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Macdonald formula for spherical functions
on affine buildings

A. M. MANTERO(D | A. Zappa(?

ABSTRACT. — In this paper we explicitly determine the Macdonald for-
mula for spherical functions on any locally finite, regular and affine Bruhat-
Tits building, by constructing the finite difference equations that must be
satisfied and explaining how they arise, by only using the geometric prop-
erties of the building.

RESUME. — On détermine explicitement la formule de Macdonald pour
les fonctions sphériques sur tout immeuble de Bruhat-Tits localement fini,
régulier et affine en construisant d’une manieére motivée les équations aux
différences finies qu’elles doivent satisfaire, n’utilisant que les propriétés
géométriques de 'immeuble.

1. Introduction

Let A be a locally finite, regular, irreducible affine building and let H(A)
be the vertex set Hecke algebra of the building, spanned by all averaging
operators acting on the space of all complex valued functions defined on
all special vertices of A. The spherical functions of the building are the
eigenfunctions of the algebra H(A), whose values on any special vertex x
of A depend only on the position of x, with respect to a fixed vertex e,
in any sector based on e and containing x. In the particular case when A
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is the linear building associated to a group G of p-adic type, with a max-
imal compact subgroup K, then the subalgebra Ho(A) of H(A), spanned
by averaging operators acting on the space of all complex valued functions
defined on type 0 special vertices, is isomorphic to the commutative convo-
lution algebra £(G, K); moreover the restriction of the spherical functions
to all type O vertices of A are the zonal spherical functions on G relative
to K considered by Macdonald in [5]. In this paper the author first present
the so-called Macdonald formula for the spherical functions. The presen-
tation is clear and accurate and everything is explained in terms of p-adic
matrix groups. This omits the case of two dimensional exotic buildings and
to some minor extent obscures the essentially building theoretic nature of
all the arguments.

Besides the original derivation of Macdonald, there are many proofs of
the Macdonald formula, each with different approaches. There are also many
algebraic proofs which are more general than both the group approaches and
the building approaches because they make sense for an arbitrary spherical
Hecke algebra in the sense of Ram [12] (see for example the paper [9] of
Opdam). In this context the Macdonald formula is an explicit formula for
the image of certain natural basis elements of the spherical Hecke algebra
under the Satake isomorphism.

In this paper we provide a systematic derivation of the Macdonald for-
mula for spherical functions on an arbitrary (locally finite, regular, irre-
ducible) affine building, taking more advantage of the geometrical proper-
ties of the building. This makes the arguments group independent. In fact
the aim of the paper is to present a proof of the results which puts the
geometry of the building front and center. We must confess that we have
never deeply understood the motivation for the calculations of Macdonald’s
presentation in his Sections 4.3, 4.4 and 4.5. For this reason we wished to
explain the results in such a way that the reader can understand how he
might have calculated and proved them himself.

We give a proof in the fashion of Macdonald’s original proof, in the sense
that we start with a formula for the spherical functions as an integral over
the maximal boundary Q of A of the Poisson kernel associated to a conve-
nient character and convert it into a sum of rational functions, obtaining
the Macdonald formula. More precisely, we express the spherical function
corresponding to a non-singular character x as a linear combination of the
functions x%,w € W. The basic tool used to obtain this formula is the
construction of a diagonalizable triangular matrix T*, of order d = [W|, for
every dominant coroot A, which is diagonalizable by a unique matrix, inde-
pendent of A. This matrix codifies the algorithm for computing the values of
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the spherical function on vertices x € V(e), through the explicit knowledge
of the entries on the principal diagonal of the matrix.

The next step is to investigate in depth the geometric structure of the
building and use it to work out convenient finite difference equations which
enable one to calculate exactly the coefficients in the above linear combina-
tion. The main idea to construct and solve the finite difference equations is
the introduction of the a-boundary and the decomposition of the maximal
boundary in terms of this a-boundary and the boundary of a tree at infinity;
this reduces things to the case of a tree.

For everything that concerns notation and basic facts that we use in
this paper, about both the geometric structure of affine buildings and their
boundary and about the operator algebra and its eigenvalues, we refer to
[8], where these subjects are developed in full detail (see also [10]).

In [11] J. Parkinson independently proves the formula in the general
context, using a different approach. His approach, which makes crucial use
of [6], is just as geometric as ours. We cannot reasonably claim that our
approach, arrived at independently, will be easier to follow for all readers,
but it may be easier for some of them.

In [7] and in [1] the formula for the spherical functions has been cal-
culated in the case of an affine building of type As. In [2] D. Cartwright
generalizes the formula for an affine building of type A,,.

The approach presented here was suggested to us by Tim Steger, who
also provided assistance with a few of the details.

2. Notations and definitions

In this section we collect all basic definitions and notation about affine
buildings and its boundaries. We refer the reader to [8] for an exhaustive
exposition of this argument. We also notice the paper [10] for a similar
presentation.

2.1. Affine buildings

We denote by A a Bruhat-Tits affine building of rank n+1, n > 1. Then
A is a simplicial complex of rank n which can be expressed as the union of
subcomplexes A, called apartments, such that
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e cach apartment is isomorphic to the Coxeter complex of an affine
reflection group W

e for any two simplices of A there is an apartment containing both of
them;

e any pair of apartments containing two simplices are isomorphic, through
an isomorphism fixing the two simplices.

The vertices are the complexes of rank 1 and the chambers are the complexes
of maximal rank n. A is a labelled chamber complex through a labelling
which assign to each vertex of a chamber an element i of a finite set I =
{0,1,2,...,n}, called the type of the vertex; the panel of cotype i of a
chamber is the maximal subcomplex not containing the vertex of type i.

We always assume that A is irreducible, locally finite and regular; for
every i € I, we denote by ¢; the number of the chambers sharing a panel
of cotype i. We refer to the set {g;, ¢ € I} as the parameter system of the
building.

We assume, without loss of generality, that W is the affine Weyl group
of a root system R; this means that W is the group generated by all affine
reflections s*, a € R, k € Z, with respect to the affine hyperplane H¥ of
the vector space V of dimension n associated with R. Actually it can be
proved that the group W can be generated by a finite set S = {s;, i €
I}, where so = 5(110 is the affine reflection with respect to the hyperplane
Héo associated to the highest root ag and s; = sgi, for every ¢ € Iy =
{1,2,...,n}, being B ={q,, i € Iy} a basis for R. If W is the finite Weyl
group associated with R, then W = W x L, if L denotes the coroot lattice
of V. Following standard notation, we denote by L the coweight lattice of
V. The extended Weyl group of the building is the group W = W x L.
We notice that W stabilizes the fundamental vertex 0 and W preserves the
type of vertices. We denote by G the finite abelian group G = L/L which

stabilizes in ﬁ/\ the fundamental chamber
Co={veV : (v,a;) >0, Viel), (v,ag) <1}

The linear hyperplanes H? split up V into finitely many regions; the con-
nected components of V'\ |J, H? are (open) sectors based at 0, called the
(open) Weyl chambers of V (with respect to R). We denote by wq the
longest element of W. The so called fundamental Weyl chamber or funda-
mental sector based at 0 (with respect to the basis B) is the Weyl chamber

Qo={veV : (v,a;) >0, i€y}
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Weset LT ={AeL : AeQoland LTT ={Ae L : AeQ}.

__ The building A is reduced or not if R is so. When A is non-reduced then
L =L and G is trivial. If A is reduced at most two root lengths occur in R
and all roots of a given length are conjugate under W; when there are in R
two distinct root lengths, we speak of long and short roots and the highest
root «q is long.

The root system R and its Weyl group can be characterized by its Dynkin
diagram D, which is the usual Coxeter graph of W, where we add an arrow
pointing to the shorter of the two roots. For every n > 1 there is exactly one
irreducible non-reduced root system of rank n denoted by BC,,. In general
different root systems have different affine Weyl group and hence generate
different affine buildings. The only exception to this rule are the root systems
of type C}, and BC,,, which have the same Weyl group. So, when the group
W associated to the building is the affine Weyl group of the root systems of
type C,, and BC,,, we have to choose the root system. We assume to operate
this choice according to the parameter system of the building. Actually, we
choose R to ensure that in each case the group Auty,.(D) of all type-rotating
automorphisms of D preserves the parameter system of the building, that
is in order to have, for each o € Auts.(D), qo(;) = qi, for all i € I. Actually,
in both cases R = C, or BCp,, 1 = q2 = -+ = ¢n_1, but in general
qo # q1 # q» and qg and ¢, can have different values only when R = BC),.
According to the classification of the root systems and keeping in mind the
above choice, we say that A has type

1. )Z'n, if R has type X,,, for X,, = A,(n > 2), B,(n = 3), D,(n >
4)a En(n =6,7, 8)a Fy, Gy

2. gl, associated to a root system of type A1, if g9 = ¢1 (homogeneous
tree);

3. Eé’l, associated to a root system of type BCh, if qo # ¢1 (semi-
homogeneous tree);

4. Cp(n = 2)if go = qn;
5. BCpn(n>2) if go # qn.

We refer to Appendix of [10] for the classification of all irreducible, locally
finite, regular affine buildings, in terms of diagram and parameter system.

Let A be an affine building of type )N(n We denote by A the simplicial
complex of rank n + 1, realized as a tessellation of the Euclidean space V
of dimension n by the family of hyperplanes # = {HF, o € RY, ke Z},
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in which the chambers are the open connected components of V\ |J,, , H.
Thus A may be regarded as the geometric realization of the Coxeter complex
of A and it is called the fundamental apartment of the building. The extreme
points of the closure of any chamber are the vertices and the 1-codimension
facets of any chamber are the panels. If XJ = 0, X9, ..., X0 are the vertices
of the fundamental chamber Cp, we declare 7(X?) = i, for every i = 0,...,n;
more generally we declare that a vertex X has type i if X = w(X?), for
some w € W. We denote by C(A) and V(A) the set of chambers and the
set of vertices of A respectively. Moreover V;(A) is, for every ¢ € I, the set
of all vertices of type i, Vsp(A) is the set of all special vertices and ﬁ(A) is
the set of all special vertices of A belonging to L. We denote by T the set
of types of the vertices in L. Given any pair of special vertices X, Y, there
exists a unique @ € W such that w(X) = 0 and W(Y) belongs to L*; we
call shape of Y with respect to X the element o(X,Y) = w(Y).

Each apartment 4 of A is isomorphic to A and hence it can be regarded
as a Euclidean space, tessellated by a family of affine hyperplanes H(.A)
isomorphic to H. If ¥ : A — A is any type-rotating isomorphism, we set
h = hE if ¢ (h) = HF. We denote by C(A), V(A) the set of chambers
and the set of vertices of the building respectively. Moreover V;(A) denotes,
for every ¢ € I, the set of all vertices of type ¢ of the building. There is
a natural way to extend to A the definition of special vertices given in
A; we call special every vertex of the building whose image on A under a
type-preserving isomorphism is special. Thus Vs, (A) is the set of all special
vertices of the building and Q(A) is the set of all special vertices of type
1€l

For every pair of chambers ¢,d € C(A), there exists a minimal gallery
v(e,d) from ¢ to d. If f=14y ---1ig, is a reduced word in the free monoid on
I and wg= s;, - --s;, is such that d = wg(c), we set d(c,d) = wyg and write
d = ¢-§(c,d); moreover fis said the type of v(c, d). More generally, for every
vertex x € 17(A) and every chamber d, there exists a minimal gallery v(z, d)
from z to d and y(z,d) = v(c,d), if ¢ is the chamber of y(x,d) containing
x. Finally given two vertices z,y € i/\(A), there exists a minimal gallery
v(z,y) from z to y, lying on any apartment A(z,y) containing = and y; if
¢ and d are the chambers of v(z,y) containing = and y respectively, and
d(c,d) = wy, then the type of this gallery is f= iy - - - .

For every = € 9(A) and every w € W, we set

Cw(z)={deC(A) : i(z,d) = w}.
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If C, is, for every z € ]7(A), the set of all chambers containing x, then
Cw() = Ugee, Cuwl(c), as a disjoint union. Independently of the type of
the vertex x, the cardinality of C, is the Poincaré polynomial W(q) of W.
Moreover, for every w € W, with w = s;, - - - 84,

Cu ()] = W(q) qu

For any pair of facets F1, F» of the building, the convex hull of { Fy, Fo} is
the minimal convex region [Fi, F2| of any apartment A(F;, Fa) containing
them, which is delimited by hyperplanes of the apartment and contains

{F1, Fa}.

Finally, given two vertices x,y € 17(A), the shape of y with respect to x is
defined as o(x,y) = o(X,Y),if X = ¢o(x), Y = ¢(y), for a type-preserving
isomorphism ¢ from A(z,y) onto A. Hence o(x,y) is an element of L+ and,
if o(z,y) = A, there exists a type-rotating isomorphism ¢ : A(z,y) — A
such that 1(z) = 0 and ¥(y) = A. For every vertex 2 € V(A) and every
X € L*, we define

Wi(@) = {y € V(A) : olx,y) = A}.

For every z € V(A), we have V(A) = U+ Va(®) as a disjoint union. The
cardinality |V»(z)| does not depend on z; so we set Ny = [Vx(z)|. It can
be proved (see for instance [8, Proposition 2.15.1 and Proposition 2.15.2])
that, if 7(z) =4, 7(X)) = and j = 0;(1), then

1 3 W(q) W(g)

Ny = o= quw = Quy = q
Wi(q) W W, Wi(g) ™ Wi(g )™

(2.1)

where W) = {w ¢ W : wX = A}, W; is the stabilizer in W of the
vertex X]Q of Cp, wy is the unique element of W such that Cy = wx(Cy),
if C'y is the chamber of @@y containing X, and nearest to Cp, and t) is the
translation v — v + X on A. In particular, if A € LTF, then

Ny = W(Q) qu, = W(qil)qh'

It will be useful to define, for every hyperplane h on any apartment
of the building, ¢, = ¢;, if h contains a panel of cotype i; then, for every
a € R and every k € Z, we can define gor = qn, if (k) = HE, for any
type-rotating isomorphism ) mapping any apartment containing h onto A.
When A is reduced, ¢o.r = Ga,0, for every k € Z and we set g, = gq.%, for
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every k € Z; then qo, = ¢;,Vi € I, and ¢o = qa,;, if @ = way, for some
w € W. It turns out that ¢, = ¢, for every o« € R*, if all roots have the
same length, and, if R contains long and short roots, g, = ¢ for all long «
and gg = p for all short 5. When A is non-reduced,

q0 Vo € R07
Qo = q1 Ya € Ry,
dn Vo c R27

if Rp = {a« € R: «a/2,2a0 ¢ R}, Ry = {a € R: a/2 € R,2a ¢ R}
and Rs = {a € R : /2 ¢ R,2a € R}. For ease of notation, we set
@ =P, 9 =¢q, g, = r. If we extend the definition of g, by setting g, = 1
when a ¢ R, then g, = p, qo2 = 7 if @ € Ry, and go = ¢, qoj2 = 1 if
o€ Ro.

Taking in account these definitions, we notice that, for every A € E*,

« —(\«
g, = ] a e

a€RT
and hence, for every A € L,
W(g™) A
N, = (A, a) (M) 2.9
T Wale ) 1T ™ (22)
aERt

In particular, for every A € L++,

Na=W(g ) J] e g™

a€ERT*

We notice that the building is chamber regular, that is, for every triple
wp, w1, wy € W and every pair of chambers ¢1, co, such that (cy, ) = wy,
the cardinality of the set

{d eC(A) : d(c1,c) = w1, §(ca, ) = wa}
does not depend on the choice of the chambers but only depends on wq, w1, ws.

__ Moreover the building is vertex regular, that is, for every triple A, u, v €
L and every pair z,y € V(A) such that o(x,y) = A, the cardinality of the
set R

{z€V(A) : o(z,2) =p, o(y,z) =v}.

does not depend on the choice of the vertices , but only depends on A, y, v.
Moreover
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{2 € V(A) © oe,2) =, o(y,2) = v}
=|{z e 17(A) co(x,2) =v*, o(y,z) = u*}-

We set

N pv) =Kz € V(A) ¢ o(z,2) = p, o(y,z) = v} = N, 1),
if o(z,y)=2A, (2.3)

where p* = «(u) and v* = (v), if ¢ denotes the map

Up) = —wo(u), VpeL

There is a partial order on E, defined as follows
p=X if N—pelL.

Since )7(A) may be identified with the coweight lattice E, the partial ordering
defined on L applies to V(A). For every A € L™, we define

I = {wu : MEE+,M5)\,WEW}.

This set is saturated: for every n € Il and every o € R, then n—jaV € IIj,
for every 0 < j < (n,«). Hence it is stable under W. Moreover \ is the
highest coweight of II,. It is easy to prove that I, +1II,, C II 4, for every
A€ L*. We recall that W is endowed with the Bruhat ordering, defined
as follows (see [4]). We declare wy < ws if there exists a sequence wy =
Uy = U, ..., Ug—1 — U = W2, Where u; — u;41 means that uj 1 = u;s,
for some s € S, and |u;| < |ujt+1]. This defines a partial order on W that
can be extended to W by setting w; < Wo, if W7, = wig; and Ws = wags
with wy; < ws. We remark that w; < ws if and only if w; can be obtained
as a sub-expression s;, ---s;, ~ of any reduced expression s;, - - - s;, for ws.

We notice that, for every A € L, if w(0) € IIy, then @'(0) € II,, for each
W < W.

We may also define a partial ordering on C(A), in the following way.
Given two chambers C;,Cy consider all the hyperplanes HY separating C
and Cs. We declare C7 < Cs, if Cs belongs to the positive half-space deter-
mined by each of these hyperplanes. It is clear that the resulting relation
Cy <X (5 is a partial ordering of C(A). We notice that, by definition of Q,
we have Cy < C if and only if C' C Qq. Moreover, if C is any chamber
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and s = s* is the affine reflection with respect to the hyperplane containing
a panel of C, then C' < s(C) or s(C) < C, since C' and s(C) are adja-
cent. Since C(A) may be identified with W, the previous definition induces
a partial ordering on W. We point out that this ordering is different from
the Bruhat order. Nevertheless, if wi(Cp) and ws(Cp) belong to Qq, then
w1 (Cp) < wa(Cp) if and only if wy; < we. Moreover, on W, we have

w1(Co) < w2(Cp) if and only if wy > wa.

It may be proved that, if C' is any chamber of A such that C' < s(C), where
s = s is the affine reflection with respect to the hyperplane H” containing
a panel of C| then, for every w € W,

(1) if w(C) < ws(C), then w < ws,

(i1) if ws(C) < w(C), then ws < w,
if w=wty for some w € W, A € L and s = s. See [8] for the proof of this
property.

It will be useful to define, for every =z € 9(A), the retraction p, of
the building onto its fundamental apartment. For every x € 9(A) and ¢ €
C(A), we denote by proj,(c) the chamber containing = in any minimal
gallery y(z,¢). In particular we write projo(c) when z is the fundamental
vertex e. We note that proj,(c) does not depend on the minimal gallery we
consider. In the fundamental apartment A, let Q, = wo(Qp) and Cj the
base chamber of Q .

DEFINITION 2.1. — Let © be any special vertez of A (say 7(x) =1i). For
every ¢ € C(A), the retraction of ¢ with respect to x is defined as

pz(c) = Cy - 8i(projz(c),c),

if, for every pair c,d of chambers, we set 6;(c,d) = W1 when d(c,d) =

wy. In particular, if T(x) = 0,
pz(c) = CF - d(projy(c), c).
Obviously, p;(c) belongs to Qg , for every c¢. We extend the previous defini-

tion to all special vertices. For every y € V,,(A), say 7(y) = j, we set

Pz (y) = (pw (C))7

if ¢ is any chamber containing y, and [ = o, 1(4). Actually this definition
does not depend on the choice of the chamber containing the vertices y. In
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particular, we denote by po the retraction with respect to the fundamental
vertex e. It will be useful to remark that, if A € L™, and ¢, = uyg;, then, for
every c such that §(projo(c), c) = ux, we have po(c) = woux(Cp). Therefore,
if o(e,x) = A, then pg(x) = woA.

We recall that the action of W on the set C(A) is transitive but not
simply transitive; actually, if w; = wg;, then w;(Cy) = w(Cy), for every
w € W and for every i € I. Nevertheless, the action of the elements w; on
the special vertices v;(Cy) of Cy depends on i, because

@(Uj(co)) = Um(j)(w(co))'

This suggest to enlarge the set C(A) in the following way. We call ex-
tended chamber of A a pair C' = (C,0), for every C € C(A) and for ev-

ery o € Auty(D); we denote by C(A) the set of all extended chambers. A

straightforward consequence of this definition is that WAacts simply tran-
sitively on C(A) : for every pair of extended chambers C; = (C1,0;,) and

Cy = (Csa,04,), there exists a unique element @ € W such that Co = @(6’1)
Actually, if Cy = w(C1), 9 = 9i,9;, 1 and o is the automorphism of D corre-

sponding to g, then W = wg = go(w). In particular, for every C = (C,04),
then W = wg; = g;0;(w) is the unique element of W such that w(Cy) = C,
it C = w(Cy). In the same way we enlarge the set C(A) and we define

C(A)={¢=(c,0), c€C(A), i eI}

We notice that for every ¢ € C(A) and i € I, ¢= (c,0;) is the unique
extended chamber such that v;(c) = vg(¢). The W-distance on C(A) can be

extended to a TW-distance on C| (A) in the following way: for every pair of
extended chambers ¢; = (¢1, 04, ) and ¢ = (cq,0,), we set

~

5(61,82) = 8(c1, 02) 91,957

For every A € L+, with 7(A\) =, ¢5(Co) = (ur(Co), g;) and vo(tx(Co)) =
vi(ux(Co)), if tx = urgr-

2.2. Maximal boundary

For every X € 17(1&)7 let Hx be the collection of all hyperplanes of A
sharing X; a sector of A, based at X, is any connected component Qx of
V\ Unren, HE. For every chamber C containing X, @x(C) denotes the

sector based at X, of base chamber C. We remark that, for every X € ]A)(A),
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and every C containing X, there exists a unique w € W, such that Qx (C) =
w Q.

More generally, for any x € 9(A), a sector of A, with base vertex z, is
a subcomplex @, of any apartment A of the building, such that ¢;,(Q,) =
Q@x, if X is any special vertex such that 7(X) = 7(z), and ¢, : A — A is
a type-preserving isomorphism mapping = to X. We note that, given any
apartment A of the building, for every sector @, C A there exists a unique
type-rotating isomorphism 1y, : A — A mapping Q, to Qy. We say that a
sector @, is a subsector of a sector @, if @, C Q. Two sectors @, and Q)
are said to be equivalent if they share a subsector J,. Each equivalence class
of sectors is called a boundary point of the building and it is denoted by w;
the set of all equivalence classes of sectors is called the maximal boundary
of the building and it is denoted by . We denote by Q,(w) the unique
sector in the class w, based at x. For every = € 17(A) and every w € 1,
there exists an apartment A(x,w) containing z and w (in fact containing
Q. (w)). Analogously, for every chamber ¢ and every w € €2, there exists an
apartment A (¢, w) containing ¢ and w, that is ¢ and a sector in the class w.
On this apartment we denote by Q.(w) the intersection of all sectors in the
class w containing c.

For every z € V(A) and every chamber ¢ € C(A), we define on the
maximal boundary ) the set

Qz,c) ={w e N : Qu(w) Dc}.

Analogously, for every pair of special vertices z,y, we can define the set
Q(x,y) of Q given by

Qz,y) ={w e : ye€Qu(w)}
We note that , for every z,

Qz,), Qz,z) D Qx,c), forevery ¢, z in the convex hull of {z,c},
/

Qx, ), Qz,z) D Qa,y), forevery ¢/, z in the convex hull of {z,y}.

Let we Qand z € ?(A); for every apartment A = A(z,w) containing
w and z, there exists a unique type-rotating isomorphism . : A — A,
such that 14 (Q(w)) = Qp. On the other hand, if A’ contains a subsector
Qy(w) of Q(w), but not z, then there exists a type-preserving isomorphism
¢ A — A(z,w) fixing Qy(w); hence it is well defined the type-rotating
isomorphism ¢}, = - ¢ : A" — A. Since every facet F of the building
lies on an apartment A’ containing a subsector Q,(w) of Q,(w) (possibly
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Q. (w)), then, according to previous notation, F maps uniquely on the facet
F =14, (F) of A.

DEFINITION 2.2. — We call retraction of A on A, with respect to w and
of center x, the map
Pl A = A,

such that, for every apartment A’ and for every facet F € A', p*(F) =
F =41, (F).

In particular pZ(z) = 0 and, if we denote by ¢Z the base chamber of
Qz(w), then pZ¥(c¥) = Cy. Moreover, for every chamber ¢ € @, (w) and for
every special vertex y € @, (w), then

pu(c) = Co-d(c;,c), and  pg(y) = Xy,

if X,, is the special vertex associated with p = o(x,y). For ease of notation,
we simply set pZ(z) = p to mean that p7(y) = X,. In the case z = e, we
set p, = pg,-

We collect here, without any proof, the fundamental results concerning
the retraction p?*. We refer to [8, Section 3| for the proof.

PROPOSITION 2.3. — Let x,y € V(A), ¢ € C(A) and w € .

(i) If d C Quz(w) N Qc(w), then 6(x,d) §(d,c) is independent of d and
pr(c) = Cy - 0(z,d) §(d, c).

(i) Ifz € Qe (wW)NQy(w), o(x, 2)—o(y, 2) is independent of z and p¥(y) =
Xa(z,z) - Xa(y,z)~

The previous proposition implies that, for all z, y, z in ]7(A) and for each
w € Q, p¥(z) = p¥(2) — p=(y). In particular, if z = x, then p¥(x) = —pZ(y)
and, for all x,y and for each w € Q, p%(y) = pu(y) — pw(z). We point out
that in fact this formula is independent of the choice of the fundamental
vertex e.

THEOREM 2.4. — Let y € V\(x) and z € V,(x). If p is large enough
with respect to A, then Q(x,z) C Qy,z). Moreover, for all w € Q(z,z),

pL(y) = X — X, if oy, z) = v.

It can be proved that, for every z € 17(A) and for every A € LT, if
y € Va(z), then pf(y) € IIy, for every w € . In particular pf(y) = Xj, if
Y € Qu(w).
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THEOREM 2.5. — Let € V() and w € L.

(i) For w,wy € W, then |{c € C(A) : d(z,c) = wr, p¥(c) = Co-w}] is
independent of x and w.

(ii) For every p € IIy, [{y € Va(z) = p5(y) = X} is independent of x
and w.

As a consequence of this theorem we set, for every z € V) (z) and w € Q,

N p) =Ky € Valz) :+ p5(y) = Xp}l- (2.4)

It will be useful to compare the retraction pf, with the retraction p, with
respect to x.

LEMMA 2.6. — Let ¢ be any chamber and let y € f/(A)

(i) If ¢ (respectively y) lies on the sector Q (w) opposite to Q(w), in
any apartment A(x,w), then p%(c) = pz(c), (respectively p7(y) =
p(y))-

(ii) If ¢ (respectively y) belongs to the sector (Q%)~ (w), a—adjacent to
Q. (w), in any apartment containing ¢ and Q.(w), then p¥(c) =
Sapx(c),  (vespectively  pf(y) = sapx(y))-

The maximal boundary 2 may be endowed with a totally disconnected
compact Hausdorff topology in the following way. Fix a special vertex x €
V(A), say of type i = 7(x); consider the family

B, ={ Q(z,¢), ceC}.

Then B, generates a totally disconnected compact Hausdorff topology on
Q; for every w € €, a local base at w is given by

Bz,w = { Q(JZ,C), cC Qx(w)}
We observe that it suffices to consider, as a local base at w, only the cham-
bers ¢ lying on @, (w) such that, for some X\ € LT, §(c,(w),c) = oi(ty), if
¢z (w) is the base chamber of the sector @, (w), and ¢ = 7(z). The topology
on € does not depend on the particular z € V(A).

For each x of 17(A), we define a regular Borel probability measure v, on
Q by setting

— W q71 — « « :
@) = Ny = Yo T % ah it e W),
aERT

The measure v, has the following property.
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THEOREM 2.7. — Let z € V(A).

(i) Let w,wg € W; for each ¢ € C(A) such that 6(x,c) = wo, vy,({w €
0 = p=(c) = Cp - w}) is independent of x and c.

(ii) Let A € LT and p € Tly; for each y € ﬁ(A) such that o(x,y) = A,
vp({w € Q ¢ pZ(y) = p}) is independent of x and y.

2.3. a-boundary and trees at infinity

For every ¢ € Iy, the i-type wall Hy; of the fundamental sector Qg of A
is the intersection with Qg of the hyperplane H; = H,,, that is the wall of
Qg containing the cotype ¢ panel of Cy. We extend this definition to each
sector of A by declaring that, for every special vertex X in A, and for every
chamber C' sharing X, the i-type wall of the sector @ (C) based at X
is the intersection with Q5 (C) of the affine hyperplane H*, o € RT, k €
Z, which is a wall of the chamber C' such that there is a type-preserving
isomorphism on A mapping the wall on the affine hyperplane sz = H, fji,
for some k € Z.

The definition of wall can be extended to each sector of the building; if
Q(c) is any sector of A, and A is any apartment containing Q. (c), then
the walls of Q. (c) are the inverse images of the walls of the sector Q»(C) =
ip(Qz(c)), under a type-preserving isomorphism ¢y, : A — A. Moreover,
for every i € I, a wall of Q. (c) has type 4, if its image in A has type . This
definition does not depend on the choice of the apartment A containing
the sector and on the type-preserving isomorphism )y, : A — A. For every
sector Q(c) and for every i € Iy, we denote by hy ;(c) = hy (Qz(c)) the
type ¢ wall of the sector. If w is any element of the maximal boundary (2,
then, for every x € V(A) and for every i € Iy, we simply denote by hy ;(w)
the wall of type ¢ of the sector @, (w). If « is a simple root, that is a = v,
for some i € I, for every special vertex x of A, and for every w € 0, we
shall denote by hy o(w) the wall of Q,(w) of type i and we simply call it
the a-wall of Q. (w). In general, for every simple root «, we shall denote by
he.o the a-wall of any sector based at x.

DEFINITION 2.8. — Let w,w’ € Q. We say that w is a-equivalent to ',
and we write w ~qo W', if, for some T, ho (W) = haz(W').

Since it can be proved that, if there exists a vertex € V(A) such
that he o(w1) = haealws), then hyo(w)) = hy.o(ws), for every y € V(A),
the definition of a-equivalence does not depend on the vertex x such that
ha,o(W) = ha z(W'). Moreover, if w is a-equivalent to w’ and A = A(w,w’)
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denotes any apartment having w and w’ as boundary points, then for every
x € A, the sectors Q,(w) and Q. (w’) are a-adjacent, that is there exists
a type rotating isomorphism . : A — A mapping Q. (w) onto Qp and
Qz(w') onto $,Qp. On the contrary, if x does not lie on any A(w,w’), then
Q»(w) N Q. (w') contains properly their common a-wall.

DEFINITION 2.9. — We call a-boundary of the building A the set Q, =
Q/~q, consisting of all equivalence classes 1o, = [w]a of boundary points.

For every w € €, consider the set Ho(w) = {hzao(w), = € Q(A)}
If W' ~y w, then, for every z, hyo(w') = hyo(w) and hence H,(w) =
Ho(w'). Therefore the set Hq(w) only depends on the equivalence class
No = [w]a represented by w and we shall denote Hy(ne) = Ha(w), if
W € No. Moreover, if w 24, w', then, for every z € V(A), hgo(W) # hgo(W)
and hence H,(w) N He(w') = 0. This implies that the map

No = Ha(Na)

is a bijection between the a-boundary €2, and the set {H(74)}. In particu-
lar, for every = € lA/(A), each element 7, of {2, determines one a-wall based
at x; we shall denote this wall by hy(1,). Of course, hy(ne) = hyo(w), for
every w € 1q-

If we examine in details, for any class 7, the set H, (14 ), we prove that
the set Hq (o) determines a tree. We need the following definition.

DEFINITION 2.10. — Let z,y € 17(A), x # y; let hyo and hy o be a-
walls, based at x and y respectively.

(i) The walls hyo and hy o are said to be equivalent if they definitely
coincide, that is there is h, o such that h, o C hg o Nhyq.

(ii) The walls hy o and hy o are said to be parallel if they are not equiv-
alent , but there is an apartment containing them and, through any
type-preserving isomorphism 1y, of this apartment onto A, they cor-
respond to walls of A lying on parallel affine a-hyperplanes HE, HI
for some k,j € Z.

(ili) The walls hy o and hy o are said to be definitely parallel if there exist
hat o C heo and hy o C hy o which are parallel. If hy o and hy o are
definitely parallel, we call distance between the two walls the usual
distance between the two hyperplanes of A containing the images of
their parallel subwalls, that is the positive integer number |j — k|, if
/wtp(h:v,oz) = Hé and ql)tr(hy,a) = Hé
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We remark that if h; o and hy . are definitely parallel, there exists an
apartment containing, say, hy o and a subwall of Ay .

For every w € 2 and for every pair of special vertices x,y € 17(A), the
walls hgo(w) and hyo(w) are equivalent or definitely parallel; therefore,
for every 1o, € Qq, the set H(n,) consists of walls equivalent or definitely
parallel. For every n, € 4 and for every z € IA/(A), we denote by x the
equivalence class represented by the wall h,(n,). Obviously, x = y if and
only if hy(n4) and hy(n,) are equivalent. We denote by Ty (n,) the graph
having as vertices the classes x of equivalent walls associated to 7, and
as edges the pairs [x,y]| of equivalence classes represented by (definitely
parallel) walls h;(n,) and hy(n,) at distance one. It can be proved the
following fundamental result (see [8, Section 4]).

PROPOSITION 2.11. — For every simple root «, and for every n, € Qq,
the graph Ty (na) is a tree.

(i) If a € Ry, the tree is homogeneous, with homogeneity qe.

(ii) If o € Ry, the tree is labelled and semi-homogeneous; each vertex of
type 0 shares gz, = p edges and each verter of type 1 shares qo =T
edges.

We recall that the simple root a belongs to Ry if and only if R is not
reduced and a = «,, = e,,. In this particular case, for every k € Z, we have
HF = H2F; hence the parallel hyperplanes of A orthogonal to o are the
hyperplanes H% , for all h € Z. Moreover, for every k € Z, G202k = Gak =
do =7 and @20,2k+1 = g2 = p- In all other cases, that is for all simple root
of a reduced building or for all simple root c,¢ # n, for a building of type
BC,,, we always have a € Ry, and hence ¢,y = q,, forevery k€ Z.

On the fundamental apartment A, for every k € Z, we simply denote by
X, the class of all a-walls of sectors Q x equivalent to Qy, lying on HF, and
we set

Ty = {Xy, k €Z}.

For every apartment A of the building, the equivalence class x represented
by the walls of H, (1) lying on A, maps to an element Xy, of I'y, for some
k € Z, by a type-preserving isomorphism ¢, : A — A. If the root system R
has type C,, or BC,,, and o = a,, then, for every j € Z, H2J only contains
special vertices of type 0 and H27+! only contains special vertices of type n.
(The same is true if R has type B,, and a = «;,i < n). Hence in this case it
is natural to endow the set I'g with a labelling in the following way: we say
that X}, has type 0, if £ = 2j and has type 1, if k = 25 + 1, for j € Z. This
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labelling can be extended to all equivalence classes x represented by walls of
Ha(na) lying on any apartment 4, and hence to all walls of the buildings;
we say that x has type 0 if (through any type-preserving isomorphism) it
maps to some Xo;, and has type 1, if it maps to some Xg;41.

For every apartment A, the walls iy o(w) of H(n,) lying on A determine
a geodesic y(n,) of the tree T'(n,), consisting of all vertices x associated
to these walls and of all edges connecting each pair of adjacent vertices
x,y. The set I'y can be seen as the fundamental geodesic of the tree, since
each geodesic v(n,) of the building is isomorphic to T'g through any type-
preserving isomorphism 1, : A — A, if 4 denotes any apartment containing

Y(Na)-

The tree T'(n,) is labelled and semi-homogeneous only when R is not
reduced and o = a, = ey, that is only when the building has type Eé’n;
in this case V(A) consists only of vertices of type 0. Therefore for such a
tree it is straightforward to restrict to consider only its vertices of type 0.
Hence, if x,y are vertices of type 0, then the geodesic [x,y] has length 2n,
for some n € N. Moreover on the fundamental geodesic I'g we consider only
the vertices Xs,, for n € N.

Obviously, for every n, € Q,, we may identify the set Ho(n,) with
the tree Ty (nq). Moreover trees To(na,1); Ta(na,2) associated to any two
Na,15 Na,2 i 4 are isomorphic. For every z € 17(A), the vertex x can
be seen as the projection of = onto the tree T, (7). In this sense we can
refer to T, (1) as to the tree at infinity associated to the element 7, of the

a-boundary.

For every 1, € Q4, the set {w € Q: w € 9, } can be identified with the
boundary 0T, (1) of the tree T, (ns). Moreover, for every pair nq,1, 7a,2
in Qq, 0T4(Ma,1), 0Ta(Na,2) are isomorphic. We denote by T, an abstract
tree such that

Ta(noz) ~ Taa Vna S Qa;

moreover we denote by t any element of T, and by b any element of its
boundary 90T,.

We may conclude that the maximal boundary €2 of the building can be
decomposed as a disjoint union of boundaries of trees, one for each equiva-
lence class 1, = [wW]a :

Q= |J 9T(a).

Na €Qa
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According to this decomposition, each boundary point w of the building
can be seen as a pair (1,,b) of Q, x 9T, where 7, is the equivalence
class [w], containing w and b is the boundary point of T, corresponding on
OT (Ne) to w. In this sense we may write, up to isomorphism,

Q=Q, x IT,.

For every simple root a, define, for every v € V|

UV — SV U+ SV

Py (v) = 5 Qalv) = 5

where s, is the reflection with respect to the linear hyperplane H,. By def-
inition, Py (v) + Qa(v) = v and Q4 (v) — P, (v) = sqv. Moreover P, (s,v) =
—P,(v) and Qu(sav) = Qa(v). We observe that, for every v, Q4 (v) lies
on H, and P, (v) is the component of the vector v in the direction orthog-
onal to the hyperplane H,, that is in the direction of the vector a. The
a~equivalence of two boundary points implies the following result (see [8,
Section 4]).

__ PROPOSITION 2.12. — Let wy,ws be a-equivalent. Then, for every z,y €
V(4),

Qa(pws (Y) = Pus (7)) = Qa(pu (¥) — puy (7))
If x,y belong to an apartment containing both the boundary points wy,ws,
then

Po(pws(Y) = Pus (7)) = = Polpuy () = pu, (7))

As the maximal boundary, also each a-boundary €2, may be endowed
with a totally disconnected compact Hausdorft topology and a regular Borel
measure for every x of V(A). For every pair z,y € V(A), define a set of £,
in the following way:

Qa(x7y) = {77a = [w]a’ w e Q(x,y)}

We observe that there exists a a-wall based at = containing y, if and only
if y € Va(z), with A € Hg . Then, for every pair of vertices z,y € V(A)
such that y € V) (z), with A € Hy , we have

Qa(,y) = {Na € Qo : y € hi(na)}-

The family
Bgz = { Qa(x7y>7 RS V)\(A)7 AE HO,a}
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generates a totally disconnected compact Hausdorff topology on €2, and,
for every 1o € €4, a local base at 7, is given by

Bw,na = { Qa(.ﬁ,y), yC hw(na)}

By the same argument used for the maximal boundary, we can prove that
the topology on Q, does not depend on the particular z € V(A).

For every z of 17(A), we define a regular Borel measure v§ on Q,, by
setting, for every y € V\(A),
NO{
e (@) = 2,
if N3 \ =[{z:0(x,2) = P,A}|, where x and y are the projection of z and
y on the tree at infinity associated with any w € Q(z,y) and o(x,y) = P, .
We notice that if A € Hy o, then y = x and then P, A = . Therefore in this
case VS (Qa(x,vy)) = v2(Q(x, y)). Define

RY ={B€R", B# a,2a};
then, recalling formula (2.1), we have

Wia(g ) —<AB>  <AB> .
Wi Llser: 45 T2 if A€ Ho,a,

Wialg H(+g3" <AB> <G>
2

Ve (Qalr,y)) = : -
W(g—T) perst 45 92p

otherwise.

For every z € ]7(A), let x be its projection on the tree T'(1,,) associated
with an assigned w € Q and let t be the element of the abstract tree T,
which corresponds to the vertex x; for ease of notation, from now on, we
identify t with x. According to this notation, if we identify the maximal
boundary Q with Q, x 9T, then, if w € Q(z,y) and w = (14, b), we have
Qz,y) = Qu(z,y) X B(x,y), where B(x,y) ={b € 9T, : y € v(x,b)}.
Therefore each probability measure v, splits as product of the probability
measure v on the a-boundary 2, and the canonical probability measure
1x on the boundary of the tree T, :

«
Vg = Vy X [ix.
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3. Characters and Poisson kernels

3.1. Characters

We call character of A any multiplicative complex-valued function x
acting on L :

X+ X2) = x(A1) x(A2),  YAi,he € L.

We assume, without loss of generality, that a character of A is the restriction
to L of a multiplicative complex-valued function acting on V. We denote by

~ ~

X(L) the group of all characters of A. If n = dimV, then X(L) & (C*)»

~

and the group X (L) can be endowed with the weak topology and the usual

~

measure of C"™. The Weyl group W acts on X(L) in the following way: for
every w € W and for every x € X(L),

(wx)(A) = x(w~'(}), forall AeL. (3.1)

It is immediate to observe that wy is a character and we simply denote
XV = wy.

We shall give some definitions.

DEFINITION 3.1. — Let x be a character of A.

1. x is singular if there exists a Toot o such that x(aV) = 1;
2. x 1s non-singular if x(a“) # 1, for each Toot «;
3. x is good if there exists Ao € L, with 7(Xo) =0, such that
XV (Ao) # X™2(Ao), for wi # wa;
4. x is bad for X if there exist wi,wo € W,w; # wa, such that
XWHA) = x"2(A);

5. x is bad if x is bad for every X, that is for every \ € L there erist
w1, Wo € W w1 # wa, such that xV'(A) = xV2(A).

~

We shall denote by Xns(L) the space of all non-singular characters and by

o~

X4(L) the space of all good characters.
LEMMA 3.2. — Xg(f) C XNS(Z).
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Proof. — We prove that every singular character x is bad. Let x be
singular and let o be a root such that y(a") = 1. For every A € L, soA— A
is orthogonal to the hyperplane H?; moreover s,A — A € L. This implies

that soA — A = kaV, for some integer k. Thus x(sqaA — A) = 1, and then
X(8aA) = x(A). This means that x is bad. O

We shall prove that in fact the set of all bad characters is negligible in
the space of all characters. We notice at first that, for every A € L, the set
of all character which are bad for A is given by

U X/ cwin)-wan)>):

W1F£W2

if < wi(\) —wa()) > denotes the sublattice of L generated by the element
w1(A)—wso(A). Actually, if x is bad for A and x™*(\) = x™V2()), then x(u) =
1 for each p €< wy(A\) —wa(A) > . The following lemma characterizes each

set X(L/cw,(\)—wa(\)>)-

LEMMA 3.3. — Let \ € f/, and wi,wo € W wy # wy. Then, there
exists an integer m, such that

X(L <y () —wa(n)>) = (C)" 71 x (Z/m).

Proof. — We can choose a basis {1y, ...,n,} for V, such that wy(\) —
wa () = mny, for some integer m. Hence, if x belongs t0 X(L/<w, (x)=ws())>)
and A = >, k;n;, then we can write

X(A) = x(m ) x(m2)" -+ x (),

if j is the element of the finite group Z/m represented by ky. Therefore x
may be identified with an element of (C*)"~! x (Z/m). O

PROPOSITION 3.4. — The set of all bad characters of A has measure
zero.

Proof. — Lemma 3.3 implies that X(E/<w1(>\)—wQ(>\)>) is a subset of
X (L) having measure zero, for every A € L and wy # wo; then also the
set le#wz X(E/<WI(A),W2(>\)>) of all characters bad for A\ has measure
zero. Since a characters of A is bad if it is bad for every A, the set of all bad
characters of A is the intersection of the sets le¢w2 X(L)cwi (N =wa(A)>)s

for all A € f/, and then it has measure zero. O
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COROLLARY 3.5. — The space Xg(z) is dense in Xng(L) and Xys(L)
is dense in X(L) with respect to the weak topology.

In Section 8 we shall need to consider particular good characters, named
a-good, with respect to a simple root «. Let a be a simple root and con-
sider the linear hyperplane HO; the restriction y, of a character x to the
hyperplane H! is a character on n HY.

DEFINITION 3.6. — A character x is a-good if

(X"a = (xX")a if and only if w1 = Wy or w1 = SqWa.

We denote by ng(f) the subspace of X(E) consisting of all characters of
A which are a-good for every simple root c.

We observe that a good character is not necessarily a-good for some
simple root «. Nevertheless, we can prove that the good characters, which
are a-good for a simple root «, are dense in the space of all good charac-
ters, with respect to the weak topology. In order to prove this property we
consider , for any w € W, the set Mg =< w(\) — A\, A € H? > and the
quotient space E/M‘%. We notice that, if (xw)a = Xa, then x(Mg) =1 and

hence x belongs to X(Z/Mﬁ).

PROPOSITION 3.7. — For every simple root a, dim X(E/Mv%) = dim X(L)
if and only if w =e or w = s,.

Proof. — If M is a subgroup of the additive group E then the group
(L/M) is total in the group X( ) if and only if M = {0}. Therefore

X(L/Mu) is total in the group X (L ) L) if and only if M& = {0}. So we conclude,
because Mg = {0} if and only if w = e, or w = s,. O

COROLLARY 3.8. — ng(i) is dense in X(L).

Proof. — We prove that, for every simple root «, the space of all char-
acters y of A such that (X")a = (XxW2)4, for wi # wa, s Wa, is a subspace
of measure zero of X (L ) Without loss of generality, we can assume wo = ¢
and wy 7 e, 5. We know that X(L ) (€)™, if dimV = n. On the other
hand, dim X(L/ Mg ) < n; then X(L/ Mg ) = (C*)"', with n/ < n, and
this proves that X(E/M‘?(,l) has measure zero in X(E) O
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3.2. Fundamental character and probability measures
on the boundaries

We call fundamental character of A the multiplicative function yg on L
defined as follows:

o= [ é &>, vael (3.2)

a€Rt

We notice that yo(A) > 1, for all A € L*. We write yo according to the
type of the building.

1. If Ris reduced and all roots have the same length, that is for buildings
of type A,, D,, Es, E; and Eg, then q, = ¢, for every o € R™; hence
by setting & = 1(3°,cp+ @), we write

Xo(A) = gRoners M — 2(00),

2. If R is reduced, but it contains long and short roots, then, denoting
by « any long root and by 8 any short root, we write ¢, = ¢ and
gp = p; hence by setting §; = %(Z a), 0y = %(Z B), we have

XO()\) _ qQ(A,él> p2<>\,§s>.
This happens for buildings of type En, én, F, and Gs.

3. If R is non-reduced, that is the building is of type (E\é)n, we denote
by «a, 8 and v any root of Ry, Ry and Ry respectively; then keeping
in mind that R = {8/2, 8 € Ry}, it follows that

Xo(N) = G2 (pr) 50

it 6y = L(Xa), & = L8,

pr

We notice that, for every A € L+, Xo0(A) = ¢, . More generally, if A is any

element of I and tx = uxgr, with uy = s;, -+ s;., then the same argument
used in Proposition 2.16.1 of [8] shows that,

Xo(A) = H G - H a4 (3.3)
jeJt JjEJ~
where
JJr = {] DSq 'Sij_l(CO) T " 8i; (Co)}
and J7 ={j : sy ---5i;,(Co) <54, - 54,_,(Co)}.

We can easily compute the fundamental character in each simple coroot

aV.
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1. If R is reduced, then, for every simple root a, xo(a¥) = ¢2.
2. If R is non-reduced, then

(i) xo(aV) =¢q?, forevery a =¢; —ej11,i=1,...,n—1;
(11) xo(BY) = pr, for 8 = 2e,.

For every simple root a we define, for every A € E,
H q<>\5 B (3.4)
BeRY
Obviously x§ is a character of A such that x§ () = xo()A), for A € Hg 4.

If T, is the abstract tree isomorphic to each tree at infinity T, (74 ), To
is its fundamental apartment and I'J is the fundamental geodesic based at
0, then X, is the following character on I'y :

L. Xo(Xn) = ¢7, if X,, is the vertex of I'd at distance n from 0, in the
homogeneous case;
2. Xo(Xan) = (pr), if Xa, is the vertex of I'j at distance 2n from 0,

otherwise.

The characters xo, x§ and X, are related through the operators P, and
Q.. as the following lemma shows (see [8, Section 4]).

LEMMA 3.9. — Let \ € E; assume A € H,, o, if a € Ry, and A\ € Hap, q,
if « € Ry. Then

() x0(Qa(N) = x5 (Qa(N) = x5V,

.. _ Xo(Xn) = a4 if @ € Ry,
(ii) xo(Pa(N) = {;O(X%) :q(p’r')n ifae ROQ.

For every A € L, xo(\) = X3 (Qa(N) Xo(Xn), if Xy is the vertex of T'g
corresponding to Py ().

PROPOSITION 3.10. — Let 2,y € V(A) and w € Q. Let w = (4, b) and
let x, y be the projection on the tree at infinity To(ns) of x, y respectively.
If e denotes the fundamental vertex of the tree and py is the retraction of
the tree on T, with respect to b, such that py(y(e, b)) =T, then
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(1) x0(Qa(pu(y) — pu(®)) = X5 (Pu(y) — pu()),
(i) x0(Pa(pu(y) = pu(®)) = Xo(pb(y) — pb(X)).

The measure v, defined on the maximal boundary €2 and the measure
v¢ defined on the a-boundary can be characterized in terms of the character
Xo and x§ respectively.

PROPOSITION 3.11. — Let A € LT, and y € Vx(z); let o be a simple
root; then

(i) for every w € Q(z,vy),

(@) = AL Wala D

g X0 W) = ey X ()@

(ii) for every no € Qo (x,y) and for every w in the class nq,

Vx‘:’s?(ff—fl)) (X6) ™ (Pw(y) = pu(z)) if A€ Hoa,

) .
% (x8) "L (pw(y) — pu(x)) otherwise.

vy (Qalz,y)) =

Taking in account Proposition 3.10, the measures vJ and ux can be
expressed in terms of the character xo and the operators P, and Q.

COROLLARY 3.12. — Let x,y € ]7(A) and y € Vx(z); let a be a simple

root. Let x and 'y be the projection of x and y on the tree at infinity To(ns)
associated with any w € Q(z,y). Then

-1
VVVVA<Ezqfl>) Xo ' (P (y) — pu()) if \€ Hyg,

W Xo_l(Qa(Pw(y) — pw(x))) otherwise.

vy (Qalz,y)) =

Moreover

_ 1 Zf A c H07a,
ﬂx(B(Xv y)) = { 13'1_20 Xal(Pa(pw(y) — pw(x))) otherwise.

Therefore the decomposition of the measure v, for the maximal bound-
ary is a direct consequence of the orthogonal decomposition

X0(A) = x0(Pa(A)) x0(Qal(N))-
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PROPOSITION 3.13. — Let 2,y € V(A) and let a be a simple root.

(i) The measures vy, vy are mutually absolutely continuous and

dvy

. (W) = x0(p5 (W) = x0(pu(y) — pu(z)), Vw e Q.

(63

y are mutually absolutely continuous and

(ii) The measures v2, v,

(e}
dyy

(o3
dvg

(Ma) = X§ (Pu(¥) — pu(x)), Vw € Nay  VNa € Qa.

DEFINITION 3.14. — We call Poisson kernel of the building A the func-
tion

P, 1,0) = X0(pw(¥) — pu(2)) = x0(% (1)) = j—Z(w»

Vz,y € V(A), VYw e . (3.5)

We call generalized Poisson kernel of the building A associated with the
character x the function

PX(2,y,w) = X(pu(y) — pu(2)), Yo,y € V(A), Vw e Q. (3.6)

Let xy € 17(A) and let x be a character on A; for any compler valued
Junction f on Q, we call generalized Poisson transform of f of initial point
Zo, associated with the character x, the function on V(A) defined by

P @) = [ P f@din) = [ X(pula) = pulan)) F )y ).
vz € V(A), (3.7)
whenever the integral exists.
These definitions do not depend on the choice of the special vertex e.

We simply denote P(z,y,w) = PX°(z,y,w), Pz, = PX° and P = P-.

It is well known that, for every pair of vertices t, t’ in 17(Ta), the measure
e is absolutely continuous with respect to py and the Radon-Nikodym
derivative dug /dpt(b) is the Poisson kernel P(t,t’,b), where

gt if d(t,t') =n, in the homogeneous case,
(pr)»~1 if d(t,t') = 2n, in the semi-homogeneous case.

P(t,t',b) = {
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In both cases, as a straightforward consequence of the definition,

P(t,t',b) = Xy (pb(t") — pu(t)), Vb € OT,.

Let us denote, for every z,y € V(A) and for every 1, € Qa,

dv®
dyz(i (Ma) = X6 (Pu(y) — pu(®)), Yw € 1q.

x

PY(z,y,nq) =

COROLLARY 3.15. — Let 2,y € V(A) and w € Q. If w = (14,b) and
x, y are the projection of x, y on the tree at infinity To(ns) respectively,
then
P(z,y,w) = P*(2,y,m.) P(x,y,b).

The following proposition shows the properties of PX(x,y,w).

PRrROPOSITION 3.16. — Let x be a character on A; then,

(i) PX(z,z,w) = 1, for every = and every w; moreover, for every x,y
and every w,

PX(y,z,w) = (PX(2,9,w)) " = PX (2, y,0);
(ii) for every x and every w, the function PX(x,-,w) is constant on
{y € V(Q) : ow,y) = A pbly) =n}, VAL, pelly

(iii) for every x,y, the function PX(x,y,-) is locally constant on Q and
PX(x,y,w) = x(A), for all y € V\(z) and w € Q(z,y).

4. Vertex set algebra and its eigenvalues

For every \ € Z"’, we define a linear operator A, acting on the space of
complex valued functions f on V(A) by

(AN = D fo)= > Tnw®fly), YoeV(A).

vV (@) eV (A)

The operators {A), A € Z*} are linearly independent; we denote by H(A)
the linear span of {Ax,\ € LT} over C. It can be proved that H(A) is a
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commutative C-algebra. We notice that, for each y, the coefficient Ty, () (y)
only depends on .

Let x be a character on A; for every A € LT, we define

A =D N X () (4.1)

HEIT

PROPOSITION 4.1. — For every A € E*, AX(X) is an eigenvalue of the
operator Ay and, for every x € V(A) and w € Q, the function PX(z,-,w)
is an eigenfunction of Ay associated with AX(X) :

A\PX(z,-,w) = AX(\) PX(x,-,w).

Since {Ax, A € LT} generates H(A), then {AX(\), A € LT} generates
an algebra homomorphism AX from H(A) to C, such that AX(Ay) = AX(N),
for every A € L+. Moreover, for every x € 17(A) and w € Q, the function
PX(x,-,w) is an eigenfunction of H(A) associated with the eigenvalue AX.

COROLLARY 4.2. — For every f € LY(Q,v,), the Poisson transform
PX(f) of f is an eigenfunction of the algebra H(A), associated with the
eigenvalue AX.

In the particular case when x = o, then, for every z € V(A) and for
every w € 1, the Poisson kernel P(z,-,w) is an eigenfunction of all opera-
tors Ay with associated eigenvalue AX°(\). Since P(z,y,w) is the Radon-
Nikodym derivative of the measure v, with respect to the measure v,, this

implies that
Z vy = AXO(N) vy
yEV)\(Z)

On the other hand, since v, and v, are probability measures on €2, then

Z vy = ‘{y € ﬁ(A) 2 o(z,y) = A} Ve = Nx vy
Y€V ()

This implies that AX0(\) = ZMEHA N\, p) xo(r) = Ny.

Since the Weyl group W acts on the characters y according to (3.1),
then W acts also on the eigenvalues AX of the algebra H(A). It can be
proved (see [8, Section 6]) that in fact these eigenvalues are invariant with
respect to the action of W, in the sense that, for every character ¥,

1/2
AXXo

= A YV w e W. (4.2)
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Moreover, it can be proved through the Satake isomorphism constructed in
[8, Section 6], that, for every eigenvalue A of the algebra H(A), there exists

a character y of A such that A = Ao’

5. Spherical functions
We recall the following definition.

DEFINITION 5.1. — We call spherical function of the building A a func-
tion ¢ on V(A) such that

(i) () = 1;
(it) o(x) = ¢(y), if o(e, ) = o(e,y);
(iii) ¢ is an eigenfunction of the algebra H(A).

If we fix a sector Q. and, for every \ € E‘ﬂ we denote by z) the unique
vertex of Q. such that o(e,z)) = A, then ¢(x) = ¢(xy), for all x € Vy(e). If
A € Hom(H(A),C) denotes the eigenvalue of the algebra H(A) associated
with the eigenfunction ¢, then, for every A € LT, Ayé(z) = A(N)d(), for
all z € V(A); in particular, choosing = = e, we get [Vx(e)| ¢(zx) = A(N).
Therefore, for every A € L+ and every z € Vy(e),

1

o(x) = ¢(xx) = A A(N). (5.1)

For every character yx, let us define ¢, = PX1, where 1 denotes the
function on 2 such that 1(w) = 1, for every w € Q.

PROPOSITION 5.2. — ¢, is a spherical function, for every character x.

We refer to [11] for the proof of this proposition. Let w be a fixed boundary

point; since AX(\) = > ) X(pw(y) — pu(e)), for every A € L, then,

yEVA (e
by (5.1),
ox(x) = NL Z X(pw(y) — pu(e)), for all z € Vy(e).
YyEVa(e)
Recalling (2.2) and (4.1) we get, for all z € V)(e),
_Waleh 1
ex(@) = gy X ) > xlpuW)—pule) = A > NG )X ().

yEVa(e) HETTy
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THEOREM 5.3. — For every spherical function ¢, there exists a charac-
ter x such that
O =3
moreover, for every character x, then

O 12 = SD(X“’)X}J/Q’ Yw € W.

XXo

Proof. — Let ¢ be a spherical function. We proved in [8, Corollary 7.5.1]

that there exists a character x on L such that A = AXXS/Q; so (5.1) implies
that ¢ = Prn /2 Moreover (4.2) implies the W-invariance of the function
0

. O
wxx(l,/ 2

From now on we refer to P2 as to the spherical function associated
0

with the character x.

Let \ € E; according to [10], ¢ty decomposes as t) = uyg, with uy € W
and g € G. Then, if 7(\) = j, j € I, the set Vx(e) consists of all vertices
of type j of the chambers d € C,, (¢), for every ¢ € C.. For every chamber
c and for every j € I, let us denote by v;(c) the vertex of type j of ¢; then
Pw(v(c)) = v;(pu(c)), for every w € Q. The following proposition exhibits
an alternative formula for P/ (z) in terms of the chambers d of C,, (¢),

for every ¢ € Ce.

PROPOSITION 5.4. — Let A € EJ“, 7(A) =7, j € 1. For every x € Vy(e),

e P CRCUD DD DIt (AR C) N R

c€Ce dEC,, (c)

Proof. — For every y € Vy(e) and every ¢ € C., we denote by (e, y)
and by 7y(c,y) any gallery connecting y to e and y to ¢ respectively. For
each ¢ € C, lying on some (e, y), we denote by ¢, (y) the chamber of (¢, y),
containing y. This chamber belongs to C,,, (¢). According to notation of [11],
the number of chambers ¢ € C, lying on some (e, y), is W (g); then there
exist exactly W (q) chambers ¢y (y). Moreover, for each c)(y) € Cuw, (c),
the number of chambers d € C,, (¢), such that y = v;(d), is QWo/qu- This

implies that
S Y v wileu(@) SN 0w (pulvi(@)

c€Ce deCy, (¢) c€eCe dGCu,)\(c)
q 1/2
= 2 X @)

0 c€Cc deCy, (c)
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D yevi(e)
Therefore
_ Waeh) 1/2
P (@) = W(gT) X0 A D xx (puly) = pule)
yEVa(e)
Wilg™) 4 L 9w

— 0 1/2 )
= W) o (M) Wi(d) due > o pelvi(d)

c€Ce deCuy (¢)

- ﬁxgl(/\) > wileu(@).

c€Ce deCay, (c)

O

In particular, when 7(\) = 0, then ¢ty = u) and therefore, for every
T € V) (8),

foy @ = T W Y Y 0 b))

c€Ce deCy, ()

6. Macdonald formula for spherical functions on vertices
of type 0

6.1. The vector V¥ (c)

In this section we fix a boundary point w and a chamber c. For every
wy € W, we consider the set Cy, (¢) = {¢’ € C(A), d(c,c’) = w1 }. For every
¢ € Cy, (c) there exists a unique w’ € W, such that p, () = w'(w1(Cyp));
we shall denote by w,s this element. According to [8, Section 2.8], we write
w € w to mean that w = ¢t \w, for some A € L; we define, for every w € W,

Cor(e) = {d €Cu,(c) : we € W}
= {c €Cu,(c) : pu(c)=w'(w1(Cp)), w" € w}.

Then Cy, (¢) = Uwew Cuw'(c), as disjoint union.
DEFINITION 6.1. — We define
V() = (V5 (e)wew,
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where, for every w € W,

Vo) = Y o (pulvol(c))

c'€Cyt (c)

We notice that V*1(c) is a vector with respect to the partial ordering
induced on the finite group W by the length of its elements in terms of the
generators {s;, i € Ip} : w1 <wy if |wy| < |wal.

As an immediate consequence of Definition 6.1, if we choose w; = ty,
for A € LT, 7()\) =0, then

S P e@(@) = D0 DT v (pulve(@))) = Y Vi)

d(c,c’)=tx wewcecwx( ) weW
Therefore, for every vertex x € Vy(e), 7(\) = O7

L () = Wl(q) Z Z Vi (©) = W Z V& (e

ceC. weEW c€Ce
(6.1)

if I = (Iw)wew, with I, = 1, for every w.
6.2. The matrix 7(wis:w1)

In this section we fix w and ¢ as in Section 6.1.

Let wy € W; from now on we assume that Cy < wq(Cp). This is the case
when either wy = ty, for A € LT, 7(\) =0, or wy = uy, for A € LT, 7(\) =
j#0.

Let s be a generator of W, such that |wis| = |wy| + 1, that is Cp <
wl(C’o) < wls(CO).

We consider the vectors V%1 (c) and V*1%(c); in this section we construct
a matrix, denoted by T(*1%%1)  depending on w1, s, and wy s, but not on ¢,
such that V*15(¢) = T(wisw1) ywi(e),

We consider, for each w € W,

Cors(e) = {c" € C"*(c) : pu(c’) =w"(w18)(Cop), w" € w}.

For every ¢’ € C¥5(c), there exists a unique ¢’ € Cy,, (¢), such that §(c/, ") =
s. This fact suggests to define, for each ¢ € Cy, (c),

Carss(dy = {d" e C&s(c): 6(c, ") = s}
= {" €Cy,s(c) : 6(c, ") = s, pu(c’) =w"(w1s)(Cp), w" € w}.
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Taking in account the decomposition Cy,(c) = Uyew Cu'(c), this def-
inition implies the following decomposition of the set C'%(c) as disjoint
union:

o= U = U U e 62

¢/€Cuy (€) uEW  creci (o)

LEMMA 6.2. — Let wy € W, s € S and r = wlswfl. Assume Cy <
w1 (Co) < w18(Co). For every u € W, let ¢’ be a chamber in C¥*(c). Then,
for every w € W,

Y o (puwo(e)) = g A (wewr (0) T, (6.3)

c”ecxls’s(c’)

where
gs Xy *(u(w1s(0) = w(0))) if w=u,u> ur,
T(wis,wr) _ Xx(l)/z(u(wls(O) —w1(0))) fw=uu<ur, (6.4)
wou qs — 1 if w=ur > u,
0 otherwise.

Moreover T‘qufﬁs’wl) only depends on the choice of wy,s and w,u, but it
doesn’t depend on the choice of the chamber ¢’ in the set C¥1(c), nor on the
choice of c.

Proof. — Since ¢’ € C¥*(c), then 6(c, ¢’) = wy and p,(c’) = w'(w1(Cyp)),
for some w' = wy € u. Moreover the chamber w;(Cy) is s-adjacent to
(w15)(Cp), since |wys| = |wi| 4+ 1, and hence also the chamber w’(w;(Cp))
is s-adjacent to w’(w1s(Cp)). So there are two possibilities, according to the
choice of ¢’ and consequently of w’.

(1) w'(w1s(Coh)) < w'(w1(Cp)). In this case, w'(w1s(Cp)) is s-adjacent
to p,(c¢'); moreover we have w'(w1s(Cp)) < pu(c), since py, () =
w'(w1(Cp)) and hence p,(c”) = w'(wys(Cy)), for every chamber ¢’
such that 6(c¢/,¢”’) = s. Therefore Cvu‘;ls 5(¢') = 0, if w # u, while, if
w = u, then C&'*° () = {¢" : §(¢/, ") = s} and wr = w,, for each

¢’ in this set. Thus, keeping in mlnd that |[{c" : 6(c', ") = s}| = ¢s,
and that vo(Cp) = 0, we get the following formula

Y o (pulwele))
cueca"’lsﬂs(c/)

_ [ a6 xx (wer (wis(v9(Co))) = a5 xx0 (werwrs(0)) if w =,
0 otherwise,

1/2 .

_ 1/2 qs XX (wc’wls(o) — Werwy (0)) if w=u,
- w1 (0 0

XX (wew (0)) {O otherwise.
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(I1) w'(w1(Cp)) < w'(wys(Cp)). In this case, p,(c') is s-adjacent to
we (w18(Cp)); moreover we have p,(c/) < we(wis(Ch)), since
Pw(c) = we (w1(Coh)). Hence, among the g5 chambers ¢’ such that
5(c', ") = s, only one, say ¢, retracts on w. (w15(Cy)), while all the
others retract on we (w1(Cy)). If we consider the affine reflection r =
wyswy !, then we (w1 (Co)) = (wer)(rwi(Co)) = (wer)(w1s(Co)),
where wy € u,r € r and consequently wyr € u r. Therefore the
chamber ¢ retracts on we (wy5(Cp)) and then wor = we, that is w =
u; instead the ¢ — 1 chambers ¢/ # ¢ retract on wer((wys)(Cy)),
with w7 € u r, and then w.» = wyr, that is w = ur. So we have to
distinguish 3 cases for the set C1%°(¢').

(a) w = u; the set C¥1%%(¢’) contains only the chamber ¢” and
pu(c”) = we ((w15)(Co)):

(b) w = ur; the set C&'%*(¢') contains ¢; — 1 chambers ¢’ which
are s—adjacent to ¢’ and they all satisfy the relation p, (") =
(werr)((w1)(Co)) = wer (w1(Co));

(¢) w # u,ur; no chamber ¢’ can retract over a chamber
wer ((w18)(Co)), with wer € w; hence the set CE1%*(¢’) is empty.

Therefore in case (II) we can conclude that

S o (pulu()

C”GC&IS’S(C/)

Xxo! > (we (w15) (v0(Co)) = XX (wes (1) (0) if w=u,
=9 (@5 — Do’ (wer (w1 (06(Co)))) = (g5 — V)xxy > (wer (wi (0)))  if w = ur,
0 otherwise
» X0 (werw 5(0) — wews (0)) if w=u,
= xxo' (Wewi(0)) 4 (g5 — Dxxe* (wew: (0) — wows (0))  if w = ur,

0 otherwise.

Consider in both cases (I) and (II) the vector wew1s(0) — wewi (0); since
we € u, we can write we = tyu, for some A € L. Therefore

werwr (0) = (Eaw)(wr(0)) = A+ u(wr (0)) = A
and wew1s(0) = (thu)(wis(0)) = A + u(w;s(0)),

and thus we w1 8(0) —wewi (0) = A+u(wys(0))—A—u(wy(0)) = u(wys(0))—
u(wy(0)). This equality shows that the vector is independent of the choice
of wy € u, but only depends on u. Going back to the previous formulas, we
can write

ST 0 0w v0(e")) = xxb A (werwr (0)) T,

C”GC&IS’S(C’)
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where
T _ a5 x5 2 (wis(0) —wi (0)  ifw=u, "
wu 0 otherwise
Xx(l)/z(u(wls(O) —wy1(0)) if w=u,
Txgvufllxs’wl) =9q4¢ —1 if w=ur, in case (II).

0 otherwise

If we put wy(Cy) = C1, then, according to [8, Proposition 2.16.1], we have
wer (C1) < (wer)(C1) <= u < ur;
(w1s,w1)

hence we can resume in the following way the formulas for T u

gs xxo'* (u(wis(0) —wi(0)) if w=u,u>ur,

Twiswi) _ Xx(l)/2(u(wls(0) —w1(0))) ifw=uu<ur,
wou qs — 1 if w=ur > u,
0 otherwise.

We remark that T‘Sfﬁs’wl) only depends on the choice of wy, s and w, u, but
it doesn’t depends on the choice of the chamber ¢’, nor of the choice of the
initial chamber c. O

THEOREM 6.3. — Let wy € W, s € S and r = wlswl_l. Assume Cy <
w1 (Co) < w18(Cy). Then, for every chamber c,

Vwis(e) = Twiswlywen ey, (6.5)
where T(W15:w1) s the sub-triangular non-singular matriz of order d = [W|

Tors) = (T ) wew.-

Proof. — By Definition 6.1, (6.2) implies that, for every w € W,
R O D R CICE))

c"eCyt(c)

= > Z S (pulvo(e)).

ueW cecit(c) e’eCyt® (c!)
Using (6.3) and (6.4), we can write, for every w € W,

Vot = > > S 0 pulve(e)

ueW  ¢recit (c) c”GCﬁls"S(c’)

Z Z XXé/2 (’wc/wl(o)) T‘EVU’J&S,’wl)

ucw c,ecwl ((/)

Z T wls wl) Z XX3/2(U}C/'IU1 (O))

uew c'eCy ()
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Keeping in mind that Vi (c) = > . ccmn (o) XX(I)/Q (pw(vo(c)))
= cech(o) Xxé/Q(wC/wl (0)), we conclude that

Vas(e) = ) T IV (o).
uew

Therefore (6.5) follows by setting 7(1sw1) = (T\Sf)&&wl))w’uew. O

PROPOSITION 6.4. — Let wy € W,s € S and r = wlswfl. The matriz
Twis:w1) only depends on w1 and s and, for every X\ € L, T(A) =0,

T(txwls,t,\wl) _ T(w157w1). (66)

Proof. — Write wy = ty, W1; then

wls(()) — wl(O) = tAlwls(O) — t>\1w1(0) =\ + Wls(O) — A — W1(0)
= wis(0) —wy(0).

This proves that the matrix 7(*1%%1) does not depend on the choice of
wy in the class wi. Moreover, if wy = tywy, for A € LT, 7()) = 0, then
Co < tawy(Cy), and therefore Cy < thwy(Co) < taxwi18(Co). This implies
that the matrix T(*25%2) is well defined. Since wy = w1, we conclude that
T(wzs,wz) _ T(wls,wl). 0

6.3. The matrix TV

We fix w and ¢ as in Sections 6.1 and 6.2. Let w € W; assume that w =
S1°°Sp andsetwlzsl, W2 = W182 = S182, ceey Wy = 81 Sp = W.

If Cp < w1 (Co) < --- < w(Cy), then 51 = 54, and |wj| = [wj_1|+1 =,
for every j = 1,...,n. We notice that, if w € W has length |w| = n,
and Cy < w(Cp), we may always write w = s1---8,, in such a way that
Co < 81(00) < <87 Sn(CO) = w(Co).

By Proposition 6.4, V%i(c) = T wi-1)V%i-1(¢), for each j = 1,...,n;
so, for every j =1,...,n,

V¥ (c) = TWwn-1) . p(Wiwi=1) i (o) = Pwwn=1) . pwie) ye(e)
The following lemma shows that, for every 7 = 1,...,n, the product

T(wwn—1) ... 7wjw;j—1) does not depend on the representation of the ele-
ment w as reduced word.
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LEMMA 6.5. — Let w € W, |w| =n. If w =818, = 8} ---5),, where

S1y-vy8n, Shy.e.y8h € S and Cy < s1(Cp) < -+ < 81---8,(Cp), Cp <
s1(Co) < --- <8y ---5.(Cy), then, , for every j=1,...,n,

1ot

(S1-8n,81-Sn_1) (s1--85,818;5_1) _ r(s)-s" 8,8 ) (s)--s",8h s’ _1)
T T J J = T\%1 ns91 n—1/)...7T\51 7051 j—1),

Proof. — Assume j = 1. We know that
Vw(C) _ T(sl-nsn,sl---sn,l) ~~~T(Sl’e) Ve(c)
= T(Sll'“sln’sllu's;,—l) . T(s,he) Ve(c)_
In order to compare the matrices T(51snstsn—1). .. T(s1€)  and
T1 s 1) T(s1:) e choose the chamber ¢ in an appropriate way.
Fix u € W and consider a chamber ¢ containing e, such that p,,(¢) = u(Cp).
According to this choice, Cc(c) = ¢ and C&(c¢) = {c¢} if w = u, while
Cé(c) =0 if w # u. Hence V¢(c) = dy, because
1/2 .
Vi () = XX 2 (pu(0) =1 if w =1,
w 0 otherwise.

’

Therefore T(S1~"Sn731“'8n—1) . T(sl,e) 5u — T(Sll"',k“"’s/l“'sn—l) L. T(s/l’e) 5u7
that is

[T(31~-~sn,sl~~~sn71) . T(sl’e)]W,u = [T(S’l"'siwsll“'s%fl) e T(Sll’e)]w,u7 Yu,w e W.

So we conclude that, for every j > 0,
(s1-sn,s18n—1) | p(s1esj,s185-1)

_ I:T(sl.,,sn7sl...sn_1) . T(sl,e)] I:T(Sl'~-5j_1751'~~5j—2) - T(Sl,e)] _

/

[T ) L] [Tl st ) (st

1o

’ ! ’ ’ ’
— T(S1"‘snvsl‘ Sh_1) ... T(sl"'sj7sl"'3j—1)_

Lemma 6.5 suggests the following definition.

DEFINITION 6.6. — For everyw € W, |w| = n, such that Cy < w1(Cp) <
<o < w(Cy), we denote by T the following sub-triangular non-singular ma-
triz of order d = |W|

7w — plwwn-1)  plwie) (6.7)

Moreover, for every wyg € W such that Cy < wo(Cp) < wow1(Cp) < -+ <
wow(Cy), we define

T(wow,wo) _ pwow,wown—1) p(wown—1,wown—2) plwows,wo) (6.8)
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We notice that, if |wow| = |wo| + |w| = |we| + n and Cy < we(Cp) <
wow(Cy), we may always write w = s1---8, in such a way that Cy <
U)()(Co) < ’lUQSl(Co) < <wpSt - Sn(Co)

COROLLARY 6.7. — Letwg,w € W, with |w| = n; assume Cy < wo(Cp) <
wow(Cy), Then

Twow _ T(wownyw(]wn—l) T(wﬂwnflawownf2) . T(wowl,wo) Two: (6.9)

moreover, for every chamber c,
V¥(e)=T" Ve(c) and V™ (c)=T"" V¥ (c). (6.10)
From Proposition 6.4 and Definition 6.6 it follows immediately the fol-
lowing corollary.

COROLLARY 6.8. — Let wo,w € W such that Cy < wo(Co) < wew(Cp).
Then, for every A € L™, 7()\) =0,

Ttrwistawo) — rlwiwo), (6.11)

6.4. The matrix T*
Let A € LT,7(\) = 0; then t, € W and Cy < t5(Cp). According to
Definition 6.6, we can define the non-singular sub-triangular matrix 7 =

T* such that V¥ (c) = T* V¢(c), for every chamber c.

THEOREM 6.9. — Let A € E*, 7(A) = 0; for every u € W,

Tow = X0 "X (). (6.12)
Proof. — Let ty = s1---s,; we set, as usual,
w; =wj_185, J=1,...,n—=1, w, =1y, r; = wj_lsjwjill,

Cj :'LU]'(C()), j:].,...,n

Since A € Eﬂ then Cp < Cp < -++ < Cp—1 < Cp, = tA(Cp); moreover, for
every u € W,
Tli\,u — Tl(ltliln—lsnmwn—l) . Tl(xilfe)'

Therefore, by Theorem 6.3,
Thw = 0 2 ((wn(0) — wn-1(0)) xxg > (W(wn-1(0) — wn2(0)))
o (s (0))) (e, )
= 2u(n) (HjeJqu)Z [(Wesua) ()] X* (N,
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where J, ={j =1,...,n : ur; <u} and ¢; = g, for every j. We notice
that Jo = 0 and Jw, = {1,...,n}, while, for u # e, wq, Jy is non trivial.
Since Cj_q1 < 1;(C;_1) for every j, then it can be proved (see [8, Proposition
2.16.1]) that, for w’ € u,
ur; <u < w’(C’j) = w'(rj(C’j_l)) < w’(C’j_l)
— w’wj(Co)) < w’(wj_l(C’o)).
Therefore J, ={j =1,...,n, : w'w;(Cy)) < w'(w;j—1(Co), w' € u}.

On the other hand, by (3.3), for every u € W and w’ € u,
o) = IT & IT 4
jeJt  jedi
where JI = {j : wusi---5;21(Co) < usy---5;(Co)} and J; = {j

usy - 55(Co) < usy -+ 5;-1(Co)}. Since JF = {j + w'w;j_1(Co) < w'w;(Co)},
for any w’ € u, and so J;| = J,, we conclude that

1/2 —1/2
(Mjes, ¢)X)*N) = (s q5) (Mgt qj/ ) (e g 2)
1/2 1/2 1/2
(ngjj Qj/ ) (HjeJ‘: qj'/ ) = H?:l Qj/
1/2
= x/*0)
O
PROPOSITION 6.10. — Let A\, o € E“‘, 7(AM) =7(A2) = 0. Then
T T2 = T2 7M1, (6.13)

Proof. — If Ay, Ao € LT and 7(A;) = 7(A2) = 0, it is easy to see that
[tx,420] = [Ear] + [Eas]- Actually, if ¢ and ¢ are two chambers such that
d(c, ") = ta,+x,, then there exist unique ¢y, ¢y such that

§(c,c1) =ty,, 0(c1,c”’) =tx, and d(c,c2) = ty,, 6(ca, ") =ty,.

Therefore, according to Definition 6.6, T 22 = Ttata = T(aztaitag) Tl
On the other hand, Corollary 6.8 assures that T(fx2tr1:tx2) = T(tx1¢) = T
and then T7A1+*2 = 722 7M1 In an analogous way we prove that 722t =
T2 T*2. Since TM1HA2 = T2 421 (6.13) is proved. O

THEOREM 6.11. — If x is a good character, there exists a unique ma-
triz C' independent of X\, such that D* = CT*C™' is diagonal for all
A € LT, 7(\) = 0; moreover

DY =x" () x"(\), VueW. (6.14)
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Proof. — Let x™ (o) # x™2 (o), for wy # wo; then (6.12) implies that
the matrix 7° has distinct eigenvalues and so there exists a matrix C' such
that DA = CT*C~! is diagonal. By (6.13), the matrix C' diagonalizes T*,
for every A € L+, 7(A\) = 0; moreover (6.14) follows from (6.12). O

COROLLARY 6.12. — If x is a good character, then there exists a matriz

C, independent of A, such that for every A € L™, 7(\) = 0, and for every
chamber c,

Vix(c) = (CTIDAC) Ve(e), (6.15)

where D} , = X(l)/Q()\) X*(A), for every u € W.

6.5. Macdonald formula for spherical functions on vertices of type 0

We can state the following matricial formula for the spherical function
P2 associated to a character x.
0

PROPOSITION 6.13. — For every x € Vx(e), 7(A\) = 0, we have

e @) =xg () I TV, (6.16)
0
if Vg = (Vou)uew and
Qu
Vi = , YueWw. 6.17
0, W(q) ( )

Proof. — Since, for every chamber ¢, V*t*(¢) = TAV¢(c), (6.1) implies
that, for every x € Vy(e), 7(A) =0,
1 —1 A 1 ~1 A
T) = =—— AT T Ve (c) = —— NIT Ve(e).
SOXXOIM( ) W(q) Xo ( ) CGZCP ( ) W(q) Xo ( ) (;CF ( )

On the other hand, according to Lemma 6.5, V¢(¢) = dy, if ¢ contains e and
puw(c) =u(Cp). Thus

DV = Yo VO] =) =WV,
ceCe ueW \ ceCe:py(c)=u(Cp) ucw

if Vi = (Viwuew and (Vi) = qu(W(q))~!, for every u € W. Therefore
(6.16) is proved. O

We notice that if x = e, we get ¢, 1/2(x) = I Vi = 1, since TY is the
identity matrix.
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THEOREM 6.14. — For every good x, there exist constants {cw(x), W €
W}v ZWEW Cw(X) = 1, such that

Prxor2(®) = x0 ) D el XV V), (6.18)
weW

for every x € Vy(e), with 7(A\) = 0.

Proof. — Assume at first that = # e. By (6.16) and (6.15), we can write,
for every x € V) (e), with 7(\) =0,

1 - — €
Pz (@) = Wig ‘N I CTIDAC V.

Therefore, by setting Uy (x) = I C~! and Us(x) = C V£, we have

SDXX(l)m(f) = xo'(\\) Ui(x) D> Us(x)
= %' Y (0w xo ) X (U2(0)w
wew
= %P0 Y e X,
weW

if we set cw(x) = (U1(X))w (Uz2(x))w, for every w € W. Moreover

Y el Y Wl))w (U2(0))w

weW weW
(IchH v =1(Cto)Wg=1V§

= quzl

weW

Since Prxls? (e)=Tand > w cw(x) X" (0) =1, the required formula
holds also for x = e. O

It will be useful to express formula (6.18) in terms of the retraction
po(x).

COROLLARY 6.15. — For every good character x and for every x €
Vo(A)

Prxo2 (@) = X0 2 (p0(2) D dw(x) x™(p0(x)), (6.19)
weW

Zf dw(X) = Cwwy (X)7 fO’I" every w € W.
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Proof. — Since po(z) = wo(A), for every = € Vy(e), then X0_1/2(/\) =

Xal/Q(Wopo(:E)) = xé/Q(po(ac)). If we set u = wwy, for each w € W, and

du(X) = Caw, (X), for every u € W, we can write

D> ewOX  (Wopo(@) = D cuw, ()X (Wopo(x))

weW ucw

= D Cawo () X*(po(@))

uew

= D du()x"(po(2)).

uew

O

PROPOSITION 6.16. — If x is a good character, then for every u € W,

cu(X) = ce(x") and du(x) =de(X"). (6.20)

Proof. — 1t is enough to prove that, for every u € W, ¢, (x) = ce(x"),
if x is a good character. Fix u € W. Since Por /2 = Pruyy /2 then (6.18)
0 0

implies that, for every A\ € E, T7(A) =0,

Yool = Y ™ (6T

vew weW

= > ewlX™ ™0

weWwW

= Z cva-1 (X") XV (),

vewW

by setting wu = v. Therefore cyu-1(x") = ¢v(X), for every v € W. In par-
ticular, if we choose v = u, we find the required identity ce(x") = cu(X)-
O

The formulas (6.18) and (6.19) proved for good characters can in fact
be extended to all non-singular characters (see Section 8).

7. Macdonal formula for spherical functions on all special
vertices of a reduced building

In this section we assume that A is a reduced building such that ﬁ(A) #
Vo(A) and we extend to all vertices of V(A) the formula (6.18) provided by
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Theorem 6.14. We start by considering the formula (5.2) proved by Propo-
sition 5.4. The vertex of type j of any chamber d can be seen as the vertex
of type 0 of the generalized chamber d = (d,0), if ¢ is the automorphism

~

of the set I such that o(j) = 0, that is v;(d) = vo(d). This remark suggests
that, in order to provide the required generalization, we must extend the
arguments of sections 6.1, 6.2, 6.3 and 6.4, replacing the affine Weyl group
W with the extended affine Weyl group W and the set C(A) with the set

~

C(A)of all extended chambers of A.

In the whole section we fix a boundary point w and an extended chamber
¢ = (¢,0), for some chamber ¢ and some o € Auty,- (D).

7.1. The vector V1 (¢

For every w; € W\, w1 = wig:, we define
N U =y N A
Ci\)l (C) - {C € C(A)a 6(Ca C) - w1}7

where §(¢,7) = 6(c,d)g'¢',if @ = (¢, 0') and g, g’ are the elements of the
group G corresponding to o, ¢’ respectively. We notice that

C~ (0)={¢ =(¢,0"), ¢ €Cy,(c), o' =010}

w1

in particular, for every chamber c,

Co () ={¢ €C(A), d(c,@) =1} = {¢ = (', 01), ¢ €Cu,(0)}.

We extend the definition of retraction p,, to all extended chambers, by
setting, for every ¢ = (¢, 0),
pw(/c\) = (pw(C), 0)'
Then p,(¢) = @W(Cy), W = wg, if and only if p,(c) = w(Cp) and g is the

element of G corresponding to o.

If ¢ = (¢, 0") belongs to C; (¢), then there exists a unique we € W,
such that p,(¢) = we (w1 (Ch)). Therefore, being o’ = 010,

Pu(@) = (pu(c'),0") = (wer (w1(Co)), ") = (we (w1(Cy)), 010)

= wer (w1919(Co)) = wer (W1 (Co, 7).

In particular, for every chamber ¢, p,,(¢') = we (w1(Co)), if € € (/','};1 (¢). So
in this case we have p,(¢) = W' (@W1(Cy)) = w'wig1(Cy) if and only if
pw(c) = w'w1(Ch) and o’ = o7.
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We define, for each w € W,
Coi@ = {@=(d,0")eCs(0) : wo € w)
= {T=(,0)e CAal (©) : pu(@) =w'(w1(Co,0)), w' € w}.

In particular, when ¢ = ¢,

Cor(e) = {@=(d.0")€Cs (c) : wo €W}
= {T=(d.0)€C5(c) : pul@) =/ (B1(Cy)), w' € w}.
Then CA;U\I ©) = Uwew CAV'El (¢), as disjoint union.

Since vo(€) = vy(0)(c), for every ¢ = (c,0), and pu,(vj(c)) = v;(pu(c)),
for every j € I, then

0(Pw(€)) = v0(p(€); 0) = Ve (0) (P () = Puo(Vg(0)(€) = puo(v0(€)).

DEFINITION 7.1. — We define

o~

Ver(e) = (V' (@) wew,
where, for every w € W,
V@ = > ! eu(e(@))).
et (o)

V“A’1 (¢) is a vector with respect to the usual ordering of W and, if w; = w1 ¢;
and j = o7 (0),

Vare) = Y xx Hpwlwo(dio) = > e  (pu(vi(c), ¥w e W.
C’Ea,ﬁl (¢) C’Ea,ﬁl (¢)

In particular if w; = t) = uxgy, for some \ € E“‘, and o) is the automor-
phism of D associated to gy, then o)(0) = j, if j = 7(\), and, for every
chamber c,

S vk = Y P ee@@) = S 0w (i)

wew Teci e c'€C ()

Therefore, for every x € Vy(e),

ey @) = e W Y KO = e X v

ceC. weW ceCe
(7.1)
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7.2. The matrix T(als’al)

Let wy € W w1 = wig1; from now on we assume that Cy < w1 (Cp), that
is Cy < w1(Cp); this is the case, in partlcular when w; = ty, for A € L+
Let s be any generator of W and consider @, s; then wys = wig18 = wi$191,
if 51 = g1sg; ' We shall assume |@s| = |@| + 1; since |@| = |w), if @ = wyg,
this means in fact |wyis1| = |wi] + 1 thus wy(Cy) < wi81(Ch) and then
w1 (Co) < w1s(Co). We consider V“’l( ) and Vals( ); then we construct a
matrix, denoted Twisw1) dependlng on w1, s and w1s, but not on ¢, such
that les( ) = T(ws, wl)le (¢), so extending from W to W the content of
Section 6.2.

We consider, for each w € W, the set
Cos(c) = (&' € C¥%(c) : po(@) = wer (G15)(Co), wer € W)

For every &' € C1%(¢), there exists a unique & € CAEl( ), such that §(¢/, ") =
o(c, ") = s; actually, if @ = (¢’,0”), we can choose @ = (¢/,0’) with
o’ = ¢”. This fact suggests to define, for each ¢ € C (c),

Cur*(@) = (& € Cur*(c) : (@, 2") = s}
= {/C\” € 61/11\15(0) : ZS\(/0\17/0\,/) =S, pw(/c\u) = Wer ({1}\18)(00)7 Werr € W}
Taking in account the decomposition CAal(c) = Uuew CA}?l (c), this def-

inition implies the following decomposition of the set CAﬁls(c) as disjoint
union:

é&ls(c) _ U Cw19 9 U U 51/515,5(6/), (72)

! GC;\l (c) C’EC 1(c)

LEMMA 7.2. — Let w; € W, Wy = w191, s € S and r = ﬁls@fl

Assume Cy < w1(Co) and |Ws| = |W] + 1. For every u € W, let ¢ =
(d,o") € Cwl( ). Then, for every w € W,
> 06 (pulwo@) = o (e (0) TERWH, - (73)
recy Gune: (@)
where

qs Xx(l)/Q(u(zﬁls(O) —w1(0))) if w=u,u>ur,

T@eo) Z oo (u@s(0) — @1(0)  fw=uu<ur, (74
wou g — 1 if w = ur > u,
0 otherwise.
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Moreover T‘Sfﬁs’wl) only depends on the choice of wi,s and w,u, but it

doesn’t depend on the choice of the extended chamber € in the set 5:?1 (¢),
nor on c.

Proof. — Let @ = (¢/,0"). Since ¢ € CA§1 (c), then 8(c, @) = @1 = wi g
and p, () = we (wW1(Ch)), for some we € u. Hence, if we consider the
chamber ¢/, then p,(¢) = we (w1(Ch)). Moreover, since |wisigi| = |Wis| =

|1+ 1 = |wig1|+1, the chamber w;(Cy) is s;-adjacent to (w1s1)(Co), and
hence also the chamber w. (w1 (Cp)) is s1-adjacent to we (w151(Cp)). So we
can apply the argument of Lemma 6.2 to characterize the set C&151:%1(¢').
On the other hand, an extended chamber ¢’ belongs to the set C2155(¢) if
and only if @ = (¢, 0"), with ¢’ = ¢/ = 01 and ¢’ € C&**+51(c). So we
distinguish two cases as in Lemma 6.2.

(I) If w'(w18(Ch)) < w'(w1(Cy)), then w'(wy51(Cop)) < w'(wy(Cy)) and
so, by Lemma 6.2,

1/2 .
Z 1/2 myy — b as xxo' T (we (wis(ve(Co)))  if w=nu,
XX (P (vo(<))) {O otherwise.

C”chl 51,81 (c’)

In the same way, for each j € I,

1/2 .
1/2 (A — ds XXo (’U)cl ('lU13('Uj (00))) ifw= u,
,/ecwzl;s( ) X" (Pul(;(€))) { 0 otherwise.

Therefore, recalling that v (¢) = v,(0)(c), if ¢ = (¢, 0),

oo o eeme@)) = Y P pu(vo(@))

~ <
’C\//eazl??(’c\/) C”Eaﬁlsl’sl ()

= Y 00 eve )

c//eé\"/w"\lslvsl(c/)
/2 .
(wew18191(0)  if w=nu,

_ J as 0 (werwnsi (vg, (0)(Co)) = g5 xxg
0 otherwise

40 0P (werwis1 (v, (0) (Co)) = a5 xxo 2 (weris(0)  if w =,
0 otherwise.

(II) In the same way, if w'(w1(Cp)) < w'(w1s(Ch)), we get the following
formula:
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S (puw(@))

a/ecv%w(?)
1/2 1/2 ~ ;
XXo' ~ (wer (0151) (Vg (0)(Co)) = XX~ (we (W15)(0)  if w=nu,
(as — 1)xxo”* (wer (w1 (Vg 0) (C0)))) it w=ur,
= (s — Dxxo’” (we (@1(0)))
0 otherwise,

since r = WSO+ = wys;w™ L.
Consider, in both cases I and II, the vector w. @;$(0) — we w7 (0); since
Wy € u, we can write we = tyu, for some A € L. Therefore, as in Lemma
6.2 we have

Wer 1 5(0)—we @1 (0) = Au(@y 5(0)) —A—u(@1 (0) = u(@,5(0))—u(@ (0)).

This equality shows that the vector is independent of the choice of w. € u,
but only depends on u. Going back to the previous formulas, we can write

P S

3 0 (e wo(@))) = o (e (0) TS,

~

ettt (@)

where
s 2 (u(@15(0) — @,(0)))  if w=u,u > ur,
s — ) o (u(@is(0) — @(0))) fw=uwu<ur,
wu qs — 1 if w=ur > u,
0 otherwise.

We remark that T‘Eff’ﬁs’wl) only depends on the choice of w1,s and w,u,
but it doesn’t depends on the choice of the extended chamber ¢, nor of the
choice of the initial chamber c. g

THEOREM 7.3. — Let Wy € W,wy = wig1, and let s = s;, for some
i € I; assume Cy < @1(Co) and |Wys| = |@y| + 1. Denote r = @ sw; "
Then, for every chamber c,

Vals(c) _ T(;\)ls,{u\l)val (c), (7.5)

where T(W15:w1) s the sub-triangular non-singular matriz of order d = [W|

T(wls,wl) — (T(’L/l;187{l}\1)

w,u )W,UGW'
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Proof. — The required statement follows from Lemma 7.2 in the same
way as Theorem 6.3 follows from Lemma 6.2. 0

PROPOSITION 7.4. — Let w; € /V[Z seS and r= zﬁls@fl. The matriz
Twis:w1) only depends on w1 and s and, for every \ € E,

T(txwlﬁ-,txwl) — T(w187w1)_

Proof. — Write Wy = ty, wy; then
1/11\18(0) — ’&)\1(0) = txlwls(O) — t)\lwl(O) =\ + Wls(O) — A — Wl(O)
=w15(0) — wy(0).

This proves that the matrix 7(*15%1) does not depend on the choice of @,
in the class wy. Moreover, if Wy = t\w1, for any A € L, then wo = wq, and

so we conclude that T(w2s:w2) — p(wiswi) O

7.3. The matrix T(w19.01)

Let 0 € /W, say w7 = w141, and assume Cy < w1(Cp); this is the case in
particular when @; = ty, for A € LT. Fix g € G. Then @,9 = w1919 = w1gs,
if go = g1g and therefore |wg| = |W1]| = |w1]|, because |W| = |w]| if @ = wg.

If we consider the vectors V%1 (c) and V*19(c¢), we shall construct a

matrix T(alg”;l), depending on w1, g, and w;s, but not on ¢, such that
Vwid(c) = T(“’lg’wl)le(c).

THEOREM 7.5. — Let Wy € W7 W, = wig1, and g € G; assume Cy <
w1(Co). Then, for every chamber c,

Vi (c) = Ty (), (7.6)

where T(W19:w1) — (Tv(vlf)&g’wl))w)uew, and, for every w,u € W,

o _ [ x @g0) ~@(0)  ifw=u, o
wu 0 otherwise.

Proof. — We consider, for each w € W, the set C:%lg (c), defined in
Section 7.1:
Cr9(c) = {2 € C™9(c) : pu(@) = wer (B19)(Co), wer € wh.
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Since W g = wig}, for ¢§ = g19, then @’ = (¢”, 0”’) belongs to the set 5@9(@
if and only if ¢’ € C“’l( ) and ¢” = og10. On the other hand ¢ = (¢, 0")
belongs to the set C“’l( ) if and only if ¢ € C¥ (¢) and ¢’ = 0. Therefore
if, for each @' = (¢",0") € cAv@g(c), we consider the chamber ¢ = (¢, 0")
such that ¢/ = ¢’ and ¢/ = 0”071, then ¢ € CA‘:“’V\l (¢), but vo(wer (W19(Coh)) =
Ve (0)(01(Co)). So, for each w € W,

Vard(e) = > xx* (wewigig(0))
c’EC:f‘;l(C)

= Y oA (we@i(0) xxo X ((@1g(v0(Co)) — B1 (vo(Co)))

c'eCwt ()
and we conclude that V;\”g(c) = Plwigw) e (o), if

r@aan _ { xxg (u(@ig(vo(Co)) — W1(vo(Co))  if w =,
w.n 0 otherwise.

7.4. The matrix Ta

Let wg € W; we can split Wy as Wy = wpgo, for some wy € W and
go € G. Define, for s1,...,s, € 5,

w1 = Wos1, W2 = wW182 = WpS1S2, *** Wp = Wp-15p9g = W0S1"""Sn-

We notice that if we set s’ = 9o 'sjg0 and w; = wps - -+ 8%, then w; =

wos - 8hg0 = w;go, for every j = 1,...,n. We assume wo(Cp) < w1(Co) <
- < W, (Co), that is we(Coy) < w1(Coh) < -+ < wyp(Cp). This implies that

|lwj| = |wj_1]+1, that is |W;| = |@W;—1|+1 = |Wo| +J, for every j = 1,.

In particular, when @y = go, then s; = s,, and |w;| = ] for j = 1 M.

Theorem 7.3 and Theorem 7.5 assure that VwJ( ) = T(wswi—1) yw;- 1( )
for each j = 1,...,n, and V%0 (c) = T(wowo) %o (c). Consequently

V’l/EH (C) — T('L/J7l7an—1) - T wl wO Vwo( )

T('l/l;n;'l/l)\nfl) . T({U\l’{U\O) T w07w0 V’LUO( )
In particular, if wy = go,

VETL (c) = T(g051-+-5n,90515n-1) .. T(9o51,90) 1790 (c)

(9081 80,9051 5n—1) . . (gos1,90) T(QOVG)V@(C).
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PROPOSITION 7.6. — Let w € W, with W = wg and w = 81 -+ Sy

(i) Let go € G5 if go(Co) < gos1(Co) < --- < gos1---5,(Co), then the
matrix
(g0s1-+5n,g081-5n-1) . (g0s1,90) (gose)

only depends on w, but is independent of s1,---, Sp.

(ii) Let @ € W, @ = wogo if |@o®| = |@o| +n and Cy < @o(Co) <
Wow(Cy), then the matric

~~ .~ ~ ~ ~ ~ ~ o~ o~
T(wow,wown—l) T(wown—l,wown—z) . T(wowl,wo)

only depends on Wy and W, but is independent of their representation
as reduced words.

The proof of this proposition is the same as that of Lemma 6.5 and we
omit it.

DEFINITION 7.7. — Let @ € W, such that Cy < w(Cp). Assume W =
wg = gw', being w' = o~ (w) and w = s1---s,. We denote by T™ the
following sub-triangular matriz of order d = |W|

o~

Tw  — plgsiesy,gsioesh_y) L plesthg) p(g.e)
T(51:8ng,81-8n—19) ... (s19,9) (g:e)
Moreover, for every wgy € W, Wy = wogo, such that |Wew| = |Wp| + n and

Co < ﬁ)\o(Co) =< 1’170’&)\(00), we set

~ o~ ~ o~~~ ~ o~ ~ o~ ~ o~ o~
T(wow,wo) — T(wgw,wown_l) T(Ulouln_17’lﬂ0wn_2) . .T(wowl,wo). (78)

COROLLARY 7.8. — Let Wy, W € W, such that Wy = woge and W = wg;
assume |Wow| = |Wo| + n and Cy < We(Co) < Wew(Cy); then

Twow _ T(wowﬂ/;o) T;I’O; (79)

moreover, if Cy < w(Cy), then, for every chamber c,

~

Ve(e) =T Ve(c). (7.10)

Proof. — We notice that W = wogowg = wogogw’ = gogwiw', for
suitable w’, w{ € W. Hence, if we set W, = Wow then @W; = gywp, with
w; = whw’" and g1 = gog. Assume at first g = e; in this case w; = Wow and
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then V1 (c) = [T@l’ao)] Vo (¢) = [T(al’ao) T’?O] V¢(c), and this proves
the required identity. Moreover the matrix Twiwo) ig independent of the
representation of and wg as reduced words, because this is true for the
matrices T and T%. Otherw1se if g 75 e, then w1 = wowg, and hence
Vei(c) = [T@wow)] Ywow(e) = [Pwrwow) T(wowswe) Two] Ve(c), so the
proposition is proved. O

The following corollary is a direct consequence of Proposition 7.4 and
Definition 7.7.

COROLLARY 7.9. — Let Wwg,w € W and W = Wow. Assume || =
|Wo| + |W| and Cy < Wo(Co) < wW1(Cy). Then, for every A € L,

T (Exwi,txwo) — p(wi,wo)

7.5. The matrix T* for 7(\) =4, j € T

Let A € LT and let 7(\) = j, for some j € I. Then ty € W, and
Co < t2(Cp). According to the Definition 7.7, we can define the non-singular
sub-triangular matrix 7% = T*, such that V*(c) = T V¢(c), for every
chamber c.

THEOREM 7.10. — Let A € LT with TA) =3, j€ T; then, for every
uew,

1/2
Tow = X0 "X (V). (7.11)
Proof. — Let ty = uyg;, where uy = s1---s,; for j=1,...,n we set,
as usual,
Wy = 814G, Wo = W1S2g = 5152G1, -+, tA = Wy = Wn—_15091 = 51" Sn i,

and C; = w;(Cp). Since X € E+, then Cy < C1,...,Cpho1 < Cp = tA(Cp).
Moreover, for every u € W,

th — P(@Wn18n,Wn1) ... (s191.91) T(gi.€).
Tu,u_Tu,un e Tu,u ’ T‘u,u7 ’

therefore, using Theorem 7.3 and Theorem 7.5 and keeping in mind (3.2),
we prove (7.11) by the same argument used in Theorem 6.9. ]

PROPOSITION 7.11. — Let A, Ao € L*. Then

T T2 = 722 TM, (7.12)
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Proof. — Tt is easy to see that |tx,+a,| = [tx, ]| + |[ta,], for every A1, Ao €
L*. Therefore (7.12) follows from Corollaries 7.8 and 7.9, by the same ar-
gument used in Proposition 6.10. O

Taking in account the proposition above, Theorem 6.11 and Corollary
6.12 can easily extended to every A € L.

COROLLARY 7.12. — If x is a good character, there exists a unique ma-
triz C, independent of A, such that D> = CT*C™! is diagonal, for every
A € LT, and for every chamber c,

Vir(e) = (C7IDAC) Ve(e), (7.13)
where Dy, , = X(l)/Q()\) X"(A), for everyu € W.

7.6. Macdonald formula for spherical functions on all special ver-
tices of a reduced building

We can extend to all vertices of V(A) the formulas (6.18), (6.19) proved
for the spherical function Poyl/2 On vertices of type 0, when ¢ is good.
0

THEOREM 7.13. — Let A be a reduced building such that 17(A) # Vo(A).
For every good character x on L, there exist constants {cw(x),w € W},
Y wew Cw(x) =1, such that

Proror2(@) = x0 PN D0 ew(x) XMV, Va € Vale), VA€ L. (7.14)

weEW

Moreover, for every x € ﬁ(A),

Prxo2 (@) = X0 2 (p0(2) D dw(x) x™(po(x)), (7.15)

weEW
if duw(X) = Cuwws (1), for every w € W.

Proof. — The proof is the same of Theorem 6.14 and Corollary 6.15. [J

Formulas (7.14) and (7.15) can be extended to all non-singular characters
(see Section 8).
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8. Computation of the coefficients of Macdonald formula

This section is devoted to the explicit computation of the coefficients
cw(x) and dw () that appear in formulas (7.14) and (7.15) or equivalently
in formulas (6.16) and (6.17) for the spherical function NNV associated to

a good character y. Since, for every w € W, dy(x) = c‘:,wo (x), we shall
determinate dy (x), w € W, and we shall deduce ¢y (x) from them.

8.1. Preliminary results

For ease of notation, we shall denote by X,Y,... the vertices of Vy(A),
while, as usual, we shall denote by A, u, ... the shape of any vertex Y with
respect to any X.

We fix a simple root «; if the root system is non-reduced we assume
that o € Ry U Ry. Let ¢, be the parameter associated to «; in particular
Qo = qa,1, if @ € Ry. We consider, in the the fundamental apartment A,
the hyperplane H}. Depending on the type of the building, such hyperplane
may or may not contain vertices of type 0. We distinguish two cases.

(i) If H} contains vertices of type 0, also H, ! does. Choose in H;'NQy a
vertex X of type 0 and define Y, = s, X. Then Y,, € H} and 7(Y,) =
0. Since X and Y, are symmetric with respect to the hyperplane H?,
any minimal gallery I'(X,Y,) connecting them has an even number
2mg of chambers and in particular the chambers C,,, and C,,4+1 of
this gallery have a common panel lying on HY.

(i) If H! does not contain vertices of type 0, surely H2 does. Choose in
H2NQ, avertex X of type 0 and define Y, = r, X, if 7, = s.. Then
Y, € H2 and 7(Y,) = 0. Since X and Y,, are symmetric with respect
to the hyperplane H}, any minimal gallery I'(X, Y, ) connecting them
has an even number 2mg of chambers and in particular the chambers
Cpny and Cipo41 of this gallery have a common panel lying on H]}.

We set in both cases A = 0(X,Y,). For every Y € V)(X), a minimal
gallery I'(X,Y) has the same length and the same type as I'(X,Y,,); more-
over we can choose X far enough from 0, so that I \(X) C Qp U s,Qy .
This choice implies that Y, is the unique element of V5 (X) which does not
belong to Qg , but lies on the interior part of the sector s,Qy .

Let w be a fixed boundary point; we assign X and A as above and we
choose a vertex z in a sector @, (w) opposite to Q.(w) in such a way that
po(z) = pu(x) = X. Let

No =y € Va(2), pu(y) = Yo}l (8.1)
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We compare the retractions po(y) and p,,(y) of each y € V(z), separately
in case (i) and (ii).

PROPOSITION 8.1. — Assume that H! contains vertices of type 0. Let
y € Wa(x). Then

R Al o

Proof. — For every y € V»(z), let v(z,y) = {c1, ..., cm = ¢} be a mini-
mal gallery from z to y and let d(z,y) = d(c1,¢) be the element of W such
that ¢1 - §(z,y) = c. There exists an isomorphism between any apartment
containing xz, y (and thus vy(x, y)) and A, sending v(z, y) onto I'(X, Y,,); then
it occurs that |y(z,y)| = |I'(X,Ys)| = 2mp and 6(z,y) = §(X,Y,). Since
Pw(y) = vo(pu(c)) and po(y) = vo(po(c)), it is enough to compare p,,(c) and
po(c), for ¢ € Cy(c1) and w = 6(eq, ¢).

Let A; be an apartment containing ¢; and w. In this apartment, ¢; €
Q7 (w). Let k be the biggest integer such that the chamber ¢, of y(z,y) lies

on Q7 (w).

1. If k = 2myg, the whole gallery ~(z,y) lies on Q7 (w), and hence y €
Qe ().

2. If k < 2my, then c1,...,c; € Q (w), but cx1 ¢ Q. (w). We have to
distinguish two cases.

(a) The panel shared by ¢ and ¢;41 does not lie on the hyperplane
h® of Aj;. In this case, for a convenient apartment Ay contain-
ing ci4+1 and Q¢ (w), the chamber c;41 belongs to the sector Q-
of Ak1, opposite to Q.(w). We repeat the same reasoning for
all other chambers cy42, ..., c2;m, = ¢ and we get that, in a con-
venient apartment As,,, containing ¢ and Q.(w), the chamber
¢ belongs to the sector opposite to Q. (w).

(b) The panel shared by c; and cgi; lies on the hyperplane h®
of A;. In this case k = mg and we can choose an apartment
Apo+1 containing ¢, +1 and Q. (w). We may have the following
possibilities.

(i) On A,,,+1, the chamber ¢;,,,4+1 belongs to the sector Q_ (w).
The same holds for the next chambers and then, in a conve-
nient apartment As,,, containing ¢ and Q.(w), the chamber
¢ belongs to the sector Q_ (w).
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(ii) On Apyy4+1, the chamber ¢ +1 belongs to the sector
(Q%)” (w), a—adjacent to @, (w). This can happen only
if there exists an apartment 4; containing ci, ..., Cmg+1,
that is A,,,+1 = A1. In this case projo(cmg+1) is the base
chamber of (Q%)™ (w) in the apartment .4; and the same

happens for all the chambers cp, 12, ..., com, = ¢; there-
fore projo(c) = projo(cme+1) and ¢ belongs to the sec-
tor (Q%)~ (w), in a convenient apartment containing ¢ and
Qc(w).

In cases (1), (2 a) and (2 b i) we can conclude, by Lemma 2.6 (i), that
pw(c) = po(c) and then p,(y) = po(y), since ¢ and y belong to a sector
Q7 (w) opposite to Q. (w).

Consider now the case (2 b ii); since ¢ belongs to the sector (Q%)~ (w),
in a convenient apartment containing ¢ and Q.(w), then p,(y) belongs to
(Q§)~. As we remarked in Section 2, p,(y) € IIx(X); moreover the choice
of X implies that Y, is the unique element of II5(X) in the interior part
of (Q%)~. Hence, in this case, either p,(y) = Ya, or p,(y) € H2. On the
other hand, Lemma 2.6 (ii) assures that pg(c) = sap.(c) and hence pg(y) =
Sapw(y). Therefore we conclude that, if p,,(y) = Yy, then po(y) = X, while,
if pu(y) € Hy, then py(y) = sapu(y) = po(y). So (8.2) is proved. [

PROPOSITION 8.2. — Assume that H} does not contain vertices of type
0. Then there exist (go — 1)Nq vertices y € Vi(x), such that p,(y) = X.
Moreover, if y € Va(x),

_ JsaYa if pu(y) =Ya or pu(y) = X,
poly) = {pw(y) otherwise. (8.3)

Proof. — As in Proposition 8.1, we call A; any apartment containing
¢1 and w. In this apartment either ¢; € Q (w) or ¢1 € (Q2)™ (w).

1. Assume that ¢; € @, (w). In this case, if k < 2my, the panel shared
by cx and ¢y cannot lie on the hyperplane h? of A;. Hence we can
repeat the argument of case (1) or case (2, a) of Proposition 8.1 and
we conclude that ¢ belongs to the sector Q. (w).

2. Assume now that ¢; € (Q%)  (w). In this case, ¢; lies between the
hyperplanes h0 and hl of A;. We distinguish three cases.

(a) If the whole gallery (z,) lies between the hyperplanes h? and
hl, then ca,,, = ¢ does and so y € h%, because y & hl.
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(b) If, for some 1 < k < 2my, the chamber ¢xy; does not lie between
h® and hl and the panel shared by ¢, and cgi; is not on hl,
there exists a convenient apartment containing cxy1 and Q.(w),
where cy 11 lies between hY and hl. We can repeat the reasoning
for ci42,...,c and we get that, in a convenient apartment, ¢ €
(Q¥)~ (w) lies between hQ and hl. Then we conclude that y €
ho.

(¢) Assume finally that, for some 1 < k < 2my, the chamber cg41
does not lie between hY and hl, but the panel shared by ¢; and
Ci1 lies on h}l; this means that k& = myg. In this third case we
have the following two possibilities.

(i) Cmg+1 lies on the sector (Q%)~ (w); then the same is true for
all next chambers and then also for c.

(ii) ¢mg+1 does not belong to Aj;. In this case the apartment
Apmo+1 does not contain Q. (w), because it does not contain
neither e nor c,; moreover, on this apartment, cm,,+1 lies
between hY and hl. Then ¢ cannot lie on an apartment
containing Q. (w). Again y € hY, but ¢,,, 11 does not belong
to a sector of type (Q%) ™ (w).

In case (1), according to Lemma 2.6 (i), p,,(c) = po(c) and then p,(y) =
po(y), since ¢ and y belong to a sector opposite to Qe(w).

In both cases (2, a) and (2, b), the chamber ¢ belongs to (Q%)™ (w);

€

hence p,(c) = sapo(c), by Lemma 2.6 (i), but pu,(y) = sapo(y) = po(y),
because y belongs to the wall of the sector shared by (Q.)™ (w).

In case (2, ¢, i) Lemma 2.6 (ii) implies, as above, that p,(c) = sqpo(c)
and also p,(y) = sapo(y), because ¢ and y belong to the interior part of
(Q%)™ (w). Since Y, is the unique element of IIy(X) which lies into the
interior part of (Q%)~ (w), and p,(y) belongs to II(X), then p,(y) = Y,.
Moreover po(y) = 54Yae = X.

Finally we examine more closely the last case (2, c, ii), to find the re-
lationship between p,,(y) and po(y). Let A be an apartment containing c
and w. Thus A and A; share the hyperplane h! and hj,, for j > 1, but A
does not contain ¢, nor projo(c). Let i be the isomorphism between A and
A; who fixes AN A;. We have Cmot+1 = 1(Cmg)s Cmot+2 = H(Cmg—1),.-.,C =
Camo = i(c1). Therefore

pw(cmg—i-l) = pw(cm0)7 pw(cmo+2) = pW(cmo—l)a (RRE] pw(c) = pw(cl)'
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Call @ the chamber of AN A; such that y(c1,¢) = 7(c1, ¢). Then &(cy,¢) =
d(e1, ¢) and po(¢) = po(c), since projo(¢) = projo(c). Moreover

d(projo(¢), ¢) = d(projo(¢), c1)d(c1, ¢) = d(projo(c), e1)d(er, ¢) = d(projo(c), ¢)-

We have po(¢) = sapw(€) and py,(€) = rapw(cr), if 7, is the reflexion with
respect to H}. Hence po(¢) = saTapw(c1) and po(c) = saTapw(c), or equiv-
alently p,(c) = TaSapo(c). Therefore p,(y) = raSapo(y). Since rys, is a
translation, mapping s, Y, to X, we conclude that

pu(y) =X and po(y) = saYa.

Finally, we observe that [{y : p,(y) = X, p0(¥) = saYa}| = (¢ — 1) Na.
In fact, if ¢ € (QY)” (w), then ¢pyt1 € Ag, in the case (2, ¢, i), while
Cmo+1 ¢ A1, in the case (2, ¢, ii). Since, fixed ¢y, ..., ¢m,, there is a unique
Cmo+1 With property (2, c, i), while all the others g, — 1 chambers adjacent
to ¢m, have property (2, ¢, ii) , we conclude that there exist (go, — 1)Ng
vertices in Vy(x) such that p,(y) = X and po(y) = saYa- O

8.2. Fundamental equations for d,,, w € W

Let x be a good character. Fix w € €.

DEFINITION 8.3. — For every x € Vo(A), we define

ro(@) = o X0 2(pu(@) 3 dwOXT(pule).  (84)

XXo W(q) weW

Since W x02(pw(z)) = PX"X0""* (2, w) and PX"x0"*(. w) is an eigen-

function of the operator algebra H(A) associated to the eigenvalue A, w,

Ay o172, for every w € W, then the function Texl/2> 88 well as the spherical

function Prxi/? belongs to the eigenspace of the algebra H(A) associated

1/2 =

to the eigenvalue A Moreover we notice that 7__1/2(x) = ¢__1/2(x),
XX() XXO

xXxo0l/2"
for all = lying on any sector Q_ (w), because, by Lemma 2.6, p,,(z) = po(z),
for all z € Q. (w). Hence, for every A € LT and for every z € Q_ (w),

A)\ TXXé/z =A 1/2()\) TXX(I)/Q = AXXol/Q()\) QDXXé/Q = A)\ (pXXé/z. This im-

plies that
> [erar®) = rar@] =0
YEVA(T)

and, by (8.4) and (7.15),
> Y dwly) [x“’xOl/Q(po(y)) - xwal/Q(pw(y))} =0.  (85)

YEV(z) WEW

XXo
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For each € Q7 (w) and each A € LT, formula (8.5) can be interpreted
as a linear equation for the coefficients dyw(x),w € W. We shall choose
finitely many x and A in such a way that the expression of the associated
equation (8.5) becomes easy enough to manage it, so producing a finite
number of equations which we shall be able to solve, so giving an explicit
computation of dyw(x), w € W. For ease of notation we shall simply denote
dw = dw(X)

For each simple root «a, we assign X and A as in Section 8.1 and we
choose in a sector @, (w) opposite to Q.(w) a vertex x such that po(x) =
pu(@) = X.

LEMMA 8.4. — Let a be a simple root.

(i) Assume that H. contains vertices of type 0. Then

D> dwl™x0 *(po(®) — x¥x0"* (pu(®))]

YEV(z) WEW

= Na D dwlX™x0"*(X) = x¥x0'/*(Ya)].
weW

(ii) Assume that H. does not contain vertices of type 0. Then

DY dul™xo (o) = X X0 (pu ()]

yEVA(z) WEW

= No Y dw[x"x0"*(5aYa) = x"x0"*(Ya)]
wEW

+(ga — 1)Nq Z dW[XWX(Jl/Q(SaYa) - XWX01/2(X)]-
weW

Proof. — Proposition 8.1 and Proposition 8.2 imply (i) and (ii) respec-
tively. O

For each simple root «, we set
Wi ={weW: |ws, =|wl+1}, W, ={weW : |ws,|=|w|-1}

Then W = W1 UW}, as disjoint union. We observe that w' = ws, € W,
for all w € W1, and, for every w’ € W, there exists a unique w € W}

such that w = ws,.
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PROPOSITION 8.5. — Let v be a simple root.
(i) If H. contains vertices of type 0, then, for all Z € HONQy , 7(Z) = 0,

Z { dw [X¥x0"?(Y2) = x™x0"/*(X0)]
wewl
s, VX0 2 (Y) = XM X0 2 (Xo)] IxY(Z2) = 0.
(ii) If H does mot contain vertices of type 0, then, for all Z € H2 N
Qq, 7(Z) =0,

> {dw X072 (YD) 4 (go — DXV x0"*(X0) = gaX™x0'?(sa V)]

wewh

Fdws, XX AYD) + (ga — D)™ x0"A(Xo) — gax ™ x0" 2 (5aYD)] }
x¥(Z) =0.

Proof. — We prove separately (i) and (ii).

(i) According to Proposition 8.1,

D dwlx™x0"(Ya) = X" X0 (X)]
weWwW

= ) dwlX™x0'?(Ya) = X" X0 (X)]

wEWi
+ Y dwX™x0(Ya) = X x0 2 (X)]
W EWS
= Z {dW[XwXOI/Q(Ya) _XWXOI/Q(X)]
WEW:

+dws, [staxol/z(ya) - XWSQXOI/2 (X)),

where w' = ws,. Hence, by Lemma 8.4 (i),

> {dwlx02(Ya) = XV x0 (X))
WEW(J;

Fdws, XV X0 2 (Ya) — x5 x0 ' 2(X)]} = 0.

Fix Xo € H;'NQ,, 7(Xo) = 0. We may choose X far enough from
the origin so to have II)(Xo) C Qy Us,Qq . Consider X = Xy + Z,
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with Z € H2NQy . Then X belongs to H, ' NQy and is far enough
from the origin so to have II)(X) C Qy U s,Qq . Moreover

Yo = 50X =$a(Xo+ 2Z) =saX0+ 502 =Y + Z.

Choosing X this way, our formula becomes, for all Z € HY N Qy,

> {dwxo ()X x0 2 (Y) = X x0(X0)X™ (2)

wewl

Fdws, X0 2 (Z) X7 X0 P (VD) = X x0'? (Xo) X" (Z)} = 0.
Since Z = s,Z, we get, simplifying by xo'/?(Z),

Z {dw[XWXOUQ(Yo?) - XWX01/2(X0)]

wewl

Fdws, XV x0 A (YY) = XV xo 2 (Xo)] I (Z) = 0.

(ii) According to Proposition 8.2,

Z dW[XwXOUQ(SaYa) - XWXOUQ(Ya)]

weW
+(¢a — 1) Z dW[XwX01/2(SaYa) - XWX01/2(X)]
weW
= D dwlgax™x0"?(saYa) = (g — Dx¥x0"*(X) = x¥x0"*(Ya)]
weW
== Y {dwlx™x0"*(Ya) + (20 — DX¥x0"*(X) = gaXx™X0"/* (50 Ya)]
WGWx

Fdws, XV x0 2 (Ya) + (ga — DXV x02(X) — gaX™¥** X0/ (3aYa)]}-

Hence, by Lemma 8.4 (ii),

7 {dw X %0 (Ya) + (g — DXV x0"/2(X) = gax™ X0 (saYa)]
WGWI
Fdws, XY X0 2 (Ya) + (20 — DXV *x0 % (X) — 4aX™V** X0 *(5aYa)]}
=0.

As in case (i), fix Xo € H;' NQy, far enough from the origin so
that I (Xo) C Qp U s,Qy, and consider X = Xy + Z, with Z €
HY N Qy. Then X belongs to Hy' N Qy and is far enough from
the origin so to have II\(X) C Qg U s.Qq . If we set Y* = r,Xo,

- 729 -



A. M. Mantero, A. Zappa

then Y, — X =Y5 — Xp; 50 Y, — Y = X — Xy = Z and therefore
Y, =Y+ Z; moreover s,Y, = s,Y;* + Z. Choosing X this way, our
formula becomes, for all Z € H2 N Qy,

S {dwxo 22 (2) v VA (YD)
wewWd

(o — DXV x0"2(X0) = daX¥x0" (50 Y2)]
Fdws X0 2(Z)X™(Z2) XV x0 A (YD)
(g — Dx™x0"*(Xo) — gax™x0" 2 (5aY2)]} = 0.

Hence, simplifying by x0'/?(Z), we get

3 {dwl™x0 2(Y0) + (g0 — DX x02(X0) — gax™x0' 2 (5aY)]
weWh

Fwo XV X0 (V) (g —=1)X ™" X0/ (X0) ~gaX™** X0/ * (sa Y}
XV (Z) =0.
|
We assume now that y is a-good; according to Definition 3.6, there exists
a vertex Z on the hyperplane H?, such that yW!(Z) = x"2(Z) if and only
if wo = wy or wo = wis,. We suppose, without loss of generality that Z
belongs to HS N Qy .
THEOREM 8.6. — Let o be a simple root. Let x be an a-good character.

(i) If the hyperplane H} contains vertices of type 0, then, for every w €
Wi,

dw |:XWX01/2(CYV) - 1:| + dwsa |:Xé/2< \/) - Xw(av) =0.

(ii) If the hyperplane H' does mot contain vertices of type 0, then, for
every w € W1,

du [(XWXo”2 1) (X X0/ (e )+qa)]

Fs, [(1072(@) = x(0%) (x0'(0¥) + ax¥(a¥))| = 0.
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Proof. — The assumption that y is a-good assures that the functions
XV, for w € W when restricted to the hyperplane H?, are linearly inde-
pendent (see [5, Lemma (4.5.7)]); therefore 3 g+ kwXx™(Z) = 0 implies
that kw = 0, for every w € W}. Applying this argument to the sums in
Proposition 8.5, we get the following results according to case (i) or case

(ii).

(i) If the hyperplane H} contains vertices of type 0, then, for every w €

W,
dw [ X0 (YY) = X" X0/ (X0)]
Flws, XV X0 P (YY) = XM X0 2 (X0)] = 0

and

dw [XWXOI/z(YO? — Xo) — 1} +dws, [X(l)/Q(Yo? - Xo) — X" (YY) - Xo)} =0.
Since Y — Xy = aV, we get the result.

(ii) If the hyperplane H! does not contain vertices of type 0, then, for
every w € W1,

dw [X¥X0"2(Y2) + (da — 1)x™x0"*(X0) — gax™ X0 (saY2)]
Fdws, XY X0 (Y +(ga—1)X"** X0 2 (X0) —gax ™ X0/ * (54 YL)]
—0
and

e X X0 2V = X0) + (g0 — 1) = gax™ x0"2(5 (Y2 — Xo)

s X (50 (Y8 = Xo))xo 2V = Xo) + (aa — 1)

—qa X" (Y5 — Xo)x0"*(sa (Y — X4)) = 0.

Since Y§* — X = ¥ and s, (Y — Xo) = —a", we obtain the result.
O

To make clear the exposition, we distinguish from now on between re-
duced and non-reduced case.
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8.3. Computation of dy(x),w € W, for good characters; reduced
case

In this section we assume that A is reduced. This assumption implies
that all roots have the same length or there are short roots 5 and long roots
«. Moreover in the first case g, = ¢, for every positive root «, while, in the
second case, ¢, = ¢, for every positive long root a and gg = p, for every
positive short root 5. We denote, as usual,

26" = > V. (8.6)

a€RT

To determine the coefficients dyw (), for a good character x, we assume
at first that y is a-good for every a.

COROLLARY 8.7. — Let x € ng(f). For every simple root o and for
every w € W,

dw [0 (@) = 1] + dus, [xi* (@) = x¥(@)] =0 (87)

Proof. — If the hyperplane H} contains vertices of type 0, then (8.7)
follows from Theorem 8.6 (i). If the hyperplane H! does not contain ver-
tices of type 0, then (8.7) follows from Theorem 8.6 (ii), by noting that
XY x0'2(@Y) 4 ga = X0 (@Y) + gax™ ("), because xo(a¥) =¢3. O

We shall denote by X9, (L) the space of all characters of Xgg (L) satis-
fying
x(wa") # qo, Va€R', YweW. (8.8)

o~

This space is dense in X4,(L) with respect to the weak topology. From now
on we assume that x belongs to X0, (L).

LEMMA 8.8. — Let x be a character of ng(i). Then dw(x) # 0, for
every w € W,

Proof. — By (8.8), Xé/z(av) —x%¥(av) #0and (x"x0'/?) (") =1 #0,
for every w € W and every o € R*. Hence (8.7) implies that dyw(x) = 0
if and only if dws, (x) = 0. Therefore either dw(x) = 0 for every w € W
or dw(x) # 0 for every w € W. Since ) -w dw(Xx) = 1, the lemma is
proved. O
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COROLLARY 8.9. — Let x be a character of X (L). For every simple
root a and every w € W,

dwss(0) _ iy =X @ (@) 1 g (@)
dw(x) xe) 1—X51/2(ozv)xw(ozv) =@ 1—ga'x¥(av)
(8.9)

Proof. — By (8.8), x™(a¥) # x4 (av) and xV XOl/Q(aV) # 1. Moreover
dw # 0, by Lemma 8.8. Since x¥(—a") = xV*«(a"), Corollary 8.7 implies

that

dwso (X) _ -~ X"xo'?(aY) —1 = —x"(a") 1- Xal/Q(av)sta C)
d (X) - 1/2 W Vv o @ *1/2 Vv w Vv ’
w Xo' (@) = x%(aY) 1—xo ""(e¥)xv(aY)

Let wg € W be the unique element of maximal length and write wy =
s182 -+ 5N, as reduced word, where s; = s,;, with a; € B, for every
j=1,...,N. Define

w)=e and W) =s15y---5;, =Wy _ 5k, for k=1,2,...,N.

PROPOSITION 8.10. — Let x be a character of XSQ(Z). Then

wo| X™°(=9Y) 1— gz 'x*™ ()
= o S T () e

ar VT

Proof. — Property (8.8) assures that de(X),dwo(X), -, dw
then

dWo(X) _ dWo(X) dw?\,i
de(x)  dwy_ (X)) dwg,

1 WN—

By Corollary 8.9 we get

Ay (X) N v %

=(-D)"x(ay) x" («

e (1) x(a}) ()
gy LX) 1= g xR (o)

XV () — —
1—galx™(ay) 1—gaix™v-1(a%)
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= (—D)Vx(ay + wi(ay) + -

o vy Lma@xMit(ay)  L—grly™h v (ay)
+VVN—l(O‘N)) 1 w0/ vy 1 wo v .
1—Qa1X 1(a1) 1_q0¢NX Nﬁl(aN)
We consider ap, w(ay), wl(ay),...,w%_;(a)). For every k = 1,...,
N —1, wi(ayly1) > 0. In fact, if we assume that w{ (o), ;) < 0, for some k,
then, by Lemma in [4, Section (1.6)], should occurs that [ws,1] = |[w|—1,

while, by definition, |wiski1| = [wp| + 1.

Moreover wp (o), 1) # Wi, (o ,q), for k # K. In fact, if wi(e)/, ) =
wi (), ) for some k < k', we could write W}, = W{sgy1---sp and
Wiy 1) = WQskq1 - s (), 1). This should imply that ), = sgq1 -
sgr(ay, ) and then spy1(o/ 1) = skq2---sw (g ). This is absurd, be-
cause spy1(ay ) < 0, while spyo---sp (o)) cannot be negative. In
fact, Sg42 - Sk (ar+1) < 0 should imply, by Lemma in [4, Section (1.6)],

|Sk42 - Sk| = |Skt+2- - Sk| — 1, in contradiction with the hypothesis that
‘sk+2...8k,| —_ |Sk+2...3k/|+1'
Therefore we deduce that {aq, w(ay), wd(ay),...,wQ_;(a¥)} = RT
and then
N
ng_l(a,\é) = Z a¥ =26V,
k=1 a€RT

Since o and wa have the same length, for every a and every w, our formula
can be written

dwo(X) _ (_1)|w0| X(25v) H (1—qa_1XW0(aV))

de(x) wert N 1T gt x ()
_ 1wl XWO(_(SV) 1— q(;leo (a\/)
R ag+( 1—ga'x(av) >

For ease of notation, we define, for every character x € ng(f),

D) =x(=8Y) ] (1 —gqa'x(a¥)), (8.11)

a€Rt
and, for every w € W,
Du(x) = DO = x™(=0Y) I[ (-aa'x"(@¥).  (812)
a€RT
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Property (8.8) assures that Dy, (x) # 0, for every w € W then we set

de(X)
X) = 8.13
) De(x) (8.13)
We note that K (x) # 0; thus Proposition 8.10 states that
dwy(X) = (=)™ K(x) Duw,(x)- (8.14)

The following proposition extends this result to ds,(x), for every i € Ij.

PROPOSITION 8.11. — Let x be a character of ng(i). Then, for every
i € Iy,

Proof. — Let w = s;, for some ¢ € Iy. Since s; permutes the positives
roots different from «;,

[T (- @) = I (1 -a'x(e").
ata; aFa;
Hence, by (8.13) and noting that x(ay —§¥) = x* (—d¥), we can write

1— g 'y ()
ds;(X) = — x(a)) ——F——~
1—g 1X(0¢;/)

= — x(a)) x(=8Y) K(x) De(x)

de(x)

1—q X (o))
1—q; 'x(a))
T v

— (o — ) K LX) T g oY)

=g x(a) g
= — X" (=) K(x) =g "X () ] (1-aa'x(a)))
aFa;
= —x" (=) K() [] —a'x (@) = (=D K(x) Dy, (x).

a€ERT

O

Formula (8.15) can be extended to every w € W. We need the following
lemma.

LEMMA 8.12. — Let x be a character of ng(f). For every w € W,
K(x™) = ()M K(x). (8.16)
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Proof. — We proceed by induction on the length of w. If w has length
one, say w = s; for some ¢ € Iy, (8.16) follows from Proposition 8.11, because
K(x%) = —K(x) = (—=1)!*! K(x). We suppose now that (8.16) is true for
every w € W of length |w| < j. Let w' = ws;, such that |w’| = j + 1; then

K(X™)=KKX")=—-KKX").

Hence K(xV') = — (=)™ K(x) = (-=1)™I K(x) and the lemma is
proved. O

~

PROPOSITION 8.13. — Let x be a character of X§ (L). For every w €
dw(x) = K(x™) Dw(x) = (=)™ K(x) Dw(x). (8.17)

Proof. — By definition, dw(x) = de(x¥) = D(xV) K(xV); so (8.17)
follows from Lemma 8.12. O

Our next goal is to determinate K (x). We renumerate the N positive
roots by setting R = {a;, i = 1,..., N} and we set, as usual, ¢; = qq,,
for every i = 1,...,N. Since ) w dw = 1, then, by Proposition 8.13,
K(x) S wew (=)™ Dy (x) = 1. Therefore,

75 = 2 DM Dt = 3 M=) T (- 6w (@)

wewW wew
(8.18)

We need some preliminary results, to simplify the calculation of the
previous sum.

LEMMA 8.14. — Let x € X9, (L). Let py = Y5 o, foriy < <'iy

and 1 < k < N. If there exists w1 € W such that w1 (6" — p)) =8, then

S DM (8 ) = (DM ST (1) (Y,

weEW wew

otherwise

Do DM (=Y + ) =0

weW

Proof. — Consider Igv = IIsv(0). According to [3, (13.1)], 6V is the
unique element of Il;v lying on (Qg)°, because 6V € Qg and 6V € H}, for
every it =1,...,n.
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Fix k € {1,...,N}, i1 <--- < i) and consider p)/ = Z?:l o/, We shall
prove that

5 —MZ € Il;v.

Actually, 8 —p) < 0¥ (with respect to the Bruhat ordering of W); moreover
there exists w; € W such that wy(6Y — u)) € Qo. By comparing the
explicit formulas for p)) and wy(6Y — p)/) as sums of ), we deduce that
wi(0Y — ) < 6Y. So wi(6Y — p)) € Ilsv, by [3, Lemma B|. Since a
saturated set is stable under W, also §¥ — ) € Ilsv.

Moreover, if wi(8Y — p)) # 6", we must have wy(6Y — p) € 9(Qo),
that is wi(6Y — ) € HY for some i = 1,...,n. Let Ay, = wy(6Y — py).

(i) Suppose that A\, = ¢". In this case

S DM (=6Y + )

D EDMIY(=ww)

weEW weW
= > DMV (=wi(8Y)
weW
—1
= D (DM (=),
weW
Then, if we set u = ww; ' and write [uw]!| = |u| + |w;| — 2K, for

a convenient K, we get
Yo EDMT(w ) = Y (iR e 6Y)

weW uew
|W1| E (—6Y).
uew

(ii) Suppose now that there does not exist any w € W, such that w(§¥ —
w") = 8. In this case, A lies on H?, for some i = 1,...,n, and hence
si(A)) = A So, by using the same change of variables as in (i), we

can write

STEDMY (=0 ) = Y DV (=)
weW weEW
= (=DM DT (=0 =AY,

uew

We split this sum into two sums over W = W1 and W; = W .

We recall that, for every u € W, , we can write u = u’s; with
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' € W and |u| = |[u/| + 1. So we get

> (=DM (=6 + )
weWwW

=DM YT EDPEEAD + YD DM )
luew; ueEwW;

= (=DM YT (DR EA)D + D (I (=AY
luew; wew

= (D™ YT EDPEEN) = D DM (s ()

Lluew; wewf
= (=DM ST (=D A = X)) =0,
UGW;r

Let N > 1. For every k =1,..., N, define
Y = {(i1,-- i) : d1yee i € {1, N}, iy < --- < i},
I, = {(il,...,ik)el,év 3w, |w| =k, suchthatw(ayj)<0, Vi=1,...,k}

and I}V =7, = 0.

LEMMA 8.15. — Let X1, Xo,..., Xy be N variables and 11, = vazl(lf
X;), for N = 1. Then

M=y o (% xeew).
k=0 (i1,eenyife) ETN
where ZI(J)V Xi - X5, =1,
Proof. — The proof follows easily by induction on N. O
PROPOSITION 8.16. — For every x € ng(i),

N
Yoo EOMDW) = D0 D gt et DD (DI (=6Y),

weW k=0 I, wew
-1 -1
where ZI(; 4, g, =1
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Proof. — By Lemma 8.15

N
Dw(x) = x™(=6") JT(1 = ¢ "x™(cw))

v

= xV(=6Y) D DFY (gt e ) X)) xM(eg))
k=0 Iﬁ
N

= XM(=0Y) Y (=DF D> (gt a) XV 4+ a))
k=0 N

k

(qi_ll"'qi_kl) Xw(_(SV _|_O[Z\/1 —|—---—|—a.v),

1k

I
WE
e

ol

It follows that

Y (H)MDy(x)

weW
N
= > EDMI DR (g g ) xM (=Y a4+ a))
k=0 Iﬁ

weWwW

N
=D DRy gt gt Y ()M=Y + o)+ o).
k=0 Ig weW

By Lemma 8.14, if there exists wi € W such that wi(=6"+ay 4+ -4y ) =
_§V’

Z (=)W (=6Y + af o)) = 1)lwal Z DWW (=6Y).

weWw weW

Otherwise the sum on the left is zero.

Since k is the number of positive roots mapped by w; to negative roots,
|wi| = k. Then, by definition of Z,,

S ()M Dy ()

weW

STEDR et g Y (DM (=6Y)
k=0 N weW
>

(=DF > e a0 CDMI=1) Y (=8Y)

k=0 T~ weW
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N

SN gt a0 (FVIv(=aY).

k=0 I, weWwW

By Proposition 8.16, to compute 3 cw(—1)" Dy (x) we calculate sep-
N — — W)W
arately >, sz— qill . -~qik1 and Zwew(fl)‘ X (=68Y).

LEMMA 8.17. — We have

N
S gt g =W,
k=0 71—

Proof. — We distinguish two cases.

1. All the roots have the same length. Then ¢, = ¢, for every «, and

therefore v N
DD =) Hwew,
k=0 I, k=0
jw| = k}g* = Z Yot = > @ =W

k=0 |w|=k wewW

2. Assume now that there are long roots « and short roots . In this
case, if |w| = k, we suppose that w is the product of h generators
associated with simple long roots and (k — h) generators associated
with simple short roots. Then w changes sign to h long roots and
(k — h) short roots. We set

Win={weW: w=gs; --s;,, where h of the roots a;, - - - a;,

are long}.
Then
N N k
2 2 at ! = 2 D Wil g™
k=0 I, k=0 h=0
N &k
=D > D @ =) w =W
k=0 h=0 wecWy wew
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LEMMA 8.18. — For every x € X9 (L),

Y EDMY(=0Y) = x(=6") T @ —x(a").

weEW a€RT

Proof. — Let |w| = k. We denote by «;,,...,q;, the k positive roots

such that w(a;;) < 0. Hence w(0") =6Y — ;) — - —a;, and we get
N
S M) = 3D Y (0 ol o a))
wew k=0 I,
N
= X(=6") (=" Y oxlag 4+ ).
k=0 I,

We denote by vV any element of IIsv, lying on Qg but different from ¢¥. By
Lemma 8.14, ¥ € Qg and

DM (=) = Y ()M (—wrY) = 0.
wewW weWwW

On the other hand §¥ — wrV € Qq, and therefore 6V — wrV is sum of k

positive coroots a ,...,aY . Define
J1 ]k

Ik,l/\/ = {(]17a]k) GIIiV c 3w, ‘W| =k, O‘;'/l ++Oé;/k = 5V7WVV}'

We have
0 = UMY A8 g+t a)
weWw Iy, v
= X(=6) 2 DM ST o, 4.
weW Iy, v

Finally, putting all terms together, we get

Yo EDMT (=0 = Y0 (FD)MIY (=0 + )0 D ()M (=)

weW wew vV wew
= > DM M=) + )
weW vV
N
= X(=8")D_(-1)" |3 (ol + -+ af) + 30 D7 xVlag, - +ad))
k=0 v vV Iy v
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N
:X( Z ZX Zl T ;/k)

k=0
N
:X( Z ZX 11 ;/k)
k=0
N
x(=6") [T = x(a))
=1
]
PROPOSITION 8.19. — Let x be a character of X°_ (L). Then
__x(dY) 1
K(x) = W) H T(Ozv) (8.19)

a€RT

Proof. — Lemma 8.17 and Lemma 8.18 imply that

S DYDL() =Wig ) x(=6¥) J] @-x(a).

weW a€ERT
Hence, by (8.13),
o =W x(=0") [ (1=x(a")).
a€ERT
Since x is non-singular, then [ ], c g+ (1=x (")) # 0. So the required formula
(8.19) is proved. O

The following theorem exhibits the expression of each coefficient dy (),
for every character x € ng(L).

THEOREM 8.20. — Let x € ng(f). Then, for every w € W,

B 1 1—q; xV(aY)
() = 3577713 CLL T (8.20)
Proof. — Let w = e. In this case
de(x) = K()D(x) = K(x) x(—=6") [] (1—az'x™ ("))
a€ERt
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and, by Lemma 8.18,

db0) = s T 1y x-0) [T 0= va)

a€ERt a€ERt
_ 1 H 1—q."'x(aY)
- W(o—1) 1 —_v(aV)
W) epe 1 x(@Y)

On the other hand, if w # e, then dy (x) = de(x"); therefore formula (8.20)
is proved. O

Remark 8.21. — For every w € W, the coefficient dy (x), as well as the
function on the right side of (8.20), is defined on the space Xg(f) and
depends continuously on the character x with respect to the weak topology.
Therefore the formula (8.20) can be extended to all characters of X4(L) by

a standard argument of continuity, taking in account that ng(i) is dense

~

in X4 (f) and then in X (L).

8.4. Computation of dy(x),w € W, for good characters;
non-reduced case

__In this section we assume that A is a non-reduced building of type
(BC),,. According to notation of Section 3.2, we shall denote by «, 3,7
any root of Ry, Ry, Ry respectively; moreover we set ¢, = ¢, ¢z = p and
¢y = r. We define &y = %ZaeRJ av, &Y = Y sert BY and §Y =y +6y.
Since ¥ = a, for every @ € R, and 8Y = 1B, for every 8 € R, then
dg = dp and &y = %Z%Rl g = %Z’YERQ ~Y. Thus 6" corresponds to a
reduced root system of type B,,. Moreover

1 1
vV _ sV Vo __ E E —

a€RY BeRT

if 0 corresponds to a reduced root system of type C,. Moreover ¢y and 4y
belong to the lattice L = L and lie on Qp; moreover 6y,8) € H! U HY,
for every i, because (6Y, ;) = 0 or 1 and (6, ;) = 0 or 1; furthermore
(6V,a;) =1, because § € HY when ) € H} and viceversa. Finally we
recall that W can be seen as the Weyl group of a reduced root system of
type Ch,.
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We shall denote by ng(f) the space of all characters of ng(f) satis-

fying
x(waV) #q Va € RS, Yw e W,

8.22
X(WBY) £ V7. — [ V8 € R, Yw e W, (8.22)

~

This space is dense in X,4(L) with respect to the weak topology. Anal-
ogously to the reduced case, from now on we assume that x belongs to

o~

ng(L). This assumption is motivated by the following lemma, analogous
to Lemma 8.8 stated in the reduced case.

LEMMA 8.22. — Let x € ng(i). Then dw(x) # 0, for every w € W.
Proof. — According to Theorem 8.6,
(i) ifa=e; —ei41, i=1,...,n—1,and w € W,
dw [X"x02(0%) = 1] + dus, |2 (@) = x™(@¥)] = 0;
(i) if f =2e, and w € W;
du [ (X0 2(8Y) = DX x0"2(8") + 5]
sy [(000172(8Y) = X (8Y) (x0"2(BY) + apx™ (8Y))] = 0.
If we assume y € ng(i), then (i) and (ii) imply that de(x) = 0 if and
only if ds, (x) = 0 for every a = e; — e;41 and ds,(x) = 0 for B = 2e,.
Therefore either dy(x) = 0 for every w € W or dyw(x) # 0 for every

)
w € W. Since ) cw dw(X) = 1, the lemma is proved. O

COROLLARY 8.23. — Let x € ng(f). Then, for every w € W,

dwsa % w 1— X_1/2 av st(1 a\/
y ( ) = —y (aV) 0_1/5 ) ( )’ (823)
w(X) 1—x, “(aV)x¥ (oY)
for every a =e; —e;41, i =1,...,n— 1, while, for § = 2e,,
dwss (X) _
dw (x)

(1= 2B (89) (1+ a5 xa P8 (8Y)

(1= X 2B (89) (1+ a5 x0 28X (8Y))
(8.24)

—x"(28Y)
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Proof. — If « = e;—e;41, forsome ¢ =1,...,n—1, then the hyperplane
H} contains vertices of type 0 and (8.23) follows from (8.5) by the same
argument as in the reduced case.

Assume now 8 = 2e,, and set a = e,; then ¥ = o and o¥ = 3. In
this case, the hyperplane H é does not contain vertices of type 0; hence, by
Theorem 8.6 (i),

due [0 2(8Y) = (X0 (8Y) + a5
sy | (X02(8Y) = X (B) (00 2(8Y) + asx™ (8Y))] =0,
which implies, by Lemma 8.22, the required formula (8.24). O

According to Section 3.2, xo(a¥) = ¢2, fora=¢e;—e;41, i=1,...,n—
1, and xo(BY) = pr, for 8 = 2e,.

COROLLARY 8.24. — Let y € ng(f). Then, for every w € W,

dwsa(X) _ oW av 1_q_lsta(a\/> ifa=e —e: 7 = n—1:
dw(X) - X ( ) 1_q_1xw(av) ’ f — & i+1 —1,..-;(8 2;)7
d:;sﬁ(x) (28 ( RN )) (+ Vox™(f )), if B =2e,.
w(x) (1= Fx(89) (1 + V/Ex(8)) -

Let wg € W be the unique element of maximal length and write wy =

s182 -+ 8N, as reduced word, where s; = so;, wWith a;; = e;; — €;, 41, if
ij=1,...,n—1, and a;; = 8 = 2ey, if i; = n. Define
0= d w)= =wj for k=1,2,....N
Wy =€ an W), = 8182 Sk = Wj,_1Sk, for k=1,2,... N.

PROPOSITION 8.25. — Let x be a character of ng(f). Then

dwo(X) _ o X (=0Y) 1—q 'x"(a")
d ( 1) X(_6v> ag+ 1_q—1x(av)

0

1 (1= Z=x™ (B)) (1 + /Ex™(BY))
(1= Z=x(BA+ /Ex(8Y))

BERT

(8.27)
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Proof. — Property (8.22) assures that de(X), dwo(X), .-, dwo (x) # 0;
then
dwo(00) __dwy (00 Dwin )00 dwg () dwe(x)
(X) dw?N71>(X) W?Niz) (X) dw(l’(X de(X)
By (8.25) and (8.26),
w 1—g7'x" e (a7)) e
dyo () X (QX)W if ir <n,
- wep P\ Wsg gV
wo, () e s x5 (5Y)) (1+4/EX4 (8) i —n.

(1= X" (BY) (1++/Ex (8Y))

Since W can be seen as the Weyl group of the reduced building of type 5’,“
we can repeat the argument used in the proof of Proposition 8.10 and write

dwo(X) _oov L ocy 1= g o(aY)

do(x) x(26y +207) ag+ ]
H (I_M%Xwo(ﬁv))(l‘i‘\/?xwo(ﬁv))
BERT (1- \/%X(ﬁv))(l + \/?X(ﬁv))

Since x(20y + 26y) = x(26Y) = %7 the required formula (8.27) is

proved. O

For ease of notation, we define, for every x € X{, (L),

Do(x) =x(=6y) J[ (1-qa"x(a)

c»zGRSr
Di() = x(=0¥) TT (1=vir'x(8") (1+/7x(8)
01 ) (1)
(8.28)
and D(x) = Do(x) D1(x). Moreover, we define, for every w € W,
Dow(x) = Do(x™) = x"(=63) [] (1 —a"x¥(a"))
ou’:'RSr
Dia0 = Drx") = x"(=07) TL 0= v (3 (125
BERS
(8.29)

and Dw(x) = Dow(x) D1w(x)- Property (8.22) assures that Dy (x) # 0,
for every w € W then we set

K(x)=de(X)= dold) (8.30)
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We note that K(x) # 0; thus Proposition 8.25 states that

duwy () = (=1)1 K (x) D, (x)- (8.31)
This formula can extended to each d,(x), i € I.

~

PROPOSITION 8.26. — Let x € X{ (L). Then, for every i € I,

Proof. — Let w = s,,, for some i = 1,...,n — 1. In this case a; € R’
and
1—qy x* (o))
ds,(X) = —x(of)—— =" de(x)
1—gi'x(e)) °
1—qp 'x* (o
= eI b 0D K ().
1-q X(O‘i )

We observe that D1 s, (x) = D1,(x), because s; doesn’t change sign of any
B € R;. Moreover, as in Proposition 8.11,

oy L@ X ()
(@) 1— g 'x(a)
=x(oy = 6)(1 =g "X () J] (1= "x(e))

Do .e(x)

aFa;
=x"(=0) J] (0= a "X (),
QERJ
because (see [3, (10.2)]) o — &) = 2ay — 13" VY a¥ = s;(—6y). There-

fore

ds,(x) = =K(x)Do,s;,(x)D1(x) = =K (x)Do,s, (x)D1,s; (X) = =K (x)Ds, (x)-

Assume now «; = 8 = 2¢,,. In this case ,
<—%www+ﬂwwm”)
u—fﬂwmv%m>ex
(1= X V))(l +/Zx(8Y))
(1+/2x(8Y))

— 747 —

ds, (x) —x(26Y)

—x(28)

Do.e(x)D1,e(X) K (x)-




A. M. Mantero, A. Zappa

We note that Do s, (x) = Do,(x), because sz doesn’t change sign of any a.
Moreover

(1= X (B) (1 + /2™ (")

) L+ VEEY)

Dl,e(X) = Dl,s;s (X)

Hence
ds,(x) = =K (x)Do,e(x)D1,s,(x) = =K (x) D5, (X)-
0

As in the reduced case, we shall prove that this formula holds for all
weW.

LEMMA 8.27. — Let x be a character ofng(E); then, for everyw € W,

K(x") = (-1)™K(y).

Proof. — We proceed by induction on the length of w, as in Lemma
8.12, using Proposition 8.26. t

PROPOSITION 8.28. — Let x € ng(f). Then, for every w € W,

dw(x) = (=1)™ K (x) Dw (%) (8:33)
Proof. — The formula follows from Proposition 8.26 and Lemma 8.27.
O

The next step is to compute the constant K(x), recalling that

o 1wl
o A

We compute ngw(—l)lw‘Dw(X) as in the reduced case, changing things
in the appropriate way. More precisely, we renumerate the Ny positive roots
in Ry, and the N; positive roots in Ry,by setting Ry = {a1,...,an,} and
Rf ={B1,...,Bn,}. So we can write

No
D EDMDG ) = Y (DM (= xY (=6 TT (1= ¢ 'x™ ()
weEW wew i=1

Ny

I (- v ) (14 Beren).

J=1
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We need some preliminary results, to simplify the calculation of the
previous sum.

~

LEMMA 8.29. — Let x be a character of X9 (L). Consider, for 1 <r <
No andlgngl,

T

VvV o _ \2

Ho = E Qs V1 = E ﬁzm
j=1

If there exists w1 € W such that w1 (6" — py — 2vy") =6V, then
D DM g 2w = (MY (DM (=6Y);
weW wew

otherwise
S (=DM (=6 + py + 2y) = 0.
weW

Proof. — Let ug = >77_, &, for r < No. The argument used in Lemma
8.14 proves that ¥ — p € H(;v.

Let vy = an:l By, for k < Ni. Then
1
v v o_
R R TR o b 3
achi 2 p2py

and we can prove as above that §¥ — 21 € Ilsv. As in reduced case, there
exist choices of py, vy, such that wyi(6Y — pg — 2vy’) = 6. Otherwise, if
wi(6Y — py —2vy) # 8, then there exists ¢ = 1,...,n such that wy(6Y —
uy — 2vy') € HY. Therefore the required result holds. O

~

LEMMA 8.30. — Let x be a character of X3, (L). For every 1 <r < Ng
and 1 < h, k < Ny, consider

r k
v v v v
Hozzaij» Ml_Zlea vy :Zﬂzm
j=1 m=1
Assume that i; # iy, for every | and m. For every choice of ug,py and vy,

D (=DM (=6 + g + ) +207) = 0.
weWwW
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Proof. — We have proved in Lemma 8.29 that 6¥ — p and ¥ — 2vy/
belong to Ilsv. Since

1
v vo_ vy _ v v
d _M1—50+(51—M1)—§ E a’ + E B,
acR} BBi,

§Y — uY is a sum of positive roots and 6V — py < 8V; 80 0¥ — py € Ilsv and
6" — py € Qo.

More generally, if we assume that i; # 4,,, for every [ and m, we can
prove, combining previous results, that 6" — ug — puy — 2y belong to Ilsv.
This fact implies that there exists w; € W, such that wq (6" — py — py —
2vy) € Qp. Since, as in the reduced case, §V is the only element in Isv such
that IIsv € (Qp)°, then we have two possibilities: either wi(§Y — py — puy —
2v)) = 8V, or wy(8Y — py — py —21) belongs to the linear hyperplane H?,
for somei=1,...,n.

But wy (0¥ —pg —py —21v7") can not be equal to 6V, since §¥ —py —uy —2vy

does not contains the roots 3, ..., ;. such that uy = 2?21 ﬂl\j Therefore
it must belong to some linear hyperplane HY, i = 1,...,n. This proves the
required result. (|

The following lemma generalizes Lemma 8.15 given in the reduced case.
LEMMA 8.31. — The following formulas hold.

(i) LetYi,...,Ya, Zi,...,Zy be 2M variables and 113,(Y, Z) = H,Icvil(l—k
Yk+Zk); then

M k
Y, 2) =YY > Vi Yi Zi - Zi,

k=0 m=0 M

k,m

where, for every k 21 and 0 < m < k,

Iljc\?m:{(jlﬁ""jk)a j17"'ajke{17"'aM}a jl<<]ma
Jma1 < - < jk, such thatj; # jr if 1 <I<mandm+1<1U' <k},
while, for every k > 1,

Yo =T = {1, - j), whereji, ... i € {1,..., M}, j1 <+ < i},

and

7 Z; = 1.

m+1

o =0 with Y Y, ---Y;

im
M
Iy
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(i) Let X1,...,Xn,Y1,..., YN, Z1, ..., Zp be N + 2M variables and

N M
Iy, (X) 11 =[] +xn) J]Q+Y%+ 2Z);
h=1 k=1

then

N M k
Z Z Z Z ZX“-- in ]1...ijij+1,.,Z1,k.

(i1i) If a,b,c are non-zero constants, we set

=5

M
IT} (¢) 113 (1—cXp) JJC+ avi —bZy).
k=1

h=1
Then
Iy (c) M3, (a, b) =

N M &k
Z Z Z (—1) h+k bkl Z ZX“” Y Y 2

h=0 k=0 m=0 IN I}iwm

Proof. — The formula for I13,(Y,Z) can be proved by induction;
(ii) and (iil) are an immediate consequence of (i) and Lemma 8.15. O

For ease of notation we write [w| = h+k if w is a reduced word consisting
of h generators s, and k generators sg; . Define

Witk = {W eEW, ‘W| = h—‘rk‘}.

~

PROPOSITION 8.32. — Let x be a character of X)) (L). Then,

> (—1)™IDy (x Z 21: q" T_k|Wh+k|1 [Z( W (=6")

weW h=0 k=0 weW
(8.34)
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Proof. — By (8.29), for every w € W

No
Dy (x) = X" (=6 ™ (=o7) [[ (1 = a7 x™ ()
h=1
N;
1—pr '™
I (- v ) (1+/2me0)
Ny Ny
=xW<—6V>H<1—q1><W<ax>>kljl<1+7 () xwmw).

For ease of notation, we set N = Ny, M = N; and a = p;}i, b=rt

¢ = q 1. Moreover we set X; = xV(aY), forall h = 1,..., Ny, and
Yi = xV(BY), Zr = x¥(28)) = Y2, forall k = 1,...,N;. Then we can
write

N M
Dy(x) = x"(=6") [T(1 = eXn) [] (1 + aYi — b2Zy).
h= k=1

Therefore Lemma 8.31 implies that

k

DW(X) _ 6\/ ZZZ k m mbk m h
h=0 k=0 m=0

Z Z X'Ll ! Zh, e Yjwanmi»l e Zik

N M

N M k ™

= 23 Yy (p—f)

h=0 k=0 m=0 pr

SN XM=Y + g Y +20y),

Y,
if we set, according to notation of Lemma 8.30, uy = 0‘1\‘/1 + e+ ozivh,
p = By + -+ By, and vy = B/  + -+ ). By Lemma 8.30,

— -0’ + + +2vy") = 0 except when m = 0. Moreover,
Swew (DM (0" +pg +pf +207) = 0 except wh 0. M
by Lemma 8.29, if m = 0 then

S (DM 4y +2) = (<)Y (<) (=8Y),

weWw wew

if wi(8Y — py —20y) =6V, and 3w (—D)WIYW(=6Y + py +20y) = 0
otherwise. To conclude, we choose m = 0. Since the only choices that give
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a non-zero contribution in the previous sum arose from w; € Wy, then

No N
Z ()M Dy(x) = Z Z 1R g e TR W | (—1)
weEW h=0 k=0
> (=DM (=6)
weEW
No N,
<quhrk|wh+k|> S~y (=),
h=0 k=0 wEW
O
We calculate separately
No N
YD g Wiagl)  and Y (=1)M™(=4Y).
h=0 k=0 wEW
LEMMA 8.33. — We have
No Ni
SO a TR Wiak = W(g™). (8.35)

h=0 k=0

__ Proof. — Since W can be seen as the Weyl group of a building of type
B,,, with parameters ¢ and r, then formula (8.35) follows by definition of
Gw - O

~

LEMMA 8.34. — Let x be a character of X3, (L). Then

Y DM (=) = x(=6Y) J] @—x(@") T @ -x*5").

wew a€ERT BERY
(8.36)

Proof. — Since Ra U Ry is a root system of type B, and W can be seen
as the Weyl group associated to this root system, we can apply Lemma 8.18
to this root system and so we get

Ny Ny
DM (=8Y) = x(=6Y) [T —x(a)) TTO=x(0))
weEW h=1 k=1
No Ny
= x(=0") T =x(ei)) [T —x(28}))-
h=1 k=1
([
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PROPOSITION 8.35. — Let x be a character of ng(i). Then,

k=i I (=) 1L (=) 0

X
aERT BERY

Proof. — Lemma 8.33 and 8.34 imply that

> D™ DW() =W(g ) x(=6Y) J] t—x(@") I a—x@8).

weW a€RY BERY

Since K (x)~! =3 yew (1) Dy (x), then
HaeRg (1—x(av)) HﬂeRf (1 —x(28Y)) # 0 and (8.37) is proved. O

We are now able to exhibit, also in the non-reduced case, the explicit
expression of each coefficient dy, (x), for characters of X9 (L).

THEOREM 8.36. — Let x be a character of ng(f). Then, for every

weW,
_ 1 1—ga'x"(a")
w00 = gy 1 (e

+
eR}

0 ((1\/ﬁlxw( ) 1+ fxw(ﬁv))) (5.38)

L—x™(BY)
BeRS

Proof. — By Proposition 8.35,

de(x) = K()D(x) = K()x(—=0") [ (1 -a"x(@"))

azEFx’,(J)r

T (1- v ) (1+/2us)

BERT
B 1 1—qg *x(aY)
- W(g) al; ( 1—x(av) )

10 ((1 — VT X(8Y) (1+ ﬂwa)))_

L—x%(BY)

BERT

Since dw(x) = de(xV), for every w € W, then formula (8.38) is
proved. O
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Remark 8.37. — Since, for every w € W, the coefficient dy (), as well
as the function on the right side in (8.38), is defined on the space Xg(f) and
depends continuously on the character x with respect to the weak topology,
formula (8.38) can be extended to all characters of X (L) by a standard
argument of continuity, taking in account that ng(f,) is dense in ng(f)

and then in X, (E)

8.5. The main theorem

Formulas (8.20) and (8.38) can be expressed in a single formula, if we
fix a convenient notation. We set

T = (4o =04(, and Ta/2:1; \V’OZERo,
G~ r
T3 = qg=p, and Tgp=-—"+=—, VB E Ry,
B B ) B/ s p7
T’Y = q_’Y:i’ and 77/2:17 V’YGRQ
qa p

THEOREM 8.38. — Let A let an affine building, reduced or non-reduced.
Let x € Xy4(L). Then, for allw € W,

1—7, 7'/2/)(( Y)

1
W) = Wi II =173

(8.39)
oert 17— Taj2z X w(aY)

Proof. — If A is reduced, then R = Ry, and hence the formula is a direct
consequence of Theorem 8.20. Assume now that the building is non-reduced.
For every a € Ry, we have

1
1—q¢ 'x¥(aY) L—7y 1TQ2XW(O‘V)

l—xw(av) o _ 7% w 2
1 Ta?X (aV)

Moreover, for every 8 € Ry,
1—Exv(28Y)
1+ \[ v(BY) =
1— \/_ ¥ (BY)’
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L+ VE(BY) (1= ™(8Y) 11— mywapy) 1- S=x™(8Y)
1—xw(25v) L=x"(26Y) 1—/Exv(BY
1—2yw(yY) 1= —o=x"(8Y)
L—x™(vY) 1—/Ex%(BY)
L5tV (8Y) 17t A (7Y)
1= 750 X (8Y) 1= (vY)

Hence

0 ((1—\/_7’ xﬂvv)v((ﬂlv?fx/w))

BERT
1 -3 W _1
1 =757 "X (8Y) 1 =7t v (vY)

BeR} 1_7'% Xw(ﬁv) ~eRS 1_T%ZXW('YV)

ol
~

Therefore, by Theorem 8.35, we conclude that

p B 1 1—77tr /12/2Xw( v 1_TngéEXw(5v)
W(X) - W(q_l) H

—1/2 _1
a€Ry L= 7o X" (a¥) BERT l_ngXw(ﬂv)

_ 1 I 1—7t7, s x™(aY)
W) 2z, 1f7a/12/2xw( vy

since R = R1 U Ry U Ry. O

8.6. The formula of the spherical function associated with a non-
singular character

We can finally state the explicit formula for the spherical function ¢, ,  1/2()
associated with any non-singular character y, for every affine building A.

THEOREM 8.39. — Let x be a non-singular character on L. For every
A€ Lt and every x € Vy(e),

1/2
Prra(a) = o T Ao (8.40)
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where, for every w € W,

1
1— 70717'% 2V (—aY)

&0 =11 e (8.41)

a€ER*

Proof. — It x € X (L L), the statement follows from (6.16), (6.17)
and (8.39). Assume now that x is any non-singular character. We
notice that, for every A € LT and every z € Vj (e), the function
Wfl(q’l)xéﬂ()\) >wew X )XY (A) with coefficients ¢§,(x) given by
(8.41), as well as ¢, 1/2(7), is defined for all non-singular characters on
A and depends continuously on the character x, with respect to the weak
topology on the space X g (L). Since the space X (L ) is dense in XNS(L)
we can conclude that the formula (8.40) actually holds for every character
of XNS(E). O

8.7. The singular case

If we assume that X is a singular character, that is (V) = 1, for some
positive root o, we can calculate Px 1/2( ) as the limit of ¢, 1/2(z), as

X — X, through non-singular values of x. This limit can be computed as in
[5, Section (4.6)].
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