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Extension of the two-variable Pierce-Birkhoff
conjecture to generalized polynomials(∗)

Charles N. Delzell
(1)

In honor of Melvin Henriksen’s 80th birthday

ABSTRACT. — Let h : Rn → R be a continuous, piecewise-polynomial
function. The Pierce-Birkhoff conjecture (1956) is that any such h is repre-
sentable in the form supi infj fij , for some finite collection of polynomials
fij ∈ R[x1, . . . , xn]. (A simple example is h(x1) = |x1| = sup{x1,−x1}.)
In 1984, L. Mahé and, independently, G. Efroymson, proved this for n � 2;
it remains open for n � 3. In this paper we prove an analogous result for
“generalized polynomials” (also known as signomials), i.e., where the ex-
ponents are allowed to be arbitrary real numbers, and not just natural
numbers; in this version, we restrict to the positive orthant, where each
xi > 0. As before, our methods work only for n � 2.

RÉSUMÉ. — En 1984, L. Mahé, et indépendammant G. Efroymson, ont
prouvé le cas où n � 2 de la conjecture de Pierce-Birkhoff (1956) :
une fonction h : Rn → R continue polynomiale par morceaux peut
s’écrire comme supi infj fij , pour une collection finie de polynômes fij ∈
R[x1, . . . , xn]. (Un exemple simple est h(x1) = |x1| = sup{x1,−x1}.) La
conjecture reste ouverte pour n � 3. Dans cet article, nous prouvons (en-
core pour n � 2) un résultat analogue pour « polynômes généralisés », où
les exposants peuvent être des nombres réels arbitraires, et non pas seule-
ment des nombres naturels; dans cette version, nous limitons le domaine
à l’orthant positif, où chaque xi > 0.

(∗) The results in this paper were first presented at the Conference on Ordered Rings
(“Ord007”), at Louisiana State University, Baton Rouge, Louisiana, USA, April 25–28,
2007: http://www.math.lsu.edu/∼madden/Ord007.

(1) Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana
70803 USA
delzell@math.lsu.edu
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1. Generalized polynomial functions
and generalized semialgebraic sets

We write R+ = [0,∞) and R++ = (0,∞), endowed with the usual, order
topology. And the Cartesian product, R

2
++ := R++ ×R++, will be endowed

with the usual, Euclidean topology.

Definition 1.1. — A generalized polynomial function a(x, y) of two
variables is a function a : R

2
++ → R of the form

a := a(x, y) := c1x
α1,1yα1,2 + c2x

α2,1yα2,2 + · · · + cmx
αm,1yαm,2 , (1.1)

where m ∈ N := {0, 1, 2, . . .}, the “coefficients” ci of a are nonzero elements
of R, and the (binary) “exponents” αi := (αi,1, αi,2) of a are distinct ele-
ments of R

2. We write R[R2] for the ring (actually, it is a group ring) of
all generalized polynomial functions a : R

2
++ → R.

Thus, generalized polynomial functions (sometimes called “signomial”
functions) of two variables can be defined, roughly, as “real polynomial
functions on R

2
++ with arbitrary real exponents.” A simple example is

a(x, y) = y − xπ.

Generalized polynomial functions of two variables are clearly real ana-
lytic on R

2
++.

See [Delzell, 2008] for background on the general properties and the
history of generalized polynomials (in any number of variables), and some
motivation for studying them.

Definition 1.2. — We call a subset A ⊆ R
2
++ a generalized semialge-

braic set, or a semisignomial set, if it is of the form
⋃J

j=1 Sj, where J ∈ N

and each Sj is a “basic semisignomial” set, i.e., one of the form

Sj = { (x, y) ∈ R
2
++ | fj(x, y) = 0, gj,1(x, y) > 0, . . . , gj,Kj

(x, y) > 0 },
(1.2)

where each Kj ∈ N and the fj and gjk are generalized polynomials.

(Recall that ordinary semialgebraic subsets of R
2 or R

n are defined anal-
ogously, but with the fj and gjk being (ordinary) polynomials.)
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2. Piecewise generalized polynomial functions

Definition 2.1. — We call a function h(x, y) : R
2
++ → R a piecewise

generalized polynomial function of two variables if there exist g1, . . . , gl ∈
R[R2] (Definition 1.1) such that the subsets

Ai := { (x, y) ∈ R
2
++ | h(x, y) = gi(x, y) } (2.1)

are generalized semialgebraic and cover R
2
++, i.e., R

2
++ =

⋃
iAi.

We may, and shall, assume that the gi are distinct.

Example 2.2. —

h(x, y) :=
{
y − xπ if y � xπ,

0 if y < xπ.

✲

✻

0

y

x

�(1, 1)

y = xπ

h = y − xπ

h = 0

The following, technical lemma will not be needed until Proposition 4.8
and Lemma 5.3 below, and can be skipped on a first reading. In it, for any
set A in R

2
++, we shall write A◦ for the interior of A.

Lemma 2.3. — Let A1, . . . , Al be as in Definition 2.1.

(1)
l⋃

i=1

A◦
i is dense in R

2
++.

(2) A◦
i ∩A◦

j = ∅ for i = j.

(3) If h is continuous, then each Ai is closed, whence A◦
i ⊆ Ai.

(4) If h is continuous, then
l⋃

i=1

A◦
i = R

2
++ \

⋃
1�i<j�l

(
A◦
i ∩A◦

j

)
.

(5) Suppose h is continuous, and E is a connected subset of R
2
++ such

that for each (x, y) ∈ E, the l values g1(x, y), g2(x, y), . . . , gl(x, y) are dis-
tinct. Then there exists an i ∈ {1, 2, . . . , l} such that E ⊆ A◦

i (in particular,
such that h = gi throughout E). This i is unique in case E = ∅.
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Proof. — (1) By Definition 1.2,
⋃

iAi is a combined, but still finite,
union of suitable basic semisignomial sets Sj as in equation (1.2). Let T be
the union of those Sj for which fj ≡ 0; thus, T ⊆ Z(F ) := { (x, y) ∈ R

2
++ |

F (x, y) = 0 }, where F is the product of those fj ’s. R
2
++ \ Z(F ) is dense in

R
2
++, by the identity theorem for real analytic functions. A fortiori , R

2
++\T

is also dense in R
2
++. The union U of the other Sj ’s (viz., those for which

fj ≡ 0) must contain R
2
++ \ T (since T ∪ U =

⋃
iAi = R

2
++ (2.1)), and so

U is also dense in R
2
++. But

⋃
iA

◦
i ⊇ U .1

(2) If A◦
i ∩ A◦

j = ∅, then gi would agree with gj on a nonempty open
set (by equation (2.1)), and hence on all of R

2
++ (again by the identity

theorem), contradicting the distinctness of the gi in (2.1).2

(3) Obvious.

(4) ⊆. Let (x, y) ∈ A◦
i and suppose j = i. It is enough to show that

(x, y) /∈ A◦
j . There exists an open disk in Ai about (x, y). In fact, this disk is

in A◦
i , and hence is disjoint from A◦

j , by (2) above. Therefore (x, y) /∈ A◦
j .

3

⊇. Suppose (x, y) ∈ R
2
++ \

⋃
iA

◦
i . For r ∈ R++ with r � min{x, y},

let Br denote the open disk in R
2
++ of radius r > 0 about (x, y), and let

I(r) = { i ∈ {1, 2, . . . , l} | Br ∩ A◦
i = ∅ }. Then for every r, |I(r)| � 1,

by (1) above. In fact, |I(r)| > 1. Otherwise, for some i, A◦
i ∩ Br would be

dense in Br (by (1) again), whence Br = A◦
i ∩Br ⊆ Ai ∩Br (by (3)),4 i.e.,

Br ⊆ Ai, whence (x, y) ∈ A◦
i , contradiction. Now, for any s ∈ R++ with

s < r, I(s) ⊆ I(r); i.e., the finite set I(r) decreases monotonically with r,
and yet always has cardinality � 2. Thus, there exist at least two indices
i < j such that for every r ∈ (0,min{x, y}), Br meets A◦

i and A◦
j . Therefore

(x, y) ∈ A◦
i ∩A◦

j .

(5) The distinctness hypothesis of (5) can be rephrased as

E ∩
⋃
i<j

(Ai ∩Aj) = ∅.

A fortiori , E ∩
⋃

i<j

(
A◦
i ∩ A◦

j ) = ∅, using (3). By (4), E ⊆
⋃

iA
◦
i . The

existence of the desired i now follows from (2) and the hypothesis that E is
connected. The uniqueness of i in case E = ∅ also follows from (2). �

(1) In fact,
⋃

i
A◦

i = U . But we don’t need this.
(2) And if gi agrees with gj on all of R2

++, then the coefficients of gi and gj (i.e., the

c’s in equation (1.1) above) would agree, too, by [Delzell, 2008, Remark 4.3].
(3) This half of the proof of (4) does not require the hypothesis that h be continuous.
(4) In fact, this inclusion is actually an equality.
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Remark 2.4. — In Remark 5.4 below, we shall use (2.3) above to see that
when a piecewise generalized polynomial function h is continuous, each Ai in
Definition 2.1 can automatically be taken to be a generalized semialgebraic
set; it is not necessary to include that condition as a hypothesis in (2.1).

The set of piecewise generalized polynomial functions is closed under
differences and products, and so forms a ring; it is also closed under point-
wise suprema and infima, and so forms an l-ring under those lattice oper-
ations. (This ring is, of course, even an f -ring.) The continuous functions
in this f -ring comprise a sub-f -ring. (See, e.g., [Birkhoff, et al., 1956] or
[Henriksen, et al., 1962] for background on l-rings and f -rings.)

3. Statement and discussion of the main result

Theorem 3.1. — (Main Theorem: The Pierce-Birkhoff conjecture for
generalized polynomials in two variables) If h : R

2
++ → R is continuous

and piecewise generalized polynomial, then h is a (pointwise) sup of infs of
finitely many generalized polynomial functions; i.e.,

h(x, y) = sup
j

inf
k
fjk(x, y) on R

2
++, (3.1)

for some finite number of generalized polynomials fjk. (The converse is
easy.)

Example 3.2. — For the h in Example 2.2 above, h(x, y) = sup{0,
y − xπ}.

The representation of h in the form of equation (3.1) makes both the
continuity and the piecewise generalized polynomial character of h obvious.

For ordinary polynomials in R[X,Y ] and ordinary piecewise polynomial
functions on R

2, the analog of Theorem 3.1 above was first proved by
L. Mahé [Mahé, 1984] and Efroymson (unpublished), independently. The
statement and proofs of the Mahé-Efroymson theorem generalize easily to
the situation where R is replaced by an arbitrary real closed field R (fur-
nished with the topology induced by the unique ordering on R). But the
fact that then the coefficients of the fjk in the Mahé-Efroymson theorem
may be taken to lie in the subfield of R generated by the coefficients of
the gi defining h (in the analog of Definition 2.1), was not trivial, and was
proved in [Delzell, 1989].

The extension of the Mahé-Efroymson theorem to functions of three or
more variables (like the extension of Theorem 3.1 above) remains unproved
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and unrefuted; it is known as the Pierce-Birkhoff Conjecture (first formu-
lated in [Birkhoff, et al., 1956]).

In our proof of Theorem 3.1 below, we shall make no attempt to indicate
which steps generalize easily to the case where n > 2 (though many of those
steps do). The first reason for this is that the notation is often simpler when
n = 2. The second reason is that, considering the many mathematicians
who have tried to prove the Pierce-Birkhoff Conjecture for n > 2, we now
lean toward the opinion that it and Theorem 3.1 are false for n > 2.

In 1987 we proved that for all n � 1 and every real closed field R,
if h : Rn → R is “piecewise-rational” (i.e., if there are rational functions
g1, . . . , gl ∈ R(X) such that the sets Ai := {x ∈ Rn | gi(x) is defined and
h(x) = gi(x) } are s.a. and cover Rn), then there are finitely many fjk ∈
R(X) and there is a k ∈ R[X1, . . . , Xn] \ {0} such that for all x ∈ Rn where
k(x) = 0 (i.e., for “almost all” x ∈ Rn), each fjk(x) is defined and h(x) =
supj infk fjk(x); this is true even if h is not continuous. This result was
announced in [Delzell, 1989, p. 659], and proved in [Delzell, 1990]. Madden
gave an “abstract” version of this result that applies to arbitrary fields (and
not just R(X)); see [Madden, 1989]. In [Delzell, 2005] we proved an analog of
our 1987 result, for “generalized piecewise-rational functions” (i.e., functions
that are, piecewise, quotients of generalized polynomial functions).

The rest of this paper will be devoted to the proof of Theorem 3.1. In §4
we shall develop the necessary one-variable machinery; in §5 we shall deal
with the additional difficulties arising in the two-variable situation.

4. One-variable methods

We imitate Mahé’s proof as much as possible.

We are given a continuous function

h(x, y) =



g1(x, y) if (x, y) ∈ A1

...
...

gl(x, y) if (x, y) ∈ Al,

(4.1)

where, as in Definition 2.1, the gi are generalized polynomials and the Ai

cover R
2
++. (Recall from Remark 2.4 above that the Ai are also, automati-

cally, generalized semialgebraic; but we don’t use this.) As before, we assume
the gi are distinct.

Write each a(x, y) ∈ R[R2] \ {0} (Definition 1.1) in the form

a1(x)yβ1 + a2(x)yβ2 + . . .+ aK(x)yβK , (4.2)
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where K � 1, β1 < . . . < βK ∈ R, and each ai is a nonzero generalized
polynomial in x. This representation is unique.

Let A = { gi − gj | 1 � i < j � l }. Let B be the smallest subset of
R[R2] containing A and closed under the following two operations, for each
a(x, y) ∈ B for which K > 1 in equation (4.2):

a �→


 a′ :=

∂a

∂y
if β1 = 0 , and

y−β1a(x, y) if β1 = 0 5; and
(4.3)

a �→
{
r := ra(x, y) = a(x, y) − y

βK
· a′(x, y) if β1 = 0, 6 and

a if β1 = 0.
(4.4)

Remark 4.1. — Suppose no gi involves the variable x; i.e., each gi is a
function of y alone, and is constant in x. Then the same is, of course, true
for each a ∈ A; in fact, the same is true even for each a ∈ B, in view of
equations (4.3) and (4.4).

Lemma 4.2. — For each a ∈ B for which K > 1 and β1 = 0, a′(x, y)
and ra each have exactly K − 1 y-terms. Consequently, B is finite.

Proof. — This is clear for a′(x, y). For ra, observe (a) that the Kth

y-term aK(x, y)yβK in a (equation (4.2)) is cancelled out by the y-term

y

βK

(
βK aK(x, y) yβK−1

)
in

y

βK
· a′(x, y), (4.5)

and (b) that the other y-terms of equation (4.5) involve the y-exponents
β1, . . . , βk−1, but with coefficients different from those of the corresponding
y-terms of a (since for each i < K, βi/βK = 1). �

Lemma 4.3. — There exist L ∈ N and γ1 < γ2 < . . . < γL ∈ R++

such that, writing γ0 = 0 and γL+1 = ∞, for each a ∈ B and for each
p ∈ {0, 1, . . . , L}, the zeros of a(x, y) in the pth vertical half strip Hp :=
(γp, γp+1) × R++ are the graphs of continuous, monotonic7 “generalized

(5) This trick (of dividing by yβ1 ) was first used by Sturm [Sturm 1829].
(6) Here we use βK �= 0, which follows from β1 = 0 and K > 1.
(7) We do not need the monotonicity of the ξa,p,j in this paper.
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semialgebraic”8 functions y = ξa,p,j(x), j = 1, 2, . . . , s (where s := s(a, p)
satisfies 0 � s � K 9) with

(0 <) ξa,p,1 < · · · < ξa,p,s on (γp, γp+1).

Moreover, ∀a1, a2 ∈ B, ∀p � L, ∀j1 � s(a1, p), ∀j2 � s(a2, p), throughout
(γp, γp+1) ⊆ R++, only one of the following three relations holds:

ξa1,p,j1 < ξa2,p,j2 ,

ξa1,p,j1 = ξa2,p,j2 , or (4.6)
ξa1,p,j1 > ξa2,p,j2 .

Lemma 4.3 and its Corollary 4.5 are illustrated in Figure 1, which also
shows the stack of open connected sets D2,1, D2,2, D2,3 whose union is a
dense open subset of H2 (looking ahead to (4.5) below).

Proof. — Miller [Miller, 1994] considered a class of functions f : R
n → R

that properly contains the class of (extensions by 0 to R
n of) generalized

polynomial functions. Specifically, he considered terms built up (in a formal
language) from variable symbols x1, x2, and from constants in R by the
usual operation symbols +, −, and · , together with the class of operation
symbols {xri | i � 1, r ∈ R }; the symbol xri indicates the function R → R

defined by

xi �→
{
xri if xi > 0
0 if xi � 0.

He considered the structure

R
R
an :=

(
R, <,+,−, · , 0, 1, (xri )r∈R, i�1,

(
f̃
)
f∈R{X,n},n∈N

)
,

where
(
f̃
)
f∈R{X,n},n∈N

denotes a certain class of functions f̃ : R
n → R

that are analytic on [−1, 1]n. He proved that the theory of R
R
an admits

quantifier-elimination and analytic cell-decomposition, and is universally
axiomatizable, o-minimal, and polynomially bounded.

The standard properties of o-minimal theories (cf., e.g., [Dries, 1998] or
[Miller, 1994]) imply that the zeros in R

2
++ of all the various a ∈ B consist of

(8) We say that a function is generalized semialgebraic if its graph, in the product
space, is a generalized semialgebraic set.

(9) Here, K is as in equation (4.2); in fact, s is even bounded by the number of
alternations in sign in the sequence a0(x), . . . , aK(x), by Sturm’s generalization [Sturm,
1829], to one-variable generalized polynomials, of the Fourier-Budan theorem (which
contains Descartes’ rule of signs as a special case).
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✲

✻

0

y

x

�

a(x, y) = 0❆
❆❑

ξb,2,2
(= ξ2,2)

ξb,2,1
(= ξ2,1)

ξb,3,2 (= ξ3,4)

ξc,3,2 (= ξ3,3)

ξc,3,1 (= ξ3,2)

ξb,3,1 (= ξ3,1)

ξc,4,2

ξb,4,2

(= ξ4,3)�✠

ξb,4,1

(= ξ4,2)
❅�

ξc,4,1

ξc,5,2 (= ξ5,2)

ξc,5,1 (= ξ5,1)

s(1) s(4)s(0) = 0 = 0 s(2) = 3 s(3) = 5
= 5

s(5) = 3

H0 H1 H2 H3 H4 H5

γ1 γ2 γ3 γ4 γ5

D2,1

D2,2

D2,3

Figure 1. — Illustrating Lemma 4.3 and Corollary 4.5 by showing

the zeros in R2
++ of a, b, c ∈ B: the isolated zero of a(x, y), and the graphs

of y = ξb,p,j(x) and y = ξc,p,j(x) (which are also the graphs

of y = ξp,k(x), for suitable k). Here, L = 5 (the number of γ’s).

finitely many isolated points together with the graphs of finitely many con-
tinuous, monotonic functions ξa,p,j : (γp, γp+1) → R++ (on suitable intervals
(γp, γp+1) ⊆ R++) satisfying equation (4.6), as stated in the lemma. (That
the ξa,p,j are generalized semialgebraic is just the definition of that term
(footnote 8 above), since the a(x, y) are generalized polynomials.) �

Notation 4.4. — It will be helpful in equation (4.7) below if we agree
that ξa,p,0(x) = 0 and ξa,p,s+1(x) = +∞ for all x ∈ (γp, γp+1), where p ∈
{0, 1, . . . , L} and s = s(a, p) is as in Lemma 4.3.

Corollary 4.5. — Let L, γ0, . . . , γL+1, and Hp be as in Lemma 4.3,
for some fixed p ∈ {0, 1, . . . , L}. Then the zeros in Hp of all the a ∈ B are
the graphs of continuous, monotonic, generalized semialgebraic functions
y = ξp,k(x), k = 1, 2, . . . , s(p), where s(p) satisfies 0 � s(p) �

∑
a∈B s(a, p)

(where s(a, p) is as in Lemma 4.3), and where, for each x ∈ (γp, γp+1),

0 =: ξp,0(x) < ξp,1(x) < · · · < ξp,s(p)(x) < ξp,s(p)+1(x) := ∞. (4.7)

Consequently, the sets

Dp,k := { (x, y) | γp < x < γp+1, ξp,k(x) < y < ξp,k+1(x) },
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for k ∈ {0, 1, . . . , s(p)}, are nonempty, pairwise-disjoint, generalized semi-
algebraic cells (in particular, they are open and (pathwise) connected), and
their union is a dense open subset of Hp. Moreover, the Dp,k are “stacked”
one upon the other in the y-direction, so that for any x ∈ (γp, γp+1) and for
any (s(p) + 1)-tuple y0, y1, . . . , ys(p) ∈ R++ for which each (x, yk) ∈ Dp,k,
y0 < y1 < · · · < ys(p).

Proof. — The required sequence ξp,1, ξp,2, . . . , ξp,s(p) of functions is just
a suitable permutation and relabelling of the set of functions { ξa,p,j | a ∈
B, 1 � j � s(a, p) }. That a permutation of the ξ’s satisfying equation (4.7)
exists follows from equation (4.6). �

Proposition 4.6. — The set of suprema of infima of finitely many gen-
eralized polynomial functions is closed under subtraction and multiplication,
and so is a ring.

Proof. — This is a special case of a result of Henriksen and Isbell
[Henriksen et al. 1962, Corollary 3.4]: If S is a ring of real-valued func-
tions on a set, then the least lattice of functions that contains S is also a
ring. Here we may take S = R[R2] (Definition 1.1). For the proof of this
corollary, Henriksen and Isbell gave some f -ring identities which, they said,
reduce the proof to an exercise; they omitted the details. [Delzell 1989] gave
a sketch of a proof. The first complete proof of this fact to appear in print
was that of [Hager, et al., 2010, Theorem 2.1(B)]; their proof incorporates
some simplifications due to Madden, and their statement is a little more
general than the Henriksen-Isbell statement above, in that now S may be
an arbitrary subring of an arbitrary f -ring. �

In the next lemma it will be helpful to use the abbreviation a+ =
sup{0, a}, for any real-valued function a.

Lemma 4.7. — (Generalized Mahé lemma) Using the notation of
Lemma 4.3 above, for each p ∈ {0, 1, . . . , L}, each a(x, y) ∈ B, and each
j ∈ {0, 1, . . . , s} (where s = s(a, p) as in Lemma 4.3), there exists a func-
tion ca,p,j(x, y) that is a sup of infs of finitely many generalized polynomials,
such that for all x ∈ (γp, γp+1) and for all y ∈ R++,

ca,p,j(x, y) =
{

a(x, y) if y > ξa,p,j(x), and
0 otherwise.

(4.8)

Proof. — Fix any p � L.

We use induction on K � 1, the number of distinct y-exponents occur-
ring in a (recall equation (4.2)). Note that for any K � 1, we may (in fact,
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we must) take ca,p,0 = a; this handles the case K = 1, i.e., the case where
a(x, y) is of the form a1(x)yβ1 (which implies s(a, p) = 0 for each p � L).

Now assume K > 1.

We claim that we may assume

β1 = 0. (4.9)

If β1 = 0, then write b(x, y) = y−β1a(x, y). Thus b ∈ B, by equation
(4.3). Note that b(x, y) has the same positive y-roots ξ as a(x, y) has; thus
s(a, p) = s(b, p). Therefore, if for each j � s(b, p) we can construct cb,p,j
such that

cb,p,j(x, y) =
{
b(x, y) if y > ξb,p,j(x), and
0 otherwise,

then we may, for each j � s(a, p) (= s(b, p)), take ca,p,j(x, y) = yβ1cb,p,j(x, y);
the latter product is a sup of infs of finitely many generalized polynomials,
since cb,p,j is, and since yβ1 > 0 for all y > 0 (or use Proposition 4.6).

Next, recall that a′ (equation (4.3)) and ra (equation (4.4)) each have
exactlyK−1 y-terms, by Lemma 4.2 and equation (4.9). Thus we assume, by
the inductive hypothesis, that for every k � s(a′, p) and l � s(ra, p), we can
construct ca′,p,k and cra,p,l satisfying the appropriate analogs of equation
(4.8). Note that ca′,p,k and cra,p,l are, in particular, continuous (either by
their form as in equation (4.8), or by the fact that they are sups of infs of
finitely many generalized polynomial functions).

Finally, in order to construct ca,p,j , we now use induction on j ∈ {0, 1, 2,
. . . , s(a, p)}. We have already constructed ca,p,0, so now we assume that
j ∈ {1, 2, . . . , s(a, p)} and that ca,p,j−1 has already been constructed with
the properties stated in Lemma 4.7.

Throughout the rest of this proof, x will range over (γp, γp+1). By the
uniform trichotomy in equation (4.6), all order relations involving the var-
ious ξ’s below will hold uniformly for such x; thus we usually write, e.g.,
ξa,p,j instead of ξa,p,j(x).

Let k be the smallest index such that ξa,p,j � ξa′,p,k (then 1 � k � 1
+ s(a′, p)).

Let l be the smallest index such that ξa′,p,k � ξra,p,l (then 1 � l
� 1 + s(ra, p)). Then

ξa′,p,k < ξa,p,j+1 (unless ξa′,p,k = ∞), by Rolle’s theorem, and (4.10)

– 47 –



Charles N. Delzell

g(x, y) :=
y

βK
ca′,p,k(x, y) + cra,p,l(x, y)

=




0 if 0 < y < ξa′,p,k,
y

βK
a′(x, y) = a(x, y) − ra(x, y) if ξa′,p,k < y < ξra,p,l,

y

βK
a′(x, y) + ra(x, y) = a(x, y) if ξra,p,l < y,

(4.11)

where equation (4.11) follows from equation (4.4) and from the definitions
of ca′,p,k and cra,p,l.

10 This function g is a supremum of infima of finitely
many generalized polynomial functions, by Proposition 4.6.

If a′(x, ξa,p,j) = 0, then

ξa′,p,k = ξa,p,j by the minimality of k, and

ξra,p,l = ξa′,p,k by (4.4) and the minimality of l.

Thus we may take ca,p,j = g, by (4.11).

Now suppose, on the other hand, that

a′(x, ξa,p,j) = 0 (4.12)

(recall equation (4.6)). (Then

ξa,p,j < ξa′,p,k.) (4.13)

We may assume that in fact

a′(x, ξa,p,j) > 0, (4.14)

by equation (4.6), by replacing a with −a, and by the fact that −c−a,p,j

(= ca,p,j) will still be a supremum of infima of finitely many generalized
polynomial functions if c−a,p,j is, by Proposition 4.6. Then

a(x, y) < 0 for ξa,p,j−1 < y < aa,p,j and (4.15)

a(x, y) > 0 for ξa,p,j < y < aa,p,j+1, (4.16)

by (4.14).

(10) In (4.11), the inequalities in the case-distinctions y < ξa′,p,k, ξa′,p,k < y < ξra,p,l,

and ξra,p,l < y are all strict (i.e., they are all <, and not �). This strictness is necessary
because ξa′,p,k and/or ξra,p,l could be ∞. If either or both of the ξ’s are finite, the

corresponding inequalities could be relaxed to nonstrict inequalities (with �). But even
without such a relaxation, (4.11) still uniquely determines g even when y is ξa′,p,k or
ξra,p,l, since g is continuous for all y > 0.
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First suppose ξa′,p,k = ∞ (i.e., k = 1 + s(a′, p)). Then a′(x, y) > 0 for
all y > ξa,p,j , whence a(x, y) > 0 for all y > ξa,p,j . Hence we may take
ca,p,j = inf{c+a,p,j−1, a

+}, using also (4.15).

Second, suppose ξa′,p,k < ∞ (i.e., k � s(a′, p)). Then

ra(x, ξa′,p,k) = a(x, ξa′,p,k) −
ξa′,p,k

βK
a′(x, ξa′,p,k) (by equation (4.4))

= a(x, ξa′,p,k) −
ξa′,p,k

βK
· 0 (4.17)

= a(x, ξa′,p,k) > 0, by (4.16), (4.10), and (4.13).

Then for ξa′,p,k � y < ξra,p,l:

ra(x, y)> 0 by (4.17) and the choice of l, and (4.18)
g(x, y)= a(x, y) − ra(x, y) by (4.11)

< a(x, y) by (4.18). (4.19)

Then

sup{a, g} =

{
a+ if 0 < y � ξa,p,j by (4.11), and

a if y � ξa,p,j by (4.11), (4.19), (4.10), and (4.16).

Therefore, we may take ca,p,j = inf{c+a,p,j−1, sup{a, g}}, by (4.15). �

Proposition 4.8. — Let h, A, and B be as before Lemma 4.2, and
let L and Hp be as in Lemma 4.3, for some fixed p ∈ {0, 1, . . . , L}. Then
there is a function dp : R

2
++ → R that (1) is a supremum of infima of

finitely many generalized polynomial functions ∈ R[R2] and (2) coincides
with h(x, y) on Hp.

Proof. — Let γp and γp+1 be as in Lemma 4.3, and let s(p), ξp,0, . . . ,
ξp,s(p)+1, and Dp,0, . . . , Dp,s(p) be as in Corollary 4.5.

For each k = 0, 1, . . . , s(p) there exists a unique µ := µ(p, k) ∈ {1, 2, . . . , l}
such that Dp,k ⊆ Aµ (hence h = gµ on Dp,k, by equation (4.1)), using
Lemma 2.3(5) and the fact that each gi − gj is nonzero throughout Dp,k.

If s(p) = 0, we may define the required dp to be gµ(p,0) ∈ R[R2]. If s(p) >
0, then we shall define dp as follows. For k = 0, 1, . . . , s(p) − 1, let vp,k :=
gµ(p,k+1)−gµ(p,k). We have vp,k = 0 on Dp,k∩Dp,k+1, since h is continuous.
We extend the notation ca,p,j of Lemma 4.7 from the case where a ∈ B
to the case where a = 0: for j = 0, 1, . . ., we define the function c0,p,j by
c0,p,j(x, y) = 0 ∀(x, y) ∈ R

2
++. If vp,k = 0, then vp,k ∈ A ⊂ B, so by Lemma
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4.3 and Corollary 4.5 there exists a unique j(p, k) ∈ {1, 2, . . . , s(vk, p)} such
that the graph of y = ξvk,p,j(x) over (γp, γp+1) separates Dp,k from Dp,k+1.
We may now take

dp = gµ(p,0) +
s(p)−1∑
k=0

c(vp,k, p, j(p, k)),

by Lemma 4.7 and Proposition 4.6. �

Remark 4.9. — The above proposition proves the one-variable analog of
Theorem 3.1. For if the given function h does not involve one of the two
variables (say, x), then by Remark 4.1 above, none of the functions that we
constructed in the sets A and B will involve x, either, whence we would be
able to take L = 0 (which would mean that H0 equals all of R

2
++) in Lemma

4.3, Notation 4.4, Corollary 4.5, Lemma 4.7, and Proposition 4.8 above.

5. Conclusion of the proof of Theorem 3.1

Recall, after equation (4.1) we defined A = { gi − gj | i < j }, and we
defined B to be the set obtained from A by closing under the operations in
equations (4.3) and (4.4) with respect to y. We got an L � 0 and certain γp
on the x-axis such that 0 = γ0 < γ1 < · · · < γL < γL+1 = ∞, and for each
p ∈ {0, 1, , . . . , L} we got (Proposition 4.8) a function dp(x, y) : R

2
++ → R

that (1) is a supremum of infima of finitely many generalized polynomial
functions and (2) agrees with h on Hp (= (γp, γp+1) × R++).

Now let C be the subset of R[R2] obtained from B∪{x−γp | 1 � p � L }
by closing under the “x-analogs” of the operations in equations (4.3) and
(4.4); i.e., interchanging x and y in equations (4.2), (4.3), and (4.4). Then
we immediately obtain, first, the following x-analog of Lemma 4.3 and its
Corollary 4.5:

Lemma 5.1. — There exist M ∈ N and η1 < η2 < · · · < ηM ∈ R++

such that, writing η0 = 0 and ηM+1 = ∞, and fixing any q ∈ {0, 1, . . . ,M},
the zeros, in the qth horizontal half-strip Iq := R++ × (ηq, ηq+1), of all the
a ∈ C, are the graphs of continuous, monotonic,7 generalized semialgebraic
functions x = ζq,k(y), k = 1, 2, . . . , t(q) (for a suitable t(q) ∈ N). Moreover,
for each y ∈ (ηq, ηq+1),

0 =: ζq,0(y) < ζq,1(y) < · · · < ζq,t(q)(y) < ζq,t(q)+1(y) := ∞. (5.1)

Consequently, the sets

Eq,k := { (x, y) | ηq < y < ηq+1, ζ
q,k(y) < x < ζq,k+1(y) },
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for k ∈ {0, 1, . . . , t(q)}, are nonempty, pairwise-disjoint, generalized semi-
algebraic cells (in particular, they are open and (pathwise) connected), and
their union is a dense open subset of Iq. Moreover, the Eq,k are “stacked”
one to the right of the other in the x-direction, so that for any y ∈ (ηq, ηq+1)
and for any (t(q) + 1)-tuple x0, x1, . . . , xt(q) ∈ R++ for which each (xk, y) ∈
Eq,k, x0 < x1 < · · · < xt(q). Finally, for each k, there is a p ∈ {0, 1, . . . , L}
such that Eq,k ⊆ Hp (since the functions x− γ1, . . . , x− γL belong to C). �

The second immediate consequence of our choice of C is the following
x-analog of Proposition 4.8:

Proposition 5.2. — Let h, A, C, M , η0, η1, . . . , ηM+1, q, and Iq be as
above. There is a function eq : R

2
++ → R that (1) is a supremum of infima

of finitely many generalized polynomial functions ∈ R[R2] and (2) coincides
with h(x, y) on Iq. �

Let

Q = { (q, k) | q ∈ {0, 1, . . . ,M}, k ∈ {0, 1, . . . , t(q)} },

where M and t(q) are as in Lemma 5.1. Then⋃
(q,k)∈Q

Eq,k is a dense open subset of R
2
++, (5.2)

by Lemma 5.1.

Lemma 5.3. — There is a function ν : Q → {1, . . . , l} such that ∀(q, k) ∈
Q, Eq,k ⊆ A◦

ν(q,k) (in particular, h = gν(q,k) on Eq,k).

Proof. — This follows from Lemma 2.3(5) and Lemma 5.1. �

Remark 5.4. — (on Definition 2.1) We can now substantiate the state-
ment in Remark 2.4 above, viz., that in the definition of “piecewise gener-
alized polynomial function” (Definition 2.1), it was not necessary to require
each Ai to be a generalized semialgebraic set in the case where h is con-
tinuous, since in that case we may (by Lemmas 5.3 and 2.1(3)) take each
Ai to be the closure of the union of certain Eq,k, which is automatically
generalized semialgebraic.

Notation 5.5. — For a, b ∈ R ∪ {±∞} with a < b, let

∆(a, b) = { (x, y) ∈ R
2 | xy > 0 & a < x+ y < b }.

(See Figure 2.)
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Figure 2. — The “double-triangular” region ∆(a, b) (5.5). In this figure, a < 0 < b.

Lemma 5.6. — Let f(x, y) be a real-valued function that is analytic on
a neighborhood of (0, 0) in R

2. Write fx and fy for ∂f/∂x and ∂f/∂y,
respectively. Suppose f(0, 0) = 0, fx(0, 0) > 0, and fy(0, 0) > 0. Then there
is an ε > 0 such that for all (x, y) ∈ ∆(0, ε), f(x, y) > 0.

Proof. — By the Weierstrass Preparation Theorem and the theory of
Puiseux series (see, e.g., [Ruiz, 1993, Propositions 3.3 and 4.4, respectively]),
the germ at (0, 0) of the zero-set of f consists of finitely many curve germs
(α1(t), β1(t)), (α2(t), β2(t)), . . . , where for each i: αi and βi are analytic for
0 � t < δ (some δ > 0); αi(0) = βi(0) = 0; and

either αi(t)= tmi and β′
i(0) = 0,

or βi(t) = tmi and α′
i(0) = 0, (5.3)

for some mi ∈ {1, 2, . . .}. By the chain rule,

0 =
d

dt
0 =

d

dt
f(αi(t), βi(t))

∣∣
0

= fx(0, 0)α′
i(0) + fy(0, 0)β′

i(0). (5.4)

Now we see that we cannot have both α′
i(0) � 0 and β′

i(0) � 0, for this,
together with equation (5.3) and the hypothesis of the lemma, would make
the right hand side of equation (5.4) positive. Thus there is an ε > 0 such
that for all (x, y) ∈ ∆(ε), f(x, y) = 0. Since ∆(ε) is connected and f is
continuous and nonzero there, f has constant sign (positive or negative)
throughout ∆(ε). This sign must, in fact, be positive, since d

dtf(t, t)
∣∣
0

=
fx(0, 0) + fy(0, 0) > 0 and f(0, 0) = 0. �
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Conclusion of the proof of Theorem 3.1. — As in [Mahé, 1984], the idea
now is to construct, for each two ordered pairs (q, k) and (r,m) ∈ Q, a func-
tion u(q,k),(r,m) that is the supremum of infima of finitely many generalized
polynomial functions, and is such that

u(q,k),(r,m)

{ � gν(q,k) on Eq,k and

� gν(r,m) on Er,m.
(5.5)

Then we shall be done, since the function

u(r,m) := inf
(
{gν(r,m)} ∪ {u(q,k),(r,m) | (q, k) ∈ Q }

)
will satisfy

u(r,m) = gν(r,m) on Er,m, and,
for each (q, k) ∈ Q, u(r,m) � gν(q,k) on Eq,k;

then h = sup(r,m)∈Q u(r,m) throughout
⋃

(q,k)∈QEq,k, and hence (by equa-
tion (5.2) and the continuity of h) throughout R

2
++, as required.

So suppose (q, k) and (r,m) ∈ Q, and let us prepare to construct a
u(q,k),(r,m) satisfying equation (5.5). If Eν(q,k) and Eν(r,m) are both subsets
of the same horizontal half-strip Iq (Lemma 5.1),11 or of the same vertical
half-strip Hp (for some p ∈ {1, 2, . . . , L}, using the last sentence of Lemma
5.1), then we may take u(q,k),(r,m) to be either eq or dp, respectively, by
Proposition 5.2 or 4.8.

The case that makes the proof for two variables harder than the proof
for one variable is the case when Eν(q,k) and Eν(r,m) do not lie in a common
half-strip (either horizontal or vertical). We may assume, without loss of
generality, that Eν(q,k) is below and to the left of Eν(r,m) (i.e., that points
in Eν(q,k) have x- and y-coordinates less than the x- and y-coordinates of
points in Eν(r,m), respectively); the other three possibilities could be handled
similarly.

Eν(q,k) lies in the horizontal half-strip Iq := R++ × (ηq, ηq+1), and in a
unique vertical half-strip Hp := (ξp, ξp+1)×R++, for some p. Eν(r,m) lies in
exactly one of the horizontal half-strips Iq+1, Iq+2, . . ., and in exactly one of
the vertical half-strips Hp+1, Hp+2, . . . . (See Figure 3, where, for simplicity,
Eν(r,m) is shown lying in Iq+1 and Hp+1.)

For any a, b ∈ R ∪ {±∞} with a < b, write

∆(a, b) + (ξp+1, ηq+1) = { (x+ ξp+1, y + ηq+1) | (x, y) ∈ ∆(a, b) }.

(11) This will occur if and only if q = r.
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Figure 3. — The case where Eν(q,k) and Eν(r,m) do not lie in a common half-strip.

(In this illustration, Eν(r,m) lies in Iq+1 and Hp+1).)

Now let

a∗ = min{ s ∈ R | (∆(s, 0) + (ξp+1, ηq+1)) ∩ Eν(q,k) = ∅ } and (5.6)
b∗ = max{ t ∈ R | (∆(0, t) + (ξp+1, ηq+1)) ∩ Eν(r,m) = ∅ }. (5.7)

(Thus, a∗ � 0 � b∗, by the assumptions on Eν(q,k) and Eν(r,m) made in the
previous paragraph.)

To simplify notation, let

g(x, y) = gν(r,m)(x, y) − gν(q,k)(x, y). (5.8)

Pick any e ∈ N greater than every x- and y-exponent (∈ R) occurring in
(the unique representation as in equation (1.1) of) g(x, y). There is a T � a∗

such that for all (x, y) ∈ R
2
++ with x+ y − ξp+1 − ηq+1 � T ,12

(x+ y − ξp+1 − ηq+1 − a∗)e � g(x, y).13 (5.9)

We may assume that T > b∗ (in particular, T > 0).

(12) In particular, for all (x, y) ∈ ∆(T,∞) + (ξp+1, ηq+1).
(13) If we had allowed e to be an arbitrary real number (as opposed to an element of
e ∈ N), then (x + y − ξp+1 − ηq+1 − a∗)e would not necessarily be a signomial function

(see [Delzell, 2008, Example 4.7]). Since, in fact, e ∈ N, (x+ y− ξp+1 − ηq+1 − a∗)e is a
signomial function (it is even an ordinary polynomial). We shall need this below.
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Case 1 : b∗ − a∗ > 0. In this case, there is a C ∈ R such that for all
(x, y) ∈ ∆(b∗, T ) + (ξp+1, ηq+1),

C · (x+ y − ξp+1 − ηq+1 − a∗)e � g(x, y).14 (5.10)

We may assume that C � 1. Then we may take

u(q,k),(r,m) = gq,k(x, y) + C · ((x+ y − ξp+1 − ηq+1 − a∗)+)e,

which satisfies equation (5.5) (using equations (5.6), (5.9), (5.10), and (5.8)),
and which is a supremum of infima of finitely many generalized polynomial
functions (using Proposition 4.6).

Case 2 : b∗ − a∗ = 0 (whence a∗ = 0 = b∗). In this case, let

f(x, y) = g(x+ ξp+1, y + ηq+1).15

Pick any D ∈ R++ greater than max{fx(0, 0), fy(0, 0)}. By Lemma 5.6,
there is an ε > 0 such that D · (x + y) > f(x, y) for all (x, y) ∈ ∆(0, ε);
equivalently,

D · (x+ y − ξp+1 − ηq+1) > g(x, y) (5.11)

for all (x, y) ∈ ∆(0, ε) + (ξp+1, ηq+1). We may assume that ε � T .

There is a C ∈ R such that for all (x, y) ∈ ∆(ε, T ) + (ξp+1, ηq+1),

C · (x+ y − ξp+1 − ηq+1)e � g(x, y).16 (5.12)

We may assume that C � 1.

Then we may take

u(q,k),(r,m)

= gq,k(x, y) + sup{D(x+ y − ξp+1 − ηq+1)+, C((x+ y − ξp+1 − ηq+1)+)e},

which satisfies equation (5.5) (using equations (5.11), (5.12), (5.9) (with
a∗ = 0), and (5.8)), and which is a supremum of infima of finitely many
generalized polynomial functions (using Proposition 4.6).

(14) Specifically, we may take C = (max g(x, y))/min((x+y−ξp+1−ηq+1−a∗)e), where

the max and min are taken as (x, y) ranges over the compact set ∆(b∗, T ) + (ξp+1, ηq+1).
(Here we need min(x + y − ξp+1 − ηq+1 − a∗) > 0, which follows from our assumption
(here in case 1) that b∗ − a∗ > 0.)
(15) In general, f is not a signomial function (again, see [Delzell, 2008, Example 4.7]),

but it is, at least, real analytic (for x > −ξp+1 and y > −ηq+1), and this is all we shall
need.
(16) Specifically, we may take C = (max g(x, y))/min((x + y − ξp+1 − ηq+1)e), where

the max and min are taken as (x, y) ranges over the compact set ∆(ε, T ) + (ξp+1, ηq+1).
(Here we need min(x + y − ξp+1 − ηq+1) > 0, which follows from ε > 0.)
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