy > 0.

This leads, after choosing hg > 0 small enough, to the existence of a

constant Cs > 0 such that, for all h € (0, hg,
h2
Csh > I’ HuhHAlHl :

- 778 —



Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

Since 1" > ¢ + Chlogh (for allC' > C), we have proved the existence of
Ny > 0 such that:
e

Remember that ¢ > 0 vanishes only at 2/ = 0. Using the trace theorem,
this also leads to:

Step 2: Normal decay inside 2.

h — N
‘AIHI < Coh™No . (4.4.7)

@
hy

< Crh™ N, (4.4.8)

eful|p ’
ND AlHl/Z(FND)

We follow a very similar approach by working with the function & .
We take:

S ) = (z) — Chlog %2, if B(z) > Ch
®(z) — ChlogC, if ®(z) < Ch,

where the constant C' > 1 will be fixed later.

We associate the sets:

Q" = {2 = (2/,2,) € Qu, 3 B(z) < Ch}
and
O = {x = (¢!, 2,) € Uy ; B(a) > Ch} .

h
The formula (4.3.3) is used like in Step 1, with @ = e u and E(h) =
O(h). The difference comes from the fact that the boundary term is already
estimated with (4.4.8).

h
We have indeed on the boundary z,, = 0 the inequality: e < et , due
to the relation @[, —o = .

From (4.3.3) used like in Step 1 (see (4.4.3)) we get the existence of
C1 > 0 such that:

o[ o, + Ot leFul s | ey

FND;AlT*QUl’p) 2

+ ||hd @ |[Ro  + (IVF = [VO"2)al [ ") = Oy ()i | ") .

Moreover, from (4.4.8) and the inequality
|a"(z)| < eClul(z)| ae. in Q"
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we get, for any C' > 1, the existence of §(C) > 0 such that the following
estimate is satisfied:
2

<

(C)RI=2N0 > Cyh|a J+Cin|

h2 fa
, az
||A1L2(Qi Hl/z(FND;AlT*Qul,p)

> ki ||y, 0 + [Rd* @ |5 pn + (VS = (V0" )a | @)
~Cih(lgn (z)a" |y . (4.4.9)

Since |V f|> = |[V®|? and ® is a positive function without critical points,
we can use the same computations as the ones done in Step 1 with ¢ replaced
by ® to get:

2 h|2 Vo 5 o |V®[?
IVIF =V = g (2) <2Ch 5~ O
@2
> %20;10117

with Cy > 0 independent of C.

We take C' > 2C1C5. By adding the estimated term
(Cy'C = Cr)h(Lgn (x)a" [ah) to (4.4.9) we get:

SO N0 > [[hdi g + "8 [y + (€571 C = COR s

which gives, by analogy with Step 1, the existence of C3 > 0 and N1 > 0
such that:

h

‘e_u

Step 3: Elliptic regularity.

‘bh‘

< Csh ™M, (4.4.10)
AlHl(QUl ,P)

We now set @ = e% u”. For p’ < p, we take a cut-off x € C*(Q, ,) with
compact support in €, ,UI'yp and such that xy = 1 on a neighborhood of
Qu, .- The form v" = yu" satisfies the boundary value problem:

o — Aot =l in R™ ,
nv" =0 and ndv" =7} on{x, =0} ,

. h —-N h —-N

with |[rg HAlL?(Rg) =O(h™™) and [[r{ HA2H1/2(R"*1) =O0(h™).

This implies, by [Sch], the existence of No > 0 such that:

=0 2.

(CRRP=

We conclude by induction for any finite decreasing sequence (pi)o<k<kx With
pi > p" and associated cut-offs xj , with x; = 1 in a neighborhood of Q, ,,
and supp xx C {Xxx—1 = 1}, using the Sobolev injections. O
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4.5. Small eigenvalues are exponentially small

We now check that the eigenvalue Eq(h) of A?{;ID’(” lying in [0, h3/2) is
actually of order O(e=%¢/") for some €, > 0. We prove this by comparison

with the half-space problem as it is done in [Lep2] at the end of the proof
of Theorem 1.1.

Proof of Proposition 4.2-c).— Again we introduce in a neighborhood
of Uy, the coordinate system T = (Z',T,,) leading to (3.3.1). The function
f and the metric go are extended according to (3.3.2) and (3.3.3) so that
Propositi(zn 3.16 can be applied. Consequently, the half-space Witten Lapla-
cian, A N.(1)

than Ch6/5.

, has a one dimension kernel and its second eigenvalue is larger

Let u” be a normalized eigenvector of A i D.(1) associated with the first
eigenvalue Ej(h), which belongs to the 1nterval (0,h3/2] . Let x € C*(Qur, )
be a cut-off function with compact support in Qy, , UI'nyp and such that
x = 1 in a neighborhood of 0 with g—ﬁ ‘6(2 =0.

The form ot = yul € Ale(R") belongs to the domain of AN (1), ie.
nv" = nd; Fnt" =0 Moreover, v" satisfies
(A?z — El(h))vh = —h2[A, X]uh in R™
and the 1-form r* = —h%[A, X]uh vanishes in a neighborhood V; of T = 0.

Due to the exponential decay of u" stated in Proposition 4.2-b), there exist
C and Ny, such that r" also satisfies

@] <ch | S jalx@)| e <e

1</8]<2

With thHAlL? =1+0(e= /M), ||rh||A1L2 = O(e=/") and the a priori esti-
mate E;(h) = O(h%/?), the spectral theorem implies |E1 (h) —0] = O(e~¢/")
like in the proof of Theorem 1.1 given in [Lep2] (p. 245). O

4.6. Accurate comparison with the WKB solution

We now compare the eigenvector associated with an exponentially small
eigenvalue with its WKB approximation. We adapt the method presented
in [Hel2, HeSjl] and in [HeNi] by following the same strategy as in Sub-
section 4.4. The H'-estimates are done in two steps with " similar to ¢
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and then with ¥" similar to ® . Finally the elliptic regularity is used for the
C°-estimates.

Proof of Proposition 4.2-d) .— Let u} € D(AN D.() ) be an eigenvector

associated with the first eigenvalue E;(h) of A;VhD Lo

AT Ol = By (hyl! |

Jut]] = 1.

According to Proposition 4.2-c), we know that Ej(h) = O(e~ %), with

,D,(l)

ep > 0, while the second eigenvalue of A is larger than h3/2.

By taking p > 0 small enough, the WKB approximation u’** presented
in Subsection 4.2 satisfies

_2(x)

Akt = O(h) e "% in Qu,,

wkb
nul |FND 0,
wkb —
ndf nuy’ |FND =0,

and there exists ¢ > 0, such that for any p’ > 0, we have

[y kaA1L2(QU )

(see indeed further the proof of Proposition 5.19).

Let us choose the cut-off function x € C*(Qy, ,) to be supported in

Qu, p72UT Np and to satisfy x = 1 on Qu, ,» with 0 < p’ < p/2, an|aQ =0.
Later, we will take p’ > 0 small enough, so that x can be taken in the form

x(@', ) = x1(2")xn(zn) -

From N
(AN By (h)yuf™ = O(h)

and the comparison result of [Hel2] (see Proposition 4.1.1), the real constant
factor ¢(h) in the truncated WKB approximation v¥** = c(h)yu®*® can be
chosen so that

[|wie? = O(h*).

But then (A;VhD (1)( whkb ) | oWkt — ity = O(h°), which implies

_u1HA1L2

o

= O(h™)

_ulHAlHl

and, due to the exponential decay of u? and u{*?

HX(’U‘}II - C(h) wkb HAlHl = O(hoo) .
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Set
b= Xl = (b))

The 1-form w” satisfies in Qu,p

(AD Bl = x(@) (A, ~ By (b)) (uf — c(hyup™)

1
[A% (= el (4.6.1)
_ 7’:h e_<l>_r + T

where 7 and 7" satisfy, according to Proposition 4.2-b),

= 0O(h>®), suppr" CsuppVy and 7" =0OhNo)e” 5

The last estimate can be done for any C¥0-norm, with kg € N.
On the boundary 0Qy, , = I'vp UT'p, we have simply
nwhr,, =0, w'|r, =0,

and  ndsuw”|ry, =0.

With the different of choices for 1" given below, we will use the notation

- wh
whzehw

h

The 1-forms w and @ belong to A'H?*(Qy, ,) and their supports do not
meet I'p. Hence the integration by parts given in formula (2.2.7) can be
used in addition to (4.3.3).

Step 1: Comparison along I'yp.

Like in the proof of Proposition 4.2-b) presented in Subsection 4.4, we
introduce the sets

Q" = {2z =(2",2,) €Qu,,; (') <Ch} ,
and Q) ={r=(2/,2,) €Qu,,; ¢(a')>Ch}.
For any N € N, we take:
¢ (2') = min {@" (') + Nhlogh™" ,4(a")}

e(@) /
h nety = { @) = Chlog 250 if o(a’) > Ch
where v (@) { p(z') — ChlogC, if p(a’) < Ch,

and  (a') = min {Q"(y) + (1 = &)|e(2) — e(¥)], ¥ €suppVx1} .
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We recall that |p(z') —p(y')] is the Agmon distance between z’ and y’ along
the boundary, d5(z',y') (i.e. associated with the metric [V, f(z/,0)|*dz"?),

and that p(z') = dgg (2’,0). Morever, due to the triangular inequality,

(') =) < (1 =e)lp(x') —e(y)| = 1 —e)diy(@'y'),  (4.6.2)
which implies, owing to the properties of the Agmon distance (see e.g. [DiSj]
p. 53):

for almost all 2/, V(z")| < (1 —¢€)|Vau f(2',0)] = (1 —€) |[Ve(z')] .
(4.6.3)
Let us also recall that the cut-off x writes x (2, z,,) = x1(2')xn(zn). The
constant C' > 1 will be fixed at the end like in the proof of Proposition 4.2-b).
The constants p’ € (0, p/2) and € > 0 are chosen so that, for h € (0,hn ¢,

e (2') = p"(2’) + Nhlogh™ in Qu, - (4.6.4)
Consequently, ¢ being the Among distance on the boundary,
ot (2) = ¢"(2') + Nhlogh™' = ¢(2') — ChlogC' + Nhlogh™' on Q" .

(4.6.5)
Note furthermore the inequalities:
¢ (z) < (@) + Nhlogh™ in Qu,,
ei(a) < p(@') <@(x), if 2’ €supp Vi,
and % (2)) < (@) + Nhlogh™' < ®(x), if x, €suppy,, .

In particular, we have for h € (0,hn ),

¢ (2') < @(x) , for z € supp Vi,

which implies

“’N
et

= On(h™No).
ALL2

We apply the integration by parts formula (4.3.3), where the left-hand

side is computed with (2.2.7), and we obtain for the form @" = ewffv wh,

by analogy with the proof of Proposition 4.2-b), using (4.6.1) and E;(h) =
O(h*) = O(h):
N p

C’thw Fh—|—ewT7‘

h||A1L2(Qh) + Hwh||A1L2 = thwh||A2L2
+ ||hd*1bh||AoL2 + |V, 20" | @) a1 2
~ ~ a n ~ ~
wh [ @t @iz (G2) (0) do + (V7 - 9" o)
I'np n
~Cih(lgn (z)a" |@") ,
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where the constant C; > 0 is determined by f and 7" = O(h™).

Lph
In Q" the weight e is bounded by C5(C)h~" and this provides

19" 1 2y < Co(OO [0 s pagny < C5(C,N)
due to ||whHA1H1 = O(h™>).
We obtain:

SO NN [ o + 1) > ([ [ + " o

oz,
|V 20" | @ pa 2 + h/ (@" [ @")prre0 (52) (0) do
I'np

H(IVel? = [V [P)a" | @") — Cra{lgn (z)d" |@") .

In Q" |Vy|* = |VQ0N| using (4.6.5).
In Q}L the point x fulﬁlls almost surely one of the two possibilities:

e Either V% = Vi, and we get, owing to (4.6.3),

Vel” — |V |” > (26 — %) [Vol* > 6,

where the last lower bound is due to the fact that py(x) = ¥(x)
cannot occur in a neighborhood of 2’ = 0 for £ > 0 small enough and
h e (0, hN,p’,s);

@).

e or Vol = V(1 — >

So we get, similarly to the proof of Proposition 4.2-b), for C' big enough
and h € (0,hn |, with hy > 0 small enough:
€NV 1 + 1) 2
_nn2 . ~h12 n -
"age + 1A D" [0 e + (1 + 28(CIR) (V" |6 a1 2

ox
—|—h/ @ | ™M) A1 e (—n) o) do.
FND< | 0")arz0 o (o)

After treating the r.h.s. like in the proof of Proposition 4.2-b)-Step 1,
we obtain, for a constant Ny > 0,

(| y S Cyh™Me

e o,
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Our choice of (e, p’) implies
Vo € Qu, , (') > @(a’) + Nhlogh™ + Chlogh .

We have proved the existence of Ny and pj, such that, for any N € N and
p' € (0, p(], there exists hy , > 0 and Cy,, > 0, such that:

holds for any h € (0, hn, ).

eF (u} = c(hyu™)|

N—-N
< CN’p/h !
ATHY(Qy, 1)

This last estimate and ®|r,, = ¢ imply

Step 2: Comparison in the normal direction.

—On™).
AlHl/Q(QUlyp/ﬂFND)

e (ulh — c(hyuy™)|

After replacing p’ by p, Step 1 provides the estimate

We work in Qp, , with the above estimate and p’ € (0, p/2) will be taken
again small enough.

eF (uh — c(h)u;vkb)] — O(h™). (4.6.6)

ATH?

In order to get the interior estimate with the weight e , we modify the
previous analysis like in the proof of Proposition 4.2-b). The sets Q/ are
now given by

Q= {z = (2',2,) € Q, p; ®(z) <Ch} ,
and O ={z = (2/,2,) € Q,,p; ®(x) > Ch} .
The function %, N € N, is given by

¢ () = min {¢" () + Nhlogh™',9(2)} |

i o = 9~ Chlog it 0(a) > Ch.
with ¢"() {(I)(x)—ChlogC, if ®(z) < Ch,

and  (x) = min {¢"(y) + (1 — £)dag(z,y), y € supp Vx} .

We recall that the Agmon distance daq(z,y) is the distance between x
and y for the metric |V f|* dz? and that ®(z) = dag(x,Ur).
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Moreover, equivalently to (4.6.3) in Step 1, the following inequality is
satisfied:
for almost all x, [Vy(z)| < (1—¢)|Vf(x)| . (4.6.7)

Furthermore, the constant C' > 1 will again be fixed in the end like in the
proof of Proposition 4.2-b), while the constants p’ € (0, p/2) and € > 0 are
chosen so that:

ol (2) = ¢"(x) + Nhlogh™" in Qp, .
Again, this implies:
o (x) = " (x) + Nhlogh™ on Q"
Now we have the inequalities
() < ®(x) + Nhlogh™ in Qp, ,
and " (x) < ®(x) in supp Vy .
Hence the estimate

h
‘PN h
e r

= O(h™ ™)

AlL2
is still valid.

Inequality (4.6.6) implies that the L2-norm of the trace of @w" on I'yp
is O(h*°) and we have the following estimate:

[ sty < OO [0 s < C5(C, N)

With these estimates, the integration by parts formula (4.3.3) and (2.2.7)
lead to:

BCNY R o o +1) > ([ |3, o + |05,
HAVIP = VK| = Cih)1gn (x)d" [a") .
Finally, for almost all z € Qi we have:

e Either: V& (z) = Vi(z)
and, owing to (4.6.7),

2
VI = |Vel|” = (2 =) |VfI? 2 6,.>0;

e or: Vol (z) = Voh(z)
and we get like in the proof of Proposition 4.2-b)

V2~ [Ve"|* = CuCh.
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h
By taking C' big enough, we get that HewTNwhH = O(h=No) for some
Ny > 0.

Like in Step 1, this leads to

(uf = e(hyuy™)

=0(h>),

AHY(Qp, 1)
for p’ € (0, p/2) small enough.

Step 3: The estimates in higher order Sobolev spaces are done like in
the proof of Proposition 4.2-b) by a bootstrap argument after writing a
boundary value problem for x(u? — c(h)u}*®) in R™. O

5. Labelling of local minima and construction of the quasimodes

5.1. Preliminaries

Here we adapt to our case with Neumann boundary condition the method
of selecting the proper critical points with index 1 which was used in [HeKINi]
and in [HeNi]. We recall that the intuition for getting the good labelling of
local minima, which is useful even to state properly the assumptions and
results, comes from the probabilistic approach. The local minima have to
be labelled according to the decreasing order of exit times. We refer to
[BoGaK]l], [BoEcGaK]l] and [FrWe] for details.

Note that a similar strategy has independently been considered in
[CoPaYc] for the spectral analysis on Markov processes on graphs.

The existence of such a labelling is an assumption which is generically
satisfied. After this, it is possible to construct accurately quasimodes lead-
ing, with the help of the Witten complex structure, to accurate asymptotic
expansions of the low lying eigenvalues.

5.2. Generalized critical points and local structure of the level
sets of a Morse function

We recall that we work here on a compact connected oriented Rieman-
nian manifold QO = Q U 9Q with boundary and that the function f satis-
fies Assumption 3.1. According to our preliminary results on the Witten
Laplacian Aﬁc\{ 5 in Theorem 3.5, we introduce the following definition of
generalized critical points with index p.
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DEFINITION 5.1. — A point U € Q will be called a generalized critical
point of f with index p if:
o cither U € Q and U is a critical point of f with index p,

e or U € 0Q and U is a critical point with index p of floq such that
%(U) < 0 (7 being the outgoing normal vector).

Remark 5.2. — In particular, for p = 0, we get that the generalized
minima are simply the local minima.

The set of generalized critical points with index p is denoted by U®) .
We recall that we want to analyze the Witten Laplacian on 0-forms so we
restrict our attention to the cases p = 0 and p = 1. From now on, we will

use the notation:
m, = #UP) for p=0,1 (5.2.1)

instead of mg.

Finally it is convenient to call U the union of all critical points of f and

floa-

Before labelling the local minima, let us recall a few remarks coming
from the local analysis of a Morse function which satisfies Assumption 3.1
(we refer to [Mill], [HeKINi], and [HeNi]).

Local structure of the level sets of a Morse function.

In order to analyze the local situation near a point o of £, let us introduce:
A5 (z0) = {z € Q; f(z) < f(x0)} N By

where B,, is a ball centered at xg. Similarly, we can introduce

A5 (z0) = {z € Q; f(z) < fwo)} N By -

Interior points:

First we observe that, near a non critical point zg € Q of f, one can find
B,, and a set of local coordinates such that

A? (lL’o) = {yl < 0} N Bzo .

Secondly, if xq is a critical point with index p, then there exists a ball B,
around zg and a set of local coordinates centered at zg such that
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p n
A5 (z0) = —Zy?—i— Z y? <03 N By, ,
(=1 {=p+1
and
p n
Af(wo) =S =D wi+ > 4i <0pNBy,
(=1 l=p+1

We now observe that
1. When p = 0 (local minimum), AJf (z0) is empty and A? (z) is reduced
to {xo}.

2. Whenp=1, A? (z0) has two connected components and xg belongs
to the closure of each of the two components. This property will be
crucial in the discussion.

3. When p > 2, A% (x0) is (arcwise) connected.

Points on the boundary:

If zg belongs to 0f), Assumption 3.1 leads to two cases:

First case.

If 2 is not a critical point of f|sq, then the hypersurfaces {z | f(z) = f(x0)}
and 02 intersect transversally in a neighborhood of xy. Hence there is a ball
B,, around xg and a set of local coordinates such that

A?({L‘o) = {yl < O7yn < 0} N BIU )

and
A5(z0) = {y1 < 0,90 <O} N By,

with QN By, = {yn < 0} N By, .

Second case.

If z( is a critical point of f|pn with index p and with :tg—i(xo) > 0, there

are local coordinates (y1,...,Yn—1,Yn), constructed from the second point
of Lemma 3.18, such that (yi,...,yn—1) are Morse coordinates for f|gg and
such that

D n—1
A?(IO): iyn*ny‘i’ Z yz'2<0ayn<0 mBa:Oa
i=1 i=pt1
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and

j2 n—1
Af(wo) =S4y =D yi+ > 47 <0, yn <0 p N By, .
i=1 i=p+1

These local models allow to see that

1. If zy is a local minimum of f|sq such that %(mo) < 0, then
A5 (z0) = 0 and A% (z0) = {zo} .

2. If zo is a local minimum of f|sn such that %(xo) > 0, then
A5 (z0) N OQ = 0 and Aj(x0) N IQ = {wo}. Moreover, A (o) is
connected.

3. If p=1and g—fl(xo) <0 (ie. if zp € UM NOQ), A5 (o) has two
connected components with a non-empty intersection with 0 and
xo belongs to the closure of each of the two components. Again, this
property will be crucial in the discussion.

4. In all other cases, A? (x0) is connected with a non-empty intersection

with 0Q.

5.3. Labelling of local minima and first consequence

Remember our main Assumption 1.1:
The function f has #U distinct critical values and the quantities

FODY — 0O, with UD e U and UO € UO) are distinct.

DEFINITION 5.3. — For A € R, we define H°({f < A\}) as the number
of connected components of the level set L(\) = f~1((—o0,\)).

Due to local structure of the level sets of a Morse function and to As-
sumption 1.1, the function HO({f < A}) of A € R is a step function which
satisfies, with A decreasing from +oo:

e H°({f < A}) decreases by 1 around every A\ = f(U®)) with U ¢
U,

e wherever H°({f < \}) increases by 1, it is around a A = f(U())) with
vm ey,

o HY({f < A}) is locally constant away from those points.
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Remark 5.4. — € is connected and compact so H°({f < A}) equals re-
spectively 1 or 0 for A > Ay or A < —Ay for some Ay > 0.

Consequently, the previous discussion implies that the number of critical
values of f with index 1 where H°({f < A}) increases (by 1) is equal to
mg — 1 and so that m; +1 > mg.

We now label the local minima of f as follow:

1. We set Ul(o) = min g f, 21 = 00, f(21) = 21 = o0 and we consider
HO({f < A}) for X decreasing from f(z1) = +oo0.

2. When Uéo) and z are defined for k =1,..., K — 1, decrease A\ from
f(zx—1) until H°({f < A}) increases by 1. Denote by Ax this value.

3. By Assumption 1.1 and by the previous discussion, there exists a
unique point in 4V, that we denote by zg, satisfying f(zx) = Ak.
Then we denote by U I(<O ) the global minimum of the new connected
component.

4. We iterate 2. and 3. until all the local minima have been considered.

5. At least we permute the k’s to make the sequence

( fze)— f (U,EO))> renn , strictly decreasing, which is possible by
€{l,...,mo

Assumption 1.1.

DEFINITION 5.5 (The map j).— If the generalized critical points with

index 1 are numbered U;l) ,i=1,....,m1, we set Ul(l) =z = o0 and we

define the application k — j(k) from {1,...,mo} to {0,1,...,my} by:
{ j1)y=0 an(cll)Uj((ll)) =21
Vk}Q, Uj(k) =Zk .

DEFINITION 5.6. — Fork € {1,...,mq}, we denote by Ej, the connected
component of Uéo) mn

FH (=00, FUSN TS} -

Remark 5.7. — By the previous construction, U,SO)

mum of EY.

is the global mini-

PROPOSITION 5.8. — Under Assumption 1.1, the following properties
are satisfied:
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& 0) o _
a) The sequence (f(U (k)) f(U )) e (o) 1s strictly decreasing.

b) E; = Q is compact and for any k > 1 the set Ey is a relatively
compact subset of f~1((—oo, f( ](k))]) satisfying By, = Ej U {U]((,z)}

c) For any (k,j) € {1,...,mo} x {0,1,...,m1}, the relation U;l) € Ey
implies:

either (j = j(k') for some k' >k) or j&j({1,...,mo}).
d) For any k £ K € {1,...,mo}, the relation U,S)) € Ey implies:

(k’ >k and fUY) >f(U,§°))) .

e) The application j : {1,...,mo} — {0,1,...,m1} is injective.

Proof. — By Assumption 1.1 and by construction, the points a), b) and
e) are obvious.

(1)
c) Assume now Uj(k,) c FEy.

Since U((llz) ¢ Ey, one has k # k' Moreover by definition of Ej and by

Assumption 1.1, we have the inequality f ( ) < f(U (k)) which implies
that Ej/ is contained in Ef, by connectedness of Ey and Ey.

Consequently, U,S)) € Ei and by Assumption 1.1, f(U,iE])) > f(U,gO))
(because U, ,50) is the global minimum of f on Ej) which yields:

FWSL) = FO9) < fWUH) = £
and the point a) gives k' > k.
d) Assume U]g)) € Ey for k £ K.

Again one has f(U,g(,))) > f(U,gO)) which implies k¥’ # 1 (then U((lz/) €Q)
and there are two possible cases:

1 — 1 —
U;(,z,) € E, or U;(k):’) ¢ E).

In the second case, let us look at Ey/. Fjys is connected and U,S)) is the
global minimum of f on Ey/. Moreover, U,E?) € By NE, and U;(llz/) € B \Ey
imply, by connectedness, that 0Fy N Eys # ().
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F is then contained in Fy and U,EO) € FEj/, which cannot occur.

Consequently, U;(llz,) € E} and the points b) and c) imply ¥’ > k. O
5.4. Construction of the quasimodes

Like in [HeKINi] and in [HeNi], we associate with every U,go),

£ € {L....mo}, a quasimode for A"

which is approximately supported
in Fj, while the quasimodes for A}\f;fl) will be supported in the balls
B(UM,2¢1), for j € {1,...,mi}. Aball B(U, p), with U € Qand p > 0, is
a geodesic ball and the geodesic distance is denoted by dg . The parameter
g1 > 0 is fixed so that:

o do(U,U")Y 2 10e, for U, U €U, U £U’.
e ForallU e and all k € {1,...,mo}, U & E}, implies
dQ(U,Ek) >10¢q .

e The construction of the WKB approximation of Subsection 4.6 is
possible in the ball B(U;l),251). If U;l) is a boundary point, this
means the introduction of the coordinates («, z,,) used in Section 4.3
and the existence of ®. Recall that in these coordinates, ® and gy have
the form:

n—1
® = —x,+p(z') and gy = gnn(z) dz? + Z gij(z) deidz; . (5.4.1)
i,j=1

The parameter £; > 0 will be kept fixed, while we need another parameter
e € (0,e0) which will be fixed in the final step of the proof.

Like in [HeNi], the construction presented in [HeKINi] has to be adapted
when U]((lg) € 0 or U,EO) € 00 (recall that in [HeNi], the case U,EO) € 0N
did not occur) and we focus on these changes.

However, note that in [HeNi] the set Ej, intersected dQ at most at one
point (E, NN C {U]((lli

same construction when U;(llz) € of.

)}) It is not the case here and we cannot use the

For every k € {1,...,mo} and € > 0, we introduce the set:
On(e,0) = {w € Qda (0, B\ BU)),0)) < 0} UBWUL) ),
with § € (0,0¢), 6. > 0 small enough.
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The cut-off function yx . € C§° (Q),0< Xk,e < 1 1is chosen so that:

Supp )2]{,8 C Qk(€76€) a‘nd Xk‘ E|Qk 8 6 /2)\B(U (k)78) ]- .

Around U (1) , the cut-off function Xk,e s chosen (more accurately below

when U(l) € GQ) so that U! (k & supp Xk, and

vre BU).e), (;zm(x) #0,and f(z) < fU), )) S zeB . (542)

Remark 5.9. — The cut-off functions x4 . are used in the construction

of quasimodes for AN {0)

Moreover, in the case k = 1, we have by construction x;. = 1 in Q
because U;(ll)) ¢ Q. This case provides directly the eigenvector

||e’f(””)/h||_1 e~ F@/h (of Aﬁc\f’h(o)) with the eigenvalue 0.

Like in [HeKINi] and in [HeNi], we deduce from Proposition 5.8 the
following properties for . .

PROPOSITION 5.10. — By taking § = 6. with € € (0,g0], 0 < g9 < €1
small enough, the cut-off functions xre (k € {1,...,mo}) satisfy the fol-
lowing properties:

a) If x belongs to supp Xk, and f(z) < f( ](k)) then x € Ej.

b) There exist C > 0 and, for any ¢ € (0,e0], a constant K. > 0, such
that, for x € supp VXk.e ,

either x ¢ B(U;(lz),s) and f( )+K < f(r) < f(UJ((llz)) + K.,
or € BUe) and |f(z ) FU))| < Ce.
c) ForanyU e U, U #+ U;(llg), the distance do(U,supp VXk.e) is bounded
from below by 3e; > 0. If in addition U € supp Xi,e, then U € E}, .

d) If, for some k' € {1,...,mo}, Ul belongs to supp Xk, , then k' > k
and

FOD) > FOF), FUL) < FUJg) s ik # K

- 795 —



D. Le Peutrec

e) Foranyje{l,...,my}, such that U;l) € SUPP Xkc ;

either i¢i({1,...,mo})
or j=7(k"), forsome k' >k and U,S)) € SUpPP Xk,e -

The quasimodes for A ’( ) associated with the U; (1) € O are constructed
like in [HeKINi] and in [HeNl] (and rely on the approxnnatlon by the Dirich-
let problem in small balls B(U ;1),251)). We will not recall the complete
construction here.

In the same spirit as in [HeNi], the quasimodes associated with the U ](1) €

09 will rely on the approximation by the Neumann realization associated
with the neighborhood Q (p > 0 small enough) which was studied in

Subsection 4.6.

(1)
U;7sp

Once p > 0 is fixed uniformly for all U;l) € 082, the parameter e; > 0
is reduced so that B(UL", 2e1) € Qu, , for all U € 90

For all j € {1,...,m1}, u; denotes a normalized eigenvector associated
with the first (exponentially small) eigenvalue of this Dirichlet or Neumann

realization. The cut-off function 0; € C° (B(U;l), 2¢1)) is taken such that

f;j=1on B U( )751 and 2% = 0 for boundary points uh e 0.
Q J

oo

Note that the function X . depends on € € (0,¢¢], while 6; is kept fixed
like 1 > 0.

DEFINITION 5.11. — For cut-off xx.. satisfying the properties of Propo-
sition 5.10 like Xy, introduce the following quasimodes.

For any k € {1,...,mo}, the (¢, h)-dependent function 1/’120) is defined by

(@) = ||xnc@)e

—(f(w)—f(U;ﬁo)))/hHﬂ ()= @ =T /h
For any j € {1,...,m1}, the h-dependent 1-form %m 18 defined by

o @) = (105u517") 6 (@) ) -

We set N{"P(e,h) =0, and for any k € {2,...,mo} :
2
a 1 0) (0
AN (eh) = ’<¢;(12;) | de;z l(c )>‘

- 796 —



Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

Remark 5.12. —
a) In the case U;(llz) € Q, Xke 1S Xk, with additional properties (see
[HeKINi] for details) and we will still denote it here by Xj.. In the case

U(l)) € 09, the real choice of x4 . will be fixed further (see Definition 5.20).
Moreover, xj also satisfies the properties of Proposition 5.10.

b) For the sake of conciseness, we omit the (e, h)- and h- dependence in
the notations ¢,(€O) and d}§1).

c) We will show in the next section that the \/"(e, h)’s are approxi-

mated values of the small eigenvalues of A (0).

By Remark 5.9, this definition is coherent for £ = 1 and 1/)50) is the
normalized eigenvector associate with the eigenvalue 0.

d) Due to the condition 2% |(,m =0, 1/)( ) belongs to D(AN (1)) and this,
even if U](l) belongs to 09.

5.5. Quasimodal estimates

We end this section by reviewing the quasimodal estimates which are de-
rived from Propositions 5.8 and 5.10. The asymptotic expansion of the quan-

tity <1/J((k) | d}?glw,go)> has also be done in [HeKINi] when Uéo) and U;(lli) €N
are interior points. Like in [HeNi], we will simply Complete this analysis by
establishing the asymptotic expansion of < j(z,)c) \ d\ 7, h¢(0)>, when U,EO) or
U, s in 09

Remark 5.13. — In this subsection, we make computations with differ-
ent coordinate systems v = (v1,...,v,) (around U = U(O) orU = U((llz)) all
given given by Lemma 3.18.

Looking at the proof of Lemma 3.18 given in [Lep2], notice that the
coordinates (v1,...,v,—1) in the boundary can be chosen freely. Moreover,
according to [HeSj4] pp. 279-280, they can be chosen such that dvy(U),. . .,
dv,—1(U),f; is orthonormal and positively oriented and

An— A An
F.0) = Mot 2t ) and o) = Aluzg Pt
(5.5.1)

with Ay < 0 when U = U;l). Hence all the coordinate systems around
U € 09 will coincide on 052 while they may differ in {2 according to the case
when a normal form is used for f, ® or f + ® in Q.
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Remind that the parameter ; > 0 is fixed, while gy and € € (0, &) may
have to be adapted during the proof. We shall denote by « a generic
positive constant which is independent of ¢ € (0, ¢g] .

Introduce the following notation which will be very useful:

DEFINITION 5.14. — The notation g(h) = O.(e™ %) means that, for all
e € (0,e0], there exists a constant Cz > 0 such that:

Vh € (0, ho) , lg(h)| < Ce 7.

From Proposition 5.8-d) and the good localization of V.., we deduce
the following estimates for w,(CO) .

PROPOSITION 5.15. — The system of (g,h)-dependent functions
(wlgo))ke{l,m’mo} of Definition 5.11 is almost orthogonal with
(0) (0>) e 4 O (e
<<1/Jk | ") bk €1, o) cmo +O:(e77)
and there exists a > 0 and, for any ¢ € (0,£0], C(e) and ho(e) such that,
for any h € (0,ho(e)],

(1)

©)
L) I W) —as
h

2 fw
AFO 1 0®) = a0 < clere?

COROLLARY 5.16. — There exists g > 0 and o > 0 such that, for any
choice of € in (0,e9] and for allk € {1,...,mo}, the (¢, h)-dependent quasi-
modes ¢,(CO) satisfy the estimate

AV OpO | o) = 0. (e F) .

The exponential decay of the first eigenvector u;, associated with an ex-
ponentially small eigenvalue, of the Dirichlet realization of AS},)Z around
Uj(l), provides the following estimates for w§1). We refer the reader to

[HeKINi] or [HeSj4] for U;l) € Q and to Subsection 4.6 for U;l) € o00.

PRrROPOSITION 5.17 — The system of h-dependent 1-forms,

(1/1§1)> . ) given in Definition 5.11 is orthonormal and there exists
Jje{l,....m1

a > 0 independent of € such that
(A5 ) =0,
forallje{l,...,m1}.
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Let us now compute some asymptotic expansions.

PROPOSITION 5.18. — For k in {2,...,mg} and z in Q,

s —rw®)

U (@) = )L+ ax(W)xke(e)e™ 7
where vy (h) is defined in Definition 1.2 and ax(h) ~ >, ak cht.
Proof. — In the case U,go) € Q, we refer the reader to [HeKINi].

If U}go) € 08, we use again, in a neighborhood of U,go), the coordi-
nate system (T’,T,) introduced in the second part of the Section 3.3 (with

E(U,go)) = 0). In this coordinate system, f and gy equal:

F@) = =T+ floa(®) = —Fn + FU) + 0@, (5.5.2)
90 = gnn(T) dTp + 37 - ' 9i;(T) dTidz; (5.5.3)

where ¢ = floq — f(U, lgo)) is the Agmon distance to U}go) on the boundary.
We denote by Vy, (dZ) the normalized volume form:

Vo (dT) = (det Go(T))Y2dT A dT,, =: v(T, Tp)dT A dT, .
From (5.5.2),

3f of

5 (0) = - L W) ity and v0,0) = (L @W) . 654)

For some constants i > 0 and 6,, > 0,

(0)
Fla)=f(U, ")
2 9~k ’
/_Xk,ee " Vgo (d:)?)
Q

Tn @) 5
= / 2T 2 R v(T',Z,)dT A AT, + O(e_Tn
B(0,n)

2
i@
Xk,e€ h

According to (5.5.1),

2
f@-5w ) INT3 4+ Ay 1 |72

n—1

Xke€ — F = IBo.m 2 e~ g V(T Tn)dT A AT,
Sn
+O0(e" 7).
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By expanding v(Z',T,) to a Taylor Series of arbitrary order k € N*, we can
separate the variables ' and T,, in the last integral term.

Hence, using the Laplace Method for each term, we obtain an asymptotic
s@—rwi®) 2

expansion of arbitrary order of ||xx e 2

Moreover, from (5.5.4), the first term is:

0 h )=
(-HLwm) j— "~ .
’det Hess f|ag(U,£O))

O

PROPOSITION 5.19. — In B(U;(llz),el), choose the coordinate system x

which satisfies (5.4.1) and (5.5.1) with Ay < 0. For k in {2,...,mo}, the
equality
1) — 2z
B () = 8300 ()b, e 7
holds up to a phase factor, when &;(h) is defined according to Defini-
tion 1.2, b(z,h) ~ Y2 bie(@)RE, b e(x) = >0, b};,Z(;v)dxi, and b};yO(O) =
014

Proof. — 1In Section 4, we found a WKB approximation u%’** of an
eigenvector uf such that,

eq)(h,z)ull”kb =3"  a?(z)dx; + ha'(z,h),

i=1"1

a}(0) =14, a'(2,h) ~ 35, hfar(2)

and
Vo€ BUY)201), €5 [0 (ul (2) — uf™(2))] < Ca k.

The WKB approximation u{’** was initially constructed in another coor-
dinate system (z;,...,z,). Remark 5.13 recalls that the tangential coordi-
nates z,,...,2,_; and 1,...,Zy_1 can coincide in 992 with different de-

formations as entering into €.

The normalized eigenvector that we take here is
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Let us first compute accurately:
[l | = (1650901 [| + O) = [[6509ut™|| + O() .
Moreover,

2@(@

16500011 = [ 630900 (o) ot ke 5V, (do),

where the integral is over x,, < 0. Note furthermore that,

(1) 9% (1) _of )
(U(k)) U((lk))* an(U )n

dzn(Ujiy) = =5, v -

Proceeding like in the proof of Proposition 5.18, we obtain, using the Laplace

method, a full asymptotic expansion of ||0j(k)u1 wkb ||

by the first term of

The first term is given

2e, 5 e(z))
/ 0,00 (2)*(a () | () F* e 2252V, (dar)

and from (a°(x)|a®(z))(0) = 1, we conclude like in the proof of Proposi-
tion 5.18. 0

Before stating the next result, let us specify the choice of xx. when
U;(llz) € 00. We assume ¢ € (0,g9), with 0 < ¢ < £. We introduce

10
locally near U((llz) a new coordinate system (Z1,...,%,) by application of

Lemma 3.18 with f1 = f 4+ ® and o = (f + P)|sq-

Hence, we can write in B(U;(llz), 2¢1), choosing &7 small enough:

(f +@)() = ~Zn + (f + ®)]on(T') = —Zn + f(Z',0) + ¢(7)
with an arbitrary choice of Z’ in the boundary.

Remark moreover that in this case,

= Dy 8f <1>

We choose the coordinate system Z’ in the boundary like it was chosen in
the boundaryless case (see [HeSj4][HeKINi]) according to the geometry of
stable and unstable manifolds in order to write (f + ®)|sq as a function of
n — 2 coordinates:

(f + @)oa(@) = f(@,0) + (@) = (f + D)loa(Z2, ..., En-1).  (5.5.5)
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DEFINITION 5.20. — For any k € 1,...,mg we define the cut-off xi.e
by:
o If U((lz) €O, Xke = Xke-

o If U((k) € 09, we first construct near 9Q N Ey, the cut-off ng like 1t
was constructed in the boundaryless case (see [HeKINi] pp. 26-29).

Then, choosing a cut-off
Xn(Zn) € CSO(R—)v Xn =1 on (_5670]

we take for xp.e:

Xk,s(f) = Xn(ifn)ng + (1 - Xn(fn))y(k,s .

Note that xx., for 6. small enough, satisfies the same properties as
Xk,e in Proposition 5.10 and we make that choice. Moreover, according to
[HeKINi] p. 28, in a neighborhood of {Z; = 0} N 09, the cut-off xj . only
depends on Z1: Xk.e = Xk.e(Z1)-

PROPOSITION 5.21. — There exist o and sequences (Ckm)meN+, Such
that the (g, h)-dependent and h-dependent quasimodes 1/),(60) and 1/1](.1) ((k,j) €
{1,...,mo} x{1,...,m1} and € € (0,e0]) satisfy:

() |d§Pz O =0 ifj# k),

f<U<§,{)> rw™

S0 1A = ()80 (BB (R)e™

where Y (h), ;) (h), and 0;y(h) are defined in Definition 1.2 and cy(h) ~
ZZO ck7eh€'

(1 + hc,lc(h))

Proof. — The first statement for j # j(k) is a consequence of our choice
of e1 > 0 and x, which gives according to Proposition 5.10-c) supp ¢§1) N
supp Vxi,e = 0. We conclude with dgc%z/;](vo) =C.p (d(o)xhs) e—f/h.

The second case was completely treated in [HeKINi] when U(( py € Qand
U}go) € Q. Moreover, in the case when U((lz) € Q) and U]EO) € 01, the proof
done in [HeKINi] remains valid if we take the convenient ~x(h).

Show now the cases when U;(llz) € 09 and U]EO) € QU IN by adapting
the proofs done in [HeKINi] and [HeNi.
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From Proposition 5.18, Proposition 5.19, and

(@)
dg‘(,)z (Xk,se_fh ) =e h hd(O)Xk €
we obtain the existence, for any € > 0, of . > 0 such that

0
< iy | 4 k)>=h7k(h)5j(k)(h)

_@@+@-rw™)
<[ e da@e T V()
(Usi2ye)
3Ry’
HEIHNE f(U(O)H-as

+0. <e 1 ) ,

with b(x, h) defined in Proposition 5.19.
Using the coordinate system &, with the choice of xy ,

(i) LD ) = e (1) ()

} o —aate@)+HE 00— R
x / (b(&, 1) | die) (3)e ; V,, ()
B

Wl
f(U(lz)) f(U(O))-Hrz
+0:

& & & 1)
n=e @)= (@ 0= (U 1))

= r(n) [ (0G| din) (e h Vyo(d)

€
peY) (0)
_J(Uj(k)>—f(Uk PR
+0;. (e m ,

1w -t

r(h) = hyi(h)d;) (h)e g
and C; is a cylinder |Z'| < ¢, —c: < T, < 0. Expanding (b(Z, h) | dZ1) to a
Taylor Series (of arbitrary order), we can obtain, ubing the Laplace method,

where

an asymptotic expansion (of arbitrary order) for < | d(o) O)>.

Moreover, the first term in the expansion of (b(Z,h)|dZ;) equals at
Z =0, (bpo(Z)|dz1)(0) = 1. After recalling (5.5.5) which says that the
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exponent f(z’',0)+¢(x’) does not depend on %1, the first term of the wanted
expression is then given by

_ @)+ 00— )
En _ J(k) - - ’ - -
h) | endi, [e R diy...dTn 1 | X (T1)dZy .

Using the Laplace method and

[ Xielor) doy =1,
R

we find
%

n<U;§g)>|detHessf|m( E

T(h)

6. Final proof

6.1. Main result

Recall first some notations.

The generalized critical points with index 0, {UIEO) , ked{l,... ,mo}},
are labelled according to Subsection 5.3 and the generalized critical points
with index 1, {U]((lk), ke{2.. mo}}, are those introduced in Defini-
tion 5.5.

Moreover, the quantity \;"”(e, h) introduced in Definition 5.11 is asso-

ciated with the quasimodes w,(c and dj((k)

X (e ) = | (it 1 )|

At a generalized critical point U with index i (i € {0,1}), the Hessians
Hess f(U) or Hess f | o are computed in orthonormal coordinates for the
metric go, while considering only the tangential coordinates 2’ = (x4, ...,
Zp—1) for the second case.

At least, for a generalized critical point U € W with index 1 for W = Q
or W = 99, MV (U) denotes the negative eigenvalue of Hess f|y (U).

With these notations, we have the following theorem, which implies
Theorem 1.3:
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

THEOREM 6 1. — Under Assumptions 3.1 and 1.1, the first eigenvalue

A1(h) of A is 0 and its mo — 1 first non zero eigenvalues Az2(h), ...,
Ame (R) admzt the following asymptotic expansion. There exist g > 0 and
a > 0 such that, for any € € (0,e0],

Vk e {2,...,mo}, Me(h)=N"P(e,h) (1 + @5(67%)) )

Recall also that, from Proposition 5.21, for any € € (0, gg],

@ (0)
L Vi) =@

NP (e, h) = i (h) 634y (B) O34y () e g (1+ hey(h))

where i (h), 0;(x)(h), and ;) (h) are defined in Definition 1.2 and cj(h)

j
admits a complete expansion: c}.(h) ~ Y oo  A™Ck .

6.2. Finite dimensional reduction and final proof
Set first, for £ € {0,1}:

Vie {1, med, ol =1 s (AT )0, (6.2.1)

(3

where the 7/’1@ are the (e, h)- and h- dependent quasimodes introduced in
Definition 5.11.

Remark 6.2. — Note that here again we omit the (e h)—dependence (resp.

h-dependence) of the functions U](CO) (

h/\/\

resp. 1-forms v ) in the notation.

Recall furthermore the definition of the space F(¥) given in introduction
(£ €{0,1}),

4
F® = Ran 1[07h%)(A§c},) )

which has dimension m, according to Theorem 3.5.

According to Lemma 2.11, Corollary 5.16 (for ¢ = 0) and Proposi-
tion 5.17 (for € = 1), ||Tp/2 1o (ATl

O.(e~#), which implies the two following propositions:

is estimated from above by

PROPOSITION 6.3. — For £ € {0,1}, the {-forms (vy))ieg,...,mz}
satisfy:

= = ot

for some a > 0 independent of € € (0,¢eq)].
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PROPOSITION 6.4. — For ¢ € {0,1}, the system (vl@) . , is a
1e{l,...,mg
basis of FO satisfying:

@ — (O | (0 — den —a!
VO = (@ o >)Zz€{1 ..... oy = e +0:(7F),

for some a > 0 independent of € € (0,¢eq].

Finally, we can also establish:

PROPOSITION 6.5. — There exist ¢, > 0 and o' > 0 such that, for all
e € (0,e(], the estimates

s s tal
W [ d0 o) < Coo i £ (k)
and ,
Wity 10y = @i 1) (1+0:(e7))
hold for all (k,j5) € {1,...,mo} x {1,...,m1}.

Proof. — Remark first, 1[07h3/2)(A?{}51)) being a spectral projector and
using Corollary 2.10:

W 10y = (110 sy (AN | d0) 110 oy (ANO)0)

= (Lo psrzy (AY N0 | 110 vy (AT 07) = (0 | dP) )

The end of the proof is a straightforward consequence of Proposition 5.15,
which gives

e (0))_ i1,
FU) =W ) -

o] < e
Propositions 5.21 and 6.3. g

Proof of Theorem 6.1. — By Propositions 6.4 and 6.5, the bases
(uff))ie{17,,,,m} of FO, for £ € {0,1}, satisfy Assumptions 2.1 and 2.2 of
[Lepl1]. Theorem 2.3 of [Lep1] then implies Theorem 6.1 (which immediately
implies Theorem 1.3).

Remark 6.6. — The conditions of [Lepl| are not exactly satisfied here
because the one to one map j should act from {1,...,mg} to {1,...,m},
with dim F() =m
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Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

We can easily reduce the study to this last case, by setting:
my=mo , T =mi+1,

and,

700) — (0 ) — L,
FO=r®  FO=FDglcCy,),,.

Setting in addition j(1) = my + 1 instead of j(1) = 0, the conditions of
[Lepl] are fulfilled.

Note furthermore that the decreasing sequence (ax )y, 3 Of [Lepl]

is then here (f(U((llz)) - f(U,iO))) whose first term is by definition
N J ke{l,...,mo}
0.

O

Acknowledgement. — The author would like to thank T. Jecko and
F. Nier for profitable discussions.
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