
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
Z. GONG, L. GRENIÉ

An inequality for local unitary Theta correspondence

Tome XX, no 1 (2011), p. 167-202.

<http://afst.cedram.org/item?id=AFST_2011_6_20_1_167_0>

© Université Paul Sabatier, Toulouse, 2011, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2011_6_20_1_167_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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An inequality for local unitary Theta
correspondence

Z. Gong
(1)

and L. Grenié
(2)

ABSTRACT. — Given a representation π of a local unitary group G and
another local unitary group H, either the Theta correspondence provides
a representation θH(π) of H or we set θH(π) = 0. If G is fixed and H
varies in a Witt tower, a natural question is: for which H is θH(π) �= 0 ?
For given dimension m there are exactly two isometry classes of unitary
spaces that we denoteH±m. For ε ∈ {0, 1} let us denotem±ε (π) the minimal
m of the same parity of ε such that θ

H±m
(π) �= 0, then we prove that

m+
ε (π) +m−ε (π) � 2n+ 2 where n is the dimension of π.

RÉSUMÉ. — Étant donnée une représentation π d’un groupe unitaire local
G et un autre groupe unitaire local H, on sait que soit la correspondance
Theta fournit une représentation θH(π) de H soit on pose θH(π) = 0.
Si on fixe G et on laisse H varier dans une tour de Witt, une question
naturelle est : pour quels H a-t-on θH(π) �= 0 ? Pour chaque dimension m
il y a exactement deux classes d’équivalence d’espaces unitaires que nous
dénotons H±m. Pour ε ∈ {0; 1}, dnotons m±ε (π) le plus petit m de la parité
de ε tel que θ

H±m
(π) �= 0, alors nous montrons que m+

ε (π) + m−ε (π) �
2n+ 2 où n est la dimension de π.
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1. Introduction

The Theta correspondence is a powerful tool for the study of automor-
phic and local representations. It has been studied and used in the global
and in the local case by various authors, see for instance [Har07], [HKS96],
[How], [Kud86], [KR05], [MVW87], [Ral84], [Wal90]. We will restrict our-
selves to the local case: we suppose that the base field is a p-adic field with
p �= 2. The Theta correspondence builds a duality between the representa-
tions of two reductive groups forming a dual pair inside a given symplectic
(or metaplectic) group. The theory will be explained in greater detail in sec-
tion 2. We will be interested in the so-called unitary case where both groups
are unitary. To an irreducible representation π of the first group G corre-
sponds at most one representation of the second group H that we denote
θ(π) = θ(G,H, π) where θ(π) = 0 if there is no representation of H corre-
sponding to π (in the unitary case, θ depends on the choice of a auxiliary
character χ, we will thus write θχ instead of θ in that case). One can fix a
representation π of an unitary group G = U(W ) and vary the second group
H = U(V ), where W and V are Hermitian spaces and G and H are their
respective unitary groups. One way to vary the space V is to start from a
given irreducible space V0 and to add hyperbolic planes V1,1. One obtains
a so-called Witt tower of spaces Vr = V0 ⊕ (V1,1)r and groups Hr = H(Vr).
We have (up to isometry) four such towers depending on the parity of r and
on the sign of the Hasse invariant (see below for its definition). We denote
them, with a slight notation shift, V ±2r+m0

where m0 = 0 or 1, the dimension
of V ±2r+m0

is 2r+m0 and ± is the sign of the Hasse invariant. It is now well
known that if θχ(G,H(V ±2r+m0

), π) �= 0 then θχ(G,H(V ±2r+2+m0
), π) �= 0.

We can thus consider, for a given m0, the two integers m±χ (π) which are the
minimal m = 2r + m0 such that θχ(G,H(V ±m ), π) �= 0.

We prove here a part of a conjecture of Harris, Kudla and Sweet (see
Conjecture 2.7), namely

Theorem 3.10. — Let π be an irreducible admissible representation of
G(W ) where dimW = n. Then

m+
χ (π) + m−χ (π) � 2n + 2 .

The conjecture (the Conservation Relation, see Conjecture 2.7) asserts
that the inequality is in fact an equality.

In some important cases, Theorem 3.10, combined with the results of
[HKS96] on local zeta integrals, suffices to prove stronger results. In parti-

– 168 –



An inequality for local unitary Theta correspondence

cular, it is known, thanks to [HKS96], that

m = inf(m+
χ (π),m−χ (π)) � n.

When m = n Harris and Kudla use this inequality and Theorem 3.10
to prove the Dichotomy Conjecture of [HKS96] ([Har07][Theorem 2.1.7]),
which determines whether m = m+

χ (π) or m = m−χ (π) in terms of local root
numbers.

The (still-conjectural) Conservation Relation, the Dichotomy Conjecture
(now proved), and Kudla’s Persistence Principle (Proposition 2.6) go a long
way toward providing a complete explicit determination of the local theta
correspondence. Resolving the remaining ambiguities will require a better
understanding of the poles of local zeta integrals. A key step in the present
paper, as in [KR05], is to prove simplicity of these poles for unramified
representations. This implies the Conservation Relation when π is the trivial
representation, and a doubling argument that goes back to Kudla and Rallis,
together with a cocycle calculation, then implies Theorem 3.10.

The inequality proved in Theorem 3.10 is applied in a global situation
in [Har07] to study special values of L-functions.

While we were writing this manuscript, Harris brought to our attention
that a proof in his article [Har07] was incomplete. Since the arguments are
related to the ones explained here, we have added that proof as an appendix
to this paper.

The authors would like to thank Michael Harris for suggesting this re-
search and for helping them throughout the project. The second author
would like to thank also the team “Formes Automorphes” from the Institut
de Mathématiques de Jussieu for their kind invitation while finishing this
paper. We would also like to thank the referee who carefully reviewed this
paper and made several useful observations which improved substantially
this paper.

2. Notations

This section recalls the local Theta correspondence as in [Kud96] and
cites some of the results of [HKS96].

We fix once and for all a non archimedean local field F of residual char-
acteristic different from 2.
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The mapping ∆ will always be a diagonal embedding, usually from G to
G×G except in one point where it will be precised.

2.1. Heisenberg group

Let W be a vector space with a symplectic form 〈., .〉 on which the group
GL(W ) will act on the right – accordingly, if f and g are two endomorphisms
of W , we will denote f◦g the endomorphism such that (f◦g)(w) = g(f(w)).
We will denote, as usual,

Sp(W ) = {g ∈ GL(W )|∀(x, y) ∈W 2, 〈xg, yg〉 = 〈x, y〉}

its isometry group.

Definition 2.1. — The Heisenberg group of W if the group H(W ) =
W � F with product

(w1, t1)(w2, t2) = (w1 + w2, t1 + t2 +
1
2
〈w1, w2〉) .

The centre of H(W ) is {(0, t)|t ∈ F} and Sp(W ) acts on H(W ) via its
action on W :

(w, t)g = (wg, t) .

We recall

Theorem 2.2 (Stone–von Neumann). — Let ψ be a non trivial uni-
tary character of F . There exists, up to isomorphism, one smooth irreducible
representation (ρψ, S) of H(W ) such that

ρψ

(
(0, t)

)
= ψ(t) · idS .

If we fix such a representation (ρψ, S), then for any g ∈ Sp(g), the
representation h �−→ ρg

ψ(h) = ρψ(hg) is a representation of H(W ) with
the same central character, which means that it must be isomorphic to ρψ.
Hence there is an isomorphism A(g) ∈ GL(S), unique up to a scalar, such
that

∀h ∈ H, A(g)−1ρψ(h)A(g) = ρg
ψ(h). (2.1)

The group
Mp(W ) = {(g,A(g))| equation (1) holds}

is independent of the choice of ψ and is a central extension of Sp(W ) by
C×:

0 −→ C× −→ Mp(W ) −→ Sp(W ) −→ 1 .
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The group Mp(W ) has a natural representation, called the Weil represen-
tation, ωψ on S given by

ωψ : Mp(W ) −→ End(S)
(g,A(g)) �−→ A(g)

2.2. The Schrödinger model of the Weil representation

The natural mapping (g,A(g)) �→ A(g) defines a representation of Mp(W )
which has several models. We are interested in the so-called Schrödinger
model.

Let Y be a Lagrangian of W , i.e. a maximal isotropic subspace of W and
W = X ⊕ Y a complete polarisation of W . We consider Y as a degenerate
symplectic space and see H(Y ) = Y � F as a maximal abelian subgroup of
H(W ). We consider the extension ψY of the character ψ from F to H(Y )
defined by ψY (y, t) = ψ(t). Let

SY = IndH(W )
H(Y ) ψY .

We recall that SY is the space of the functions f : H(W ) −→ C such that

∀h ∈ H,∀h1 ∈ H(Y ), f(h1h) = ψY (h1)f(h)

and such that there exists a compact open subgroup L of W satisfying

∀h ∈ H,∀l ∈ L, f
(
h(l, 0)

)
= f(h) .

We fix an isomorphism of SY with the space S(X) of Schwartz functions on
X by

SY −→ S(X)
f �−→ ϕ : X → C

x �→ ϕ(x) = f(x, 0).

The group H(W ) acts on SY by right translation while it acts on ϕ ∈ S(X)
by (

ρ(x + y, t)ϕ)(x0) = ψ

(
t + 〈x0, y〉+

1
2
〈x, y〉

)
ϕ(x0 + x)

where x+ y ∈W is with x ∈ X and y ∈ Y . Then (see [MVW87]) (ρ,S(X))
is a model for the Weil representation.

We specify the operator ωψ as follows. We identify an element w ∈ W
with the row vector (x, y) ∈ X ⊕ Y . An element g ∈ Sp(W ) will be of
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the form g =
(
a b
c d

)
with a ∈ End(X), b ∈ Hom(X,Y ), c ∈ Hom(Y,X)

and d ∈ End(Y ). Let PY = {g ∈ Sp(W )|c = 0} be the maximal parabolic
subgroup of Sp(W ) that stabilises Y and NY = {g ∈ PY |d = idY } its
unipotent radical. We have a Levi subgroup MY = {g ∈ PY |b = 0} of PY

and PY = MY NY .

We define the following natural mappings:

m : GL(X) −→ MY

a �−→ m(a) =
(
a 0
0 a∨

)
n : Her(X,Y ) −→ NY

b �−→ n(b) =
(

idX b
0 idY

)
where a∨ is the inverse of the dual of a and Her(X,Y ) is the subset of those
b ∈ Hom(X,Y ) which are Hermitian (in both cases we identify the dual of
X ⊕ Y with Y ⊕X using 〈., .〉).

Proposition 2.3 ([Kud96, Proposition 2.3, p.8). — Let g =
(
a b
c d

)
∈ Sp(g). The operator r(g) of S(X) defined by

r(g)(ϕ)(x) =
∫

Kerc\Y
ψ

(
1
2
〈xa, xb〉 − 〈xb, yc〉+ 1

2
〈yc, yd〉

)
ϕ(xa+yc)dµg(y)

is proportional to A(g) and moreover is unitary for a unique Haar measure
dµg(y) on Ker c\Y .

2.3. Dual reductive pairs

Definition 2.4. — A dual reductive pair (G,G′) in Sp(W ) is a pair of
subgroups of Sp(W ) such that both G and G′ are reductive and

CentSp(W )(G) = G′ and CentSp(W )(G′) = G .

If (G,G′) is a dual reductive pair in Sp(W ), we denote G̃ and G̃ ′ the
pullbacks of the subgroups in Mp(W ). As seen in [MVW87], there exists a
natural morphism

j : G̃ × G̃ ′ −→ Mp(W )

such that the restriction of j to C× ×C× is the product.

We consider the pullback (j∗(ωψ), S) of ωψ to G̃ × G̃ ′. We note that the
central character for both G̃ and G̃ ′ is the identity:

ωψ(j(z1, z2)) = z1z2 · idS .

– 172 –



An inequality for local unitary Theta correspondence

Let π be an irreducible admissible representation of G̃ such that the
central character of π is the identity. If

N (π) =
⋂

λ∈Hom
G̃

(S,π)

Kerλ

then S(π) = S/N (π) is the largest quotient of S on which G̃ acts by π. The
action of G̃ ′ on S commutes with the action of G̃ so that G̃ ′ acts on S(π)
and thus S(π) is a representation of G̃ × G̃ ′. There exists (see [MVW87])
a smooth representation Θψ(π) of G′, unique up to isomorphism, such that

S(π) � π ⊗Θψ(π) .

The principal result of the theory is the following

Theorem 2.5 (Howe duality principle). — Let F be a non archi-
medean local field with residual characteristic different from 2 and let π
be an irreducible admissible representation of G̃ .

i) If Θψ(π) �= 0, then it is an admissible representation of G̃ ′ of finite
length.

ii) If Θψ(π) �= 0, there exists a unique G̃ ′-submodule Θ0
ψ(π) such that

the quotient
θψ(π) = Θψ(π)/Θ0

ψ(π)

is irreducible. If Θψ(π) = 0, we let θψ(π) = 0.

iii) If two irreducible admissible representations π1 and π2 of G̃ are such
that θψ(π1) � θψ(π2) �= 0 then π1 � π2.

2.4. The unitary case

Let E/F be a quadratic extension and εE/F the corresponding quadratic
character of F×.

We fix a quadratic space W of dimension n with skew-Hermitian form

〈., .〉 : W ×W −→ E

(linear in the second argument). We will denote G(W ) its isometry group.

Let V be a quadratic space of dimension m with Hermitian form

(.|.) : V × V −→ E
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(linear in the second argument). We will denote

G(V ) = {g ∈ GL(V )|∀v, w ∈ V, (gv|gw) = (v|w)}

the isometry group of V . The space V will vary in the remaining of the
paper.

Let W = RE/F (V ⊗E W ) with symplectic form

〈〈., .〉〉 : W⊗W −→ F
(v1 ⊗ w1, v2 ⊗ w2) �−→ 〈v1 ⊗ w1, v2 ⊗ w2〉

=
1
2
TrE/F ((v1, v2)〈w1, w2〉) .

The pair (G(V ), G(W )) is a dual reductive pair in Sp(W). We have a
natural inclusion

ı : G(V )×G(W ) −→ Sp(W)
(g, h) �−→ ı(g, h) = g ⊗ h.

For any pair of characters χ = (χm, χn) of E× such that

χn |F× = εnE/F
, χm |F× = εmE/F

,

one can define, see [Kud94, Proposition 4.8, p.396], a homomorphism

ı̃χ : G(V )×G(W ) −→ Mp(W)

lifting ı (the homomorphism ı̃χ does depend on χ). Since the context will
usually make clear which of χm and χn is considered, we will often use χ
instead of χm or χn. Moreover we define ıV,χ (resp. ıW,χ) the restriction of
ıχ to G(V )× 1 (resp. 1×G(W )).

We will denote ωψ the Weil representation of Mp(W) and ωχ its pullback
through ı̃χ. As before, if π is an irreducible admissible representation of
G(V ), we get a representation Θχ(π, V ) of G(W ) such that

S(π) � π ⊗Θχ(π, V )

and if Θχ(π, V ) �= 0, we say that π appears in the local Theta correspon-
dence for the pair (G(V ), G(W )). This condition depends on χm but not
on χn. As above we define θχ(π, V ) to be the unique irreducible quotient of
Θχ(π, V ) (or 0 if Θχ(π, V ) = 0).
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Witt towers. For a fixed dimension m, there are two equivalence classes of
Hermitian spaces of dimension m over E. These two classes are distinguished
by their Hasse invariant

ε(V ) = εE/F

(
(−1)

m(m−1)
2 detV

)
.

We thus get two families of spaces V ±m where the sign is the sign of the
Hasse invariant. As Hermitian spaces we have V ±m+2 � V ±m ⊕ V1,1, where
V1,1 is an hyperbolic plane and the direct sum is orthogonal. We thus get
four so-called Witt towers

V +
2r = V +

0 ⊕ (V1,1)
r
, V −2r+2 = V −2 ⊕ (V1,1)

r
,

V +
2r+1 = V +

1 ⊕ (V1,1)
r
, V −2r+1 = V −1 ⊕ (V1,1)

r

where V +
0 is the null vector space, V −2 is an anisotropic 2-dimensional Her-

mitian space and V ±1 are one dimensional anisotropic Hermitian spaces. In
each case the integer r is the Witt index of the corresponding Hermitian
space1.

We have

Proposition 2.6 [HKS96],[Kud96]. — Consider a Witt tower {V ε
m} with

ε = ±.

i) (Persistence) If θχ(π, V ε
m) �= 0 then θχ(π, V ε

m+2) �= 0.

ii) (Stable range) We have θχ(π, V ε
m) �= 0 if the Weil index r0 of Vm is

such that r0 � n.

We fix m0 ∈ {0, 1} and a character χ of E× such that χ|F× = εm0
E/F

and
we consider the two towers V ±m with m of the parity of m0 (if m0 = 0 we
disregard V −0 which does not exist). Let m±χ (π) be the smallest m such that

θχ(π, V ±m ) �= 0 .

Based on several examples, we have

Conjecture 2.7 (Conservation relation, [HKS96, Speculations 7.5
and 7.6], [KR05, Conjecture 3.6]). — If π is an irreducible admissible rep-
resentation of G(W ), then

m+
χ (π) + m−χ (π) = 2n + 2 .

(1) We recall that the Witt index of a quadratic space is the dimension of a maximal
totally isotropic subspace
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2.5. Degenerate principal series

Let W+ and W− be two copies of W with respectively the same form
as W and its opposite. We keep the pair of characters χ = (χm, χn). We
fix for the space W+ ⊕W− the complete polarisation X ⊕ Y where X =
{(w,−w)|w ∈ W} and Y = {(w,w)|w ∈ W} = ∆(W ) (recall that ∆ is the
diagonal embedding of W in W+ ⊕W− ). We let then

W+ = RE/F (V ⊗E W+) W− = RE/F (V ⊗E W−)
X = RE/F (V ⊗E X) Y = RE/F (V ⊗E Y ) .

and we consider the representation ωV,W+⊕W− ,χ of G(V ) × G(W+ ⊕W− )
induced by the Weil representation ofW+⊕W− on S = S(X) � S(V n). Let
Rn(V, χ) be the maximal quotient of S on which G(V ) acts by the character
χm. The space Rn(V, χ) can be seen as a representation of G(W ) ×G(W )
via the natural embedding

i : G(W )×G(W ) = G(W+)×G(W−) ↪→ G(W+ ⊕W− ) .

From now on, we will denote G = Gn = G(W ) and G̃ = G̃n = G(W+ ⊕W− )
so that i : G×G ↪→ G̃.

We then have

Proposition 2.8 ([HKS96], Proposition 3.1 and discussion before). —
If π be an irreducible admissible representation of G(W ), then

Θχ(π, V ) �= 0 ⇐⇒ HomG×G(Rn(V, χ), π ⊗ (χm · π∨)) �= 0 .

Let PY be the parabolic subgroup of G̃ stabilising Y . We will denote
MY its maximal Levi subgroup and NY its unipotent radical. As for the
symplectic case, MY and NY are parametrised respectively by GL(X) and
Her(X,Y ).

For s ∈ C and χ a character of E×, let

In(s, χ) = IndG̃
PY χ| . |

s

be the degenerate principal series (the induction is unitary and the elements
of In(s, χ) are locally constant functions Φ(g, s)).

We can identify Rn(V, χ) as a subspace of some In(s, χ) by sending an
element ϕ ∈ S(X) to the function g �−→ ωχ(g)ϕ(0) – (we recall that we
denote ωχ = ωψ ◦ ı̃V,χ). The spaces Rn(V ±m , χ) allows us to decompose the
various In(s, χ) as explained by the following proposition.
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Proposition 2.9 ([KS97, Theorem 1.2, p.257]). — Let V ±m be an
m-dimensional unitary space and Hasse invariant ±. Let s0 = m−n

2 and
χ a character of E× such that χ|F× = εmE/F

.

i) If m � n, i.e. if s0 � 0, then the modules Rn(V ±m , χ) are irreducible
and Rn(V +

m , χ)⊕Rn(V −m , χ) is the maximal completely reducible sub-
module of In(s0, χ).

ii) If m = n, i.e. if s0 = 0, then In(0, χ) = Rn(V +
n , χ)⊕Rn(V −n , χ).

iii) If n < m < 2n, i.e. if 0 < s0 < n
2 , then In(s0, χ) = Rn(V +

m , χ) +
Rn(V −m , χ) and Rn(V +

m , χ)∩Rn(V −m , χ) is the unique irreducible sub-
module of In(s0, χ).

iv) If m = 2n, i.e. if s0 = n
2 , then In(s0, χ) = Rn(V +

2n, χ), Rn(V −2n, χ) is
of codimension 1 and is the unique irreducible submodule of In(s0, χ).

v) If m > 2n, i.e. if s0 > n
2 , then In(s0, χ) = Rn(V ±m , χ) is irreducible.

In all other cases In(s, χ) is irreducible.

To refine the aforementioned decompositions we begin with the Bruhat
decomposition of G̃:

G̃ =
n∐

j=0

PY ωjPY , with ωj =



In−j 0 0 0

0 0 0 Ij
0 0 In−j 0
0 −Ij 0 0




and let us introduce, as in [Kud96, p.19] and [Rao93] the mapping

x : G̃ −→ E×/NE/FE
×

p1ω
−1
j p2 �−→ det(p1p2|Y )mod NE/FE

×

Whenever χ|F× = 1 we can introduce the character χG̃ of G̃

χG̃(g) = χ(x(g)) .

We extend the definition of Rn as follows:

Rn(V +
0 , χ) = Rn(0, χ) = C · χG̃

and Rn(V +
0 , χ) is a submodule of dimension 1 o f In(−n

2 , χ) (we are, at
least formally, in the case i) of Proposition 2.9). As a last step, we define
the intertwining operators

Mn(s, χ) : In(s, χ) −→ In(−s, χ)
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by the integral

Mn(s, χ)(Φ) =
∫
NY

Φ(wnug, s)du =
∫

Her(X,Y )

Φ(wnn(b)g, s)db ,

which is convergent for Re s > n
2 and by meromorphic continuation for

s ∈ C. The Haar measure db is chosen self-dual with respect to the Fourier
transform

φ̂(y) =
∫

φ(b)ψ(Tr(by))db .

We normalise Mn(s, χ) using

a(s, χ) =
n−1∏
j=0

LF

(
2s + j − (n− 1), χεjE/F

)

and then M∗n(s, χ) = 1
a(s,χ)Mn(s, χ) is holomorphic and non zero (see [KS97,

Proposition 3.2]).

Proposition 2.10 [KS97]. — Let V ±m be the m-dimensional unitary
space of dimension m and Hasse invariant ±. Let s0 = m−n

2 and χ a char-
acter of E× such that χ|F× = εmE/F

.

i) If m = 0, i.e. if s0 = −n
2 , then Ker(M∗n(−n

2 , χ)) = Rn(V +
0 , χ) and

Im(M∗n(−n
2 , χ)) = Rn(V −2n, χ).

ii) If 1 � m < n, i.e. if −n
2 < s0 < 0, then Ker(M∗n(s0, χ)) = Rn(V +

m , χ)
⊕Rn(V −m , χ) and Im(M∗n(s0, χ)) = Rn(V +

2n−m, χ) ∩Rn(V −2n−m, χ).

iii) If n � m < 2n, i.e. if 0 � s0 <
n
2 , then Ker(M∗n(s0, χ)) = Rn(V +

m , χ)∩
Rn(V −m , χ), M∗n(s0, χ)(Rn(V ±m , χ)) = Rn(V ±2n−m, χ) thus we have
Im(M∗n(s0, χ)) = Rn(V +

2n−m, χ)⊕Rn(V −2n−m, χ).

iv) If m = 2n, i.e. if s0 = n
2 , then Ker(M∗n(n

2 , χ)) = Rn(V −2n, χ) and
Im(M∗n(n

2 , χ)) = M∗n(n
2 , χ)(Rn(V +

2n), χ) = Rn(V +
0 , χ).

2.6. Local Zeta integral

The last element we will use is the local Zeta integral of a representation.
We fix π an irreducible admissible representation of G(W ).
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Definition 2.11. — A matrix coefficient of π is a linear combination
of functions of the form

φ(g) = 〈π(g)ξ, ξ∨〉

where ξ and ξ∨ are vectors of the space of π and π∨ respectively.

Moreover if ξ◦ and ξ∨◦ are preassigned spherical vectors of π and π∨, we
let

φ◦(g) = 〈π(g)ξ◦, ξ∨◦ 〉 .

We parametrise the space of matrix coefficients with the space of π⊗π∨

through the obvious projection. If s ∈ C with Re s large enough, ξ ∈ π,
ξ∨ ∈ π∨, Φ ∈ In(s, χ), let

Z(s, χ, π, ξ ⊗ ξ∨,Φ) =
∫
G

〈π(g)ξ, ξ∨〉Φ(i(g, In), s)dg

and extend it linearly to the space of matrix coefficients of π. We fix a
maximal compact subgroup K of G̃.

Definition 2.12. — A standard section Φ is a mapping from C to the
set of functions from G̃ to C such that ∀s ∈ C, Φ(g, s) = Φ(s)(g) ∈ In(s, χ)
and, moreover, Φ(s)|K is independent of s.

It is rather obvious that any element Φ(g, s) ∈ In(s, χ) can be inserted
in a (unique) standard section. The Zeta integral above defines, for Re s
sufficiently large, an intertwining operator

Z(s, χ, π) ∈ HomG×G

(
In(s, χ), π ⊗ (χ · π∨)

)
.

If Φ is a standard section, this operator can be meromorphically extended
for all s ∈ C to an operator

Z∗(s, χ, π) ∈ HomG×G

(
In(s, χ), π ⊗ (χ · π∨)

)
.

3. Our results

3.1. Decomposition of the degenerate principal series

Let Ω(W+ ⊕W− ) be the Grassmannian of the Lagrangians of W+⊕W− .
We can identify

PY\G(W+ ⊕W− ) � Ω(W+ ⊕W− )
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using the map PY · g �−→ Y g. There is a right action of i(G(W ) × G(W ))
on Ω(W+ ⊕W− ) which orbits are parametrised by the elements of the de-
composition

G(W+ ⊕W− ) =
r0∐

r=0

PY δri(G(W )×G(W ))

where r0 is the Witt index of W . The aforementioned orbits are of the form

Ωr =PY\PY δri(G(W )×G(W )) .

The orbit Ωr is made of the Lagrangians Z such that dimZ∩W+ = dimZ∩
W− = r. The only open orbit is that of Y , which is Ω0, while the only closed
one is that of Ωr0 and the closure of the orbit Ωr is

Ωr =
∐
j�r

Ωj .

We consider the filtration

In(s, χ) = I(r0)
n (s, χ) ⊃ · · · ⊃ I(1)

n (s, χ) ⊃ I(0)
n (s, χ) ,

where
I(r)
n (s, χ) = {Φ ∈ In(s, χ)|Φ|Ωr+1

= 0} .

Let
Q(r)

n (s, χ) = I(r)
n (s, χ)/I(r−1)

n (s, χ)

be the successive quotients of the filtration. All I(r)
n (s, χ) and Q

(r)
n (s, χ) are

G×G-stable.

Let TW be the Witt tower containing W . For any W ′ ∈ TW of dimension
n′ = n − 2r � n, let Gn′ = G(W ′). We identify W ′ with a subspace of W
isomorphic to W ′. There is a Witt decomposition

W = U ′ ⊕W ′ ⊕ U

where U and U ′ are dual isotropic subspaces of dimension r. Let Pr be the
parabolic subgroup of G stabilising U . The Levi subgroup of Pr is isomorphic
to GL(U) × Gn′ so that, if we denote Mr its Levi component and Nr its
unipotent radical, we have isomorphisms

Mr � GL(U)×Gn′ (3.2)
Pr � (GL(U)×Gn′)�Nr.

Note in particular for r = 0 that U = U ′ = {0}, W ′ = W and P0 = Gn = G.
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Let
Str = i−1(δ−1

r PY δr ∩ i(G×G))

be the stabiliser of PY δr in i−1(PY )\G×G.

Lemma 3.1. — For a convenient choice of δr (specified in Equation (3.3)
below), we have

Str = (GL(U)×GL(U)×∆(Gn′))� (Nr ×Nr) ⊂ Pr × Pr .

Moreover

Q(r)
n (s, χ) � IndG×G

Pr×Pr

(
χ| . |s+ r

2 ⊗ χ| . |s+ r
2 ⊗

(
S(Gn′) · (1⊗ χ)

))
where the action of Gn′ × Gn′ on the space S(Gn′) · (1 ⊗ χ) is given by
(g1, g2)ϕ(g) = χ(det g2)ϕ(g−1

2 gg1).

Proof. — We let G′ = Gn′ .

Recall the Witt decomposition

W = U ′ ⊕W ′ ⊕ U

and consider the Lagrangian

Z = U × {0} ⊕∆(W ′)⊕ {0} × U

in W+ ⊕W− . Since the action of G̃ on Ω(W+ ⊕W− ) is transitive, there
exists δr ∈ G̃ such that Z = Y δr. Since any linear map from Y to Z can be
extended to an element of G̃, we can furthermore require that

∀v ∈ U ′, δr|∆(U ′)(v, v) = (0, vd) ∈ {0} × U

δr|∆(W ′) = id∆(W ′) (3.3)
∀u ∈ U, δr|∆(U)(u, u) = (u, 0) ∈ U × {0}

where d : U ′ −→ U is any isomorphism. Note in particular that δ0 = idG.
Following [Kud96, Proof of Proposition 2.1, p.68], we find that there is a
bijection between the orbit Ωr of Z and the set

{(Z+, Z−, λ)}

where Z± is an isotropic subspace of W± of dimension r and

λ :Z ⊥+ /Z+ −→Z ⊥− /Z−
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is an isometry2. The action of (g+, g−) ∈ G×G on this set is given by

(g+, g−)(Z+, Z−, λ) = (Z+g+, Z−g−, g
−1
+ ◦λ◦g−) .

The stabiliser of (Z+, Z−, λ) is

{(g+, g−) ∈ G×G|g± stabilises Z± and g−1
+ ◦λ◦g− = λ} .

In our situation and with our choice of δr, we have Z+ = Z− = U ,Z ⊥+ /Z+ =
W ′ and λ = idW ′ . Hence, denoting prW ′ the projection on W ′ parallel to
U ′ ⊕ U ,

Str =
{

(g+, g−) ∈ Pr × Pr

∣∣∣g+|W ′+U◦prW ′ = g−|W ′+U◦prW ′
}

= (GL(U)×GL(U)×∆(G′))� (Nr ×Nr) .

For further reference, an element of Pr has the form
 a b c

0 e b∗

0 0 a∨




where b∗ depends on b, a and e and where c satisfies an equation depending
on a, b and e. We thus have

g± =


 a± b± c±

0 e± b∗±
0 0 a∨±


 (3.4)

and the condition g+|W ′+U◦prW ′ = g−|W ′+U◦prW ′ is simply e+ = e−.

The description of the stabiliser allows us to describe the induced repre-
sentations. If g̃ ∈ Str, then p(g̃) = δri(g̃)δ−1

r = n·m(ar(g̃)) ∈ PY . Let ξs,r be
the character of Str defined by ξs,r(g̃) = χ(ar(g̃))|det ar(g̃)|s+

r
2 . Consider

the morphism of G×G-modules

Q
(r)
n (s, χ) −→ IndG×G

Str
(ξs,r)

f �−→ φf (g1, g2) =
∫
N ′r

f(δrn(u)i(g1, g2))du

where f ∈ I
(r)
n (s, χ) is a representative of f . This morphism is an isomor-

phism (see [HKS96, Equation (4.9), p.963]). Let g̃ = (g+, g−) be an ele-
ment of Str decomposed as in (3.4). Then det(ar(g̃)) = det a+ det a− det e+
(where we recall that e+ = e−). Since e+ ∈ G′, |det e+| = 1 hence

Q(r)
n (s, χ) � IndG×G

Str
(χ| . |s+ r

2 ⊗ χ| . |s+ r
2 ⊗ χ)

� IndG×G
Pr×Pr

(
IndPr×Pr

Str
(χ| . |s+ r

2 ⊗ χ| . |s+ r
2 ⊗ χ)

)
.

(2) in [Kud96] it is an anti-isometry but, since W− has the opposite form of W+, here
λ is an isometry.
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The induction from Str to Pr × Pr is an induction from ∆(G′) to G′ ×G′.
Moreover, if f ∈ IndG′×G′

∆(G′) χ then f(h1, h2) = χ(h2)f(h−1
2 h1, 1). Hence

IndG′×G′

∆(G′) χ � S(G′) · (1⊗ χ)

where the action of G′ ×G′ on S(G′) · (1⊗ χ) is given by

ρ(g1, g2)ϕ(g) = χ(det g2)ϕ(g−1
2 gg1) .

Hence

IndPr×Pr
Str

(χ| . |s+ r
2 ⊗ χ| . |s+ r

2 ⊗ χ) � χ| . |s+ r
2 ⊗ χ| . |s+ r

2 ⊗ IndG′×G′

∆(G′) χ

� χ| . |s+ r
2 ⊗ χ| . |s+ r

2 ⊗
(
S(G′) · (1⊗ χ)

)
.

The result follows. �

3.2. Simplicity of poles

We prove in our case the result of [KR05, section 5]. We follow the same
method. We denote χ0 the trivial character of F×.

Proposition 3.2. — Let zs ∈ H(G//K) ⊗ C[qs, q−s] be the element
defined by

zs =
r0∏
i=1

(1− q−s− 1
2 ti)(1− q−s− 1

2 t−1
i ) .

where we recall that H(G//K) � C[t1, . . . , tn, t−1
1 , . . . , t−1

n ]WG . For an un-
ramified representation π of G, let π(zs) be the scalar by which zs acts on
the unramified vector in π. Then for all matrix coefficients φ of π and all
standard sections Φ(s) ∈ In(s), the function

π(zs) · Z(s, χ0, π, φ,Φ)

is an entire function of s.

Proof of Proposition 3.2. — We divide the proof into four steps.

3.2.1. Step 1

By linearity of Z, we can limit ourselves to the case where φ is of the
form

φ(g) = 〈π(g)π(g1)ξ◦, π∨(g2)ξ∨◦ 〉
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where ξ◦ and ξ∨◦ are spherical vectors in π and π∨ and g1, g2 ∈ G. Then we
have

Z(s, χ0, π, φ,Φ) =
∫
G

〈π(g)π(g1)ξ◦, π∨(g2)ξ∨◦ 〉Φs(i(g, In))dg (3.5)

=
∫
G

〈π(g)ξ◦, ξ∨◦ 〉Φs(i(g2gg
−1
1 , In))dg

= |det g2|s+r0− 1
2

∫
G

φ◦(g)Φs(i(g, In)i(g−1
1 , g−1

2 ))dg

since |det g2| = 1 and φ◦ is bi-K invariant, for all k1, k2 ∈ K,

=
∫
G

φ◦(g)Φs(i(k−1
2 gk1, In)i(g−1

1 , g−1
2 ))dg

=
∫
G

φ◦(g)Φs(i(g, In)i(k1, k2)i(g−1
1 , g−1

2 ))dg

and thus

=
∫
G

φ◦(g)Ψs(i(g, In))dg

where, for any h ∈ H = G2n,

Ψs(h) :=
∫
K×K

Φs(hi(k1, k2)i(g−1
1 , g−1

2 ))dk1dk2. (3.6)

Note that Ψs is K × K-invariant section of In(s) which is not necessarily
standard.

3.2.2. Step 2

We consider the algebra

A = C[X,X−1]⊗H(G//K) � C[X,X−1]⊗C[t1, . . . , tn, t−1
1 , . . . , t−1

n ]WG ,

where H(G//K) is the K-spherical Hecke algebra of G and the element
z ∈ A defined as:

z =
r0∏
i=1

(1−Xq−
1
2 ti)(1−Xq−

1
2 t−1

i ) .

We let G×G act on In(s) through i. We extend this action to H(G//K)×
H(G//K) and we let any φ ∈ H(G//K) act as (φ, 1) ∈ H(G//K) ×
H(G//K). We define the action of A on the space In(s)K×1 of K × 1-
fixed vectors of In(s) by the aforementioned action of H(G//K) and by
X · ϕ = q−sϕ for any ϕ ∈ In(S). Note that action of 1×G commutes with
the action of A.
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Proposition 3.3. — For any standard section Φs with associated sec-
tion Ψs defined by (3.6), we have

Ψs ∗ z ∈ I(0)
n (s)K×K .

Proof of Proposition 3.3. — We want to show the the image of Ψs ∗ z in
each Q

(r)
n (s) = Q

(r)
n (s, χ0) is 0 for 0 < r � r0. As an illustration, we will do

the first step separately in the case of a split Hermitian space (in particular
n = 2r0). Consider the projection induced by restriction to the closed orbit:

prr0
: In(s) = I

(r0)
n (s) −→ Q

(r0)
n (s) � IndG

Pr0

(
| . |s+

r0
2

)
⊗ IndG

Pr0

(
| . |s+

r0
2

)
Φs �−→

(
(g1, g2) �→ Φs(i(g1, g2))

)
.

If we let z act only on the first term of the tensor product on the right side,
we have

prr0
(Ψs ∗ z) = prr0

(Ψs) ∗ z .

On the other hand, we have

IndG
Pr0

(
| . |s+

r0
2

)
⊂ IndG

B(λ)

where B is the standard Borel subgroup of G and λ is the unramified prin-
cipal series representation with Satake parameter

(qs+r0− 1
2 , qs+r0− 3

2 , . . . , qs+
1
2 ) .

The element z acts on the K-fixed vector of this representation by the scalar

r0∏
i=1

(1− q−s− 1
2 qs+r0+

1
2−i)(1− q−s− 1

2 q−s−r0− 1
2+i) = 0 .

This means that prr0
(Ψs ∗ z) = 0 i.e. that Ψs ∗ z ∈ I

(r0−1)
n (s).

More generally, if we restrict the orbit of a section to Ωr, we obtain a
map

prr : In(s) −→ IndG×G
Pr×Pr

(
| . |s+ r

2 ⊗ | . |s+ r
2 ⊗ C(Gn−2r)

)
=: Br(s)

where C(Gn−2r) is the space of smooth functions on Gn−2r. There is a
non-degenerate pairing between Q

(r)
n (s) and Br(−s− r) given by

〈
f1, f2

〉
=

∫
Pr×Pr\G×G

〈f1(g1, g2), f2(g1, g2)〉Gn−rdµ(g1)dµ(g2) ,

where the internal pairing is the integration over Gn−r and the external
integral is the invariant functional for functions which transform on the
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left according to the square of the modulus character. A straightforward
density argument shows that φ ∈ Q

(r)
n (s) is 0 if and only if it pairs to zero

against all elements of the subspace Q(r)
n (−s−r) ⊂ Br(−s−r). In addition if

φ ∈ Q
(r)
n (s)K×K we can limit ourselves to the elements of Q(r)

n (−s−r)K×K .
Let fs ∈ Q

(r)
n (−s− r)K×K and zs = z

∣∣
X=q−s

. We have

〈prr(Ψs ∗ z), f2〉 = 〈prr(Ψs) ∗ zs, fs〉 = 〈prr(Ψs), fs ∗ z∨s 〉 .

Lemma 3.4. — For any fs ∈ Q
(r)
n (−s− r)K×K we have

fs ∗ z∨s = 0 .

Proof of Lemma 3.4. — Since fs is an element of a parabolic induction
and is fixed by a maximal compact, it is determined by its value at the
identity element In. It is not difficult to see that fs(In) ∈ S(G)Kn−r×Kn−r

where Kn−r = Gn−r ∩K. Let τ be an irreducible admissible representation
of Gn−r. The action of S(Gn−r) on τ determines a Gn−r×Gn−r-equivariant
map

µτ : S(Gn−r) −→ Homsmooth(τ, τ) � τ∨ ⊗ τ

where Homsmooth is the space of vector-space homomorphisms fixed by
a compact open subgroup of Gn−r × Gn−r. The two factors of Gn−r ×
Gn−r act respectively by pre- and post-multiplication on the elements of
Homsmooth(τ, τ) so that each has finite dimensional image. A function ϕ ∈
S(Gn−r)Kn−r×Kn−r is nonzero if and only if there exists an irreducible ad-
missible representation τ such that τ(ϕ) �= 0, i.e. such that µτ (ϕ) �= 0.

Consider fs ∗ z∨s . Let τ be, as above, an irreducible admissible represen-
tation of Gn−r. The map µτ induces

Ind(µτ ) : IndG×G
Pr×Pr

(
| . |−s− r2 ⊗ | . |−s− r2 ⊗ S(Gn−r)

)
−→ IndG×G

Pr×Pr

(
| . |−s− r2 ⊗ | . |−s− r2 ⊗ τ∨ ⊗ τ

)
which satisfies Ind(µτ )(fs)(In) = µτ (fs(In)). The latter induced represen-
tation is isomorphic to

IndG
Pr

(
| . |−s− r2 ⊗ τ∨

)
⊗ IndG

Pr

(
| . |−s− r2 ⊗ τ

)
which can be embedded in

IndG
Bλ1 ⊗ IndG

Bλ2

where the Satake parameters are

λ1 = (q−s− 1
2 , q−s− 3

2 , . . . , q−s+ 1
2−r, q−ν1 , . . . , q−νn−r )

λ2 = (q−s− 1
2 , q−s− 3

2 , . . . , q−s+ 1
2−r, qν1 , . . . , qνn−r )
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(where (qν1 , . . . , qνn−r ) is the Satake parameter of τ). The operator z∨s acts
on the unique line of K ×K-invariant vectors of this representation by the
scalar

r∏
i=1

(1− q−sq−
1
2 qs−

1
2+i)(1− q−sq−

1
2 q−s+ 1

2−i) · (factor) = 0 .

But Ind(µτ )(fs) is a K ×K-invariant vector in this representation so that
Ind(µτ )(fs) ∗ zs = 0 and

µτ (fs ∗ z∨s (In)) = Ind(µτ )(fs ∗ z∨s )(In)
= (Ind(µτ )(fs ∗ z∨s ))(In)
= 0 .

Since this is true for all τ , we have fs ∗ z∨s (In) = 0 and thus fs ∗ z∨s = 0.
�

We have prr(Ψs ∗z) = 0 for all r > 0, which means that the support of Ψs ∗z
is included in Ω0, which concludes the proof of Proposition 3.3. �

3.2.3. Step 3

Consider the isomorphism

pr0 : In(s) −→ Q(0)
n (G) � S(G) .

Proposition 3.3 shows that, for a fixed s, we have pr0(Ψs ∗ z) ∈ S(G)K×K .
Its support could vary with s. The following proposition shows that the
support of pr0(Ψs ∗ z) is bounded uniformly in s.

Lemma 3.5. — We have

pr0(Ψs ∗ z) ∈ C[qs, q−s]⊗ S(G)K×K = C[qs, q−s]⊗H(G//K) .

Proof of Lemma 3.5. — Using the Cartan decomposition, write

pr0(Ψs ∗ z) =
∑
λ∈Λ

cλ(s)Lλ ,

where Lλ is the characteristic function of the double coset KgλK and Λ is
the usual semigroup.

Lemma 3.6. — We have

cλ(s) ∈ C[qs, q−s]

and thus is an entire function of s.
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Proof. — We have

cλ(s) · ‖Lλ‖2 =
∫
G

(Ψs ∗ z)(i(g, In)) · Lλ(g)dg. (3.7)

The integral on the right is a (finite) linear combination, with coefficients
in C[qs, q−s] of integrals of the form∫

G

∫
G

(Ψs ∗ z)(i(g, In)i(g0, In)) · Lµ(g0)dg0 · Lλ(g)dg (3.8)

=
∫
G

∫
G

(Ψs ∗ z)(i(g0, In)) · Lµ(g−1g0) · Lλ(g)dg0dg

=
∫
G

∫
G

(Ψs ∗ z)(i(g0, In)) · ϕ(g0)dg0

where ϕ is a function depending on λ and µ. Since this function is a (finite)
linear combination of characteristic functions of cosets gK, the integral in
the last line of (3.8) is a (finite) linear combination with coefficients in
C[qs, q−s] of integrals of the form∫

K

∫
K×K

Φs

(
i(gk, In)i(k1, k2)i(g−1

1 , g−1
2 )

)
dk1dk2dk .

But Φs is standard, hence it is right-invariant under a fixed compact open
subgroup H, uniformly in s. This means that the set of g necessary to obtain
the full integral (3.7) is finite and fixed. The elements g1 and g2 are fixed
by the matrix coefficient φ we are considering and thus the integral (3.7) is
a (finite) linear combination of q&s with F ∈ Z. �

Let then Λ1 be the set of λ ∈ Λ such that cλ �= 0 and for λ ∈ Λ let

Dλ = {s ∈ C : cλ(s) = 0} .

If λ ∈ Λ1 then Dλ is a numerable subset of C. Hence
⋃

λ∈Λ1
Dλ is numerable

and thus different from C. Let s0 ∈ C be such that ∀λ ∈ Λ1, cλ(s0) �= 0.
Since

pr0(Ψs0 ∗ z) =
∑
λ∈Λ1

cλ(s0) · Lλ

has compact support, Λ1 is finite and thus for all s ∈ C, pr0(Ψs ∗ z) has
support in ∪λ∈Λ1Lλ. �

3.2.4. Step 4

Going back to the Zeta integral in (3.5), we define

Z∗(s, χ0, π, φ,Φ) =
∫
G

φ◦(g)(Ψs ∗ z)(i(g, In))dg.
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This integral is equal to the scalar by which pr0(Ψs ∗ z) acts on ξ◦ and is
thus an entire function of s because it is an element of C[qs, q−s]. On the
other hand, if Re (s) is large enough we can unfold

Z∗(s, χ0, π, φ,Φ) = π(zs)
∫
G

φ◦(g)Ψs(i(g, In))dg

= π(zs)Z(s, χ0, π, φ,Φ)

where π(zs) is the scalar by which zs = z
∣∣
X=q−s

acts on the spherical vector
of π. Since Z∗(s, χ0, π, φ,Φ) is an entire function of s, this completes the
proof or Proposition 3.2. �

3.3. The conjecture holds for the trivial representation in the even
dimensional tower

Definition 3.7 ([HKS96, Definition 4.6, p.963]). — For s0 ∈ C, χ a
character and π and irreducible admissible representation of G, we say that
π occurs in the boundary at the point s = s0 if

HomG×G(Q(r)
n (s0, χ), π ⊗ (χ · π∨)) �= 0

for some r > 0.

Proposition 3.8. — Let π = 1 the trivial representation of G, HE an
uniformiser of E and qE = |HE |. We will denote Xu(E×) the set of un-
ramified characters of E×. Let

X(1) �=
{

(s, χ)∈C×Xu(E×)
∣∣∣∣χ(HE) = (−1)k, s =

n

2
− r − kiπ

log qE
, 1�r�r0

}
with 1 � r � r0 and k ∈ Z.

Then 1 appears in the boundary at s if and only if (s, χ) ∈ X(1). More-
over if (s0, χ) �∈ X(1), for any standard section Φ the operator Z(s, χ,1) is
holomorphic at s = s0 and

HomG×G(In(s0, χ),1⊗ χ) = C · Z(s, χ,1) .

Proof. — We know from Lemma 3.1 that

HomG×G(Q
(r)
n (s, χ), 1⊗ χ)

= HomG×G

(
Ind

G×G
Pr×Pr

(
χ|.|s+

r
2 ⊗ χ|.|s+

r
2 ⊗

(
S(G

′
) · (1⊗ χ)

))
, 1⊗ χ

)
� HomG×G

(
1⊗ χ

−1
, Ind

G×G
Pr×Pr

(
χ
−1| . |−s−

r
2 ⊗ χ

−1| . |−s−
r
2 ⊗

(
C
∞

(G
′
) · (1⊗ χ

−1
)

)))
� HomMr×Mr

(
1⊗ χ

−1
, χ
−1| . |−s−

r
2 +n−r2 ⊗ χ

−1| . |−s−
r
2 +n−r2 ⊗

(
C
∞

(G
′
) · (1⊗ χ

−1
)

))
– 189 –



Z. Gong and L. Grenié

because the Jacquet module for 1⊗ χ−1 is 1⊗ χ−1 (as a representation of
Mr).
Now if g corresponds to (a, g′) in Equation (3.2) then det g = det adet a−1

det g′ so that χ(det g) = χ(det a)2χ(det g′) but dim HomG′×G′(1 ⊗ χ−1,
C∞(G′) · (1 ⊗ χ−1)) = 1 (see [HKS96, end of section 4, p.964] for general
π). Thus

� HomGL(U)×GL(U)

(
1⊗ χ−2, χ−1| . |−s+n

2−r ⊗ χ−1| . |−s+n
2−r

)
It follows that π occurs in the boundary at s if and only if χ is unramified,

χ(HE) = (−1)k and (s− n
2 + r) log qE + kiπ = 0, as required.

Suppose (s0, χ) �∈ X(1), i.e. 1 does not appear in the boundary. Let k
be the maximum order of the pole of the Z integral in s = s0 (as Φ varies).
Thus

Z(s, χ,1,Φ) =
τ−k(s, χ,1,Φ)

(s− s0)k
+ · · ·+ τ0(s, χ,1,Φ) + · · ·

where the τi are holomorphic functions of s in a neighbourhood of s0 and
τ−k is non-zero. The leading term τ−k is itself an intertwining operator. If
we had k > 0, that is, if the Z integral had a pole in s = s0, the restriction
of τ−k to I

(0)
n (s0, χ) would be zero because the Z integral is convergent on

I(0)
n (s0, χ) = Q(0)

n (s, χ) � S(G) · (1⊗ χ)

thus convergent for every standard section Φ(s) such that Φ ∈ I
(0)
n (s, χ).

This means that we would have a non-zero intertwining operator in
HomG×G(Q(r)

n (s, χ),1⊗ χ) for some r > 0, which is impossible by hypoth-
esis. Thus k � 0, i.e. the integral is entire for any Φ ∈ In(s0, χ). Moreover,
Z(s0, χ,1) is a non-zero intertwining operator between I

(0)
n (s0, χ) and 1⊗χ,

which means that HomG×G(I(0)
n (s0, χ),1⊗ χ) is non zero, thus has dimen-

sion 1, and that Z(s0, χ,1) is its basis.

Let λ ∈ HomG×G(In(s0, χ),1 ⊗ χ). Its restriction λ̄ to I
(0)
n (s0, χ) is a

multiple of Z(s0, χ,1). Since 1 is supposed not to appear in the boundary, if
λ �= 0, then λ̄ �= 0, i.e. λ̄ = cZ(s0, χ,1) for some c �= 0. Since λ−cZ(s0, χ,1)
is zero on I

(0)
n (s0, χ), it must be zero everywhere, i.e. λ = cZ(s0, χ,1). �

Theorem 3.9. — Let m be an even integer and χ0 the trivial character
of E×, then

∀m � 2n, HomG×G(Rn(V −m , χ0),1) = 0 ,
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so that by (ii) of Proposition 2.6

HomG×G(Rn(V −2n+2, χ0),1) �= 0

and thus m−χ0
(1) = 2n + 2. Since m+

χ0
(1) = 0, we have

m+
χ0

(1) + m−χ0
(1) = 2n + 2 .

Proof. — By (i) of Proposition 2.6, it suffices to prove that

HomG×G(Rn(V −2n, χ0),1) = 0 .

From Proposition 3.8 we know that

HomG×G

(
In

(
−n

2
, χ0

)
,1

)
is non zero and is generated by

Z
(
−n

2
, χ0,1

)
which is holomorphic at −n

2 . The element of In(−n
2 , χ0) equal to 1 on K

is χ0,G̃. As seen in [Li92, Theorem 3.1, p.186] and [LR05, Proposition 3,
p.333] we have

Z
(
−n

2
, χ0,1, φ◦, χ0,G̃

)
�= 0

and thus Z(−n
2 , χ0,1)(χ0,G̃) �= 0. Let

φ ∈ HomG×G(Rn(V −2n, χ0),1)

and

φ̃ = φ◦M∗n
(
−n

2
, χ0

)
∈ HomG×G

(
In

(
−n

2
, χ0

)
,1

)
.

We have χ0,G̃ ∈ Rn(V +
0 , χ0,G̃) = kerM∗n(−n

2 , χ0) so that φ̃(χ0,G̃) = 0. This
means that φ̃ = 0 because it is a multiple of Z

(
−n

2 , χ0,1
)
. We know from

Proposition 2.10 that the mapping

M∗n

(
−n

2
, χ0

)
: In

(
−n

2
, χ0

)
−→ Rn(V −2n, χ0)

is surjective so that φ = 0. �
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3.4. Half of the conjecture

Theorem 3.10. — Let π be an irreducible admissible representation of
G(W ), then

m+
χ (π) + m−χ (π) � 2n + 2 .

Proof. — Fix m0 ∈ {0, 1}, a character χ of E× such that χ|F× = εm0
E/F

and suppose we have two Hermitian spaces V +
a and V −b such that

θχ(π, V +
a ) �= 0 and θχ(π, V −b ) �= 0 ,

with dimV +
a = a, dimV −b = b, a and b of the parity of m0, ε(V +

a ) = 1 and
ε(V −b ) = −1. Let V −b,− be the same space as V −b with opposite form and

Wa = V +
a ⊗W, Wb = V −b ⊗W, Wb,− = V −b,− ⊗W.

We denote ωa,χ (resp. ωb,χ, ωb,−,χ) the representations of G induced by
the representations ωa,ψ (resp. ωb,ψ, ωb,−,ψ) of Mp(Wa) (resp. Mp(Wb),
Mp(Wb,−)). By hypothesis on V +

a and V −b we have two non-zero (and thus
surjective) elements

λ ∈ HomG(ωa,χ, π), µ ∈ HomG(ωb,χ, π) .

Let g0 ∈ GLF (W ) be an F -automorphism of W which is conjugate-linear
as an E-morphism. Then Ad(g0) is a MVW involution on G. Conjugating
µ and π by Ad(g0) we get a non-zero morphism

µ∨ ∈ HomG(ω∨b,χ, π
∨)

and thus a surjective

ν0 = λ⊗ µ∨ ∈ HomG×G(ωa,χ ⊗ ω∨b,χ, π ⊗ π∨) .

We consider the projection of ν0 on the trivial subquotient and see it as
a G-homomorphism through the diagonal action of G. We get a non-zero
element

ν ∈ HomG(ωa,χ ⊗ ω∨b,χ,1) .

We have
ω∨b,ψ � ωb,ψ � ωb,−,ψ.

3

On the other hand we can identify Mp(Wb) and Mp(Wb,−) in which case
we get the following

(3) The first isomorphism holds true because ωb,ψ is unitary, the second because of
the definition of r(g) in 2.3
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Lemma 3.11. — We have

ı̃b,χ � ı̃b,−,χ−1 ,

where we added a subscript to ı̃ to remember which Hermitian space is in-
volved.

Proof. — The space V −b can be decomposed as an orthogonal direct sum
of a split space and zero, one or two anisotropic lines. Since the splitting ı̃
is additive, we consider separately the split and the anisotropic case.

We first consider the case in which V −b is split. We will need some ad-
ditional notations (see [HKS96, n.10, p.950]). For any additive character η
of F and a ∈ F we will let ηa be the character such that ηa(x) = η(ax),
γF (η) ∈ µ8 is the Weil index of the quadratic character x �−→ η(x2) and
γF (a, η) = γF (ηa)

γF (η) . Recall that (see [HKS96, n.11, p.950])

γF (ab, η) = (a, b)F γF (a, η)γF (b, η) .

Let η be the character such that η(x) = ψ( 1
2x) (i.e. η = ψ 1

2
). For g ∈ G,

we denote j(g) the integer such that i(g, In) ∈ PY δj(g)i(G × G). Since V −b
is split we have (see [HKS96, 1.15, p.953]),

ı̃b,χ(g) = (ıb(g), βV −
b

,χ(g))

with
βV −

b
,χ(g) = χ(x(g))γF (η◦RV )−j(g)

where
γF (η◦RV ) = (∆,detV −b )F γF (−∆, η)bγF (−1, η)−b.4

Let

ϕ : Sp(Wb) × C1 � Mp(Wb) −→ Sp(Wb,−) × C1 � Mp(Wb,−)
(g , z) �−→ (g , z)

be the identification. Then χ(x(g)) = χ−1(x(g)) and

γF (−∆, η)γF (−1, η)−1 =
(
γF (η−∆)
γF (η−1)

)
=

γF (η∆)
γF (η1)

= γF (∆, η)γF (1, η)−1

= (∆,−1)F γF (−∆, η)(−1,−1)F γF (−1, η)−1

= (∆,−1)F γF (−∆, η)γF (−1, η)−1

(4) for this single proof, we fix δ ∈ E× − F× such that ∆ = δ2 ∈ F× and use it to
identify the Hermitian and skew-Hermitian spaces
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thus, since detV −b,− = (−1)b detV −b , we have βV −
b

,χ(g) = βV −
b,−,χ−1(g) and

ϕ◦ı̃b,χ = ı̃b,−,χ−1

as claimed.

We now consider the case in which V −b is an anisotropic line. We identify
V −b with E and if (x, y) ∈ E2, we have 〈x, y〉 = axy for some a ∈ F . If
g ∈ G(V −b ) = E1, we decompose g = x + δy (with x, y ∈ F ) and we have
(see [Kud94, Proposition 4.8, p.396])

βV −
b

,χ(g) = χ(δ(g − 1))γF (2ay(x− 1), η)γF (η)(∆,−2y(1− x))F

= χ(δ(g − 1))γF (η2ay(x−1))(∆,−2y(1− x))F

and
βV −

b,−,χ(g) = χ(δ(g − 1))γF (η−2ay(x−1))(∆,−2y(1− x))F .

It is immediate that βV −
b,−,χ−1(g) = βV −

b
,χ(g) and

ϕ◦ı̃b,χ = ı̃b,−,χ−1

as claimed. �

Let
Va,b,− = V +

a ⊕ V −b,−, Wa,b,− =Wa ⊕Wb,−

and let, as before, χ0 be the trivial character of E×. We denote, as above,
ωa,b,−,χ0 the representation of G induced by the Weil representation ωa,b,−,ψ.
Let

ı̃ : Mp(Wa)×Mp(Wb,−) −→ Mp(Wa,b,−)

be the natural map whose restriction to C1 is the product. Then

ı̃∗ωa,b,−,ψ = ωa,ψ ⊗ ωb,−,ψ .

According to [HKS96, Lemma 5.2, p.964],

ı̃a,b,−,χ0 = ı̃◦(̃ıa,χ × ı̃b,−,χ−1)◦∆ : G −→ Mp(Wa,b,−).

Thus as a representation of G we have

ωa,χ ⊗ ωb,−,χ−1 � ωa,b,−,χ0 .

We thus have a non-zero element

ν ∈ HomG(ωa,χ ⊗ ω∨b,χ,1) � HomG(ωa,b,−,χ0 ,1) .
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We have dimVa,b,− = a + b even. Let us compute ε(Va,b,−):

ε(Va,b,−) = (−1)
(a+b)(a+b−1)

2 detVa,b,−

= (−1)
a(a−1)+ab+ba+b(b−1)

2 detV +
a detV −b,−

= (−1)
a(a−1)+b(b−1)

2 +ab detV +
a (−1)b detV −b

= (−1)ab+b(−1)
a(a−1)

2 detV +
a (−1)

b(b−1)
2 detV −b

= (−1)ab+bε(V +
a )ε(V −b ) .

Since both ab and b have the parity of m0 we have ε(Va,b,−) = ε(V +
a )ε(V −b ) =

−1. Thus, according to Theorem 3.9

a + b � 2n + 2

as needed. �

3.5. Criterion

Definition 3.12. — For a given m ∈ {0, ..., 2n}, let m′ = 2n − m.
The space V ±m′ is said to be complementary to V ±m (the space V −2n has no
complementary).

Remark 3.13. — If V ±m′ is complementary of V ±m , then s′0 = m′−n
2 =

2n−m−n
2 = n−m

2 = −s0.

Theorem 3.14. — Fix m0 ∈ {0, 1} and a character χ of E× such that
χ|F× = εm0

E/F . Suppose that

dim HomG×G(In(s0, χ), π ⊗ (χ · π∨)) = 1

for all s0 in { {
−n

2 , 1−
n
2 , ...,

n
2 − 1, n

2

}
if m0 = 0{

1−n
2 , 3−n

2 , ..., n−3
2 , n−1

2

}
if m0 = 1,

i.e. for all s0 ∈ m0
2 + Z such that |s0| � n

2 . Then

m+
χ (π) + m−χ (π) = 2n + 2 .

To prove the theorem, we will need the composition series for In(s0, χ)
in each case where it is reducible. Using [KS97], we give here those series
explicitly with indication of the action of the operators M∗(s0, χ). In the
diagram we have implicitly m′ = 2n − m. Note that V −0 does not exist,
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but we define the space Rn(V −0 , χ) as the zero-dimensional subspace in
Rn(V +

0 , χ).

0 ⊂ Rn(V
+
0 , χ) ⊂ I(−n

2
, χ)

Rn(V
−
0 , χ) M∗(n

2
, χ)(Rn(V

+
2n, χ)) M∗(n

2
, χ)(I(n

2
, χ))

M∗(n
2
, χ)(Rn(V

+
2n, χ)) KerM∗(−n

2
, χ) m = 0, s0 = −n

2

M∗(−s0, χ)(Rn(V
+
m′ , χ))

Rn(V
+
m , χ)

⊂
0

⊂

⊂
Rn(V

+
m , χ)⊕Rn(V

−
m , χ) ⊂ In(s0, χ)

Rn(V
−
m , χ)

⊂
KerM∗(s0, χ)

M∗(−s0, χ)(Rn(V
−
m′ , χ)) 1 � m < n, −n

2
< s0 < 0

M∗(0, χ)(Rn(V
+
n , χ))

Rn(V
+
n , χ)

⊂
0

⊂

⊂
Rn(V

+
n , χ)⊕Rn(V

−
n , χ) = I(0, χ)

KerM∗(0, χ) Rn(V
−
n , χ)

⊂

M∗(0, χ)(Rn(V
−
n , χ)) m = n, s0 = 0

Rn(V
+
m , χ)

⊂
0 ⊂ Rn(V

+
m , χ) ∩Rn(V

−
m χ)
⊂

⊂
Rn(V

+
m , χ) +Rn(V

−
m , χ) = In(s0, χ)

ImM∗(−s0, χ) Rn(V
−
m , χ)

⊂

KerM∗(s0, χ) n < m < 2n, 0 < s0 <
n
2

0 ⊂ Rn(V
−
2n, χ) ⊂ Rn(V

+
2n, χ) = In

n
2
, χ

ImM∗(−n
2
, χ)

KerM∗(n
2
, χ) m = 2n, s0 = n

2

,

=
=

=

=
=

=

=
=

=

=

=

=
=

=
=

In each case an inclusion sign means that the quotient is non-zero and
irreducible.
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Proof. — Fix m0 ∈ {0, 1} and a character χ of E× such that
χ|F× = εm0

E/F . For 0 � m′ � 2n, we put m = 2n − m′ and recall that
s0 = m−n

2 .

The case m+
χ (π) = 0 is immediate because it implies π = 1 and Theorem

3.9 says that m−χ (π) = 2n + 2.

If s0 � 0 we have In(s0, χ) = Rn(V +
m , χ) + Rn(V −m , χ) and thus, thanks

to the hypothesis of the theorem, at least one of

HomG×G(Rn(V ±m , χ), π ⊗ (χ · π∨))

is non zero. Thanks to Proposition 2.8 this in turn means that

min(m+
χ (π),m−χ (π)) � n + 1

(the bound is n + 1 and not n in case m and n have opposite parity). If
s0 >

n
2 then In(s0, χ) is irreducible and thus

Rn(V ±m , χ) = In(s0, χ) .

Since we have m > 2n > min(m+
χ (π),m−χ (π)), by the persistence principle

(see Proposition 2.6, point (1.)) we have

HomG×G(Rn(V ±m , χ), π ⊗ (χ · π∨)) �= 0

for one and thus both signs ±. This means max(m+
χ (π),m−χ (π)) � 2n+2−

m0.

Let ε = ± be such that mε
χ(π) = min(m+

χ (π),m−χ (π)). We let m′ be
mε

χ(π) (and choose m and s0 accordingly). As observed above, the case
m′ = 0 has already been proved. If m′ = 1, then from Theorem 3.10 we have
m−ε

χ (π) � 2n+1 and thus, thanks to the preceding bound, m−ε
χ (π) = 2n+1

(observe that if m′ = 1 then m0 = 1).

We now suppose 2 � m′ � n + 1, i.e. − 1
2 � s0 � n

2 − 1. By Theorem
3.10 we thus have m−ε

χ (π) � 2n+ 2−m′ � n+ 1. Since m′ is the minimum
of m±χ (π), we have

HomG×G(Rn(V +
m′−2, χ)⊕Rn(V −m′−2, χ), π ⊗ (χ · π∨)) = 0 (3.9)

(here Rn(V −0 , χ) = 0 as defined above). This means that any element of
HomG×G(In(−s0 − 1, χ), π ⊗ (χ · π∨)) factors through

In(−s0 − 1, χ)/Rn(V +
m , χ)⊕Rn(V −m , χ) � ImM∗(−s0 − 1, χ)
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and thus

dim HomG×G(ImM∗(−s0 − 1, χ), π ⊗ (χ · π∨)) = 1 .

On the other hand, let

µ ∈ HomG×G(In(s0 + 1, χ), π ⊗ (χ · π∨))

with µ �= 0. Suppose
µ
∣∣
Rn(V −ε

m+2)
= 0 .

Then, since µ �= 0 we have

µ
∣∣
Rn(V ε

m+2)
= 0 ,

and thus

HomG×G(Rn(V −ε
m+2)/Rn(V −ε

m+2) ∩Rn(V ε
m+2), π ⊗ (χ · π∨)) �= 0 .

But M∗(s0 + 1) identifies

Rn(V −ε
m+2)/Rn(V −ε

m+2) ∩Rn(V ε
m+2)

with Rn(V −ε
m′−2). This means that

HomG×G(Rn(V −ε
m′−2), π ⊗ (χ · π∨)) �= 0 .

From (3.9), we know that this is impossible. Hence µ must be non-zero on
Rn(V −ε

m+2) thus
m−ε

χ (π) � m + 2 = 2n + 2−m′ .

We thus have m+
χ (π) + m−χ (π) = 2n + 2 as claimed. �
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Appendix

A. Completion of a proof

As announced in the introduction, we want to add a missing statement
in the proof of [Har07, Theorem 3.4, p.128]. In the proof of the theorem,
one should check that the spherical vector of the representation In(s, α∗)
belongs to Rn(V +

m ) for almost all places v. We prove it here in the following
lemma.

Lemma A.1. — We suppose E/F , V , W , m, n, G, H, W, X, Y, χ and
ψ are as above. We suppose in addition that E/F , χ and ψ are unramified.
Then for any s = m−n

2 the spherical vector of In(s, χ) is in Rn(V +
m , χ).

Proof. — The spherical vector of In(s, χ) is the unique element Φ◦ such
that Φ◦(K) = {1}. Thus one only needs to check that there is an element
in Φ ∈ Rn(V +

m , χ) such that Φ(K) = {1}. Remember that

Rn(V +
m , χ) = {g �−→ ωχ(g)ϕ(0) : ϕ ∈ S(X)} .

We let V be any of the two spaces V ±m . The action of G over the space
S(X) can be summarised by (see [KS97, top of p.280]):

ωχ(m(a))ϕ(x) = χ(det a)|det a|
n
2
Eϕ(x · a)

ωχ(n(b))ϕ(x) = ψ(tr((x, x)b))ϕ(x)

ωχ(δr)ϕ(x) = γ−r

∫
V r

ψ
(
TrE/F tr(x′′, z)

)
ϕ(x′ + z)dz

with the following conventions for the last integral: V is decomposed as
V n−r ⊕ V r, x = x′ + x′′ according to this decomposition and the Haar
measure dz is the r-power of the Haar measure of V which is self-dual for
the Fourier transform defined by the pairing ψ◦TrE/F ( , ) and γ is a quotient
of Weil indexes of quadratic forms.

If k ∈ P ∩ K, we obviously have ωχ(k)ϕ(0) = ϕ(0). An element f ∈
In(0, χ) is spherical if and only if ∀k ∈ K, f(k) = f(In) �= 0. Thus the
spherical vector of In(0, χ) will be in Rn(V, χ) if and only if ωχ(δr)ϕ(0) =
ϕ(0) for all r (and ϕ(0) �= 0).

We now suppose that V = V +; remember that the uniformiser H of F
is an uniformiser for E. We choose an orthonormal basis (v1, . . . , vn) of V .

We first compute the Haar measure of V . Let V◦ be the OE-module
generated by (v1, ..., vn) in V and ϕ◦ its characteristic function. After iden-
tification of V ∗ with V thanks to ψ◦TrE/F ( , ), the Fourier transform of ϕ◦
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is
ϕ̂◦(y) =

∫
V

ψ
(
TrE/F (x, y)

)
ϕ(x)dx .

We readily see that ϕ̂◦ = µ(O◦)ϕ◦ so that

̂̂
ϕ◦ = µ(O◦)2ϕ◦

which means that the measure has to be normalised by µ(O◦) = 1.

We now compute γ in both cases for W : Hermitian or skew-Hermitian.
Its precise definition, taken from [Kud94, Theorem 3.1, p.378, case 3+], is
as follows. Fix δ ∈ E× be such that E = F (δ) and ∆ = δ2 ∈ F×. Then

γ = (detV,∆)F γF (−∆, η)mγF (−1, η)−m .

Since E/F is unramified, ∆ has valuation 0. Looking at [Rao93, Prop A.11,
p.369] we readily see that γF (−∆, η) = γF (−1, η) = 1. One should note
that the correct formula for γF (a, η) in Proposition A.11 should be

γF (a, η) =
(

ū

F

)α(η)

·
{(

ū

F

)
γF (η̄)

}α(a)

but that does not change anything for us because α(η) = 0 anyway. Since
V = V +, we have (detV,∆)F = 1 and thus γ = 1. Observe that this remains
true if W is skew-Hermitian (case 3− of [Kud94]) because the definition of
γ differs between the two cases by a scaling by δ for V and the product by
χ(δ); since δ has valuation 0 this does not change γ. �

This allows us to slightly reformulate [Har07, Theorem 3.2, p.125], since
one hypothesis is now proved.

Th. 3.2 (Harris). —Let G = GU(W ), a unitary group with signature
(r, s) at infinity, and let π be a cuspidal automorphic representation of G.
We assume π ⊗ χ occurs in anti-holomorphic cohomology H̄rs(Sh(W ), Eµ)
where µ is the highest weight of a finite-dimensional representation of G. Let
χ, α be algebraic Hecke characters of K× of type ηk and η−1

κ , respectively. Let
s0 be an integer which is critical for the L-function Lmot,S(s, π ⊗ χ, St, α);
i.e. s0 satisfies the inequalities (3.3.8.1) of [Har97]:

(∗∗) n− κ

2
� s0 � min(qs+1(µ) + k − κ−Q(µ), ps(µ− k − P(µ)),

Define m = 2s0− κ. Let α∗ denote the unitary character α/|α| and assume

(3.2.1) α∗|A×
Q

= εmK .
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An inequality for local unitary Theta correspondence

Suppose there is a positive-definite hermitian space V of dimension m
and a finite set S of finite primes such that

(a) For every finite v in S, πv does not occur in the boundary at s0 for
α∗v, and πv is ambiguous for m and α∗;

(b) For every finite v, Θα∗(πv ⊗ χv, Vv) �= 0;
(c) For every finite v outside S, all data (πv, χv, αv, and the additive

character ψv) are unramified.

Then

(i) One can find a factorizable vector φf ∈ In(s, α∗)f such that for every
finite v, φv ∈ Rn(Vv, α

∗) and φf takes values in (2πi)(s0+κ)nL ·Qab and two
factorizable vectors ϕ ∈ π ⊗ χ, ϕ′ ∈ α∗ · (π ⊗ χ)∨ arithmetic over the field
of definition E(π) of πf .

(ii) Suppose ϕ is as in (i). Then

Lmot,S(s0, π ⊗ χ, St, α) ∼E(π,χ(2)·α);K P (s0, k, κ, π, ϕ, χ, α)

where P (s0, k, κ, π, ϕ, χ, α) is the period

(2πi)s0n−nw2 +k(r−s)+κsg(ε[
n
2 ]

K ) · πcP (s)(π, ∗, ϕ)g(α0)sp((χ(2) · α)∨, 1)r−s

appearing in Theorem 3.5.13 of [Har97].

Proof. — With respect to the original theorem we just removed the
existence of factorizable vectors in π ⊗ χ and α∗ · (π ⊗ χ)∨ , the existence
of φf and, accordingly, condition (a). The fact that there are factorizable
vectors in π ⊗ χ and α∗ · (π ⊗ χ)∨ is well known. We know that for any v
such that no data ramifies (neither the extension nor the characters), then
the spherical vector φ◦v is in Rn(V +

m,v). However for all but finitely many v,
we have Vv � V +

m,v. Denote S′ the set of primes that are either infinite or
such that some data ramify or such that Vv �� V +

m,v. Then for v �∈ S′, let
φv = φ◦v the spherical vector. For any finite v ∈ S′, let φv be any element
of Socn,m(s). Then φf = ⊗φv ∈ In(s, α∗)f satisfies condition (a) of [Har07,
Theorem 3.2]. Thus the hypotheses of Harris’ Theorem are verified. �
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