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Arens regularity of lattice-ordered rings

Karim Boulabiar
(1)

, Jamel Jabeur
(2)

ABSTRACT. — This work discusses the problem of Arens regularity of a
lattice-ordered ring. In this prospect, a counterexample is furnished to
show that without extra conditions, a lattice-ordered ring need not be
Arens regular. However, as shown in this paper, it turns out that any
f -ring in the sense of Birkhoff and Pierce is Arens regular. This result
is then used and extended to the more general setting of almost f -rings
introduced again by Birkhoff.

RÉSUMÉ. — Ce travail aborde le problème de l’Arens régularité des an-
neaux réticulés. A cet égard, un contre-exemple est fourni pour mon-
trer que, sans conditions supplémentaires, un anneau réticulé peut ne pas
être Arens régulier. Néanmoins, comme il est démontré dans ce papier, il
s’avère qu’un f -anneau au sens de Birkhoff et Pierce est Arens régulier.
Ce résultat est ensuite employé et généralisé aux presque f -anneaux, in-
troduits encore par Birkhoff.

1. Introduction

The classical books [3, 4] and the fundamental article [5] are adopted as
the unique sources of unexplained terminology and notation in this paper.
In order to avoid unnecessary repetition, we assume throughout that all
rings under consideration are associative and have multiplicative identities.
As usual, the symbol R is used to indicate the field of all real numbers.
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A normed algebra is said to be Arens regular if the so-called first and
second Arens multiplications coincide in its normed biconjugate. One of the
famous and still unsettled problems in functional analysis is to characterize
Arens regular normed algebras. However, neither in this introduction nor
anywhere else in this work do we intend to touch the vast literature on the
problem of Arens regularity of normed algebras. In fact, the main purpose
of this paper is to discuss the corresponding problem in the completely
different setting of lattice-ordered rings. A few more details seem to be in
order.

Let R stand for a lattice-ordered ring. In the preliminaries section, we
introduce the first and the second Arens multiplications in the complete
lattice-ordered group Homb (Homb (R, R) , R). Then we define R to be Arens
regular if these multiplications coincide in Homb (Homb (R, R) , R). In this
regard, a counterexample is provided to show that without additional as-
sumptions a lattice-ordered ring need not be Arens regular. In the third
section of this note, we prove that any f -ring in the sense of Birkhoff and
Pierce in [5] is Arens regular. This result is used and extended in the last
section of this work. Namely, we prove that any almost f -ring as defined by
Birkhoff in [4] is again Arens regular.

2. Preliminaries and a counterexample

The first paragraph of this section deals with the order biconjugate of an
abelian lattice-ordered group (also called an �-group). Let G be an abelian
�-group and let G+ denote the set of all positive elements in G. In particular,
if u ∈ G, then u+ = u ∨ 0 ∈ G+ and u− = (−u) ∨ 0 ∈ G+. A map f : G → R

is called a group homomorphism on G if

f (u + v) = f (u) + f (v) for all u, v ∈ G.

The group homomorphism f on G is said to be increasing if

f (u) � f (v) for all u, v ∈ G with u � v.

Of course, the group homomorphism f on G is increasing if and only if f (u) �
0 for all u ∈ G+. The group homomorphism f on G is said to be bounded
if for every u ∈ G+ there exists µ ∈ (0,∞) such that f (v) � µ whenever
0 � v � u. This is equivalent to the condition that f sends bounded sets to
bounded sets (where we call a set bounded if it possesses an upper bound and
a lower bound). The set Homb (G, R) of all bounded group homomorphisms
on G is a complete (and hence archimedean) abelian �-group with respect
to the pointwise addition and the ordering defined by

u ∈ G and u � 0 imply f (u) � 0 in R
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(see [3, Theorem 11.2.5]). For convenience, we use the notation G� instead
of Homb (G, R). The complete abelian �-group G� is called the order con-
jugate of G. The order conjugate (G�)� of G� is called the order bicon-
jugate of G and denoted briefly by G��. In other words, we have G�� =
Homb (Homb (R, R) , R).

The next lines are devoted to the first and the second Arens multi-
plications in the order biconjugate of a lattice-ordered ring. Recall that an
abelian �-group R which is simultaneously an associative ring with the prop-
erty that R+ is closed under multiplication is called a lattice-ordered ring
(briefly, an �-ring). Throughout this note, R stands for an �-ring with e as a
multiplicative identity. Following constructions in [2] by Arens, a multipli-
cation in the order biconjugate R�� of R can be introduced in three steps,
as follows. For every f ∈ R� and u ∈ R, define fu : R → R by

(fu) (v) = f (uv) for all v ∈ R.

For every bounded subset S of R and every u ∈ R, the set uS = {uv : v ∈ S}
is bounded. Therefore,

fu ∈ R� for all f ∈ R� and u ∈ R.

Then, for F ∈ R�� and f ∈ R�, a map Ff : R → R can be defined by

(Ff) (u) = F (fu) for all u ∈ R.

Also, it is not hard to see that

Ff ∈ R� for all F ∈ R�� and f ∈ R�.

Finally, let F,G ∈ R�� and F � G : R� → R be the map given by

(F � G) (f) = F (Gf) for all f ∈ R�. (2.1)

Again, it is readily verified that

F � G ∈ R�� for all F, G ∈ R��.

The multiplication � defined in (2.1) is called the first Arens multiplication
in R��. It is quite simple to check that the complete �-group R�� is an
�-ring with respect to the first Arens multiplication. Moreover, the group
homomorphism e�� on R� defined by

e�� (f) = f (e) for all f ∈ R�

– 27 –



Karim Boulabiar, Jamel Jabeur

is a multiplicative identity in R��. Similarly, three steps are needed to intro-
duce the second Arens multiplication in R��. Indeed, let f ∈ R� and u ∈ R.
Define uf ∈ R� by

(uf) (v) = f (vu) for all v ∈ R.

Thus, if F ∈ R�� and f ∈ R�, then fF ∈ R� can be given by

(fF) (u) = F (uf) for all u ∈ R.

Now, let F,G ∈ R�� and define F � G ∈ R�� by

(F � G) (f) = G (fF) for all f ∈ R�. (2.2)

The second Arens multiplication in R�� is the multiplication � defined in
(2.2). Under the second Arens multiplication, R�� is again a complete �-ring
with the same e�� as a multiplicative identity.

We are in position at this point to present the central definition of this
note.

Definition 2.1. — An �-ring R is said to be Arens regular if the first
Arens multiplication and the second Arens multiplication coincide in the
order biconjugate R�� of R.

Next, we provide an example to illustrate the fact that without addi-
tional conditions, the �-ring R need not be Arens regular. The key idea of
this example goes back to the problem recently discussed in the interesting
note [8] by Buskes and Page. Notice first that if the �-ring R is commuta-
tive, then R is Arens regular if and only if R�� is commutative with respect
to the first (or the second) Arens multiplication.

Example 2.2. — Let C∗ (Z) denote the set of all bounded real-valued
functions on the set Z of all integers. Under the pointwise addition and
ordering, C∗ (Z) is a compete abelian �-group. Consider the sub �-group R
of C∗ (Z) such that u ∈ R if and only if the series

∑
u (n) is absolutely

convergent.

First, we claim that the order conjugate R� of R can be identified as an
�-group with C∗ (Z). To this end, pick n ∈ Z and define en ∈ R by

en (n) = 1 and en (m) = 0 for all m ∈ Z with m �= n.

Let f ∈ R� and define a map f̃ : Z → R by f̃ (n) = f (en) for all n ∈ Z. It
is readily verified that f̃ ∈ C∗ (Z) for all f ∈ R�. Moreover, it is simple to
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check that the map ϕ : R� → C∗ (Z) defined by ϕ (f) = f̃ for all f ∈ R� is
an �-group isomorphism, which gives us the desired fact. This identification
is used below without further mention.

Now, it is easily seen that R is a commutative �-ring with respect to the
multiplication given by

(uv) (n) =
∞∑

m=−∞
u (m) v (n − m) for all u, v ∈ R.

Moreover, the �-ring R has e0 as a multiplicative identity. A direct compu-
tation yields that

(uf) (n) =
∞∑

m=−∞
f (m) u (m − n) for all u ∈ R, f ∈ R�, and n ∈ Z.

Put

A =
{

f ∈ R� : lim
∞

f = 0 and lim
−∞

f exist in R

}
and

B =
{

f ∈ R� : lim
∞

f exists in R

}
.

Define a map F : A → R by F (f) = lim−∞ f for all f ∈ A and a map
G : B → R by G (f) = lim∞ f for all f ∈ B. Also, define a map p : R� → R

by
p (f) = sup {|f (n)| : n ∈ Z} for all f ∈ R�.

Notice that if f is positive in R� then 0 � F (f) � p (f) and 0 � G (f) � p (f).
By a Hahn-Banach type theorem (see, for instance, Theorem 2.1 in [1]),
both F and G extend to positive elements in R��, denoted again by F and
G, respectively.

Finally, let h ∈ R� such that h (n) = 1 if n � 0 and h (n) = 0 if n > 0.
For u ∈ R, we have

(hu) (n) =
∞∑

m=n

u (−m) for all n ∈ Z.

It follows that hu ∈ A ∩ B, so

(Fh) (u) = lim
−∞

hu =
∞∑

n=−∞
u (n) and (Gh) (u) = lim

∞
hu = 0.

We derive quickly that

(F � G) (h) = 0 �= 1 = (G � F) (h) .
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This means that under the first Arens multiplication, the �-ring R�� is not
commutative. Since R is commutative, the remark made just before this
example implies that R is not Arens regular.

To advance our discussion, it seems natural to impose an extra assump-
tion on the �-ring under consideration. This is exactly what we intend to do
in the next sections.

3. Arens regularity of f-rings

Birkhoff and Pierce in [5, page 55] called the �-ring R an f -ring if

(uw) ∧ v = (wu) ∧ v = 0 for all u, v, w ∈ R+ with u ∧ v = 0.

This additional hypothesis turns out to be sufficient for the �-ring R to be
Arens regular. First, a few well-known f -ring properties from [5] have to be
revisited. For instance, squares in the f -ring R are nonnegative [5, Corollary
1, page 57]. In particular, the multiplicative identity e is nonnegative. On the
other hand, an archimedean �-ring R with a positive multiplicative identity
e is an f -ring if and only if e is a weak order unit in R [5, Corollary 3, page
61]. Recall here that the positive element e is called a weak order unit in R
if u ∈ R and u∧e = 0 imply u = 0 [5, page 49]. Below, the symbol N is used
to indicate the set of all positive integers {1, 2, 3, ...}. All the ingredients are
gathered now for the proof of the following theorem.

Theorem 3.1. — Any f-ring is Arens regular.

Proof. —First of all, from [6, Lemma 2.2] it follows directly that

0 � nu � u2 + n (u ∧ ne) for all u ∈ R+ and n ∈ N. (3.3)

These inequalities play a key role in the sequel.

Now, we will see that e�� is a weak order unit in R��. To show this, let
F ∈ R�� such that F ∧ e�� = 0 and pick 0 � f ∈ R�. We claim that

0 = (F ∧ e��) (f) = inf {F (f − g) + e�� (g) : g ∈ R� and 0 � g � f}

To prove the second equality, note that

(F ∧ e��) (f) � inf {F (f − g) + e�� (g) : g ∈ R� and 0 � g � f}

is trivial, upon taking g = 0 and g = f. To prove the inverse inequality, let
G ∈ R�� be any lower bound for F and e��; we must show that

G (f) � inf {F (f − g) + e�� (g) : g ∈ R� and 0 � g � f} .
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For this, suppose g ∈ R� with 0 � g � f. Then G (f − g) � F (f − g) and
G (g) � e�� (g), whence

G (f) = G (f − g) + G (g) � F (f − g) + e�� (g) ,

and the claim is proved (the idea for the proof of the claim can be found
in [3, proof of Theorem 11.2.5]). Fix ε ∈ (0,∞) and choose n ∈ N. There
exists gn ∈ R� such that 0 � gn � f and

0 � F (f − gn) + gn (e) = F (f − gn) + e�� (gn) � 2−nε.

Put hn = inf {g1, g2, ..., gn} and observe that

0 � F (f − hn) = F (f − inf {g1, g2, .., gn})
= F (sup {f − g1, f − g2, ..., f − gn})
� F (f − g1) + F (f − g2) + · · · + F (f − gn)
� ε

(
2−1 + 2−2 + · · · + 2−n

)
.

Thus,
0 � F (f − hn) � ε for all n ∈ N. (3.4)

On the other hand, let h ∈ R� be such that 0 � h � hn for all n ∈ N. Hence,

0 � h (e) � hn (e) � gn (e) � 2−nε for all n ∈ N.

It follows that h (e) = 0. According to (3.3), we have

0 � nh (u) � h
(
u2

)
+ n2h (e) = h

(
u2

)
for all u ∈ R+ and n ∈ N.

That is, h = 0, which yields that

inf {hn : n ∈ N} = 0. (3.5)

Lemma. — Suppose G and H are abelian �-groups with H complete, and
h1, h2, ... are elements of Homb (G,H) admitting an upper bound. Then

(sup {hn : n ∈ N}) (u) = sup {hn (u) : n ∈ N} for all u ∈ G+.

Proof. —See the end of the proof of [3, Theorem 11.2.5].

Combining the dual of this lemma (with u = e) with equation 3.5 above,
we get

inf {hn (e) : n ∈ N} = 0
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Consequently, a subsequence
(
hα(n)

)
n∈N

of (hn)n∈N
can be found so that

0 � hα(n) (e) � n−4 for all n ∈ N. (3.6)

If u ∈ R+ and n ∈ N, then (3.3), in which we replace n by n2, and (3.6)
lead directly to

0 � hα(n) (u) � n−2hα(n)

(
u2

)
+ n2hα(n) (e) � n−2

(
h1

(
u2

)
+ 1

)
(notice here that the sequence (hn)n∈N

is decreasing in R�). Hence, the
series

∑
hα(n) (u) converges in R. A map t : R+ → R can thus be defined

by
t (u) =

∑
n∈N

hα(n) (u) for all u ∈ R+.

It is readily checked that

t (u + v) = t (u) + t (v) for all u, v ∈ R+.

By [3, 1.1.7], t extends uniquely to an increasing group homomorphism on
R, again denoted by t. Since

n∑
k=1

hα(k) � t in R� for all n ∈ N

and F is an increasing group homomorphism on R�, we get

0 � n inf {F (hk) : k ∈ N} �
n∑

k=1

F
(
hα(k)

)
� F (t) .

But then,
inf {F (hn) : n ∈ N} = 0.

So,
sup {F (f − hn) : n ∈ N} = F (f) .

This equality together with (3.4) yields that 0 � F (f) � ε. We derive that
F (f) = 0 because ε is arbitrary in (0,∞). This means that F = 0, so e�� is
a weak order unit in R��, as required.

In summary, the multiplicative identity e�� in the archimedean �-ring
with respect to the first Arens multiplication is simultaneously a weak
order unit. This implies that under the first Arens multiplication �, the
lattice-ordered ring R�� is an f -ring with e�� as a multiplicative identity.
Analogously, R�� is an f -ring with e�� as a multiplicative identity under
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the second Arens multiplication �. From Theorem 2.2 in [9], it follows that
there exists H ∈ R�� such that

F � G = H � F � G for all F,G ∈ R��.

In particular,
H = H � e��

� e�� = e��
� e�� = e��.

Therefore,

F � G = e��
� F � G = F � G for all F,G ∈ R��.

This completes the proof of the theorem. �

Observe that in the previous proof, we have shown in particular that if
R is an f -ring then so is R�� with respect to the first (and the second) Arens
multiplication. It should be pointed out that this result has been obtained
for archimedean f -algebras with separating order dual in an alternative
way by Huijsmans and de Pagter [10, Corollary 4.5]. In the next section,
Theorem 3.1 is used then generalized to the more general setting of the
so-called almost f -rings.

4. Arens regularity of almost f-rings

Birkhoff in [4, page 405] called the �-ring R an almost f -ring if uv = 0
whenever u∧ v = 0 in R. Any f -ring is an almost f -ring but not conversely
(see Corollary 1 [5, page 57] and Example 16 in [5, page 62]). This observa-
tion leads to a quite natural question, namely, is any almost f -ring Arens
regular? The main objective of this section is to answer affirmatively this
question. Some preparation are needed.

Let R be an �-ring the multiplicative identity of which is denoted by e.
An element u ∈ R is said to be majorizable if there exists v ∈ R such that

n |u| � v for all n ∈ N.

The set of all majorizable elements in R is denoted by s. It is easily seen
that s is an �-ideal in R. That is to say, s is a two-sided ideal in R such that
|u| � v in R and v ∈ s imply u ∈ s. Hence, one can consider the quotient
�-ring R/s [3, Section 8.3]. The residue class in R/s of u ∈ R is denoted
by [u]. Next, we show that if R is an almost f -ring, then R/s is an f -ring.
To do this, we have to notice that if u is an element in the almost f -ring
R then |u|2 = u2. This elementary property is useful for the proof of the
following result.
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Lemma 4.1. — Let R be an almost f-ring and s be the �-ideal of all
majorizable elements in R. Then the quotient �-ring R/s is an f-ring.

Proof. — First, let u, v ∈ R such that u ∧ v ∈ s. Since,

(u − (u ∧ v)) (v − (u ∧ v)) = 0,

we get
|uv| � |u (u ∧ v)| + |v (u ∧ v)| + |u ∧ v|2 .

It follows that uv ∈ s as u ∧ v ∈ s and s is an �-ideal in R.

Secondly, let u ∈ R+ and assume that um ∈ s for some m ∈ N with
m � 2. Thus, there exists v ∈ R such that num � v for all n ∈ N. Now, fix
n ∈ N and observe that

(e − num−1)−(e − num−1)+ = 0.

It follows that

(e − num−1)(e −
(
e ∧ num−1

)
) = (e − num−1)(e − num−1)+

=
(
(e − num−1)+

)2 � 0.

This implies the second inequality below:

num−1(e − (e ∧ num−1)) � num−1 + e ∧ num−1 − num−1(e ∧ num−1) � e.

This together with

um−1 ∧ nu2m−2 � um−1(e ∧ num−1)

implies

n(um−1 −
(
um−1 ∧ nu2m−2

)
) � n(um−1 − um−1(e ∧ num−1)) � e.

From this follows the second inequality below:

num−1 � e + n
(
um−1 ∧ nu2m−2

)
� e + n2u2m−2 � e + vum−2.

This means that um−1 ∈ s. An obvious induction yields quickly that u ∈ s.
Let us extend this fact to the nonpositive case. Hence, let u ∈ R and
assume that there exists m ∈ N such that m � 2 and um ∈ s. Observe that
|u|2m = u2m ∈ s. By the positive case, we get |u| ∈ s and thus u ∈ s because
s is an �-ideal.

In summary, we have proved that the quotient �-ring R/s is an almost
f -ring which contains no nonzero nilpotent elements. In view of Lemma 4
in [5, Section 9], R/s is an f -ring and we are done. �
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Combining Theorem 3.1 and Lemma 4.1, we see that if R is almost f -ring
then the quotient �-ring R/s is Arens regular. This observation is applied
next to prove that the almost f -ring R is again Arens regular, which is the
last result of this paper.

Corollary 4.2. — Any almost f-ring is Arens regular.

Proof. — Let R be an almost f -ring. Let f ∈ R� and choose u, v ∈ R
with [u] = [v] in R/s. Hence, there exists w ∈ R+ such that n |u − v| � w
for all n ∈ N. Thus, n |f (u) − f (v)| � |f| (w) for all n ∈ N, so f (u) = f (v).
Accordingly, a map [f] : R/s → R can be defined by

[f] ([u]) = f (u) for all u ∈ R.

It is readily verified that [f] ∈ (R/s)�. Moreover, if f, g ∈ R� then [f] = [g]
implies f = g. Therefore, for each F ∈ R�� a map [F] : (R/s)� → R can be
defined by

[F] ([f]) = F (f) for all f ∈ R�.

As before, it is not hard to check that [F] ∈ (R/s)��. Also, one may check
easily that if [F] = [G] for F,G ∈ R��, then F = G. Now, it is readily
checked that

[F � G] = [F] � [G] and [F � G] = [F] � [G] for all F,G ∈ R��.

Since R/s is Arens regular, we have

[F] � [G] = [F] � [G] for all F,G ∈ R��.

Accordingly,
[F � G] = [F � G] for all F,G ∈ R��.

This yields that F � G = F � G and the desired result follows. �

Notice finally that in the proof of Corollary 4.2, we have shown in par-
ticular that if R is an almost f -ring, then the order biconjugates R�� and
(R/s)�� of R and R/s, respectively, are isomorphic as �-rings.
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