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The modulus of analytic classification
for the unfolding of the codimension-one flip

and Hopf bifurcations

Waldo Arriagada-Silva(1), Christiane Rousseau(2)

ABSTRACT. — In this paper we study equivalence classes of generic 1-
parameter germs of real analytic families Qε unfolding codimension 1
germs of diffeomorphisms Q0 : (R, 0) → (R, 0) with a fixed point at the
origin and multiplier −1, under (weak) analytic conjugacy. These germs
are generic unfoldings of the flip bifurcation. Two such germs are ana-
lytically conjugate if and only if their second iterates, Pε = Q◦2ε , are
analytically conjugate. We give a complete modulus of analytic classifica-
tion: this modulus is an unfolding of the Ecalle modulus of the resonant
germ Q0 with special symmetry properties reflecting the real character
of the germ Qε. As an application, this provides a complete modulus of
analytic classification under weak orbital equivalence for a germ of family
of planar vector fields unfolding a weak focus of order 1 (i.e. undergo-
ing a generic Hopf bifurcation of codimension 1) through the modulus of
analytic classification of the germ of family Pε = Q◦2ε , where Pε is the
Poincaré monodromy of the family of vector fields.

RÉSUMÉ. — Dans cet article, nous étudions la classification sous conju-
gaison analytique (faible) des germes de familles analytiques génériques
à un 1 paramètre, Qε, déployant des germes de difféomorphismes Q0 :
(R, 0) → (R, 0) de codimension 1, ayant un point fixe à l’origine et de
multiplicateur −1. Ces germes sont des déploiements génériques de la bi-
furcation de doublement de période. Deux germes sont analytiquement
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conjugués si et seulement si leurs itérés d’ordre 2, Pε = Q◦2ε , sont an-
alytiquement conjugués. On donne un module complet de classification
analytique: ce module est un déploiement du module d’Écalle du germe
résonant Q0 avec des propriétés de symétrie reflétant le caractère réel du
germe Qε. Ceci donne, comme application, un module complet de classifi-
cation analytique sous équivalence orbitale faible pour un germe de famille
de champs de vecteurs du plan ayant une bifurcation de Hopf générique
de codimension 1 par le biais du module de classification analytique du
germe de famille Pε = Q◦2ε , où Pε est l’application de premier retour de
Poincaré de la famille de champs de vecteurs.
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The modulus of analytic classification

1. Introduction

This paper is part of a program to study the analytic classification of
generic unfoldings of the simplest singularities of analytic dynamical sys-
tems. These dynamical systems can be germs of diffeomorphisms, in which
case we study classification under conjugacy, or germs of vector fields, in
which case we can study either classification under orbital equivalence or
under conjugacy. The analytic classification of unfoldings of singularities fol-
lows the analytic classification of the singularities themselves. The moduli
of classification for the simplest 1-resonant singularities have been given by
Ecalle, Voronin and Martinet-Ramis (cf. [4], [19] and [12],[13]). Except for
the case of the node of a planar vector field, the moduli space is a huge func-
tional space, while the formal invariants are in finite number. This means
that there is an infinite number of analytic obstructions for the analytic
equivalence of two germs, that cannot be seen at the formal level.

These obstructions can be understood when first, one extends the under-
lying space from Rn to Cn, n = 1, 2 and then, one unfolds the singularity.
Indeed, in the simplest 1-resonance cases, the singularity of the dynamical
system comes from the coallescence in a generic unfolding of the dynamical
system of a finite number of hyperbolic singularities or special hyperbolic
objects (like a periodic orbit or a limit cycle). Each hyperbolic object has
its own geometric local model, and the modulus measures the limit of the
mismatch of these local models. It is also a measure of the divergence of
the normalizing series to formal normal form. Hence, if a singularity is non
equivalent to its formal normal form, then we should expect a mismatch
between the local models near the two hyperbolic objects in the unfolding.
This was the point of view suggested by Arnold and Martinet [11] and stud-
ied systematically by Glutsyuk [8] when the unfolding is considered only in
certain conic regions of the parameter space considered in complex space.
The treatment had to be adapted by Lavaurs and followers when the bifur-
cating objects were no more hyperbolic or when the domains of the local
models did not intersect.

As far as codimension 1 singularities are concerned, the case of a germ
of generic unfolding of a diffeormorphism with a double fixed point, also
called parabolic diffeomorphism has been studied in [3] and [10], and the
case of a germ of generic unfolding of a resonant diffeomorphism (one mul-
tiplier being a root of unity) has been studied in [15] and [16]. Germs of
generic unfoldings of resonant saddle (resp. saddle-node) singularities of
planar vector fields have been studied in [16] (resp. [17]). All these papers
consider the unfolding of the corresponding complex singularity. The paper
[15] also considers briefly the case of a saddle point of a real vector field.
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The modulus of the unfolding is always constructed in the same way.
The formal normal form for the unfolding is identified and called the model
family. The germ of family is then compared to the formal normal form on
special domains. The modulus is given by the comparison of the two nor-
malizations over the intersection of the special domains. When one restricts
to parameter values for which the special objects are hyperbolic and the
normalization domains intersect, then the modulus is given by the compar-
ison of the normalizations in the neighborhood of the special objects. This
is called the Glutsyuk point of view and the corresponding modulus is called
the Glutsyuk modulus. In the papers [3], [15], [16] and [17], another point
of view was used, called the Lavaurs point of view. The Lavaurs point of
view allows to compute the modulus for all values of the parameters. The
domains on which we compare the germ of family to the formal normal form
(model family) are no more neighborhoods of the special objects, but sec-
torial domains adjacent to two special objects. The corresponding Lavaurs
modulus depends in a ramified way on the parameter. In particular, there
are two different definitions of the Lavaurs modulus for the parameter values
for which the Glutsyuk modulus can be defined.

In this paper, we are concerned with the real character of a germ Qε of
an analytic family of diffeomorphisms with a flip bifurcation:

Qε(x) = −x(1 − ε) ± x3 + o(x3).

We study how this is reflected in the modulus. So, we are especially inter-
ested in the real values of the parameter. In particular, for nonzero values of
the parameter, we are in the Glutsyuk point of view. Hence, in this paper,
we have decided to make a profound analysis of the Glutsyuk modulus for
the case of the unfolding of a periodic diffeomorphism and to determine
how the real character of the diffeomorphism is reflected in the modulus.
For this reason, our study is restricted to the union of two sectors in the
(complexified) parameter space which do not cover a full neighborhood of
the origin. As an implication, we only obtain a modulus of classification
under weak orbital equivalence.

Our paper was initially motivated by the study of the Hopf bifurca-
tion. In [1], it is shown that two germs of analytic families of planar vector
fields with a generic Hopf bifurcation of order 1 are orbitally analytically
equivalent if and only if the germs of analytic families of their Poincaré
monodromies are conjugate. The (unfolded) Poincaré monodromy is ex-
actly a real diffeomorphism Pε : (R, 0) → (R, 0), which is the second iterate
of a Poincaré semi-monodromy Qε with a flip bifurcation. Hence, through
this result, the present paper provides a complete modulus of classification
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under weak orbital equivalence for germs of families undergoing a generic
codimension-one Hopf bifurcation.

2. Preparation of the family

We consider a germ of codimension-one real analytic diffeomorphism Q0

with a fixed point at the origin and a multiplier equal to −1. Under scaling
of x and removing the x2-term by a normal form argument, such a germ of
diffeomorphism has the form

Q0(x) = −x∓ 1
2x

3 + ax5 + o(x5). (2.1)

A generic 1-parameter unfolding is a germ of family of diffeomorphisms

Qη(x) = Q(x, η) such that ∂2Q
∂x∂η (0, 0) �= 0.

It was shown in [16] that two generic families Qη unfolding germs of
the form (2.1) are conjugate if and only if their second iterate Pη = Q◦2η
are conjugate. One direction is obvious. The other direction, namely prov-
ing that if the second iterates are conjugate, then the diffeomorphisms are
also conjugate requires more work. The proof in [16] was done for complex
germs. In the case of real analytic germs a better proof of the other di-
rection is given in [1], [2] for the case of families of real diffeomorphisms
Qη. Indeed, given any two conjugate generic families of real analytic dif-
feomorphims of the form Pη = Q◦2η , it is proved that they are embeddable
as Poincaré monodromies of analytic vector fields unfolding a weak focus,
which are analytically orbitally equivalent (a weak focus of a real vector
field is a singular point with two pure imaginary eigenvalues and which is
not a centre). Considering afterwards their blow-up and the holonomies of
a well-chosen separatrix in the blow-up, these holonomies are in turn conju-
gate (cf. [9]). But these holonomies are nothing else than the corresponding
diffeomorphisms Qη. So we will mainly discuss Pη.

Since the families Pη = Q◦2η have real asymptotic expansion, then

Qη = C ◦ QC(η) ◦ C,
Pη = C ◦ PC(η) ◦ C, (2.2)

where C is the standard complex conjugation x 
→ x. In this paper we
consider real analytic families unfolding codimension-one diffeomorphisms
of the form (2.1), and their second iterates. The following theorem is proved
in [16] for a family of complex diffeomorphisms. Its proof can be adapted
to respect the real character of Qη. For the sake of completeness we include
the main steps here.
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Theorem 2.1. — Given a germ of diffeomorphims Q0 of the form (2.1)
and a germ of generic unfolding Qη, there exists a germ of real analytic
change of coordinate and parameter (x, η) 
→ (y, ε) conjugating the family
Pη = Q◦2η to the prepared form

P̃ε(y) = y + y(ε± y2)(1 + b(ε) + a(ε)y2 + y(ε± y2)h(y, ε)), (2.3)

such that P̃ ′ε(0) = exp(ε). In particular, the parameter ε is called canonical.
It is an invariant. The formal invariant A(ε) is defined implicitly through
the expression

P̃ ′ε(±
√−sε) = exp

(
− 2ε

1 − sA(ε)ε

)
, (2.4)

where A(ε) is real analytic, and s = ±1 is an invariant defining two different

cases which are not equivalent by real conjugacy. Let Q̃ε be the conjugate
of Qη in the (y, ε) coordinate and parameter. Conjugating P̃ε either with

y 
→ −y or Q̃ε yields other prepared forms with same canonical parameter.

Proof. — By the implicit function theorem we can suppose that x = 0 is
a fixed point for all η. By the Weierstrass-Malgrange preparation theorem,
the other two fixed points of Pη (which are periodic points of period 2
of Qη) are the roots of pη(x) = x2 + β(η)x + γ(η), with γ′(0) �= 0 since
the family is generic. Because it is a flip bifurcation, the periodic points of
Qη can only coincide when they are equal to x = 0. Hence, β(η) ≡ 0. A
reparametrization allows to take γ(η) = ±η1. Then, the map Pη has the
form

Pη1(x) = x+ x(η1 ± x2)(b1(η1) + c1(η1)x+ a1(η1)x
2 + x(η1 ± x2)g(x, η1)),

with b1(0) �= 0. Since the fixed points ±√η1 are periodic points of Qη1 of
order 2, then P ′η1(

√
η1) = P ′η1(−

√
η1). Hence, c1(η1) ≡ 0. Then P ′η1(0) =

1+ η1b1(η1) with b1(0) �= 0. An analytic change of parameter η1 
→ ε allows
to suppose that P ′ε(0) = exp(ε). A corresponding scaling in x (replacing x
by y = c(ε)x) allows to suppose that the fixed points of Pε are given by
y(ε±y2) = 0 and yields the prepared form. The analyticity of A(ε), defined
in Eq. (2.4), is well known and its real character is straightforward. �

From now on, we will limit ourselves to prepared families Qε such that
Pε = Q◦2ε has the form

Pε(x) = x+ x(ε+ sx2)(1 + b(ε) + a(ε)x2 + x(ε+ sx2)h(x, ε)), (2.5)

where s = ±1. We will mostly discuss the case s = +1. In particular, all
the figures will be drawn only for this case. The case s = −1 is obtained
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through x 
→ ix. This non-real change of coordinates exchanges the real and
imaginary axes.

Strategy. The formal normal form of Pε (also called “model family”) is
the time-one map τ1

ε of the vector field

x(ε+ sx2)

1 +A(ε)x2

∂

∂x
, (2.6)

where A(ε) is defined in Eq. (2.4). Notice that the real axis is invariant
for real ε. In order to compute the modulus of analytic classification of
the Poincaré monodromy, we compare it with τ1

ε for ε taken over specific
sectorial domains of the parameter space.

3. The modulus of analytic classification

In order to solve the conjugacy problem for germs of families of analytic
diffeomorphisms (2.5), a complete modulus of analytic classification must
be identified, so that two germs of families of analytic diffeomorphisms are
analytically conjugate if and only they have the same modulus (Theorem
7.2). We shall see that this modulus is an unfolding of the Ecalle modulus for
the germ of diffeomorphism at ε = 0, and so we recall the Ecalle modulus.

3.1. The Ecalle modulus of Q0

Two germs of analytic diffeomorphisms of the form (2.1) with same sign
before the cubic coefficient are real analytically conjugate if and only if they
have the same formal invariant A(ε) and the same orbit space. The Ecalle
modulus is one way to describe the orbit space. To explain its construction
we first remark that the diffeomorphism Q0 is topologically like the com-
position of x 
→ −x with the time-1/2 map of the vector field (2.6), whose
flow lines appear in Figure 1, while the diffeomorphism P0 is topologically
like the time-1 map of Eq. (2.6).

So, we take a first fundamental domain (for P0) C
+
1 limited by a curve

�1 and its image P0(�1). If we identify x ∈ �1 with its image P0(x), the
fundamental domain is conformally equivalent to a sphere S+

1 . The ends of
the crescent C+

1 limited by �1 and P0(�1) correspond to the points 0 and
∞ on the sphere. All orbits of P0 (except that of 0) are represented by a
most one point of the sphere S+

1 . However, there exist points in the neighbor-
hood of 0 whose orbits have no representative on the sphere S+

1 . To cover the
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P0(x)

C−
1

C−
1

s = +1 s = −1

C+
2

C+
2

C−
2

C−
2

C+
1

C+
1

∞∞

∞∞

00

0 0

ψ∞
1,0

ψ0
2,0

ψ∞
2,0

ψ0
1,0

S+
1 S−1

S+
2S−2

Figure 1. — The flow of Eq. (2.6) in the cases s = ±1 and the Ecalle modulus of Q0.

whole orbit space we need to take three other fundamental neighborhoods
C−1 , C

+
2 , C

−
2 limited by curves �j and their images P0(�j), j = 2, 3, 4, re-

spectively. As before, we identify x ∈ �j with its image P0(x) and the union
of these fundamental domains is also conformally equivalent to a union of
spheres S−1 ,S

+
2 ,S

−
2 . But there are points in the neighborhood of 0 (resp. ∞)

which lie in different spheres but belong to the same orbit. So we need to
identify a neighborhood of 0 (resp. ∞) with a neighborhood of 0 (resp. ∞)
in two different spheres. This is done via a collection of analytic diffeomor-
phisms ψ0

1 , ψ
0
2 (resp. ψ∞1 , ψ

∞
2 ) sending 0 to 0 (resp. ∞ to ∞), so that we

get a non-Hausdorff topological manifold endowed with a system of analytic
charts given by the collection of spheres glued at the poles by the maps ψ0

j

and ψ∞j . The size of the neighborhoods of 0 and ∞ depends on the size
of the neighborhood of the origin where P0 is defined, but the germs of
analytic diffeomorphims:

ψ0
1 , ψ

0
2 : (C, 0) → (C, 0)

ψ∞1 , ψ
∞
2 : (C,∞) → (C,∞)

are almost intrinsic as maps in the sphere w-coordinate. Indeed, the only
analytic changes of coordinates on the spheres S±j preserving 0 and ∞ are the
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linear maps. If we choose different coordinates on S±j we get different germs

(ψ̂0
j , ψ̂

∞
j ). The equivalence relation corresponding to changes of coordinates

on S±j and preserving 0 and ∞ is given by

(ψ0
1 , ψ

0
2 , ψ

∞
1 , ψ

∞
2 ) ∼ (ψ̂0

1 , ψ̂
0
2 , ψ̂

∞
1 , ψ̂

∞
2 ) ⇐⇒ ∃ C±1 , C

±
2 ∈ C :

{
ψ̂0

1(w) = (C−2 )−1 · ψ0
1(C+

1 · w),

ψ̂0
2(w) = (C−1 )−1 · ψ0

2(C+
2 · w),

{
ψ̂∞1 (w) = (C−1 )−1 · ψ∞1 (C+

1 · w),

ψ̂∞2 (w) = (C−2 )−1 · ψ∞2 (C+
2 · w).

The identity P0 = Q◦20 is reflected by the fact that it is possible to choose
representatives of the modulus such that

{
ψ0

1(−w) = −ψ0
2(w),

ψ∞1 (−w) = −ψ∞2 (w)

(see Lemma 6.2 for a proof in the unfolded case). We have a second equiv-
alence relation induced by the action of Z2 mapping x 
→ −x in prepared
families (2.5)

(ψ0
1 , ψ

0
2 , ψ

∞
1 , ψ

∞
2 ) ≡ (ψ0

2 , ψ
0
1 , ψ

∞
2 , ψ

∞
1 ).

Definition 3.1. — The Ecalle-modulus of the diffeomorphism P0 is given
by the tuple (ψ0

1 , ψ
0
2 , ψ

∞
1 , ψ

∞
2 ), modulo the equivalence relations ∼ and ≡ .

Over a small neighborhood Dr of the origin (where Dr is the standard radius-
r open disk of the complex plane), the dynamics of P0 is given along the
flow curves of the field (2.6). All the study of the family Pε will be done
over that fixed neighborhood U = Dr for sufficiently small values of ε.

3.2. Glutsyuk point of view in the spherical coordinate

If δ ∈ (0, π/2), we define the following sectorial domains in the parameter
space, see Figure 2:

Vδ,l = {ε ∈ C : |ε| < ρ, arg(ε) ∈ (
π

2
+ δ,

3π

2
− δ)}

Vδ,r = {ε ∈ C : |ε| < ρ, arg(ε) ∈ (−π
2

+ δ,
3π

2
− δ)}

(3.7)

and ρ is a small real number depending on δ. We assume that 0 ∈ Vδ,lr and
denote

V ∗δ,lr = Vδ,lr\{0}.
The number ρ is chosen so that for values ε ∈ V ∗δ,lr, there exist orbits
connecting the fixed points in U. In this case, we say that we work in the
Glutsyuk point of view (Figure 3). When s = +1, it is clear that:
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• If ε ∈ V ∗δ,l, the origin is an attractor and the two real singular points

x± = ±√−ε are repellers in U.

• If ε = 0, the origin is the only (non-hyperbolic) fixed point.

• If ε ∈ V ∗δ,r, the origin is a repeller and two additional imaginary
attracting singular points are created in U.

Vδ,l Vδ,r

Figure 2. — Sectorial domains for the parameter.

For ε ∈ V ∗δ,lr, the family of diffeomorphisms Pε can be conjugated to

the time-one map τ1
ε of the field (2.6) in the neighborhoods of each singular

point, whose union is Dr. The modulus measures the obstruction to get a
conjugacy on the full neighborhood Dr in the x-space. The vector field (2.6)
has singular points x0 = 0, with eigenvalue µ0(ε) = ε, and x± = ±√−sε
with eigenvalues:

µ±(ε) = − 2ε

1 − sA(ε)ε
. (3.8)

Notice that µ0 and µ± are analytic invariants of Eq. (2.6), which also depend
analytically on ε. It follows that ε and A(ε) are analytic invariants of the
field (2.6). The multipliers of the time-one map τ1

ε of Eq. (2.6) are λj = eµj ,
i.e. they are precisely the multipliers of the fixed points of Pε. For ε ∈ V ∗δ,lr,
in order to compare Pε with the model diffeomorphism τ1

ε we compare
their orbit space. The orbit space of Pε is obtained by taking 3 closed
curves {�0, �+, �−} around the fixed points, and their images {Pε(�#)} where
# ∈ {0,+,−}. Since the fixed points are hyperbolic, the closed regions {C#}
between the curves and their images are isomorphic to three closed annuli.
We identify �# ∼ Pε(�#). Then the quotient C#/ ∼ will be shown to be
a conformal torus. Hence, the orbit space is the union of the three annuli
modulo the identification of points of the same orbit. Furthermore, if we
identify �0,± ∼ Pε(�0,±) the quotient Hence, the orbit space turns out to be
a non-Hausdorff space conformally equivalent to a quotient of the union of
three tori T0

ε,T
∞
1,ε,T

∞
2,ε plus the three singular points (which represent the

orbit space of the hyperbolic fixed points), such that:
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• each orbit has at most one point in each torus,

• each orbit is either a fixed point or is represented in a torus,

• some orbits may have representatives in two different tori.

The Glutsyuk modulus consists in this identification of orbits. For this,
we need to introduce (almost) intrinsic coordinates on the tori. One way to
introduce coordinates on a torus T is to consider the latter as a quotient
T = C∗/LC (where LC(x) = Cx is the linear map) for some C ∈ C∗.

S−1

S+
1

S−2

S+
2

ε = 0

ψ0
2 ψ∞1

ψ∞2 ψ0
1

ε < 0

T0
ε

T∞
1,ε

ψG2,ε ψG1,ε

ψG2,ε ψG1,ε

ε > 0

ψG1,ε ψG1,ε

ψG2,ε ψG2,ε

T∞
2,ε

T∞
2,ε

T∞
1,ε

T0
ε

Figure 3. — The orbit space of the Poincaré monodromy.

Then a natural coordinate on T is the projection of a coordinate on
C∗ = CP1\{0,∞}, i.e. a “spherical” coordinate. In toric coordinates, the
identification of orbits in two tori induce germs of families of analytic dif-
feomorphisms

ψGj,ε : C∗ 
→ C∗

for j ∈ {1, 2}, see Figure 3, such that ψj,ε◦LC1
= LC2

◦ψj,ε if ψj,ε represents
a map from T1 = C∗/LC1 to T2 = C∗/LC2 .

4. Lifting of the dynamics

Fatou coordinates were introduced in 1920 by former P. Fatou (cf. [5]).
They are changes of coordinates which allow to transform the prepared
family Pε into the model family τ1

ε over the sectorial domains (3.7). We
construct a special kind of Fatou coordinates: we show that it is possible
to choose them respecting the real character of Pε. This choice yields a
symmetry property on the Glutsyuk invariant in the unfolding.

– 551 –



Waldo Arriagada-Silva, Christiane Rousseau

Although we want to compare the map Pε with its normal form, which
is the time-one map of the vector field (2.6), it has been shown (cf. [18])
that it is natural to change to the time coordinate of the simpler vector field

ẋ = x(ε+ sx2),

which is a “small deformation” of Eq. (2.6) over Dr.

4.1. The unwrapping coordinate

From now on, the parameter belongs to either of the Glutsyuk sec-
tors (3.7). Consider the “unwrapping” change of coordinates pε : Rε →
C\{x0, x±} defined by:

x = pε(Z) =





( sε

s exp(−2εZ) − 1

) 1
2

, for ε �= 0,

(
− s

2Z

) 1
2

, for ε = 0,

(4.1)

where Rε is the 2-sheeted Riemann surface of the function (see Figure 4)




(1 − s exp(−2εZ)

sε

) 1
2

, for ε �= 0,

(
sZ

2
)

1
2 , for ε = 0,

and s = ±1 is the sign of the third order coefficient of the family (2.5).
Notice that for all ε ∈ V ∗δ,lr, the map pε is α(ε)-periodic with

α(ε) = − iπ
ε
, (4.2)

that is,

pε(Z) = pε(Z − ikπ

ε
), k ∈ Z. (4.3)

(We will drop dependence on ε in Eq. (4.2)). Thus, the image p◦−1
ε (U = Dr)

consists in the Riemann surface Rε minus a countable number of holes. The
smaller the radius of U, the larger the radius of such holes (of order 1/2r2).

Notice that the distance between the centers of two consecutive holes,
for ε �= 0, is equal to (4.2). Define the liftings:

Pε = p−1
ε ◦ Pε ◦ pε,

Qε = p−1
ε ◦ Qε ◦ pε. (4.4)

By Eq. (4.3), the families Pε,Qε are defined on Rε minus the countable
collection of holes. The dynamics of the lifting goes always from left to right
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P±

P 0

Pε

Bε

Figure 4. — The surface Rε, domain of the lifting Pε.

on Rε. We denote P 0 and P± the points at infinity located in the direction
orthogonal to the line of holes, in such a way that their images by pε be
equal to x0 = 0 and x± = ±√−sε, respectively:

P 0 = p◦−1
ε (x0),

P± = p◦−1
ε (x±).

(4.5)

In a neighborhood of the points P± (there are two such points, in corre-
spondence with the leaves of Rε) the two sheets go to different singular
points in the x-coordinate, while on the side of P 0 both sheets go to the
origin, see Figure 4.

Definition 4.1. — For any complex number Z∞ ∈ C whose imaginary
part is of order ∼ |α| in a neighborhood of P±, we define the translation in
TZ∞ :

TZ∞(·) = Z∞ + ·. (4.6)

By Eq. (4.3), the sequence of equidistant holes can be denoted as:

{T ◦kα (Bε)}k∈Z, (4.7)

where T 0
α(Bε) = Bε corresponds to the integer k = 0. (Notice that T ◦kα =

Tkα for every k ∈ Z). It will be called the principal hole, and we will write:

Ûε = p◦−1
ε (U) = Rε\

⋃
k∈Z T

◦k
α (Bε) (4.8)

the domain for the dynamics of Pε,Qε. By connexity, the translation (4.6)
can be analytically extended along the leaves of Rε to all Z in a neighbor-
hood of the point P 0, see Figure 5. The extension is noted TZ∞ as well. We
shall use specific values for Z∞, the first one being α, defined in Eq. (4.2).
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P±

P 0
Z0

Figure 5. — Analytic extension of Tα to a neighborhood of P 0, when ε > 0.

The families Pε and Qε commute with Tα :

Pε ◦ Tα = Tα ◦Pε,
Qε ◦ Tα = Tα ◦Qε

(4.9)

along the leaves of Rε. Indeed, they do so near P±. Since Tα is globally
defined in Rε by analytic continuation, they do so everywhere. Moreover,
for small ε, Pε is close to T1 :

Proposition 4.2 [16]. — There existsK > 0 such that for Z ∈ p◦−1
ε (Dr)

and ε small, one has

|Pε(Z) − Z − 1| < Kr,
|P′ε(Z) − 1| < Kr3.

(4.10)

Notice that the inverse p◦−1
ε of the change (4.1) is the multivalued func-

tion:

Z = p◦−1
ε (x) =





1

2ε
log

( x2

ε+ sx2

)
, for ε �= 0,

− s

2x2
, for ε = 0,

(4.11)

where log(·) is the principal branch of the logarithm.

4.2. Glutsyuk point of view and translation domains

We discuss the case s = +1. We will denote

�± = p◦−1
ε (R±),

�± = p◦−1
ε (iR±).

(4.12)
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By Eq. (4.3), there is a countable number of such semi-infinite segments
on Rε, and by Eq. (4.11), �+,k and �−,k lie on the same side of Rε, but
in different leaves. The same holds for �+,k and �−,k, see Figure 6. The
half-lines (4.12) are organized differently in the cases ε � 0 and ε > 0
(cf. [2]).

ε < 0 ε = 0 ε > 0

−

∞
±±

s
−

−

+
− −∞

−

∞
±

∞
±

P 0

P 0 P±

P±

∞
+

P 0 = P±

s
+

+ ±Bε BεBε

∞
+

∞
+ ±

±

s
+

s
+

Figure 6. — The choice of the cuts on Rε for real values of the parameter.

If the parameter is negative, the location of the fixed points in the x coor-
dinate yields the decomposition

�± = �s± ∪ �∞±

on Rε, where �s± is the image by p◦−1
ε of the straight real segment joining

0 and x±, and �∞± is the image by p◦−1
ε of the straight real segment joining

x± and the boundary of the neighborhood U in the x coordinate. Again,
one has a countable number of such segments �s,∞± at distance α(ε) from
each other in the Z coordinate. The cuts are located along the half-lines
�±. The half-lines �∞± ,�± intersecting the principal hole Bε will be noted

�̂± and �̂±, respectively.

In the case ε = 0, there are four half-lines �± and �± in the Z coordinate.

They will be noted �̂± and �̂±, respectively. The cuts are located along �̂±.

For positive values of the parameter, on the contrary, the image of the imag-
inary axis by the map p◦−1

ε consists in the union

�± = �s± ∪ �∞±

on Rε, where �s± is a countable collection consisting of the image of the
straight imaginary segment joining 0 with x±, where {�∞± }k is an countable
collection of the image of the straight imaginary segment joining x± and
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the boundary of the neighborhood U in the x coordinate. The cuts of Rε

are located along the half-lines �∞± . The half-lines �±,�∞± intersecting the

principal hole Bε will be noted �̂± and �̂±, respectively.

Definition 4.3. — In the three cases above, the distinguished line �̂±
is called the symmetry axis in the Z coordinate.

Translation domains. Given any δ > 0, there exists ρ > 0 such that
for |ε| < ρ, there exists an orbit of the lifting Pε connecting P 0 with P±.
In such a case, we say that we are in the “Glutsyuk point of view” of the
dynamics.

Cε( ) P±

P 0

Q0
+,ε

Pε( )

Figure 7. — A translation domain Q0
+,ε and an admissible strip on it

A slanted line � ⊂ Rε, such that the image Pε(�) is placed on the right

of � and the strip Ĉε(�) between � and Pε(�) belongs to p◦−1
ε (U), is called an

admissible line. Let � be an admissible line for Pε. The translation domain
associated to � is the set

Qε(�) = {Z ∈ Ûε : ∃n ∈ Z,P◦nε (Z) ∈ Ĉε(�),∀i ∈ {0, 1, ..., n},P◦iε (Z) ∈ Ûε}.
In the Glutsyuk point of view, the admissible strips are placed parallel to
the line of holes, i.e. according to the α(ε) direction of the covering trans-
formation Tα. The induced translation domains, called Glutsyuk translation
domains, are noted Q∞ε and Q0

ε according to whether they contain a neigh-
borhood of P± or P 0, respectively, see Figure 7.

Among other properties, Qε(�) is a simply connected open subset of Ûε;

the region Ĉε(�)\{�} is a fundamental domain for the restriction of Pε to
Qε(�) : each Pε-orbit in Qε(�) has one and only one point in this set. For
values of ε in Vδ,lr, there exist four different Glutsyuk translation domains

Q0,∞
±,ε in the Z-space, which are defined, depending on the sign of ε ∈ R, as

follows, see Figure 8.
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• If ε < 0, then Q∞±,ε is a simply connected neighborhood of P± con-
taining all the segments �s±, while Q0

±,ε is a simply connected neigh-

borhood of P 0 containing the distinguished half-line �̂±.
• If ε > 0, then Q∞±,ε is a simply connected neighborhood of P± con-

taining all the segments �s±, while Q0
±,ε is a simply connected neigh-

borhood of P 0 containing the distinguished half-line �̂±.

Q0
+,ε

Q0
+,ε Q∞

+,ε

Q∞
+,ε

s
+

s
+

P 0

P 0 P+

P+

+

ε > 0ε < 0

+
s
+

s
+

Figure 8. — The translation domains Q0,∞
+,ε .

Lemma 4.4. — The translation Tα satisfies:

Tα(Q0
±,ε) = Q0

∓,ε,
Tα(Q∞±,ε) = Q∞±,ε.

(4.13)

Proof. — The second is clear, by definition: Tα is formerly defined in a
neighborhood of the point P± along the leaves of Rε, thus leaving invariant
the translation domains Q∞±,ε. On the other hand, the first equality is cer-
tainly true because all the possible paths defining the analytic extension of
Tα to a neighborhood of P 0 must be contained in Q∞±,ε. Let us consider for
instance Q0

+,ε above the principal hole. It intersects Q∞+,ε and because of the
definition of Tα, when we apply Tα (resp. T−α) we are below the principal
hole if ε > 0 (resp. ε < 0). In that region Q∞+,ε intersects Q0

−,ε. Thus, each
translation domain Q∞±,ε shares a common region with a translation domain
of the kind Q0

±,ε. The conclusion follows. �

4.3. Conjugation in the Z coordinate

Choose Z on Rε and fix any simple arc Γ joining Z with the axis of
symmetry �̂, and let γ be its image under the map pε : γ = pε(Γ). Consider
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the reflection γ of the path γ with respect the real axis R in the x coordinate.
Then define

Γ = p◦−1
ε (γ).

Definition 4.5. — The path Γ is well defined and is called the reflection
of the arc Γ with respect to the axis of symmetry �̂ in the Z coordinate, see
Figure 9. The starting point of Γ is called the conjugate of Z, and is noted
�(Z).

The conjugation Z 
→ �(Z) is well defined: its definition is independent
of the arc Γ. Indeed, if Γ+ is any simple path joining Z with the semi-axis

of symmetry �̂+ in the Z coordinate, then the reflection of the arc Γ+ with

respect to �̂+ induces a map

Z 
→ �+(Z)

along the leaves of �, which is independent of the free homotopy class with
endpoint on �̂+.

γ+

γ+

x

x

γ−

γ−

x− x++ R−
(Z)

Z

Figure 9. — The conjugation in the Z coordinate.

Choose now any simple arc Γ− joining the point Z with the semi-axis

of symmetry �̂−. The reflection of the arc Γ− with respect to �̂− induces
in turn a map Z 
→ �−(Z). Then, it is easily seen that �+(Z) = �−(Z).
Indeed, the arc Γ+ induces a path γ+ in the x coordinate whose reflection
γ+ with respect to the real axis starts at the same point as the reflection
γ− of the path γ− induced by the arc Γ− in the x coordinate, see Figure 9.
It becomes clear by definition that:

� ◦ � = id (4.14)
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for real values of the parameter. Moreover, the families Pε and Qε are
invariant under the conjugation � in the Z coordinate when ε ∈ R :

Pε = � ◦Pε ◦ �,
Qε = � ◦Qε ◦ �.

(4.15)

5. Real Fatou Glutsyuk coordinates

Let W 
→ C(W ) = W be the complex conjugation in C, and let

TB(·) = B + ·

be the translation in B ∈ C.

Theorem 5.1. — For values of the parameter in Vδ,lr we consider trans-

lation domains Q0,∞
±,ε,lr whose admissible strips in Rε lie in a direction paral-

lel to the line of the holes T ◦kα(ε)(Bε). It is possible to construct four different

changes of coordinates W = Φ0,∞
±,ε,lr(Z) defined on Q0,∞

±,ε,lr ∩ P◦−1
ε (Q0,∞

±,ε,lr),
and called Fatou coordinates with the following properties:

1. They conjugate Pε with the translation by one:

Φ0,∞
±,ε,lr(Pε(Z)) = Φ0,∞

±,ε,lr(Z) + 1, (5.1)

for every Z ∈ Q0,∞
±,ε,lr ∩P◦−1

ε (Q0,∞
±,ε,lr).

2. They commute with complex conjugation, more precisely:

• For (real) negative values of the parameter they are related through:

Φ0
±,ε,l = C ◦ Φ0

∓,ε,l ◦ �,
Φ∞±,ε,l = C ◦ Φ∞±,ε,l ◦ �.

(5.2)

They are unique up to left composition with TB± , B± ∈ R, for
Φ∞±,ε,l and up to TD, D ∈ C, for Φ0

+,ε,l (Φ0
−,ε,l being determined

by Eq. (5.2)).

• For (real) positive values of ε they satisfy:

Φ0
±,ε,r = C ◦ Φ0

±,ε,r ◦ �,
Φ∞±,ε,r = C ◦ Φ∞∓,ε,r ◦ �.

(5.3)

They are unique up to left composition with TB± , B± ∈ R, for
Φ0
±,ε,l and up to TD, D ∈ C, for Φ∞+,ε,l (Φ∞−,ε,l being determined

by Eq. (5.3)).

3. They depend analytically on ε ∈ Vδ,lrwith the same limit at ε = 0.
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Proof. —

1. The construction of Fatou coordinates satisfying Eq. (5.1) exists in
the literature (cf. [16]) but we wish to show additionally Eqs. (5.2)
and (5.3).

2. We use the result (also well known in the literature) that a Fatou
coordinate Φε on a translation domain Qε is unique up to left com-
position with a translation. In particular, it is uniquely determined
by a base point Z0(ε) such that Φε(Z0(ε)) = 0.
Case ε < 0. Let Φ∞±,ε,l be a Fatou coordinate determined by the equa-
tion Φ∞±,ε,l(Z0,±(ε)) = 0. From Eqs. (4.14), (4.15), it is easy to check

that C ◦ Φ∞±,ε,l ◦ � is a Fatou coordinate and, moreover, that it satis-

fies C ◦Φ∞±,ε,l ◦ �(�(Z0,±(ε))) = 0. Then, C ◦Φ∞±,ε,l ◦ � = TD± ◦Φ∞±,ε,l
for some D± ∈ iR. Changing Φ∞±,ε,l by TD±

2

◦ Φ∞±,ε,l yields a Fatou

coordinate satisfying the second part of (5.2). As for the first part, it
suffices to define Φ0

−,ε,l, from the choice of a Fatou coordinate Φ0
+,ε,l,

according to the first row of Eq. (5.2). The case ε > 0 is similar.

3. It suffices to take the base point depending analytically on ε ∈ Vδ,lr
with same limit at ε = 0.

�

Q∞
+,ε ∩Q0

+,ε

Q∞
+,ε ∩Q0

+,ε

Q∞
+,ε ∩Q0

−,ε

Q∞
+,ε ∩Q0

−,ε

P 0

P 0

P±

P±
Q0

+,ε ∩Q∞
−,ε

Q0
+,ε ∩Q∞

−,ε

Q0
+,ε ∩Q∞

+,ε

Q0
+,ε ∩Q∞

+,ε

ε > 0

BεBε

ε < 0

Figure 10. — The non-connected intersection of the translation domains.

Definition 5.2. — Fatou coordinates in Theorem 5.1 are called admis-
sible Real Fatou Glutsyuk coordinates. Theorem 5.1 shows that the symmetry
axis �̂ is invariant under Real Fatou coordinates when the parameter is real.
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Remarks.

1. Although Real Fatou Glutsyuk changes of coordinates always exist
for ε ∈ Vδ,lr, the curve �̂ is not invariant if ε /∈ R.

2. The subscripts l, r will be dropped when the context allows no con-
fusion.

3. As we will see, the modulus compares the Fatou coordinates on the
left and on the right over the intersection of the left and right trans-
lations domains. If ε �= 0, the geometry of Rε yields that the intersec-
tion of right and left translations domains is composed of a countable
alternating sequence of horizontal strips, see Figure 10.

4. This yields the organization of the domains of definition for the dif-
ferent Real Glutsyuk coordinates. Due to periodicity, it suffices to
describe these domains around the fundamental hole Bε, see Figure
11.

Φ∞
+,ε

Φ∞
−,ε

Φ0
+,ε

Φ0
−,ε

Φ0
−,ε

Φ0
+,ε

Φ0
+,ε

Φ0
−,ε

Φ∞
+,ε

Φ∞
−,ε++

Φ∞
−,ε

Φ∞
+,ε

ε > 0

BεBε

ε < 0

Figure 11. — The Real Glutsyuk coordinates around the principal hole.

5.1. Pre-normalization of Real Fatou Glutsyuk coordinates

The family Pε is, by definition, the second iterate of a family of germs of
diffeomorphisms Qε unfolding the map Q0, which is tangent to −id. This
implies that the orbits of the family Qε form a 180◦-degrees alternating
sequence along the orbits of the prepared family of fields at each iteration
(i.e. the points x and Qε(x) stand on opposite sides of the origin, see Figure
12). In other words, the lifting Qε exchanges the two leaves.

The fact that the family of diffeomorphisms Pε is a square (namely,
Pε = Q◦2ε ) is now exploited.
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x

Q0(x)

Figure 12. — The “jumps” of the orbits of Q0 in the case ε = 0.

Lemma 5.3. — For each ε ∈ V Gδ , it is possible to construct admissible
Real Fatou Glutsyuk coordinates depending analytically on ε ∈ Vδ,lr, with
continuous limit at ε = 0 and such that they are related through:

Φ0
±,ε ◦Qε = T 1

2
◦ Φ0
∓,ε,

Φ∞±,ε ◦Qε = T 1
2
◦ Φ∞∓,ε.

(5.4)

Such coordinates are unique up to left composition with translation TC0
ε

(resp. TC∞ε ) for real constant C0
ε (resp. C∞ε ) (i.e. the same constant for

the two signs ± in each case).

Proof. — For each ε, the map Qε commutes with Pε. Hence Qε =
p−1
ε ◦ Qε ◦ pε commutes with Pε. Let the pairs of admissible Real Fatou

Glutsyuk coordinates Φ0,∞
+,ε ,Φ

0,∞
−,ε be constructed as in the proof of Theorem

5.1. Then:

Φ0,∞
±,ε (Pε(Qε(Z))) = Φ0,∞

±,ε (Qε(Z)) + 1 = (Φ0,∞
±,ε ◦Qε)(Pε(Z)), (5.5)

the first equality being consequence of the fact that Φ0,∞
±,ε is a solution to

Eq. (5.1), and the second is true because Pε and Qε commute. Eq. (5.5) says
that Φ0,∞

±,ε ◦ Qε is a Fatou Glutsyuk coordinate. By the remark above, the

latter is defined on the same translation domain as Φ0,∞
∓,ε . Hence, as in the

proof of Theorem 5.1, there exists C0,∞
±,ε ∈ C with the following property:

Φ0,∞
±,ε ◦Qε = TC0,∞

±,ε
◦ Φ0,∞
∓,ε . (5.6)

We will drop the subscript ε in the constants. Using Q◦2ε = Pε and iterating
Eq. (5.6) yields:

Φ0,∞
±,ε (Z) + 1 ≡ Φ0,∞

±,ε ◦Pε(Z)

= (Φ0,∞
±,ε ◦Qε) ◦Qε(Z)

= TC0,∞
±

◦ (Φ0,∞
∓,ε ◦Qε)(Z)

= TC0,∞
±

◦ TC0,∞
∓

◦ Φ0,∞
±,ε (Z)

= Φ0,∞
±,ε (Z) + C0,∞

± + C0,∞
∓ ,

(5.7)

– 562 –



The modulus of analytic classification

which means
C0,∞

+ + C0,∞
− = 1. (5.8)

We want to prove that it is possible to choose the Fatou coordinates so that
C0,∞

+ = C0,∞
− = 1/2. That is consequence of Qε = � ◦ Qε ◦ � when ε ∈ R.

Indeed, in the case ε < 0, Eq. (5.6) and Theorem 5.1 yield

TC0
±
◦ Φ0
∓,ε = (C ◦ Φ0

∓,ε ◦ �) ◦Qε

= C ◦ (Φ0
∓,ε ◦Qε) ◦ �

= C ◦ (TC0
∓
◦ Φ0
±,ε) ◦ �

= C ◦ TC0
∓
◦ C ◦ Φ0

∓,ε.

(5.9)

Hence C0
∓ = C0

±, and then Re(C0
+) = Re(C0

−). We show now that a “cor-
rection” is possible by using the degree of freedom, so that C0

± can be taken
real (for every ε), while, at the same time, respecting Eq. (5.2). If we change
the coordinates by

Φ0
+,ε 
→ TK ◦ Φ0

+,ε

Φ0
−,ε 
→ TK ◦ Φ0

−,ε

in Eq. (5.6), for K ∈ iR to be chosen, then Eq. (5.2) remains valid and we
get:

(TK ◦ Φ0
+,ε) ◦Qε = TK+C0

+
−K ◦ (TK ◦ Φ0

−,ε)

(TK ◦ Φ0
−,ε) ◦Qε = TK+C0

−−K
◦ (TK ◦ Φ0

+,ε).

Put Ĉ0
+ = K + C0

+ −K and Ĉ0
− = K + C0

− −K. The choice

K = −i Im(C0
+)

2
= i

Im(C0
−)

2
∈ iR

ensures that Ĉ0
+ = Ĉ0

− = Re(C0
+) = Re(C0

−) = 1/2.

As for the coordinate Φ∞± , the proof is straightforward. Indeed, Eq. (5.6)
and Theorem 5.1 yield this time:

TC∞± ◦ Φ∞∓,ε = (C ◦ Φ∞±,ε ◦ �) ◦Qε

= C ◦ (Φ∞±,ε ◦Qε) ◦ �
= C ◦ (TC∞± ◦ Φ∞∓,ε) ◦ �
= C ◦ TC∞± ◦ C ◦ Φ∞∓,ε

(compare with Eq. (5.9)), thus C∞± = C∞± and C∞± ∈ R. So we can perform
a change Φ∞+,ε 
→ TK ◦ Φ∞+,ε, where K = 1/2 − C∞+ ∈ R, in order to bring
C∞+ = C∞− = 1/2, respecting Eq. (5.2).

The case ε > 0 is completely analogous, using Eqs. (5.3). �
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Definition 5.4. — Real Fatou Glutsyuk coordinates satisfying Eqs. (5.4)
are called pre-normalized.

5.2. Real Fatou Glutsyuk coordinates and translations

Consider the numbers:

α0(ε) =
2πi

µ0(ε)
=

2πi

ε

α∞(ε) =
2πi

µ±(ε)
= −πi(1 − sA(ε)ε)

ε
,

(5.10)

where µ0(ε) = logP ′ε(0) = ε, and µ±(ε) = logP ′ε(x±) = −2ε/(1 − sA(ε)ε)
are the eigenvalues of Eq. (2.6) at the singular points x0 = 0 and
x± = ±√−sε, respectively. As usual, we will only describe the case s = +1.
In the case s = −1, each picture in the Figure 3 must be rotated by 90◦

degrees in the clockwise direction and, moreover, the family P−1
ε is of the

form (2.3).

Definition 5.5. — The Glutsyuk normalization domains are

U0,∞
ε,± = pε(Q

0,∞
±,ε ).

Lemma 5.6. — The quotients U0
ε /Pε and U∞ε /Pε are conformally equiv-

alent to complex tori T0
ε and T∞±,ε, of modulus α0(ε) and α∞(ε), respectively.

Nota. Abel’s Theorem (cf. [6], Chapter IV-§11, specifically Corollary 2,
p. 264) implies that any torus is a quotient of the form C/L, where L is
the lattice of all transformations x 
→ x+m+ τn for m,n ∈ Z and τ ∈ C.
The modulus of a torus is defined for real ε as the unique number τ with
positive imaginary part (belonging to the fundamental domain in H). We
extend its definition analytically for non real values of ε.

Proof. — Indeed take, for instance, the fixed point x+ =
√−ε. Since

we are in the Glutsyuk point of view of the dynamics, on U∞ε the map
Pε admits x+ as a hyperbolic point. Consider any loop γ around x+ and
consider its image Pε(γ) as well. The region J of the complex plane between
these two curves is a fundamental domain (i.e. a domain where each orbit
of Pε is represented by at most one point) for the dynamics around x+. It
is easily seen that

U∞ε /Pε # J/Pε
(they are conformally equivalent). Moreover, we can change J by any iterate
P◦nε (J) in the quotient, and the resulting space remains the same. By the
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Poincaré Theorem, the map Pε is linearizable around x+. As n→ ±∞, (the
signs ± depending on the sign of ε) the modulus of the quotient complex
torus P◦nε (J)/Pε converges towards the modulus of the torus C∗/Lµ+(ε)

which is given by α∞ = 2iπ/µ+(ε). The proofs for x− and x = 0 are
analogous. �

Proposition 5.7. — For all ε ∈ Vδ,lr, it is possible to choose pre-norma-

lized admissible Real Fatou Glutsyuk coordinates Φ0,∞
±,ε : Q0,∞

±,ε → C satisfy-
ing (in addition to Eqs. (5.2),(5.3) and (5.4)) the relations:

Φ0
±,ε ◦ Tα = T−α0

2
◦ Φ0
∓,ε,

Φ∞±,ε ◦ Tα = Tα∞ ◦ Φ∞±,ε.
(5.11)

In particular, they have the same limit at ε = 0.

Proof. — Consider the translation Tα and a Real Fatou Glutsyuk coor-
dinate Φ∞±,ε : Q∞±,ε → C. By (4.9):

Φ∞±,ε ◦ Tα ◦Pε = Φ∞±,ε ◦Pε ◦ Tα
= T1 ◦ Φ∞±,ε ◦ Tα,

which implies that Φ∞±,ε◦Tα is a Fatou coordinate. By Lemma 4.4, the latter
preserves the translation domains Q∞±,ε and then, Φ∞±,ε ◦ Tα and Φ∞±,ε are
defined on the same translation domain. As in the proof of Theorem 5.1,
there exist constants C±,ε such that:

Φ∞±,ε ◦ Tα = TC±,ε ◦ Φ∞±,ε. (5.12)

Thus, the Fatou coordinate conjugates the pair of commuting diffeomor-
phisms {Pε, Tα} with the pair of translations {T1, TC±,ε}. Moreover, the
Fatou Glutsyuk coordinate induces a holomorphic diffeomorphism:

Q∞±,ε/{Pε, Tα} ∼= C/{T1, TC±,ε}

between complex surfaces. The latter is, of course, the canonical torus
C/(C×C±,εC). Notice that the quotient Q∞±,ε/Tα coincides with the neigh-
borhood U∞ε with coordinate x, where the map Pε is induced by Pε. Hence,
the quotient Q∞±,ε/{Pε, Tα} is conformally equivalent to U∞± /Pε. On the
other hand, the translation Tα has been formerly defined in a neighbor-
hood of the points P± so that positive orientation (i.e. counter-clockwise
direction around x± in the C plane) of the translation Tα∞ coincides with
positive orientation of Tα, (i.e. the kα direction along P±, with k ∈ N, see
Eq. (4.7)). By Eq. (5.12) and Lemma 5.6 for real ε, the modulus of the
torus C/{T1, TCε} must be equal to α∞. This will imply that the constants
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C+,ε = C−,ε = α∞ on Q∞±,ε, provided we show that C±,ε are pure imaginary.
In this case we will have

Φ∞±,ε ◦ Tα = Tα∞ ◦ Φ∞±,ε. (5.13)

By analytic extension we also have C±,ε = α∞ for any ε ∈ Vδ,lr. So let us
show that C±,ε are pure imaginary. For ε < 0 we have, on the one hand

C ◦ Φ∞±,ε ◦ Tα ◦ � = C ◦ TC±,ε ◦ Φ∞±,ε ◦ �
= TC±,ε ◦ C ◦ Φ∞±,ε ◦ �
= TC±,ε ◦ Φ∞±,ε.

On the other hand,

C ◦ Φ∞±,ε ◦ Tα ◦ � = C ◦ Φ∞±,ε ◦ � ◦ T�(α)

= Φ∞±,ε ◦ T�(α),

which implies

Φ∞±,ε ◦ Tα = T−C±,ε ◦ Φ∞±,ε

since T�(α) = T−1
α . Hence C±,ε = −C±,ε and then C±,ε ∈ iR.

The case ε > 0 requires an additional step using (5.4). Reproducing the
steps above yields C∓,ε = −C±,ε. We also have

Φ∞±,ε ◦ Tα = T− 1
2
◦ Φ∞∓,ε ◦Q ◦ Tα

= T− 1
2
◦ Φ∞∓,ε ◦ Tα ◦Q

= T− 1
2+C∓,ε ◦ Φ∞∓,ε ◦Q

= TC∓,ε ◦ Φ∞±,ε,

thus giving C+,ε = C−,ε ∈ iR.

The behavior of the Fatou coordinate Φ0
±,ε : Q0

±,ε → C with respect the
translation Tα is more involved. Indeed, by Lemma 4.4, Tα sends the trans-
lation domains Q0

±,ε into Q0
∓,ε and then, reasoning as above, Φ0

±,ε ◦ Tα and
Φ0
∓,ε are two Fatou Glutsyuk coordinates defined on the same translation

domain. The proof of Theorem 5.1 shows that there exist two constants
C1
ε , C

2
ε such that:

Φ0
+,ε ◦ Tα = TC1

ε
◦ Φ0
−,ε

Φ0
−,ε ◦ Tα = TC2

ε
◦ Φ0

+,ε,
(5.14)

thus yielding:

Φ0
±,ε ◦ T2α = TC1

ε+C
2
ε
◦ Φ0
±,ε. (5.15)
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The quotients Q0
±,ε/{Pε, T2α} are conformally equivalent to U0

ε /Pε, i.e. to
a complex torus of modulus α0. Moreover, in the W (Fatou) coordinate,
positive orientation (i.e. the counter-clockwise direction around x0) of the
translation Tα0

corresponds to negative orientation (i.e. the T−kα direction
along P 0, with k ∈ N) of Tα∞ . Since the positive orientation of the transla-
tion Tα∞ coincides with that of Tα, we get Φ0

±,ε ◦ T2α = TC1
ε+C

2
ε
◦Φ0
±,ε. We

will have that C1
ε +C2

ε = −α0 provided we show that C1
ε +C2

ε ∈ iR. This is
done as before by proving that C1

ε +C2
ε = −(C1

ε + C2
ε ). Indeed, let us write

the details in the case ε < 0. On the one hand,

C ◦ Φ0
±,ε ◦ T2α ◦ � = C ◦ Φ0

±,ε ◦ � ◦ T2�(α)

= Φ0
∓,ε ◦ T2�(α).

On the other hand,

C ◦ Φ0
±,ε ◦ T2α ◦ � = C ◦ TC1

ε+C
2
ε
◦ Φ0
±,ε ◦ �

= T
C1
ε+C

2
ε
◦ C ◦ Φ0

±,ε ◦ �
= T

C1
ε+C

2
ε
◦ Φ0
∓,ε.

Hence, Φ0
±,ε ◦ T2α = T−(C1

ε+C
2
ε )
◦Φ0
±,ε, and the conclusion follows. The case

ε > 0 is similar.

Let us now show that C1
ε = C2

ε . Since the Fatou coordinates Φ0
± are

pre-normalized, using Eq. (5.4) we have:

Φ0
+,ε ◦ Tα = (T− 1

2
◦ Φ0
−,ε ◦Qε) ◦ Tα

= T− 1
2
◦ (TC2

ε
◦ Φ0

+,ε ◦ T−α) ◦Qε ◦ Tα
= TC2

ε
◦ T− 1

2
◦ Φ0

+,ε ◦Qε

= TC2
ε
◦ Φ0
−,ε.

The first equation in (5.14) yields C1
ε = C2

ε = −α0/2. �

Grosso modo, Eqs. (5.11) say that, in order to make a full turn around the
origin in x coordinate, it is necessary to iterate twice the translation around
the origin in the unwrapping coordinate. On the contrary, an iteration of
the translation around infinity in the Z coordinate yields a full turn around
x±.

6. Real and Symmetric Glutsyuk invariants

Fix four pre-normalized Fatou Glutsyuk coordinates Φ0,∞
±,ε,lr on the leaves

of Rε, whose base points depend analytically on the parameter, see Figure
11 and define:
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a) For ε ∈ Vδ,l :
Ψ++
ε,l = Φ0

+,ε,l ◦ (Φ∞+,ε,l)
◦−1,

Ψ+−
ε,l = Φ0

−,ε,l ◦ (Φ∞+,ε,l)
◦−1,

Ψ−+
ε,l = Φ0

+,ε,l ◦ (Φ∞−,ε,l)
◦−1,

Ψ−−ε,l = Φ0
−,ε,l ◦ (Φ∞−,ε,l)

◦−1.

(6.1)

b) For ε ∈ Vδ,r :
Ψ++
ε,r = Φ∞+,ε,r ◦ (Φ0

+,ε,r)
◦−1,

Ψ+−
ε,r = Φ∞−,ε,r ◦ (Φ0

+,ε,r)
◦−1,

Ψ−+
ε,r = Φ∞+,ε,r ◦ (Φ0

−,ε,r)
◦−1,

Ψ−−ε,r = Φ∞−,ε,r ◦ (Φ0
−,ε,r)

◦−1.

(6.2)

In either case, this collection will be noted ΨG
ε . By periodicity, it suffices to

describe the dynamics in a neighborhood of the principal hole.

Definition 6.1. — The Glutsyuk invariant is the family of equivalence
classes of ΨG

ε

• with respect to left composition with translations TCl(ε) and right com-
position with translations TCr(ε), where the constants Cl(ε) and Cr(ε)
are real for real ε and depend holomorphically on the parameter over
Vδ,l ∪ Vδ,r, with a continuous limit at ε = 0;

• with respect to the Z2 action corresponding to the change x 
→ −x in
the prepared family Pε given in Eq. (2.5). This action yields

(Ψ++
ε ,Ψ+−

ε ,Ψ−+
ε ,Ψ−−ε ) ≡ (Ψ−−ε ,Ψ−+

ε ,Ψ+−
ε ,Ψ++

ε ).

Since Pε = Q◦2ε , it is possible to reduce the four components of the
Glutsyuk invariant to two independent ones.

Lemma 6.2. — By appropriately choosing Real Fatou Glutsyuk coordi-
nates, it is possible in turn to choose components Ψ±,±ε of a representative
of the Glutsyuk invariant ΨG

ε related through:

Ψ++
ε = T− 1

2
◦ Ψ−−ε ◦ T 1

2
,

Ψ−+
ε = T− 1

2
◦ Ψ+−

ε ◦ T 1
2

(6.3)

for every ε ∈ Vδ,lr.

Proof. — It suffices to take pre-normalized Fatou Glutsyuk coordinates,
so that Eqs. (6.3) are satisfied by definition. �

When the Glutsyuk invariant is defined using Real Fatou Glutsyuk coor-
dinates, we get a natural property of symmetry under the Schwarz reflection,
respecting the real pre-normalization of the Glutsyuk coordinates.
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Theorem 6.3. — There exists a representative ΨG
ε = (Ψ±±ε ) of the

Glutsyuk modulus associated with the family of diffeomorphisms Pε satis-
fying, in addition to Eqs. (6.3), the identities:

• If ε ∈ Vδ,l :

Ψ++
ε,l = T−α0

2
◦ Ψ+−

ε,l ◦ T−α∞ ,
Ψ−−ε,l = T−α0

2
◦ Ψ−+

ε,l ◦ T−α∞ .
(6.4)

• If ε ∈ Vδ,r :

Ψ++
ε,r = T−α∞ ◦ Ψ−+

ε,r ◦ T−α0
2
,

Ψ−−ε,r = T−α∞ ◦ Ψ+−
ε,r ◦ T−α0

2
.

(6.5)

• Moreover, for every ε ∈ Vδ,lr :

Ψ++
ε = C ◦ Ψ+−

C(ε) ◦ C,
Ψ−−ε = C ◦ Ψ−+

C(ε) ◦ C.
(6.6)

Such a representative can be constructed so as to have a limit at ε = 0,
which is the Ecalle modulus.

Proof. — It suffices to take pre-normalized Real Fatou Glutsyuk coor-
dinates depending analytically on the parameter with continuous limit at
ε = 0, (this is the same limit for the two cases ε ∈ Vδ,l and ε ∈ Vδ,r). Then
Eqs. (6.4) and (6.5) are immediate consequences of Eqs. (6.1), (6.2) and
Proposition 5.7. On the other hand, Eqs. (6.6) come after Theorem 5.1 and
the idempotency (4.14) on the conjugation in the Z coordinate, when the
parameter is real. Since the dependence of the modulus is analytic in the
parameter, the equality extends to values ε ∈ Vδ,lr. Notice that the symme-
try axis still exists in the limit ε = 0, and the invariance exists in the limit
as well. �

6.1. Normalization of Real Fatou coordinates

The domain of ΨG
ε contains a union of four horizontal strips S±±ε located

right above (resp. below) the principal hole Bε. As ΨG
ε satisfies ΨG

ε (W+1) =
ΨG
ε (W )+1 we can expand the difference ΨG

ε − id in Fourier series on S±±ε :

(Ψ++
ε (W ) −W )|S++

ε
=

∑
n∈Z c

++
n (ε) exp(2nπiW ),

(Ψ+−
ε (W ) −W )|S+−

ε
=

∑
n∈Z c

+−
n (ε) exp(2nπiW ),

(Ψ−+
ε (W ) −W )|S−+

ε
=

∑
n∈Z c

−+
n (ε) exp(2nπiW ),

(Ψ−−ε (W ) −W )|S−−ε =
∑
n∈Z c

−−
n (ε) exp(2nπiW ).

(6.7)
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Then, using Eq. (6.4) in the case ε ∈ Vδ,l we deduce:





c++
0 (ε) − c+−0 (ε) = c−−0 (ε) − c−+

0 (ε) = −iπsA(ε),
c++
n (ε) = c+−n (ε) exp(−2nπiα∞), for n �= 0,
c−−n (ε) = c−+

n (ε) exp(−2nπiα∞), for n �= 0,

and using Eq. (6.5) in the case ε ∈ Vδ,r we get:





c++
0 (ε) − c−+

0 (ε) = c−−0 (ε) − c+−0 (ε) = −iπsA(ε),
c++
n (ε) = c−+

n (ε) exp(−nπiα0), for n �= 0,
c−−n (ε) = c+−n (ε) exp(−nπiα0), for n �= 0.

Corollary 6.4. — The differences c++
0 (ε)−c+−0 (ε) and c−−0 (ε)−c−+

0 (ε)
when ε ∈ Vδ,l (resp. c++

0 (ε) − c−+
0 (ε) and c−−0 (ε) − c+−0 (ε) when ε ∈ Vδ,r)

are analytic invariants of the system. Moreover, if the Glutsyuk modulus is
prescribed on ε ∈ Vδ,lr, then the formal parameter A(ε) is known for values
of the parameter in Vδ,lr.

Lemma 6.5. — It is possible to choose pre-normalized representatives of
admissible Real Fatou Glutsyuk coordinates so that c++

0 , c+−0 , c−+
0 , c−−0 ∈ iR

if ε ∈ R. Such a collection of Fatou Glustyuk coordinates is unique up to
left composition with a translation TC for C ∈ R.

Proof. — This comes from (6.3) and the fact that A(ε) is real for real
ε, yielding that a correction can be set by composition of Fatou coordinates
with real translations. More specifically let, for instance, ε ∈ Vδ,l and set

r+(ε) = −c
++
0 (ε) + c+−0 (ε)

2
, r−(ε) = −c

−−
0 (ε) + c−+

0 (ε)

2
.

Eqs. (6.6) and the expansion (6.7) guarantee that r±(ε) = r±(C(ε)), i.e.
these quantities are real on real ε. We choose to scale the modulus via left
(real) translations:

{
Ψ++
ε,l 
→ Tr+(ε) ◦ Ψ++

ε,l

Ψ+−
ε,l 
→ Tr+(ε) ◦ Ψ+−

ε,l

,

{
Ψ−−ε,l 
→ Tr−(ε) ◦ Ψ−−ε,l
Ψ−+
ε,l 
→ Tr−(ε) ◦ Ψ−+

ε,l

.

Therefore, the choice of a translation TC with real C such that the c0’s are
imaginary on ε ∈ R admits an analytic extension to all of Vδ,l. The case
ε ∈ Vδ,r is completely analogous. �

Definition 6.6. — A pre-normalized set of admissible Real Fatou Glut-
syuk coordinates satisfying the conclusion of Lemma 6.5 is called normalized.
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6.2. Real Glutsyuk invariant: First Presentation

Definition 6.7. — The equivalence class of a representative ΨG
ε of the

Glutsyuk invariant chosen as in Lemma 6.2 and Theorem 6.3 with normal-
ized admissible Real Fatou Glutsyuk coordinates for values ε ∈ Vδ,lr will be
called the Real Glutsyuk modulus.

Corollary 6.8. — For every ε ∈ Vδ,lr, a representative of the Real
Glutsyuk modulus is completely determined by one of the maps Ψ±±ε .

In this first presentation, the symmetry (conjugation � in the time Z

coordinate) is taken with respect to the symmetry axis �̂. Since the Real

Fatou Glutsyuk coordinates send the symmetry axis �̂ into R, the real line
is invariant under the Real Glutsyuk invariant when the parameter is real.
This means that in the x-coordinate the symmetry has been taken with
respect to the real segment I+ ∪ I− joining the singular points x± with the
boundary of U, see Figure 13. Moreover, in the limit ε → 0 the segment
I+ ∪ I− tends to R ∩ U. Thus, in the Fatou coordinate, the conjugation C
is still defined when ε = 0 and the Ecalle invariant inherits the symmetry
(6.6).

+

xx

x∗x∗

Z

(Z)

Figure 13. — The symmetry in the First Presentation.

The Ecalle modulus. Since α(ε) = −πi
ε
, the distance between two

consecutive holes becomes infinite in the limit ε → 0, and then each dif-
feomorphism Ψ±±ε , for ε ∈ Vδ,lr, gives rise to a component of the Ecalle
invariant, with preimage in a region around the principal hole. Notice that
Eqs. (6.3) and (5.2) or (5.3) remain valid during the limit process, so in
the limit there is only one independent component. Figure 14 shows the do-
mains around the principal hole (connected strips) on the surface Rε whose
image by the Fatou Glutsyuk coordinates and subsequent quotient by the
translation T1, correspond to annuli-like domains for the different compo-
nents of the Glutsyuk invariant. However, we can choose the representative
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of the Real Glutsyuk modulus so as to give rise to the same invariant in the
limit ε→ 0, no matter whether ε ∈ Vδ,l or ε ∈ Vδ,r.

Proposition 6.9. — The Ecalle modulus can be deduced from the Real
Glutsyuk invariant. It is given by:

Ψ∞1 = limε→0 Ψ++
ε,lr, Ψ0

1 = limε→0 Ψ+−
ε,lr,

Ψ∞2 = limε→0 Ψ−−ε,lr, Ψ0
2 = limε→0 Ψ−+

ε,lr,
(6.8)

see Figure 14. Moreover, its components may be chosen conjugate as well:

Ψ∞1 = C ◦ Ψ0
1 ◦ C

Ψ∞2 = C ◦ Ψ0
2 ◦ C,

(6.9)

and, in addition,
Ψ∞1 = T− 1

2
◦ Ψ∞2 ◦ T 1

2

Ψ0
1 = T− 1

2
◦ Ψ0

2 ◦ T 1
2
.

(6.10)

Proof. — Each component of the modulus at ε = 0 is the limit of two
representatives in the two cases ε ∈ Vδ,l and ε ∈ Vδ,r. More specifically, we
have:

Ψ∞1 = limε→0l Φ
0
+,ε,l ◦ (Φ∞+,ε,l)

◦−1 = limε→0r Φ∞+,ε,r ◦ (Φ0
+,ε,r)

◦−1,

Ψ0
1 = limε→0l Φ

0
−,ε,l ◦ (Φ∞+,ε,l)

◦−1 = limε→0r Φ∞−,ε,r ◦ (Φ0
+,ε,r)

◦−1,

Ψ∞2 = limε→0l Φ
0
−,ε,l ◦ (Φ∞−,ε,l)

◦−1 = limε→0r Φ∞−,ε,r ◦ (Φ0
−,ε,r)

◦−1

Ψ0
2 = limε→0l Φ

0
+,ε,l ◦ (Φ∞−,ε,l)

◦−1 = limε→0r Φ∞+,ε,r ◦ (Φ0
−,ε,r)

◦−1,

(6.11)
where ε→ 0l (resp. ε→ 0r) means ε→ 0 and ε ∈ Vδ,l (resp. ε ∈ Vδ,r). The
symmetries on the Ecalle modulus follow from Theorem 6.3. �

Ψ++
ε,l

Ψ+−
ε,l

Ψ∞
1

Ψ0
1

Ψ++
ε,r

Ψ+−
ε,r

ε ∈ Vδ,l ε = 0 ε ∈ Vδ,r

Figure 14. — The Glutsyuk invariant in the limit ε→ 0.
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6.3. Symmetric Glutsyuk invariant: Second Presentation

When we use Real Fatou Glutsyuk coordinates and allow a subsequent
imaginary translation on them, we break the symmetries (6.6). However, if
the translations are well chosen, we get a different form of symmetry cor-
responding to a symmetry in the x-coordinate under the Schwarz reflection
with respect to the line segment joining the points x±. This presentation is
also very interesting and deserves a detailed discussion.

Theorem 6.10. — There exists a representative ΨG
ε = (Ψ±±ε ) of the

Glutsyuk modulus satisfying Eqs. (6.3), (6.4) and (6.5), that carries the real
character of the family of vector fields as follows. Let # ∈ {++,+−,−+,−−}
be a shortcut for the superscripts.

• If ε ∈ Vδ,l\{0} then:

Ψ#
ε,l = C ◦ Ψ#

C(ε),l ◦ C, (6.12)

i.e. the representative is “symmetric” with respect to the image of the
line �s±.

• If ε ∈ Vδ,r\{0} then:

Ψ#
ε,r = T− 1

2
◦ C ◦ Ψ#

C(ε),r ◦ C ◦ T 1
2
, (6.13)

i.e. the representative is “symmetric” with respect to the image of the
line �s±.

Proof. — We start taking admissible Real Fatou Glutsyuk coordinates
Φ0,∞
±,ε . By analytic dependence of the Glutsyuk coordinates in ε ∈ Vδ,lr\{0},

it suffices to show the theorem for real values of the parameter.

• The case ε < 0. The induced Real Glutsyuk invariant already verifies
Eqs. (6.6); hence, we must show that a correction is possible so that
Eq. (6.12) be satisfied. Theorem 6.3 yields:

Ψ++
ε,l = T−α0

2
◦ Ψ+−

ε,l ◦ T−α∞
= T−α0

2
◦ C ◦ Ψ++

ε,l ◦ C ◦ T−α∞ .

Consider the translations Td(ε), Td′(ε), where the constants d(ε), d′(ε)
are to be chosen later. Replacing Ψ++

ε,l 
→ Td(ε) ◦ Ψ++
ε,l ◦ Td′(ε) in the

equation above, we get:

Td(ε) ◦ Ψ++
ε,l ◦ Td′(ε) = T−α0

2
◦ C ◦ Td(ε) ◦ Ψ++

ε,l ◦ Td′(ε) ◦ C ◦ T−α∞
= T−α0

2 +d(ε)
◦ C ◦ Ψ++

ε,l ◦ C ◦ T−α∞+d′(ε).
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If d(ε) = −α0/4 = −iπ/2ε and d′(ε) = −α∞/2 = iπ(1 − A(ε)ε)/2ε
(where A(ε) is the real formal invariant), then we get

Ψ++
ε,l = C ◦ Ψ++

ε,l ◦ C.

The same procedure shows Ψ#
ε,l = C◦Ψ#

ε,l◦C, for # ∈ {+−,−+,−−}.

• The case ε > 0. From Eqs. (6.5) and (6.6):

Ψ++
ε,r = T−α∞ ◦ Ψ−+

ε,r ◦ T−α0
2

= T−α∞ ◦ C ◦ Ψ−−ε,r ◦ C ◦ T−α0
2
.

The procedure explained above shows that the corrections Ψ++
ε,r 
→

Td(ε) ◦ Ψ++
ε,r ◦ Td′(ε), Ψ−−ε,r 
→ Td(ε) ◦ Ψ−−ε,r ◦ Td′(ε), Ψ+−

ε,r 
→ T
d(ε)

◦
Ψ+−
ε,r ◦ T

d′(ε) and Ψ−+
ε,r 
→ T

d(ε)
◦ Ψ−+

ε,r ◦ T
d′(ε), for d(ε) = α∞/2 =

−iπ(1 −A(ε)ε)/2ε and d′(ε) = α0/4 = iπ/2ε yield

Ψ++
ε,r = C ◦ Ψ−−ε,r ◦ C, Ψ−+

ε,r = C ◦ Ψ+−
ε,r ◦ C. (6.14)

Then Eqs. (6.14) and Lemma 6.2 lead to (6.13).

Notice that in both cases, the new renormalized representative still respects
Eqs. (6.3), (6.4) and (6.5). �

The composition with translations Td(ε), Td′(ε) in the proof above has
destroyed the real normalization of the Real Fatou Glutsyuk coordinates
Φ0,∞
±,ε , and also the continuity at ε = 0. However, this non-real normalization

is very interesting, even if it does not pass to the limit when ε→ 0. Indeed,
in the Z coordinate the imaginary translations Td(ε), Td′(ε) have displaced
the symmetry axis to the line �s± if ε < 0, and to the line �s± if ε > 0, right
above the principal hole, thus breaking the real normalization of the Fatou
Glutsyuk coordinates, see Figure 6. The three real cases deserve explanation.

+

x

x∗

Z

(Z)

s
±

Figure 15. — The symmetry when the parameter is negative.
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The parameter is (real) negative. The normalization reflects the natural
symmetry of the invariant with respect to the image (by p−1

ε ) of the real
segment joining x+ to x− in the x-coordinate, see Figure 15. Inasmuch as
the symmetry is taken with respect to a “real” line in the Fatou coordinate,
the invariant still carries the real character of the foliation, as can be seen
from formula (6.12).

The parameter is (real) positive. The result obtained is surprising. Indeed
it yields that the modulus is symmetric with respect to a line in W -space
that comes (by p−1

ε ) from the imaginary segment I joining the singular
points x0, x±, see Figure 16, where the symmetry is noted Z 
→ Z∗ in the
Z-coordinate. On the other hand we know that I is not invariant under Pε
for a generic family Pε. But the modulus does not describe the behavior of
Pε in x-coordinate but in orbit-coordinate. This imaginary symmetry can
be explained by:

• the real symmetry carried by the former Real Fatou Glustyuk coor-
dinates, so that the components of ΨG are 2-by-2 symmetric images
one of another (this is Eq. (6.14));

• the fact that the Poincaré monodromy of the family is a square:
Pε = Q◦2ε . In the x-plane this can be viewed as a sort of “symmetry
with respect to the origin”. Composition of this symmetry and the
symmetry with respect to the real axis yields a “symmetry” with
respect to the imaginary axis.

The parameter is null. As the lines �s±,�s± no longer exist when ε = 0,
this presentation does not pass to the limit when ε→ 0. The Ecalle modulus
cannot be deduced from this presentation. Indeed, the real (resp. imaginary)
segment in the x-coordinate joining the fixed points disappears when ε→ 0−

(resp. ε→ 0+).

+

x

x

Pε(x)
Z

Z∗

Qε(x)

s
±

Figure 16. — The symmetry when the parameter is positive.
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Definition 6.11 Any representative ΨG
ε of the Glutsyuk invariant cho-

sen as in Theorem 6.10 will be called Symmetric Glutsyuk modulus.

Corollary 6.12 A representative of the Symmetric Glutsyuk modulus
is completely determined by one of its components Ψ±±ε .

7. Invariants under weak conjugacy

Definition 7.1. — Two germs {Pε1}ε1∈Vδ,lr , {P̂ε2}ε2∈Vδ,lr of analytic
families of diffeomorphisms are “weakly conjugate” as real families if there
exists a germ of bijective map H(ε1, x) = (k(ε1),h(ε1, x)) fibered over the
parameter space, where:

i) k : ε1 → ε2 = k(ε1) is a germ of real analytic diffeomorphism pre-
serving the origin.

ii) There exists ρ > 0 and r > 0, such that for each ε1 ∈ Vδ,l(ρ)∪Vδ,r(ρ),
there is a representative hε1(x) = h(ε1, x) of the germ depending
analytically on x ∈ Dr and real for real ε1, x such that hε1 conjugates

Pε1 , P̂k(ε1)
: hε1 ◦ Pε1 = P̂k(ε1)

◦ hε1 . The representative hε1 depends

analytically on ε1 �= 0 and is continuous at ε1 = 0.

Theorem 7.2. — Two families {Pε1}ε1∈Vδ,lr and {P̂ε2}ε2∈Vδ,lr (with the
same sign s before the cubic coefficient) are weakly conjugate by a real con-
jugacy that depends analytically on the parameter ε ∈ Vδ,lr\{0} and con-
tinuously at ε = 0, if and only if the Glutsyuk moduli of their associated
prepared families coincide.

Proof. — Since two families are conjugate if and only if the associated
prepared families are conjugate, it suffices to work with prepared families.
The preparation shows that the parameters ε1 and ε2, the canonical pa-
rameters of the families, are analytic invariants, thus we can consider the
conjugacy over the identity (ε1 = ε2 := ε), and then it suffices to compare
the two families for a given ε ∈ Vδ,lr. We can of course suppose that we
have equal representatives of the Glutsyuk modulus for the two families.
(This means that we may have conjugated one of the two families either
with x 
→ −x or with Qε before proceeding to the construction below).
Since the singular points x0, x± are hyperbolic for values ε ∈ Vδ,lr they
are linearizable. Hence, there exists in the neighborhood of each fixed point
two sectorial diffeomorphisms ϕ0,±

ε = Φ0,∞
ε,± ◦ p−1

ε and ϕ̂0,±
ε = Φ̂0,∞

ε,± ◦ p−1
ε

conjugating, respectively, the Poincaré monodromies Pε and P̂ε with τ1
ε .

The diffeomorphisms Φ0,∞
ε , Φ̂0,∞

ε are Real Fatou Glutsyuk coordinates (see
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Definition 5.2). The neighborhoods of the singular points in the x coordi-
nate where the normalization is possible are noted, respectively, U−ε , U

0
ε and

U+
ε . Let us define:





f−ε = (ϕ̂−ε )−1 ◦ ϕ−ε = pε ◦ (Φ̂∞ε,−)−1 ◦ Φ∞ε,− ◦ p−1
ε ,

f0
ε = (ϕ̂0

ε)
−1 ◦ ϕ0

ε = pε ◦ (Φ̂0
ε)
−1 ◦ Φ0

ε ◦ p−1
ε ,

f+
ε = (ϕ̂+

ε )−1 ◦ ϕ+
ε = pε ◦ (Φ̂∞ε,+)−1 ◦ Φ∞ε,+ ◦ p−1

ε .

If ε ∈ Vδ,lr, we have: f0
ε ≡ f−ε on U−ε ∩ U0

ε , and f0
ε ≡ f+

ε on U0
ε ∩ U+

ε ,
yielding that f±ε and f0

ε are analytic extensions of each other, thus defining
a uniform map fε on Uε. The conclusion follows. �

8. Application to the Hopf bifurcation

A germ of one-parameter family of analytic planar vector fields unfolding
a weak focus in a neighborhood of the origin, is linearly equivalent to a germ
of family of differential equations:

ẋ = α(ε)x− β(ε)y +
∑
j+k�2 bjk(ε)x

jyk,

ẏ = β(ε)x+ α(ε)y +
∑
j+k�2 cjk(ε)x

jyk,
(8.1)

with α(0) = 0 and β(0) �= 0. After rescaling the time (t 
→ β(ε)t) we can
suppose β(ε) ≡ 1.

Definition 8.1. — The family (8.1) is called “generic” if α′(0) �= 0.
The weak focus is of order one if L1(0) �= 0, where L1 is the first Lyapounov
constant:

L1 = 3b30+b12+c21+3c03+
1

β
[b11(b20+b02)−c11(c20+c02)−2b20c20+2b02c02].

It is well known that the Poincaré monodromy Pε : R+ → R+ is analytic
and can be extended to an analytic diffeomorphism

Pε : (R, 0) → (R, 0)

which is the square of a diffeomorphism Qε exchanging R+ with R− and
such that Q′0(0) = −1.

Theorem 8.2. — Two germs of generic families of real analytic vector
fields unfolding a vector field with a weak focus of order one at the origin
are (weakly) analytically orbitally equivalent by real equivalence, if and only
if the germs of families unfolding the Poincaré monodromies of the germs
of vector fields are (weakly) analytically conjugate by a real conjugacy.
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The strong version of this result has been proven in [1],[2]. A simple
analysis shows that the proof of Theorem 8.2 in the strong case applies
verbatim to its weak version. Along with Theorem 7.2, this result yields:

Theorem 8.3. — Two germs of generic families of real analytic vector
fields unfolding a vector field with a weak focus of order one at the origin
are weakly real analytically orbitally equivalent if and only if the germs of
families unfolding the Poincaré monodromies of the germs of vector fields
have the same sign s and the Glutsyuk modulus of their associated prepared
families coincide.

9. Directions for future research

The present paper opens interesting perspectives which we hope to work
on in the future. In particular, let us mention

1. We have described the Glutsyuk modulus on two sectors which do not
cover a full neighborhood of the origin. From this modulus, we could
recover the Lavaurs modulus which has been studied in the other
works on the subject (cf. [16], [10], [14] and [15]). Since the modulus
depends analytically on ε, in practice, the Glutsyuk modulus, defined
only on a union of two sectors in the parameter space, determines
the Lavaurs modulus for parameter values in a full neighborhood
of the origin. So we should be able to replace weak equivalence by
equivalence in the Theorems 7.2 and 8.3. We hope to address this
question in near future. The challenge is of course to show that the
equivalence is real. Another interesting question is to determine the
dependence of the Glutsyuk modulus on ε at ε = 0, in order to
identify the “realizable” moduli.

2. In this paper we have classified the germs of generic analytic families
of vector fields undergoing a Hopf bifurcation of order 1, under orbital
equivalence. We hope in the future to address the same problem under
conjugacy of vector fields. For this purpose, in future work we will
decompose each vector field as a vector field with angular velocity
equal to 1 (called the orbital part) times a “time part” given by a
non vanishing function. For a given orbital part, the time part of the
modulus identifies the equivalence classes of time parts. The problem
is then reduced to identify the time part of the modulus in the case
of the Hopf bifurcation, and also to identify the “realizable” moduli
under conjugacy.

3. Isochronous weak foci of vector fields have been studied in the litera-
ture (cf. [2],[7],[17]). Since the property of being isochronous depends
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only on the conjugacy class of the vector fields, it should be read on
the modulus (orbital and time parts) of the weak focus for ε = 0. It
is known that there are formal obstructions to isochronicity (cf. [7])
but the analytic obstructions are still unknown.

4. Finally, a natural problem is to generalize to higher codimension (this
is done for the saddle-node in [17]). In particular, are there obstruc-
tions at the orbital level? Is the triviality of the orbital modulus a
necessary condition?
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différentielles non linéaires résonnantes du premier ordre. Ann. Scient. Éc. Norm.
Sup., 4e série, 16: p. 571-621, (1983).

– 579 –



Waldo Arriagada-Silva, Christiane Rousseau
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