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Classes of Commutative Clean Rings

Wolf Iberkleid
(1)

, Warren Wm. McGovern
(2)

ABSTRACT. — Let A be a commutative ring with identity and I an ideal of
A. A is said to be I-clean if for every element a ∈ A there is an idempotent
e = e2 ∈ A such that a− e is a unit and ae belongs to I. A filter of ideals,
say F , of A is Noetherian if for each I ∈ F there is a finitely generated
ideal J ∈ F such that J ⊆ I. We characterize I-clean rings for the ideals
0, n(A), J(A), and A, in terms of the frame of multiplicative Noetherian
filters of ideals of A, as well as in terms of more classical ring properties.

RÉSUMÉ. — Soit A une anneau commutatif unitaire et I and idéal de
A. L’anneau A est dit I-propre si pour chaque élément a ∈ A il existe
un idempotent e = e2 ∈ A tel que a − e est une unité et que ae ∈ I.
Un filtre F d’idéaux de A est noetherien si pour tout I ∈ F , il existe
un idéal finiment engendré J ∈ F tel que J ⊆ I. Nous caractérisons les
anneaux I-propres pour les idéaux 0 n(A), J(A) et A en termes du filtre
multiplicatif noetherien des idéaux de A ainsi que en termes de propriétés
plus classiques de théorie des anneaux.

1. Introduction

Let A be a commutative ring with identity. We say A is a clean ring if
every element is the sum of a unit and an idempotent. In this article, we
follow the ideas used in the three papers [2], [3], and [6] where the authors
used lattice and frame theory to characterize clean rings. For the rest of
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this section we introduce the main tools that will be used to study clean
rings. In the subsequent section we characterize certain well known classes of
commutative clean rings. Throughout we assume that A is a commutative
ring with identity. J(A) and n(A) denote the Jacobson radical and the
nilradical of A, respectively.

A frame is a complete distributive lattice (L,∧,∨, 0, 1) which satisfies
the strengthened distributive law

a ∧
∨

s∈S

s =
∨

{a ∧ s|s ∈ S}

for all a ∈ L and all S ⊆ L. This equality is known as the frame law. We
denote the bottom and top elements of a frame by 0 and 1, respectively
(and assume that 0 �= 1).

A frame is necessarily a pseudocomplemented lattice (in the sense of
Birkhoff [4]). In particular, for a ∈ L the pseudo-complement of a is given
by

a⊥ =
∨

{t ∈ L : t ∧ a = 0}.

An element of the form a⊥ is called a pseudocomplement of L. When a∨a⊥ =
1, we say that a is a complemented element of L and that a and a⊥ form
a complementary pair. It is not true that if a⊥ is complemented, then a
is complemented. We point out that frames are also known as complete
Brouwerian lattices or complete Heyting algebras. They are also very often
called locales.

Definition 1.1. — We now recall some basic notions regarding frames.
Throughout, L denotes a frame.

(i) Let c ∈ L. We call c compact if whenever c �
∨

i∈I ai, then there is a
finite subset of I, say {i1, · · · , in}, such that c � ai1 ∨ · · · ∨ ain

. If the
top element of L is compact, then we call L compact. Whenever every
element of L is the supremum of compact elements, L is called an
algebraic frame. We denote the set of compact elements of L by k(L).
This collection is closed under finite joins. When k(L) is closed under
nonempty finite meets, then we say that L has the finite intersection
property, or that L satisfies the FIP. A compact algebraic frame that
satisfies the FIP is known as a coherent frame.
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(ii) L is said to be zero-dimensional when every element is a supremum
of complemented elements. It is straightforward to check that for an
algebraic frame being zero-dimensional is equivalent to having the
property that every compact element is complemented.

(iii) Suppose L is an algebraic frame. L is called a projectable frame if for
every c ∈ k(L) the element c⊥ is a complemented element of L. L is
called feebly projectable if for any disjoint a, b ∈ k(L) there exists a
c ∈ k(L) such that c⊥ is complemented, a � c⊥, and b � c⊥⊥. Every
zero-dimensional frame is projectable and every projectable frame is
feebly projectable.

Example 1.2. — There are several ways of generating frames from rings.
For example, it is known that the collection of ideals of a commutative
ring forms a complete lattice which is algebraic. It is a frame precisely
when the ring is an arithmetical ring, i.e., its lattice of ideals is distributive.
Restricting to the collection of radical ideals (or semiprime ideals) of a ring
A, one obtains a coherent frame. (This frame is the main tool in [2, 3].)

Another source of frames arises from studying filters of ideals. Let A be
a ring and let L(A) denote the complete lattice of ideals of A ordered by
inclusion. A subset F ⊆ L(A) is a filter of ideals if the following conditions
hold for I, J ∈ L(A):

(i) ∅ �= F ;

(ii) if I ∈ F and I ⊆ J , then J ∈ F ;

(iii) if I, J ∈ F , then I ∩ J ∈ F .

The filter F is called a multiplicative filter if

(iv) IJ ∈ F whenever I, J ∈ F .

Definition 1.3. — A filter of ideals F is said to be Noetherian if every
ideal belonging to F contains a finitely generated ideal, which also belongs
to F .

We denote the collection of all multiplicative filters of ideals of A by
MA partially ordered by inclusion. In [6] it is shown that MA is a coherent
frame. Let CA be the subcollection of multiplicative Noetherian filters. We
now prove that CA is a coherent frame as well, though we do point out that
the technique is slightly different. We will need to use the following notation.
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Given any ideal I of A there is a smallest multiplicative filter containing I
called the multiplicative filter generated by I. Namely,

FI = {J ∈ L(A) : In ⊆ J, for some n ∈ N}.

Theorem 1.4. — CA is a coherent frame and the compact elements are
precisely the filters of the form FI for some finitely generated ideal I ∈ (A).

Proof. —For an arbitrary collection {Fi} of elements of CA, it is easily
seen that
∨

Fi = {I ∈ L(A) : Ii1 ...Iin
⊆ I for some finitely generated Iik

∈ Fik
, n ∈ N}.

From this we deduce that CA is a complete lattice. Note that the intersection
of two Noetherian filters is Noetherian. For if F1,F2 ∈ CA and I ∈ F1 ∩F2,
then there are finitely generated ideals J1, J2 in F1,F2, respectively, such
that J1, J2 ⊆ I, hence J1 + J2 ∈ F1 ∩ F2 and J1 + J2 ⊆ I. Therefore,
F1 ∧ F2 = F1 ∩ F2.

Next we prove that CA is distributive. We have to show that F ∧ (F1 ∨
F2) = (F∧F1)∨(F∧F2) for arbitrary elements of CA. Let I ∈ F∧(F1∨F2)
and F , F1, and F2 ∈ CA , so I must be in F and in F1 ∨ F2. Therefore,
there exist finitely generated ideals J , J1, J2 in F , F1,F2, respectively, such
that J ⊆ I, J1J2 ⊆ I. Clearly then (J + J1)(J + J2) ⊆ I. But this implies
that I ∈ (F ∧F1)∨ (F ∧F2). Since the other inclusion is trivial we conclude
that CA is distributive.

Since a finite product of finitely generated ideals is again finitely gen-
erated, it follows that for any finitely generated ideal I of A, FI ∈ CA.
Moreover, FI is a compact element of CA, for if FI �

∨
Fi, then Ii1 ...Iin ⊆

I for some finite collection of finitely generated ideals Iik
∈ Fik

, hence
FI � Fi1 ∨ · · · ∨ Fin . Furthermore, for any F ∈ CA,

F =
∨

{FI : I is finitely generated and I ∈ F}

and thus CA is an algebraic distributive lattice, whence a frame. To see that
CA has the FIP observe that for any finitely generated ideals I, J ∈ (A), FI∧
FJ = FI+J . Finally, if F is also compact, then F = FI1 ∨ ...∨FIn = FI1...In

for appropriate finitely generated ideals I1, · · · , In ∈ F . This concludes the
proof. �

Remark. — We note that CA is a subframe of MA, specifically CA is a
frame which is a sublattice of MA whose arbitrary union in CA agrees with
MA.
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Lemma 1.5 The complemented elements of CA are precisely the ele-
ments of the form FAe for some idempotent e ∈ A.

Proof. —Let F∨G = 1 and F∧G = 0, then there exist finitely generated
ideals I ∈ F and J ∈ G such that IJ = 0. In addition for all K ∈ F ,
K + J = A, so I = I(K + J) = IK ⊆ K therefore, F ⊆ FI , but then
F = FI . Now it is easy to show that IJ = 0, I +J = A implies that I = Ae
for some idempotent e. �

Lemma 1.6. — Let I ∈ A(A) be a finitely generated ideal. Then F⊥
I =

{K ∈ L(A) : there is a finitely generated ideal J ⊆ K such that I +J = A}.

Proof. — It suffices to note that if J1, J2 are finitely generated ideals
such that I + J1 = A and I + J2 = A, then J1J2 is finitely generated and
I + J1J2 = A, hence the above defined set is a multiplicative Noetherian
filter. �

2. Clean Rings

Let I be an ideal of A. A is said to be an I-clean ring if for every a ∈ A
there is an idempotent e such that a− e is a unit and ae ∈ I. Note that an
A-clean ring is precisely a clean ring.

More generally, A is said to be a weakly I-clean ring if for every a ∈ A
there is an idempotent e such that ae ∈ I and at least one of a+e and a−e
is a unit. We shall state this by saying that a± e is a unit. It turns out that
in most cases considered here weakly I-clean is equivalent to I-clean. See
[1] for more information on weakly clean rings.

The purpose of this section is to characterize such rings for the ideals 0,
n(A), J(A), and A, in terms of the frame of multiplicative Noetherian filters
of ideals of A, and in terms of more classical ring properties. In particular,
we give a common structure to clean, zero dimensional, and von Neumann
regular rings, and add to the results in [5] pp. 10, 11.

Recall that a ring A is von Neumann regular if for every a ∈ A there is
an x ∈ A such that a = a2x. A ring is zero-dimensional if every prime ideal
is maximal.

Definition 2.1. — Recall that Spec(A) denotes the collection of all
prime ideals of A endowed with the hull-kernel or Zariski topology. If I
is an ideal of A, then U(I) is the set of all those prime ideals of A that do
not contain I. All open sets are determined this way. The complement of
U(I) is denoted V (I). For the principal ideal Aa we denote U(a) = U(Aa)
and V (a) = V (Aa). Max(A) is the subspace of Spec(A) consisting of the
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maximal ideals of A. Its open and closed sets are UM (I) = U(I)∩Max(A)
and VM (I) = V (I) ∩ Max(A), respectively.

Theorem 2.2. — The following are equivalent:

(1) A is 0-clean.

(2) A is weakly 0-clean.

(3) A is a von Neumann regular ring.

(4) For finitely generated ideals I and J with FI = FJ , then I = J .

(5) For finitely generated ideals I and J with V (I) = V (J) in Spec(A),
then I = J .

Proof. — (1) implies (2). Clear.

(2) implies (3). Let a ∈ A. Then a = u± e and ae = 0 where u is a unit
and e an idempotent. Therefore, a2 = au and so a2u−1 = a whence A is a
von Neumann regular ring.

(3) implies (4). It is well known that in a von Neumann regular ring, each
finitely generated ideal I is a principal ideal generated by an idempotent,
so In = I for any natural number n. From this it follows that I is smallest
in FI , hence the assertion is clear.

(4) implies (5). We argue by contradiction. If I �= J , then FI �= FJ ,
thus say In �⊆ J for all natural n. Let a1, . . . , am be a set of generators of
I. We need only show that {an

i }n ∩ J = ∅ for some ai and apply Zorn’s
Lemma. But this must be the case, otherwise there would be an n with
an

i ∈ J for all ai, hence Inm ⊆ J , which is a contradiction. We conclude
that V (I) �= V (J).

(5) implies (1). Let a ∈ A, then V (a) = V (a2) implies Aa = Aa2,
so a = xa2 for some x. Clearly xa is an idempotent and a(1 − xa) = 0.
Moreover, for any maximal ideal M , a ∈ M iff 1− xa /∈ M , so a− (1− xa)
is a unit therefore, A is 0-clean. �

Theorem 2.3. — The following are equivalent:

(1) A is n(A)-clean.

(2) A is weakly n(A)-clean.

(3) For every a ∈ A there is an idempotent e such that V (a) = U(e) in
Spec(A).
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(4) For every finitely generated ideal I of A there is an idempotent e such
that V (I) = U(e) in Spec(A).

(5) For every finitely generated ideal I of A there is an idempotent e such
that In = Ae for some natural number n.

(6) CA is a zero-dimensional frame.

(7) For every a ∈ A there exists a natural number n and an idempotent
e such that Aan = Ae.

(8) A is zero dimensional.

Proof. — (1) implies (2). Clear.

(2) implies (3). Given a ∈ A, let a = u± e with ae ∈ n(A), u a unit and
e an idempotent. Let P be a prime ideal, then ae ∈ P . Since P is prime at
least one of a and e must be in P , and since u is a unit, at most one of a
and e may be in P . This translates into V (a) = U(e).

(3) implies (4). Let a1,. . . ,an be a set of generators for I, and ei, the
corresponding idempotents. Then V (I) = ∩V (ai) = ∩U(ei) = U(e1 · · · en)
where e1 · · · en is an idempotent.

(4) implies (5). We wish to prove that for a finitely generated ideal I,
In = A(1− e) for some natural number n, and e as in the hypothesis. This
would prove our assertion since 1−e is an idempotent. Let a ∈ I and assume
that an /∈ A(1−e) for all natural numbers n. Then {an} forms a multiplica-
tive closed set disjoint from A(1 − e). By a Zorn’s Lemma argument, there
is a prime ideal P , a /∈ P and A(1 − e) ⊆ P . Thus e /∈ P so, by hypothesis,
I ⊆ P . But this is a contradiction. Therefore, an ∈ A(1 − e) for some n.
Since I is finitely generated, it follows that In ⊆ A(1 − e) for some n. Say
now that 1− e /∈ In, then 1− e /∈ I. Since {1− e} is a multiplicative closed
set disjoint from I, by the same argument, there is a prime ideal P with
I ⊆ P and 1 − e /∈ P , so e ∈ P . But this contradicts the hypothesis, so
A(1 − e) ⊆ In. This concludes the assertion.

(5) implies (6). All compact elements of CA are of the form FI , for
some finitely generated ideal I. Since CA is algebraic, it suffices to prove
that these are complemented. But by hypothesis, In = Ae, and it is clear
from the definition of principal filter that FIn = FI , so FI = FAe. It now
follows from Lemma 1.5 that FAe is complemented, therefore CA is zero-
dimensional.

(6) implies (1). By Lemma 1.5 and the hypothesis, given any finitely
generated ideal I, there is an idempotent e such that FI = FAe. In particular
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if we let Aa = I for some arbitrary a ∈ A, then for any prime ideal P we
have that a ∈ P iff P ∈ FAa iff P ∈ FAe iff e ∈ P iff 1 − e /∈ P . Therefore,
a−(1−e) /∈ P and a(1−e) ∈ P for all prime ideals P in A, hence a−(1−e)
is a unit and a(1 − e) ∈ n(A). In other words A is n(A)-clean.

Since (7) and (8) are equivalent ([8], Lemma 5.6), and (5) clearly implies
(7), it only remains to show (7) implies (3). Given a ∈ A and the hypothesis,
then for any prime P , P ∈ V (a) iff P ∈ V (an) iff P ∈ V (e) iff P ∈ U(1−e).
Therefore, V (a) = U(1 − e). �

Theorem 2.4. — The following are equivalent:

(1) A is J(A)-clean.

(2) A is weakly J(A)-clean.

(3) For every a ∈ A there is an idempotent e ∈ A such that VM (a) =
UM (e).

(4) For every finitely generated ideal I of A there is an idempotent e ∈ A
such that VM (I) = UM (e).

(5) For every finitely generated ideal I of A there is an idempotent e ∈ A
such that I + J = A iff Ae ⊆ J , for any finitely generated ideal J .

(6) CA is a projectable frame.

(7) A/J(A) is von Neumann regular and idempotents lift mod J(A).

Proof. — (1) implies (2). Clear.

(2) implies (3). Given a ∈ A, let a = u ± e with ae ∈ J(A), u a unit
and e an idempotent. Let M be a maximal ideal, then ae ∈ M . Since M is
prime at least one of a and e must be in M , and since u is a unit, at most
one of a and e may be in M . This translates into V (a) = U(e).

(3) implies (4). Let a1,. . . ,an be a set of generators for I, and ei, the cor-
responding idempotents. Then VM (I) = ∩VM (ai) = ∩UM (ei) = UM (e1 · · · en)
where e1 · · · en is, of course, an idempotent.

(4) implies (5). Let I, J be finitely generated ideals of A and VM (I) =
UM (e). If I +J �= A, then there is a maximal ideal M with I +J ⊆ M . Now
I ⊆ M implies that e /∈ M , so e /∈ J . Conversely, assume that e /∈ J . Note
that in this case J + A(1 − e) �= A, for otherwise there are a ∈ A, b ∈ J ,
with b + a(1 − e) = 1. Multiplying by e gives e = eb ∈ J , a contradiction.
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So there is a maximal ideal M with J + A(1 − e) ⊆ M . But then, e cannot
be in M , which means that I ⊆ M , so I + J ⊆ M . Thus I + J �= A.

(5) implies (6). Given a finitely generated ideal I of A there is an idem-
potent e such that I + J = A iff Ae ⊆ J , for any finitely generated ideal J .
Now, by Lemma 1.6, it follows that F⊥

I = FAe. Therefore, by Lemma 1.5
and Theorem 1.4, CA is a projectable frame.

(6) implies (1). Let a ∈ A, then by Lemma 1.5, F⊥
Aa = FAe for some

idempotent e. So by Lemma 1.6 for all finitely generated ideals J of A,
Aa + J = A iff Ae ⊆ J . Let M be a maximal ideal. Now a /∈ M iff
Aa + M = A iff Ae ∈ M iff e ∈ M . So, for every maximal ideal M ,
a− e /∈ M and ae ∈ M , which means a− e is a unit and ae ∈ J(A), thus A
is J(A)-clean.

(1) implies (7). By Theorem 2.2, A/J(A) is von Neumann regular. Now
suppose that a + J(A) is an idempotent, so a(a − 1) = a2 − a ∈ J(A),
therefore, for any maximal ideal M , a ∈ M iff a − 1 /∈ M . Now a = u + e
with ae ∈ J(A) so a ∈ M iff e /∈ M iff 1 − e ∈ M . From these equivalences
it is clear that a− (1− e) ∈ M for all maximal ideals, so a− (1− e) ∈ J(A).
Therefore, a + J(A) lifts to 1 − e.

(7) implies (1). By hypothesis and Theorem 2.2, for any a ∈ A, a − e +
J(A) is a unit in A/J(A) and ae ∈ J(A), so a − e is a unit in A, thus A is
J(A)-clean. �

Theorem 2.5. — The following are equivalent:

(1) A is clean.

(2) The collection {U(e) ⊆ Max(A) : e is idempotent} is a basis of clopen
sets for Max(A).

(3) CA is feebly projectable.

Proof. — (1) is equivalent to (2). See [7].

(2) implies (3). It is well known that Max(A) is compact but with our
hypothesis it is also Hausdorff, and therefore Max(A) is a normal Hausdorff
space. Assume now that FI ∧FJ = 0 where I, J are finitely generated ideals
of A. Since I + J = A, there are a ∈ I, b ∈ J with a + b = 1. Therefore,
V (a) and V (b) are disjoint closed sets. Since we can separate disjoint closed
sets by a clopen set in our base there is an idempotent e with V (a) ⊆ U(e)
and V (b) ⊆ U(1 − e). We claim now that a(1 − e) + be cannot be in any
maximal ideal. For suppose a(1 − e) + be ∈ M , then a(1 − e), be ∈ M . If
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1 − e �∈ M , then a ∈ M , so M ∈ U(e). But this is a contradiction since one
of e and 1 − e must belong to M . We reach a similar contradiction if we
assume that e �∈ M , so we conclude that a(1 − e) + be is a unit. From this
it is easy to show that FAa(1−e) and FAbe contain FI and FJ , respectively,
and are complementary.

(3) implies (2). Let M ∈ U(a), so that there is a b ∈ M such that
a + b = 1, so FAa ∧ FAb = 0. By hypothesis and Lemma 1.5 there is an
idempotent e such that FAa � FAe and FAb � FA(1−e), so Ae ⊆ Aa and
A(1 − e) ⊆ Ab, thus M ∈ U(e) ⊆ U(a). We conclude that the U(e)’s form
a base for the Zariski topology on Max(A). �
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