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A Spectral Theory for Tensors

Edinah K. Gnang(1), Ahmed Elgammal(2),
Vladimir Retakh(3)

ABSTRACT. — In this paper we propose a general spectral theory for ten-
sors. Our proposed factorization decomposes a tensor into a product of
orthogonal and scaling tensors. At the same time, our factorization yields
an expansion of a tensor as a summation of outer products of lower order
tensors. Our proposed factorization shows the relationship between the
eigen-objects and the generalised characteristic polynomials. Our frame-
work is based on a consistent multilinear algebra which explains how to
generalise the notion of matrix hermicity, matrix transpose, and most im-
portantly the notion of orthogonality. Our proposed factorization for a
tensor in terms of lower order tensors can be recursively applied so as to
naturally induces a spectral hierarchy for tensors.

RÉSUMÉ. — Nous proposons dans cet article une théorie générale de
l’analyse spectrale des tenseurs. L’approche que nous proposons se fonde
sur une factorisation des tenseurs à l’aide de tenseurs orthogonaux et de
tenseurs diagonaux. Cette décomposition a l’avantage de fournir pour un
tenseur donné une représentation comme somme de produits tensoriels
de tenseurs d’ordres inférieurs à celui du tenseur consideré. La factorisa-
tion spectrale que nous proposons est fondée sur l’algèbre multilinéaire
et exprime de façon explicite la relation entre les tenseurs propres et les
polynômes caractéristiques généralisés. Cette théorie permet en outre de
généraliser des notions d’algèbre linéaire telles que celle de matrices her-
mitiennes et en particulier celle de matrices orthogonales. Enfin la factori-
sation spectrale des tenseurs induit une analyse récursive qui détermine
une hiérarchie spectrale associée aux tenseurs.
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1. Introduction

In 1762 Joseph Louis Lagrange formulated what is now known as the
eigenvalue – eigenvector problem, which turns out to be of significant im-
portance in the understanding several phenomena in applied mathematics
as well as in optimization theory. The spectral theory for matrices is widely
used in many scientific and engineering domains.

In many scientific domains, data are presented in the form of tuples or
groups, which naturally give rise to tensors. Therefore, the generalization
of the eigenvalue-eigenvector problem for tensors is a fundamental ques-
tion with broad potential applications. Many researchers suggested differ-
ent forms of tensor decompositions to generalize the concepts of eigenvalue-
eigenvector and Singular Value Decomposition.

In this paper we propose a mathematical framework for high-order ten-
sors algebra based on a high-order product operator. This algebra allows us
to generalize familiar notions and operations from linear algebra including
dot product, matrix adjoints, hermicity, permutation matrices, and most
importantly the notion of orthogonality. Our principal result is to establish
a rigorous formulation of tensor spectral decomposition through the general
spectral theorem. We prove the spectral theorem for hermitian finite order
tensors with norm different from 1. Finally we point out that one of the fun-
damental consequence of the spectral theorem is the existence of a spectral
hierarchy which determines a given hermitian tensor of finite order.

There are certain properties that a general spectral theory is expected
to satisfy. The most fundamental property one should expect from a gen-
eral formulation of the spectral theorem for tensors is a factorization of a
cubic tensor into a certain number of cubic tensors of the same dimensions.
Our proposed factorization decomposes a Hermitian tensor into a product
of orthogonal and scaling tensors. Our proposed factorization also extends
to handle non-Hermitian tensors. Furthermore our proposed factorization
offers an expansion of a tensor as a summation of lower order tensors that
are obtained through outer products. Our proposed factorization makes
an explicit connection between the eigen-objects and the reduced set of
characteristic polynomials. The proposed framework describes the spectral
hierarchy associated with a tensor. Finally the framework aims to extend
linear algebraic problems found in many domains to higher degree algebraic
formulations of corresponding problems.

The organization of this paper is as follows; Section [2] reviews the state
of the art in tensor decomposition and its relation to the proposed formu-
lation. Section [3] introduces our proposed tensor algebra for order three
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tensors. Section [4] introduces and proves our proposed spectral theorem
for order three tensors. Section [5] discusses some important properties fol-
lowing from the proposed spectral decomposition. Section [6] proposes a
computational framework for describing the characteristic polynomials of a
tensor. Section [7] generalizes the introduced concepts to higher order ten-
sors and introduces the notion of the spectral hierarchy. Section [8] discusses
in details the relation between the proposed framework and some existing
tensor decomposition frameworks. Section [9] concludes the paper with a
discussion on the open directions.

2. State of the art in tensor decomposition

2.1. Generalizing Concepts from Linear Algebra

In this section we recall the commonly used notation by the multilinear
algebra community where a k-tensor denotes a multi-way array with k in-
dices [17]. Therefore, a vector is a 1-tensor and a matrix is a 2-tensor. A
3-tensor A of dimensions m × n × p denotes a rectangular cuboid array of
numbers. The array consists of m rows, n columns, and p depths with the
entry ai,j,k occupying the position where the ith row, the jth column, and
the kthdepth meet. For many purposes it will suffice to write

A = (ai,j,k) (1 � i � m; 1 � j � n; 1 � k � p) , (2.1)

we now introduce generalizations of complex conjugate and inner product
operators.
The order p conjugates of a scalar complex number z are defined by:

zcjp ≡
√
�2 (z) + �2 (z) exp

{
i× arctan

{� (z)

� (z)

}
× exp

{
i
2π j

p

}}
(2.2)

where � (z) and � (z) respectively refer to the imaginary and real part of
the complex number z, equivalently rewritten as

zcjp ≡ |z| exp

{
i× ∠z × exp

{
i
2π j

p

}}
, (2.3)

from which it follows that

|z|p =
∏

1�j�p
zcjp . (2.4)

The particular inner product operator that we introduce relates the inner
product of a p-tuple of vectors in Cl to a particular �p norm operator Cl in
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a way quite similar to the way the inner product of pairs of vectors relate
to the usual �2 vector norm. We refer to the norm operator ‖ ‖
p : Cl → R+

(for every integer p � 2) as the �p norm defined for an arbitrary vector
x ≡

(
x(1), · · · , x(l)

)
∈ Cl by

‖x‖
p ≡


 ∑

1�k�l

∏

1�j�p
(x(k))

cp−jp




1
p

, (2.5)

the inner product operator for a p-tuple of vectors in Cl denoted 〈 〉 :(
Cl

)p → C is defined by

〈vk〉0�k�p ≡
∑

1�j�l





∏

0�k�p−1

(vk(j))
cp−jp



 (2.6)

some of the usual properties of inner products follow from the definition

〈(x1 + y1) ; z2 ; · · · ; zl〉 = 〈x1 ; z2 ; · · · ; zl〉+ 〈y1 ; z2 ; · · · ; zl〉 (2.7)

and most importantly the fact that
〈
z ; z ; · · · ; z ; z︸ ︷︷ ︸

p operands

〉
� 0 (2.8)

and 〈
z ; z ; · · · ; z ; z︸ ︷︷ ︸

p operands

〉
= 0⇔ z = 0. (2.9)

We point out that the definitions of inner products is extended naturally to
tensors as illustrated bellow

〈A,B〉 ≡
∑

1�m,n�l

am,n × (bn,m)
c12 (2.10)

〈A,B,C〉 ≡
∑

1�m,n,p�l

am,n,p × (bp,m,n)
c23 × (cn,p,m)

c13 , (2.11)

More generally for arbitrarly finite order tensor the inner product for the

family of tensors
{
A(t) =

(
a
(t)
i1,i2,···,in

)}
1�t�n

is defined by:

〈
A(t)

〉
1�t�n

≡
∑

1�i1,i2,···,in�l

( ∏

0�t�n−1

(
a
(t)
i1+(t−1),···,in+(t−1)

)cp−tn

)
(2.12)

note that the addition in the indices are performed modulo n.
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Generalization of other concepts arising from linear algebra have been in-
vestigated quite extensively in the literature. Cayley in [1] instigated investi-
gations on hyperdeterminants as a generalization of determinants. Gelfand,
Kapranov and Zelevinsky followed up on Cayley’s work on the subject of hy-
perdeterminants by relating hyperdeterminants to X-discriminants in their
book [10].

A recent approach for generalizing the concept of eigenvalue and eigen-
vector has been proposed by Liqun Qi in [30, 28] and followed up on
by Lek-Heng Lim[26], Cartwright and Sturmfels [5]. The starting point
for their approach will be briefly summarized using the notation intro-
duced in the book [10]. Assuming a choice of a coordinate system xj =
(xj(0), xj(1), · · · , xj(kj)) associated with each one of the vector space Vj ≡
(R+)

kj+1
. We consider a multilinear function f :

⊗r
t=1 Vt → R+ expressed

by :

f (x1,x2, · · · ,xr−1,xr) =
∑

i1,···,ir
ai1,···,irx1(i1) · · ·xr(ir), (2.13)

equivalently the expression above can be rewritten as

f (x1,x2, · · · ,xr−1,xr) ≡ 〈x1,x2, · · · ,xr−1,xr〉A . (2.14)

which of course is a natural generalization of bilinear forms associated with
a matrix representation of a linear map for some choice of coordinate system

f (x1,x2) =
∑

i1,i2

ai1,i2 x1(i1)x2(i2) ≡ (x1)
T
A x1 ≡ 〈x1,x2〉A . (2.15)

It follows from the definition of the multilinear function f that the function
induces r not necessarily distinct multilinear projective maps denoted by
fk :

⊗r

t = 1
t 
= k

Vt → Vk expressed as :

fk (x1,x2, · · ·xk−1,xk+1, · · · ,xr)

=
∑

i1,···,ik−1,ik+1···,ir
ai1,···,irx1(i1)x2(i2) · · · xk−1(ik−1) xk+1(ik+1) · · · xr(ir)

(2.16)
The various formulations of eigenvalue eigenvector problems as proposed
and studied in [30, 28, 5, 26] arise from investigating solutions to equations
of the form:

fk (x, · · · ,x) = λ · x (2.17)
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Applying symmetry arguments to the tensor A greatly reduces the num-
ber of map fk induced by A. For instance if A is supersymmetric (that
is A is invariant under any permutation of it’s indices) then A induces
a single map. Furthermore, different constraints on the solution eigenvec-
tors xk distinguishes the E-eigenvectors from the H-eigenvectors and the
Z-eigenvectors as introduced and discussed in [30, 28].

Our treatment considerably differs from the approaches described above
in the fact that our aim is to find a decomposition for a given tensor A that
provides a natural generalization for the concepts of Hermitian and orthog-
onal matrices. Furthermore our approach is not limited to supersymmetric
tensors.

In connection with our investigations in the current work, we point out
another concepts from linear algebra for which the generalization to tensor
plays a significant role in complexity theory, that is the notion of matrix
rank. Indeed one may also find an extensive discussions on the topic of tensor
rank in [29, 13, 15, 31, 6]. The tensor rank problem is perhaps best described
by the following optimization problem. Given an r-tensor A = (ai1,···,ir ) we
seek to solve the following problem which attempts to find an approximation
of A as a linear combination of rank one tensors.

min(
⊗x(t)

k

)
1�t�r∈

(⊗
1�t�r Vt

)

∥∥∥∥∥

( ∑

1�k�l

(λk)
r

⊗

1�t�r
x

(t)
k

)
−A

∥∥∥∥∥ (2.18)

Our proposed tensor decomposition into lower order tensors relates to
the tensor rank problem but differs in the fact that the lower order tensors
arising from the spectral decomposition of 3-tensors, named eigen-matrices
are not necessarily rank 1 matrices.

2.2. Existing Tensor Decomposition Framework

Several approaches have been introduced for decomposing k-tensors for
k � 3 in a way inspired by matrix SVD. SVD decomposes a matrix A into
A = UΣVT and can be viewed as a decomposition of the matrix A into a
summation of rank-1 matrices that can be written as

A =

r∑

i=1

σi ⊗ (ui, vi) (2.19)

where r is the rank of A, ui, vi are the i-th columns of the orthogonal matri-
ces U and V, and σi’s are the diagonal elements of Σ, i.e., the singular values.
Here ⊗(·, ·) denotes the outer product. The Canonical and Parallel factor
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decomposition (CANECOMP-PARAFAC, also caller the CP model), inde-
pendently introduced by [4, 14], generalize the SVD by factorizing a tensor
into a linear combination of rank-1 tensors. That is given A ∈ Rn1×n2×n3 ,
the goal is to find matrices U ∈ Rn1×n1 , V ∈ Rn2×n2 and W ∈ Rn3×n3 such
that

A =

r∑

i=1

σi ⊗ (ui, vi, wi) (2.20)

where the expansion is in terms of the outer product of vectors ui, vi, wi

are the i-th columns of U, V, and W, which yields rank-1 tensors. The
rank of A is defined as the minimum r required for such an expansion. Here
there are no assumption about the orthogonality of the column vectors
of U, V, and W. The CP decomposition have been show to be useful in
several applications where such orthogonality is not required. There are no
known closed-form solution to determine the rank r, or to find a lower rank
approximation as given directly by matrix SVD.

Tucker decomposition, introduced in [34], generalizes over Eq 2.20, where
an (n1 × n2 × n3) tensor A is decomposed into rank-1 tensor expansion in
the form

A =

n1∑

i=1

n2∑

j=1

n3∑

k=1

σi,j,k ⊗ (ui, vj , wk) (2.21)

where ui ∈ Rn1 , vj ∈ Rn2 , and wk ∈ Rn3 . The coefficients σi,j,k form a tensor
that is called the core tensor C. It can be easily seen that if such core tensor
is diagonal, i.e., σi,j,k = 0 unless i = j = k, Tucker decomposition reduces
to the CP decomposition in Eq 2.20.

Orthogonality is not assumed in Tucker decomposition. Orthogonality
constraints can be added by requiring ui, vj , wk to be columns of orthogonal
matrices U,V, and W. Such decomposition was introduced in [21] and was
denoted by High Order Singular Value Decomposition (HOSVD). Tucker
decomposition can be written using the mode-n tensor-matrix multiplication
defined in [21] as

A = C×1 U×2 V×3 W (2.22)

where ×n is the mode-n tensor-matrix multiplication. Similar to Tucker
decomposition, the core tensor of HOSVD is a dense tensor. However, such
a core tensor satisfies an all-orthogonality property between its slices across
different dimensions as defined in [21].

The HOSVD of a tensor can be computed by flattening the tensor into
matrices across different dimensions and using SVD on each matrix. Trun-
cated version of the expansion yields a lower rank approximation of a tensor

– 807 –



Edinah K. Gnang, Ahmed Elgammal, Vladimir Retakh

[22]. Several approaches have been introduced for obtaining lower rank ap-
proximation by solving a least square problem, e.g. [39]. Recently an exten-
sion to Tucker decomposition with non-negativity constraint was introduced
with many successful applications [32].

All the above mentioned decompositions factorizes a high order tensor as
a summation of rank-1 tensors of the same dimension, which is inspired by
such an interpretation of matrix SVD as in Eq 2.19. However, none of these
decomposition approaches can describe a tensor as a product of tensors as
would be expected from an SVD generalization. The only known approach
to us for decomposing a tensor to a product of tensors was introduced in a
technical report [16]. This approach is based on the idea that a diagonal-
ization of a circulant matrix can be obtained by Discrete Fourier Transform
(DFT). Given a tensor, it is flattened then a block diagonal matrix is con-
structed by DFT of the circulant matrix formed from the flattened tensor.
Matrix SVD is then used on each of the diagonal blocks. The inverse pro-
cess is then used to put back the resulting decompositions into tensors. This
approach results in a decomposition in the form A = U �S �VT where the
product is defined as [16]

A � B = fold(circ(unfold(A, 1)).unfold(B, 1), 1)

However, such decomposition does not admit a representation of the de-
composition into an expansion in terms of rank-1 tensors. The product is
mainly defined by folding and unfolding the tensor into matrices.

From the above discussion we can highlight some fundamental limita-
tions of the known tensor decomposition frameworks. Existing tensor de-
composition frameworks are mainly expansions of a tensor as a linear com-
bination of rank-1 tensors, which are the outer products of vectors under
certain constraints (orthogonality, etc.) and do not provide a factorization
into product of tensors of the same dimensions. Tucker decomposition, al-
though a generalization of SVD, falls short of generalizing the notion of the
spectrum for high-order tensors. There is no connection between the singu-
lar values and the spectrum of the corresponding cubic Hermitian tensors.
Unfortunately, no such relation is proposed by the Tucker factorization. The
Tucker decomposition does not suggest at all how to generalize such objects
as the trace and the determinant of higher order tensors. In the appendix
of this paper we show that Tucker decomposition and HOSVD uses notion
of matrix orthogonality.

– 808 –



A Spectral Theory for Tensors

2.3. Applications of tensor decomposition

The most widely used formulation for tensor decomposition is the or-
thogonal version of Tucker decomposition (HOSVD) [21]. HOSVD is a mul-
tilinear rank revealing procedure [21, 22] and therefore, it has been widely
used recently in many domains for dimensionality reduction and to estimate
signal subspaces of tensorial data [18]. In computer vision, HOSVD has been
used in [37, 38] for analysis of face images with different sources of variabil-
ity, e.g. different people, illumination, head poses, expressions, etc. It has
been also used in texture analysis, compression, motion analysis [35, 36],
posture estimation, gait biometric analysis, facial expression analysis and
synthesis, e.g. [9, 24, 23, 25], and other useful applications [18]. HOSVD
decomposition gives a natural way for dealing with images as matrices [39].
The relation between HOSVD and independent component analysis ICA
was also demonstrated in [7] with applications in communication, image
processing, and others. Beyond vision and image processing, HOSVD has
also been used in data mining, web search, e.g. [20, 19, 33], and in DNA
microarray analysis [18].

3. 3-tensor algebra

We propose a formulation for a general spectral theory for tensors coined
with consistent definitions from multilinear algebra. At the core of the for-
mulation is our proposed spectral theory for tensors. In this section, the
theory focuses on 3-tensors algebra. We shall discuss in the subsequent sec-
tion the formulations of our theory for n-tensor where n is positive integer
greater or equal to 2.

3.1. Notation and Product definitions

A (m× n× p) 3-tensor A denotes a rectangular cuboid array of numbers
having m rows, n columns, and p depths. The entry ai,j,k occupies the
position where the ith row, the jth column, and the kth depth meet. For
many purposes it will suffice to write

A := (ai,j,k) (1 � i � m; 1 � j � n; 1 � k � p) , (3.1)

We use the notation introduced above for matrices and vectors since they
will be considered special cases of 3-tensors. Thereby, allowing us to indi-
cate matrices and vectors respectively as oriented slice and fiber tensors.
Therefore, (m× 1× 1), (1× n× 1), and (1× 1× p) tensors indicate vec-
tors that are respectively oriented vertically, horizontally and along the
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depth direction furthermore they will be respectively denoted by a�,1,1 :=
(ai,1,1){1�i�m}, a1,�,1 := (a1,j,1){1�j�n}, a1,1,� := (a1,1,k){1�k�p}. Simi-

larly (m× n× 1), (1× n× p), and (m× 1× p) tensors indicate that the
respective martrices of dimensions (m× n), (n× p) and (m× p) can be
respectively thought of as a vertical, horizontal, or depth slice denoted re-
spectively a�,�,1 := (ai,j,1){1�i�m, 1�j�n}, a�,1,� := (ai,1,k){1�i�m, 1�k�p}, and

a1,�,� := (a1,j,k){1�j�n, 1�k�p}.

There are other definitions quite analogous to their matrix (2-tensors)
counterparts such as the definition of addition, Kronecker binary product,
and product of a tensor with a scalar, we shall skip such definitions here.

Ternary product of tensors: At the center of our proposed formulation is
the definition of the ternary product operation for 3-tensors. This definition,
to the best of our knowledge has been first proposed by P. Bhattacharya in
[2] as a generalization of matrix multiplication. Let A = (ai,j,k) be a tensor
of dimensions (m× l × p), B = (bi,j,k) a tensor of dimensions (m× n× l),
and C = (ci,j,k) a tensor of dimensions (l × n× p); the ternary product of
A, B and C results in a tensor D = (di,j,k) of dimensions (m × n × p)
denoted

D = ◦ (A,B,C) (3.2)

and the product is expressed by :

di,j,k =
∑

1�t�l

ai,t,k · bi,j,t · ct,j,k (3.3)

Figure 1. — Tensor’s ternary Product.

The specified dimensions of the tensors A, B and C provide constraints
for triplet of 3-tensors that can be multiplied using the preceding product
definition. The dimensions constraints are best illustrated by Fig. [2]. There
are several ways to generalize matrix product. We chose the previous def-
inition because the entries of the resulting tensor D = ◦ (A,B,C) relate
to the general inner product operator as depicted by Fig.[1]. Therefore, the
tensor product in Eq 3.3 expresses the entries of D as inner products of the
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triplet of horizontal, depth, and vertical vectors of A, B and C respectively
as can be visualized in Fig. [1].

Figure 2. — Constraints on the dimensions of the tensors

implied by the ternary product definition.

We note that matrix product is a special instance of a tensor product
and we shall discuss subsequently products of n-tensor where n is positive
integer greater or equal to 2. Furthermore the proposed definition of the
tensor multiplication suggests a generalization of the binary vector outer
product operator to a ternary operator of slices. The ternary outer product is
defined such that given tensors A of dimensions (m×1×p), B of dimensions
(m× n× 1), and C of dimensions (1× n× p), their ternary outer product
D, noted D = ⊗(A,B,C), is an (m× n× p) tensor defined by :

di,j,k = ai,1,k · bi,j,1 · c1,j,k. (3.4)

Note that A, B, and C here are slices arising from oriented matrices. The
above definition generalizes the binary vector outer product operation to a
ternary matrix outer product operation defined by

D = ⊗ (a�,1,�, b�,�,1, c1,�,�) := di,j,k = ai,1,k · bi,j,1 · c1,j,k. (3.5)

Similarly to matrix multiplication, where the operation of multiplying ap-
propriate sized matrices can be viewed as a summation of outer product of
vectors, the product of appropriate sized triplet of tensors in Eq 3.3 can be
viewed as a summation of ternary outer product of slices

◦ (A,B,C) ≡
∑

1�t�l

⊗ (a�,t,�, b�,�,t, ct,�,�) . (3.6)

– 811 –



Edinah K. Gnang, Ahmed Elgammal, Vladimir Retakh

Ternary dot product with a background tensor: The ternary dot product
above can be further generalized by introducing the notion of a background
tensor as follows for a1,�,1 = (a1,i,1){1�i�l}, b1,1,� = (b1,1,j){1�j�l} and c�,1,1 =

(ck,1,1){1�k�l}

〈a1,�,1, b1,1,�, c�,1,1〉T :=
∑

1�i�l


 ∑

1�j�l

( ∑

1�k�l

a1,i,1 · bc13
1,1,j · c

c23
k,1,1 · ti,j,k

)


(3.7)
the preceding will be referred to as the triplet dot product operator with
background tensor T. Background tensors plays a role analogous to that
of the metric tensor. The triplet dot product with non trivial background
tensor corresponds to a pure trilinear form. Furthermore the outer product
of 2-tensors can be generalized using the notion of background tensors to
produce a 3-tensor D which result from a product of three 2-tensors namely
a�,�,1 = (am,i,1)m,i, b1,�,� = (b1,n,j)n,j and c�,1,� = (ck,1,p)k,p as follows,

dm,n,p =
∑

1�i�l


 ∑

1�j�l

( ∑

1�k�l

am,i,1 · b1,n,j · ck,1,p · ti,j,k
)

 . (3.8)

The preceding product expression is the one most commonly used as a basis
for tensor algebra in the literature as discussed in [6, 34, 7, 19].

We may note that the original definition of the dot product for a triplets
of vectors corresponds to a setting where the background tensor is the Kro-
necker delta ∆ = (δi,j,k) that is T = ∆ where ∆ denotes hereafter the
Kronecker tensor and can be expressed in terms of the Kronecker 2-tensors
as follows

δi,j,k = δi,j · δj,k · δk,i (3.9)

equivalently ∆ = (δi,j,k) can be expressed in terms of the canonical basis
{ei : 1 � i � l} in l-dimensional euclidean space described by:

∆ =
∑

1�k�l

(ek ⊗ ek ⊗ ek) , (3.10)

hence

〈w, x, y〉 ≡ 〈w, x, y〉∆. (3.11)
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Figure 3. — Kronecker (2× 2× 2) tensor.

3.1.1. Special Tensors and Special Operations

In general it follows from the algebra described in the previous section
for 3-tensors that:

◦ (◦ (A,B,C) ,D,E) 
= ◦ (A, ◦ (B,C,D) ,E) 
= ◦ (A,B, ◦ (C,D,E))
(3.12)

In some sense the preceding illustrates the fact that the product operator
is non associative over the set of tensors. However tensor product is weakly
distributive over tensor addition that is to say

◦ ([A + B] , C, D)) = ◦ (A,C,D) + ◦ (B,C,D) , (3.13)

however in general

◦ (A, ◦ (B,C,D) ,E) + ◦ (A, ◦ (F,G,H) ,E)


= ◦ (A, (◦ (B,C,D) + ◦ (F,G,H)) ,E) . (3.14)

Transpose of a tensor: Given a tensor A = (au,v,w) we define it’s trans-

pose AT and it’s double transpose AT 2

as follows:

AT = (av,w,u) (3.15)

AT 2 ≡
(
AT

)T
= (aw,u,v) . (3.16)

It immediately follows from the definition of the transpose that for any

tensor A, AT 3

= A. Incidentally the transpose operator corresponds to
a cyclic permutation of the indices of the entries of A. Therefore we can

defined a inverse transpose AT−1

= AT 2

, generally we have

AT q =
(
AT q−1

)T
, (3.17)

furthermore, a tensor A is said to be symmetrical if :

A = AT = AT 2

. (3.18)
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As a result for a given arbitrary 3-tensor A, the products B = ◦
(
A,AT 2

,AT
)
,

C = ◦
(
AT ,A,AT 2

)
and D = ◦

(
AT 2

,AT ,A
)

all result in symmetric ten-

sors. It also follows from the definitions of the transpose operation and the
definition of ternary product operation that:

[◦ (A,B,C)]
T

= ◦
(
BT ,CT ,AT

)
(3.19)

and

[◦ (A,B,C)]
T 2

=
[
◦

(
BT ,CT ,AT

)]T
= ◦

(
CT 2

,AT 2

,BT 2
)
. (3.20)

Adjoint operator: For A ∈ Cm×n×p we introduce the analog of the ad-
joint operator for 3-tensors in two steps. The first step consists in writing
all the entries of A in their complex polar form.

A = (au,v,w = ru,v,w · exp {i · θu,v,w}) (1 � u � m; 1 � v � n; 1 � w � p) .
(3.21)

The final step expresses the adjoint of the tensor A noted A† as follows





A† ≡
(
Ac13

)T
:=

(
rv,w,u · exp

{
i exp

{
i 2π

3

}
· θv,w,u

})

A†
2 ≡

(
Ac23

)T 2

:=
(
rw,u,v · exp

{
i exp

{
i 4π

3

}
· θw,u,v

})
.

A†
3 ≡

(
Ac33

)T 3

:= (au,v,w = ru,v,w · exp {i · θu,v,w})

(3.22)

The adjoint operator introduced here allows us to generalize the notion of
Hermitian matrices or self adjoint matrices to tensors. A tensor is Hermitian
if the following identity holds

A† = A. (3.23)

Incidentally the products ◦
(
A,A†

2

,A†
)
, ◦

(
A†,A,A†

2
)

and ◦
(
A†

2

,A†,A
)

result in self adjoint tensors or Hermitian tensors.

Identity Tensor: Let 1(m×n×p) denotes the tensor having all it’s entries
equal to one and of dimensions (m × n × p). Recalling that ∆ = (δi,j,k)
denotes the Kronecker 3-tensor, we define the identity tensors I to be :

I = ◦
(
1(l×l×l),1(l×l×l),∆

)
= ◦

(
1(l×l×l),1(l×l×l),

( ∑

1�k�l

ek ⊗ ek ⊗ ek

))

(3.24)
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I ≡
(
im,n,p =

( ∑

1�k�l

δk,n,p

)
= δn,p

)
(3.25)

Furthermore we have :

IT = ◦
(
1(l×l×l),∆,1(l×l×l)

)
= ◦

(
1(l×l×l),

( ∑

1�k�l

ek ⊗ ek ⊗ ek

)
,1(l×l×l)

)

(3.26)

IT ≡
((

IT
)
m,n,p

=

( ∑

1�k�l

δm,n,k

)
= δm,n

)
(3.27)

IT
2

= ◦
(
∆,1(l×l×l),1(l×l×l)

)
= ◦

(( ∑

1�k�l

ek ⊗ ek ⊗ ek

)
,1(l×l×l),1(l×l×l)

)

(3.28)

IT
2 ≡

((
IT

2
)
m,n,p

=

( ∑

1�k�l

δm,k,p

)
= δm,p

)
(3.29)

for all positive integer l � 2 . The identity tensor plays a role quite analogous
to the role of the identity matrix since ∀A ∈ Cl×l×l we have

◦
(
I,A, IT

2
)

= A. (3.30)

Proposition 1. — ∀A ◦
(
X,A,XT 2

)
= A and X= (xm,n,p � 0)⇔

X = I.

We prove the preceding assertion in two steps, the first step consists of
showing that the I is indeed a solution to the equation

∀A ◦
(
X,A,XT 2

)
= A (3.31)

Let R be the result of the product

R = (rm,n,p) = ◦
(
I,A, IT

2
)

(3.32)

rm,n,p =

( ∑

1�k�l

im,k,p · am,n,k ·
(
IT

2
)
k,n,p

)
=

( ∑

1�k�l

δk,p · am,n,k · δk,p
)

(3.33)

rm,n,p =

( ∑

1�k�l

(δk,p)
2 · am,n,k

)
(3.34)
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we note that

rm,n,k =
{
am,n,k if k = p
0 otherwise

(3.35)

hence

A = ◦
(
I,A, IT

2
)
. (3.36)

The last step consists in proving by contradiction that I is the unique solu-
tion with positive entries to the equation

∀A ◦
(
X,A,XT 2

)
= A (3.37)

Suppose there were some other solution J with positive entry to the above
equation, this would imply that

◦
(
I,A, IT

2
)
− ◦

(
J,A,JT

2
)

= 0 (3.38)

⇒
( ∑

1�k�l

im,k,p · am,n,k ·
(
IT

2
)
k,n,p

)
−

( ∑

1�k�l

jm,k,p · am,n,k ·
(
JT

2
)
k,n,p

)

(3.39)

0 =
∑

1�k�l

am,n,k ·
[(

im,k,p ·
(
IT

2
)
k,n,p

)
−

(
jm,k,p ·

(
JT

2
)
k,n,p

)]
(3.40)

Since this expression must be true for any choice of the values of am,n,k we
deduce that it must be the case that

(δk,p)
2 −

(
jm,k,p ·

(
JT

2
)
k,n,p

)
= 0 (3.41)

⇒
(
jm,k,p ·

(
JT

2
)
k,n,p

)
= δk,p (3.42)

jm,k,p = ±δk,p (3.43)

the requirement that

jm,k,p � 0⇒ jm,k,p = δk,p (3.44)

which results in the sought after contradiction. �
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Figure 4. — Tensor I,IT and IT
2

.

Inverse: By analogy to matrix inverse A−1 we recall that for a matrix
A, A−1 is its inverse if (MA)A−1 = M, for any non zero matrix M.
We introduce here the notion of inverse pairs for tensors. The ordered pair
(A1,A2) and (B1,B2) are related by inverse relationship if for any non zero
3-tensor M with appropriated dimensions the following identity holds

M = ◦ (B1 ◦ (A1,M,A2) ,B2) . (3.45)

Permutation tensors: Incidentally one may also discuss the notion of
permutation tensors associated with any element σ of the permutation group
Sn.

∀ σ ∈ Sn Pσ ≡ ◦
(

1(n×n×n),1(n×n×n),

( ∑

1�k�l

ek ⊗ ek ⊗ eσ(k)

))
(3.46)

=
∑

1�k�l

◦
(
1(n×n×n),1(n×n×n),

(
ek ⊗ ek ⊗ eσ(k)

))
(3.47)

The 3-tensor Pσ perform the permutation σ on the depth slices of a 3-

tensor A through the product ◦
(
Pσ, A, PT 2

σ

)
, consequently the products

◦
(
PT
σ , P

T 2

σ ,A
)

and ◦
(
A ,Pσ, P

T
σ

)
perform the same permutation respec-

tively on the row slices and the column slices of A.

Proposition 2. — Any permutation of the depth slices of A can be
obtained by finite sequence of product of transposition, and the sequence is
of the form

◦
(
Pσn, · · · , ◦

(
Pσk, · · · , ◦

(
Pσ1,A, (Pσ1)

T 2
)
· · · , (Pσk)

T 2
)
, · · · , (Pσn)

T 2
)
.

(3.48)
The preceding is easily verified using the definition above and the permuta-
tion decomposition theorem [8]. Furthermore permutation tensors suggest a
generalization of bi-stochastic matrices to bi-stochastic tensors through the
Birkhoff-Von Neumann bi-stochastic matrix theorem.
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3.1.2. Orthogonality and scaling tensors

From linear algebra we know that permutation matrices belong to both
the set of bi-stochastic matrices and to the set of orthogonal matrices. We
described above a approach for defining bi-stochastic 3-tensors, we shall
address in this section the notion of orthogonality for 3-tensors. We recall
from linear algebra that a matrix Q is said to be orthogonal if

Q† ·Q = Q ·Q† = ∆. (3.49)

When we consider the corresponding equation for 3-tensors two distinct
interpretations arise. The first interpretation related to orthonormal basis
induced by the row or column vectors of the orthogonal matrix Q that is :

〈
q�,m, q�,n

〉
≡ 〈qm, qn〉 =

( ∑

1�k�l

qk,m · qc12
k,n

)
= δm,n (3.50)

The corresponding equation for a 3-tensor Q = (qm,n,p) of dimensions
(l × l × l) is given by:

∆ = ◦
(
Q,Q†

2

,Q†
)

(3.51)

or explicitly we can write:

〈
qm,�,p, qn,�,m, qp,�,n

〉
=

( ∑

1�k�l

qm,k,p · qc23
n,k,m · q

c13
p,k,n

)
= δm,n,p. (3.52)

The second interpretation arises from the Kronecker invariance equation
expressed by:

∆ = Q†∆Q =
(
Q†∆Q

)†
. (3.53)

The corresponding Kronecker invariance equation for 3-tensor is given by :

∆ = ◦
(
◦

(
Q, ◦

(
Q†,Q†

2

,∆
)
,Q†

2
)
,Q,Q†

)

=
[
◦

(
◦

(
Q, ◦

(
Q†,Q†

2

,∆
)
,Q†

2
)
,Q,Q†

)]†

=
[
◦

(
◦

(
Q, ◦

(
Q†,Q†

2

,∆
)
,Q†

2
)
,Q,Q†

)]†2
. (3.54)

While Kronecker invariance properly expresses a generalization of the con-
jugation operation and the 3-uniform hypergraph isomorphism equation it
does not follow from the first interpretation of orthogonality, that is to say

∆ = ◦
(
Q,Q†

2

,Q†
)
� ◦

(
◦

(
Q, ◦

(
Q†,Q†

2

,∆
)
,Q†

2
)
,Q,Q†

)
= ∆.

(3.55)
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We now discuss Scaling tensors. The scaling tensor play a role analogous
to diagonal matrices in the fact that tensor multiplication with scalling
tensor results in a tensor whose vectors are scalled. First we observe that
the identity pairs of tensors should corespond to special scaling tensors.
The general family of diagonal tensors are expressed by pairs of tensors
B = (bm,n,p) , C = (cm,n,p) such that

B ≡ (bm,n,p = δn,p · wp,m) (3.56)

C ≡ (cm,n,p = δm,n · wm,p) (3.57)

The product D = ◦ (A,B,C) yields

dm,n,p =
∑

1�k�l

am,k,p · (δn,k · wm,k) · (δk,n · wk,p) (3.58)

⇒ dm,n,p = wm,n · am,n,p · wn,p (3.59)

The expression above illustrates the fact that wm,n and wn,p scale the entry
am,n,p of the tensor A, or equivalently one may view the expression above
as describing the non-uniform scaling of the following vector (am,n,p)1�n�l.
The vector scaling transform is expressed by

(am,n,p)1�n�l → (wm,n · am,n,p · wn,p)1�n�l (3.60)

Furthermore the scaling factors for a given vector may be viewed as coming
from the same vector of the scaling matrix W = (wm,n) if the matrix W is
symmetric. Finally we may emphasize the analogy with diagonal matrices,
which satisfy the following equation independently of the value assigned to
their non zero entries. For a given D, we solve for C such that

(D ·C)m,n = d2
m,n. (3.61)

We recall from matrix algebra that:

C = D (3.62)

and furthermore
D = (dm,n = δm,n · wn) (3.63)

(
D ·DT

)
m,n

=

{
d2
m,n if m = n

0 otherwise
(3.64)

By analogy we may define scaling tensors to be tensors satisfying the fol-
lowing equation independently of the value of the nonzero tensors.

(am,n,p)
3

=
∑

1�k�l

am,k,p · bm,n,k · ck,n,p (3.65)
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a possible solution is given by

am,n,p = δm,p · wp,n (3.66)

bm,n,p = δn,p · wm,p (3.67)

cm,n,p = δm,n · wp,m (3.68)

This is easily verified by computing the product

D = ◦ (A,B,C) ≡ dm,n,p =
∑

1�k�l

(δm,p · wp,k) · (δn,k · wm,k) · (δk,n · wp,k)

(3.69)
⇒ dm,n,p = (δm,p · wp,n) · (δn,n · wm,n) · (δn,n · wp,n) (3.70)

⇒ dm,n,p = (δm,p · wp,n) · wm,n · wp,n (3.71)

dm,n,p =

{
w3
m,n if m = p

0 otherwise
(3.72)

Fig [4] provides an example of diagonal tensors. It so happens that A, B,
C discussed above are related by transpose relation for third order tensors.
This fact considerably simplifies the formulation of the to diagonality prop-
erty common to both matrices and 3-tensors. By analogy to matrices we
say for 3-tensors that a tensor D = (dm,n,p) is diagonal if independently of
the value of the non zero entries of D we have :

◦
(
DT , DT 2

, D
)
m,n,p

= d3
m,n,p.

Proposition 3. — if a 3-tensor D can be expressed in terms of a sym-
metric matrix W = (wm,n = wn,m) in the form D = (dm,n,p = wm,n · δn,p)
then D is diagonal.
The proof of the proposition follows from the fact that :

(
DT

)
m,n,p

= (wp,n · δn,m) (3.73)

(
DT 2

)
m,n,p

= (wn,p · δp,m) (3.74)

from which it follows that

◦
(
DT , DT 2

, D
)
m,n,p

= (wm,n)
3 · δn,p (3.75)
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4. Spectral Analysis of 3-tensors

Observations from the Eigen-Value/Vector equations. We briefly
review well established properties of matrices and their spectral decompo-
sition, in order to emphasize how these properties carry over to spectral
decomposition of tensors. From the definition of eigen-value/vector equa-
tion, we know that for a square hermitian matrix A, there must exist pairs
of matrices Q, R and pairs of diagonal matrices D, E such that

{
A = (DQ)

†
(ER)

I = QR
(4.1)

where the columns of Q† corresponds to the left eigenvectors of A, the
rows of R corresponds to the right eigenvectors of A and the entries of the

diagonal matrix
(
D†E

)
correspond to eigenvalues of A.

am,n =
∑

1�k�l

(µk qk,m)
c1
2 (νk rk,n) . (4.2)

Let fm,n(k) = q
c2
3

k,m · rk,n, i.e., the entries of the matrix resulting from the
outer product of the k-th left eigenvector with the k-th right eigenvector,
incidentally the spectral decomposition yields the following expansion which
is crucial to the principal component analysis scheme.

am,n =
∑

1�k�l

(
µ
c1
2

k · νk
)

fm,n(k) (4.3)

The preceding amounts to assert that the spectral decomposition offers for
every entry of the 2-tensor A a positional encoding in a basis formed by
the eigenvalues of the matrix. Assuming that the eigenvalues are sorted in
decreasing order, the preceding expression suggest an approximation scheme
for the entries of A and, therefore, an approximation scheme for the 2-tensor
A itself.

Definition. — The spectrum of an n-tensor corresponds to the collec-
tion of lower order tensors the entry of which are solutions to the charac-
teristic system of equations.

Spectrum of Hermitian tensors. The aim of this section is to rigorously
characterize the spectrum of a symmetric tensor of dimensions (l × l × l).
Fig. [5] depicts the product and the slice that will subsequently also be
referred to as eigen-matrices.
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Figure 5. — Orthogonal slices of an orthogonal tensor.

We may state the spectral theorem as follows

Theorem 1 (Spectral Theorem for 3-Tensors). — For an arbitrary

hermitian non zero 3-tensor A with ‖A‖3
3 
= 1 there exist a factorization of
the form:





A = ◦
(
◦

(
Q,D,DT

)
,
[
◦

(
R,E,ET

)]†2
,
[
◦

(
S,F,FT

)]†)

∆ = ◦
(
Q, R†

2

, S†
) (4.4)

where D, E, F denote scaling tensors. For convenience we introduce the
following notation for scaled tensors





Q̃ = ◦
(
Q,D,DT

)

R̃ = ◦
(
R,E,ET

)

S̃ = ◦
(
S,F,FT

)
(4.5)

and simply expresses the tensor decomposition of A as:

A = ◦
(
Q̃, R̃

†2
, S̃
†
)

(4.6)

4.1. Proof of the Spectral Theorem

In what follows the polynomial ideal generated by the set of polynomials
{fk}1�k�N is noted 〉fk〈1�k�N . We first emphasize the similarity between
the spectral theorem for tensors and matrices, by providing an alternative
proof of a weaker form of the spectral theorem for hermitian matrices with
Forbenius norm different from 1. Finally we extend the proof technic to
3-tensors and subsequently to n-tensors.
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Proof of the weak form of the spectral theorem for matrices. Our
aim is to prove that the spectral decomposition exists for an arbitrary ma-
trix A with forbenius norm different 1. For this we consider the ideals in-
duced by the characteristic system of equations for matrices. The spectral
decomposition of A refers to the decomposition:

{
A = (DQ)

†
(ER)

I = QR
, (4.7)

the spectral decomposition equation above provides us with polynomial sys-
tem of equations in the form

{
am,n =

∑
1�k�l (µk qk,m)

c1
2 (νk rk,n)

δm,n =
∑

1�k�l q
c1
2

k,m · rk,n
1 � m � n � l (4.8)

conveniently rewritten as
{
〈D · qm,E · rn〉 = am,n

〈qm, rn〉 = δm,n
1 � m � n � l . (4.9)

The ideal being considered is :

I = 〉 〈D · qm,E · rn〉 − am,n, 〈qm, rn〉
−δm,n 〈1�m�n�l ⊆ C

[
{µk, νk ; qk, rk}1�k�l

]
. (4.10)

where the variables are the entries of the pairs of matrices Q, R and

D = (dm,n = δm,n · µm)
E = (em,n = δm,n · νm)

Weak Spectral Theorem (for 2-tensors). For an arbitrary non zero her-
mitian 2-tensor A with ‖A‖
2 
= 1 the spectral system of polynomial equa-
tions : {

〈D · qm,E · rn〉 = am,n

〈qm, rn〉 = δm,n
1 � m � n � l (4.11)

admits a solution.

Proof . — We prove this theorem by exhibiting a polynomial
p (D,E, q1, r1, · · · , ql, rl) which does not belong to the following ideal

I = 〉 〈D · qm,E · rn〉 − am,n; 〈qm, rn〉 − δm,n 〈1�m,n�l .

Consider the polynomial

p (D,E, q1, r1, · · · , ql, rl) :=


 ∑

1�m,n�l

|〈D · qm,E · rn〉|2



2

− ‖A‖2
2 .

(4.12)
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We claim that
p (D,E, q1, r1, · · · , ql, rl) /∈ I (4.13)

since
p (D,E, q1, r1, · · · , ql, rl) ∈ I ⇒ ‖A‖2

2


2
= ‖A‖2
2 (4.14)

which contradicts to the assumption that ‖A‖2
2 
= 1. Hence we conclude
that

‖A‖2
2 
= 1⇒ p (D,E, q1, r1, · · · , ql, rl) /∈ I (4.15)

which completes the proof. �

In the proof above hermicity played a crucial role in that it ensures that
the eigenvalues are not all zeros since for non zero hermitian 2-tensor A

‖A‖2
2 = Tr {A ·A} > 0 (4.16)

Proof of the Spectral Theorem for 3-tensors. We procede to derive the
existence of spectral decomposition for 3-tensors using the proof thechnic
discussed above




A = ◦
(
◦

(
Q,D,DT

)
,
[
◦

(
R,E,ET

)]†2
,
[
◦

(
S,F,FT

)]†)

∆ = ◦
(
Q, R†

2

, S†
) (4.17)

equivalently written as




am,n,p =

l∑

k=1

(µm,k ·qm,k,p ·µk,p)·(νn,k · rn,k,m ·νk,m)
c2
3 ·(ξp,k ·sp,k,n · ξk,n)

c1
3

δm,n,p =

l∑

k=1

qm,k,p · rc
2
3

n,k,m · s
c1
3

p,k,n

(4.18)
The variables in the polynomial system of equations are the entries of the
3-tensor Q, R, S and the entries of the scaling tensors D, E, F.

It is somewhat insightfull to express the system of equations in a similar
form to that of matrix spectral system of equations using inner product
moperators :

{ 〈
Dm,p · qm,�,p, En,m · rn,�,m, Fp,n · sp,�,n

〉
= am,n,p〈

qm,�,p, rn,�,m, sp,�,n
〉

= δm,n,p
(4.19)

where Du,v is a diagonal matrix whose entries are specified by




Du,v =
(
du,vi,j = δi,jµu,iµj,v

)

Eu,v =
(
eu,vi,j = δi,jνu,iνj,v

)

Fu,v =
(
fu,vi,j = δi,jξu,iξj,v

) (4.20)
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The characteristic system of equations yields the ideal I defined by

I =
〉 〈

Dm,p · qm,�,p, En,m · rn,�,m, Fp,n · sp,�,n
〉

−am,n,p,
〈
qm,�,p, rn,�,m, sp,�,n

〉
− δm,n,p

〈
1�m,n,p�l (4.21)

where 1 � m,n, p � l. which corresponds to a subset of the polynomial ring
over the indicated set of variables. The following theorem is equivalent to
theorem 1.

Theorem(for 3-tensors). — If A is a non zero hermitian and ‖A‖3
3 
= 1
then the spectral system of equations expressed as

{ 〈
Dm,p · qm,�,p, En,m · rn,�,m, Fp,n · sp,�,n

〉
= am,n,p〈

qm,�,p, rn,�,m, sp,�,n
〉

= δm,n,p
(4.22)

admits a solution.

Proof . — Similarly to the 2-tensor case, we exhibit a polynomial p which
does not belong to the Ideal I defined bellow.

I =
〉 〈

Dm,p · qm,�,p, En,m · rn,�,m, Fp,n · sp,�,n
〉

−am,n,p,
〈
qm,�,p, rn,�,m, sp,�,n

〉
− δm,n,p

〈
1�m�n�p�l . (4.23)

Such a polynomial p is expressed by

p =


 ∑

1�i,j,k�l

∣∣〈Dm,p · qm,�,p, En,m · rn,�,m, Fp,n · sp,�,n
〉∣∣3




3

− ‖A‖3
3

p /∈ I (4.24)

since

p ∈ I ⇒ ‖A‖3
2


3
= ‖A‖3
3 (4.25)

which contradicts our assumption that ‖A‖3
3 
= 1, this completes the proof.
�

Hermiticity also ensure that the solution to the spectral decomposition
is not the trivial all zero solution since for non zero 3-tensor A

‖A‖3
3 =


 ∑

1�k�l

{◦ (A,A,A)}k,k,k +
∑

1�i<j<k�l

ai,j,k · ac2
3

k,i,j · a
c1
3

j,k,i


 > 0

(4.26)
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5. Properties following from the spectral decomposition

Similarly to the formulation for the spectral theorem for matrices, we can
also discuss the notion of eigen-objects for tensors. In order to point out the
analogy let us consider the matrix decomposition equations in Eq 4.1 and Eq
4.2, one is therefore led to consider the matrices Q̃ ≡

(
q̃m,n =

√
λm qn,m

)
as

the scaled matrix of eigenvectors. According to our proposed decomposition,
the corresponding equations for 3-tensors is given by

am,n,p =
∑

1�k�l

(µm,k · qm,k,p · µk,p) (νn,k · rn,k,m · νk,m)
c2
3(ξp,k · sp,k,n · ξk,n)

c1
3 ,

(5.1)

recall that the tensor Q̃ := (q̃m,k,p = ωm,k · ωk,p · qm,k,p) collects as slices
what we refer to as the scaled eigen-matrices. The analogy with eigenvectors
is based on the following outerproduct expansion.

A =
∑

1�k�l

((
µk qk,�

)c1
2 ⊗ (νk rk,�)

)
. (5.2)

The equation emphasizes the fact that a hermitian matrices can be viewed
as a sum of exterior products of scaled eigenvectors and the scaling factor as-
sociated to the rank one matrix resulting from the outerproduct corresponds
to the eigenvalue. Similarly, a symmetric 3-tensor may also be viewed as a
sum outer products of slices or matrices and therefore we refer to the cor-
responding slices as scaled eigen-matrices. The outerproduct sum follows
from the identity

A = ◦
(
Q̃, R̃

†2
, S̃
†
)

(5.3)

expressed as :

A =

l∑

k=1

⊗ (q̃�,k,�, r̃�,�,k, s̃k,�,�) , (5.4)

which can be equivalently written as

am,n,p =

∑

1�k�l

(
(µm,k · µk,p) (νn,k · νk,m)

c2
3 (ξp,k · ξk,n)

c1
3

)
fm,n,p(k) (5.5)

where fm,n,p(k) denote the k-th component expressed

fm,n,p(k) := qm,k,p (rn,k,m)
c2
3 (sp,k,n)

c1
3 . (5.6)

We may summarize by simply saying that: as one had eigenvalues and eigen-
vectors for matrices one has eigenvectors and eigen-matrices for 3-tensors.
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6. Computational Framework

We shall first provide an algorithmic description of the characteristic
polynomial of matrix without assuming the definition of the determinant of
matrices and furthermore show how the description allows us to define char-
acteristic polynomials for tensors. We recall for a matrix that the character-
istic system of equations is determined by the algebraic system of equations

A = QT ·D ·R⇔
{ 〈

D
1
2 · qm,D

1
2 · rn

〉
= am,n

〈qm, rn〉 = δm,n

1 � m � n � l (6.1)

as discussed above induces the following polynomial ideal

I =
〉 〈

D
1
2 · qm,D

1
2 · rn

〉
− am,n, 〈qm, qn〉

−δm,n 〈1�m�n�l ⊆ C
[
{λk, qk, rk}1�k�l

]
. (6.2)

Let G be the reduced Gröbner basis of I using the ordering on the monomials
induced by the following lexicographic ordering of the variables.

Q > R > λ1 > · · · > λl (6.3)

In the case of matrices it has been established that there is a polynomial
relationship between the eigenvalues; more specifically the eigenvalues are
roots to the algebraic equation

p(λ) = det (A− λ · I) (6.4)

By the elimination theorem [27] we may computationaly derive the charac-
teristic polynomials as follows

I ∩ C [λl] = det (A− λlI) (6.5)

It therefore follows from this observation that the reduced Gröbner basis of
I determines the characteristic polynomial of A.

Definition. — Let G denote the reduced Gröbner basis of the ideal I
using the the lexicographic order on the monimials induced by the following
lexicographic order of the variables.

Q > R > S > D > E > F

where
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I =
〉 〈

Dm,p · qm,�,p, En,m · rn,�,m, Fn,m · sp,�,n
〉

−am,n,p,
〈
qm,�,p, rn,�,m, sp,�,n

〉
− δm,n,p

〈
1�m�n�p�l

The reduced characteristic set of polynomials C associated with the hermitian
3-tensor A is a subset of the reduced Groebner basis G such that

C := G ∩ C [D,E,F] (6.6)

where C [D,E,F] denotes the polynomial ring in the entries of the sacaling
tensor with complex coefficients. The reduced should here be thougth of as
generalization of the characteristic polynomial associated with matrices.

7. The General Framework

7.1. n-tensor Algebra

An (m1 ×m2 × · · · ×mn−1 ×mn) n-tensor A is a set of elements of a
field indexed by the set resulting from the Cartesian product

{1, 2,· · ·, (m1 − 1),m1}×{1, 2,· · ·, (m2 − 1),m2}×· · ·×{1, 2,· · ·, (mn − 1),mn}

The dimensions of A is specified by (m1 ×m2 × · · · ×mn−1 ×mn) where
∀ 1 � k � n , mk ∈ N� specifies the dimensions of the tensor. We may also
introduce a dimension operator defined by

d(A, k) =

{
mk if 1 � k � n
0 else

(7.1)

Finally, we shall simply use the notation convention A = (ai1,i2,···,in) for
describing A once the dimensions have been specified.

In what follows we will discuss general tensor products for n-tensors
where n is a positive integer greater or equal to 2. Let us start by recalling
the definition of matrix multiplication

bi1,i2 =
∑

j

a
(1)
i1,j
· a(2)

j,i2
, (7.2)

the preceding matrix product generalizes to the proposed 3-tensor product
as follows

bi1,i2,i3 =
∑

j

a
(1)
i1,j,i3

· a(2)
i1,i2,j

· a(3)
j,i2,i3

. (7.3)
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By closely inspecting the expression of the product we note that if A(1) is
a (m× k × 1) tensor, and A(3) is a (k × n× 1) tensor then the resulting
tensor B expressed by

bi1,i2,1 =
∑

j

a
(1)
i1,j,1

· a(2)
i1,i2,j

· a(3)
j,i2,1

∀ (i1, i2) s.t.

(
1 � i1 � m
1 � i2 � n

)
(7.4)

will be of dimensions (m× n× 1). The product above expresses the action

of 3-tensor A(2) of dimension (m× n× k) on the pair of matrices arising

from A(1) and A(3). Furthermore for A(2) having entries such that

A(2) ≡
(
a
(2)
i1,i2,j

= 1
)
∀ (i1, i2, j) s.t.




1 � i1 � m
1 � i2 � n
1 � j � k


 , (7.5)

the result of the action of A(2) on the pair of matrices arising from the
tensors A(1) and A(3) simply corresponds to a matrix multiplication. For
4-tensor the product operator is expressed as :

bi1,i2,i3,i4 =
∑

j

a
(1)
i1,j,i3,i4

· a(2)
i1,i2,j,i4

· a(3)
i1,i2,i3,j

· a(4)
j,i2,i3,i4

. (7.6)

Similarly the tensor A(3) can be chosen to be all-one tensor which reduces
the product above to the product operation for 3-tensors. This nested rela-
tionship will also apply to higher order tensors.

We may now write the expression for the product of n-tensor. Let{
A(t) =

(
a
(t)
i1,i2,···,in

)}
1�t�n

denotes a set of n-tensors. The product opera-

tor has therefore n operands and is noted:

B =©n
t=1

(
A(t)

)
(7.7)

defined by

bi1,i2,···,in =
∑

k

(
a
(1)
i1,k,i2,···,in × · · · × a

(t)
i1,i2,···,it, k ,it+2,···, in × · · · × a

(n)
k ,i2,···,in

)

(7.8)

bi1,i2,···,in =
∑

k

((
n−1∏

t=1

a
(t)
i1,i2,···,it, k ,it+2,···, in

)
a
(n)
k ,i2,···,in

)
(7.9)

It follows from the definition that the dimensions of the tensors in the set{
A(t) =

(
a
(t)
i1,i2,···,in

)}
1�t�n

must be chosen so that :

d(A(1), 2) = d(A(2), 3) = · · · = d(A(n−1), n) = d(A(n), 1). (7.10)
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which describes the constraints on the dimension relating all the n tensors
in the product. The constraints accross the (n − 1) other dimensions for
each tensor are described by the following relation.

d(A(i), k) = d(A(j), k) ∀k /∈ {(j + 1) , (i + 1)} (7.11)

The tensor B resulting from the product is a n-tensor of dimensions .
(
d

(
A(1), 1

)
× d

(
A(2), 2

)
× · · · × d

(
A(n−1), (n− 1)

)
× d

(
A(n), n

))

(7.12)
Note that the product of tensors of lower order all arise as special cases of
the general product formula describe above.

Tensor Action:

The action of nth order tensor A = (ai1,i2,···,in) on (n− 1)-tuple of order

(n− 1) tensors
{
B(t) =

(
b
(t)
1,i2,···,in

)}
1�t�(n−1)

is defined as

b1,i2,···,in =
∑

k

((
n−1∏

t=1

b
(t)
1,i2,···,it, k ,it+2,···, in

)
a
(n)
k ,i2,···,in

)
. (7.13)

The equation above generalizes the notion of matrices action on a vector.

Tensor Outerproduct:

The outer-product of n-tuple (n− 1)-tensors is denoted by :

B =
n⊗

t=1

(
A(t)

)
(7.14)

and defined such that :

bi1,i2,···,in =

((
n−1∏

t=1

a
(t)
i1,i2,···,it, 1 ,it+2,···, in

)
a
(n)
1 ,i2,···,in

)
. (7.15)

The Kronecker n-tensor is defined as

∆ =

(
δi1,i2,···,i(n−1),in =

(
n−1∏

t=1

δit,i(t+1)

)
δin,i1

)
≡

∑

k

(
/e⊗nk

)
(7.16)

Order n tensor transpose/adjoint:

Given a tensor A = (aj1,j2,···,jn) the transpose AT is defined such that

AT = (aj2,j3,···,jn,j1) . (7.17)
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For a complex valued tensor where the entries are expressed in their polar
form as follows :

A = (aj1,j2,···,jn = rj1,j2,···,jn · exp {i · θj1,j2,···,jn}) , (7.18)

the generalized adjoint is given by

A† =

(
rj2,j3,···,jn,j1 · exp

{
i · exp

{
i · 2π

n

}
· θj2,j3,···,jn,j1

})
, (7.19)

A†
k

=

(
rσk(j1),σk(j2),···,(jn) · exp

{
i · exp

{
i · 2πk

n

}
· θj2,j3,···,jn,j1

})
,

(7.20)
where σk denotes the composition of k cyclic permutation of the indices
from which it follows that

A†
n

= A. (7.21)

7.2. The Spectrum of n-tensors

In order to formulate the spectral theorem for A ∈ Cln we will briefly
discussed notion of orthogonal and scaling n-tensors, which can be expressed
as

∆ =©n
t=1

(
Q†

(n+1−t))
(7.22)

that is

δi1,i2,···,in =
∑

k

((
n−1∏

t=1

q†
(n+1−t)

i1,i2,···,it, k ,it+2···, in

)
q†k, i2,···,in

)
, (7.23)

Where T denotes the transpose operation, which still corresponds to a cyclic
permutation of the indices.

We first provide the formula for the scaling tensor whose product with
A leaves the tensor unchanged.

ai1,i2,···,in =
(
©

(
A,D(1),D(2),D(3), · · · ,D(n−1)

))
i1,i2,···,in

(7.24)

⇒ ai1,i2,···,in

=
∑

k

(
ai1,k,i2,···,in×d

(1)
i1,i2,k,···,in×· · ·×d

(t)
i1,i2,···,it, k ,it+2,···, in×· · ·×d

(n−1)
k ,i2,···,in

)

(7.25)

⇒




∀t < n− 2 D(t) ≡

(
d
(t)
i1,i2,···,in = δi2,i2+t

)

D(n−1) ≡
(
d
(n−1)
i1,i2,···,in = δi1,i2

) (7.26)
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The above family of tensors play the role of identity operator and are related
to one another by transposition of the indices. The more general expression
for the scaling tensors is therefore given by




∀t < n− 2 S(t) ≡

(
s
(t)
i1,i2,···,in = δi2,i2+t · ωit,i2+t

)

S(n−1) ≡
(
s
(n−1)
i1,i2,···,in = δi1,i2 · ωi1,in−1

) (7.27)

where W = (wm,n) is a symmetric matrix. The expression for the scaled
orthogonal tensor is therefore expressed by

(
©

(
Q,S(1),S(2),S(3), · · · ,S(n−1)

))
i1,i2,···,in

= qi1,i2,···,in


∏

k 	=2

ωi2,ik




(7.28)
We therefore obtain that the scaled tensor which will be of the form :

Q̃ =©
(
Q,S(1),S(2),S(3), · · · ,S(n−1)

)
(7.29)

Theorem 2 (Spectral Theorem for n-Tensors). — For any non zero her-
mitian tensor A ∈ Cln such that ‖A‖n
n 
= 1, there exist a factorization in
the form 




A =©n
t=1

(
Q̃
†(n+1−t)

t

)

∆ =©n
t=1

(
Q†

(n+1−t)

t

) (7.30)

the expression above generalizes Eq 4.6.

Proof of the Spectral Theorem for n-tensors. — The spectral decompos-
tion yields the following system of equations





A =©n
t=1

(
Q̃
†(n+1−t)

t

)

∆ =©n
t=1

(
Q†

(n+1−t)

t

) (7.31)

more insightfully rewritten as





〈
D

(1)
i1,i3,···, in · q

(1)
i1,�,i3,···, in , · · · , D

(t)
i1,···,it,it+2···, in · q

(t)
i1,···,it, � ,it+2···, in , · · · ,

D
(n)
i2,···,in · q

(n)
�, i2,···,in

〉
= ai1,i2,···,in〈

q
(1)
i1,�,i3,···, in , · · · , q

(t)
i1,···,it, � ,it+2···, in , · · · , q

(t)
�, i2,···,in

〉
= δi1,i2,···,in

(7.32)
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where D
(t)
i1,···,it,it+2···, in is a diagonal matrix whose entries are specified by

D
(t)
i1,···,it,it+2···, in =

(
di1,···,it,it+2···, in
m,n (t) = δm,n · ωm,n

)
(7.33)

We had already pointed out earlier in the proof for the spectral theorem for
3-tensors that the proof technique would apply to n-tensors with norm 
= 1,
where n is a positive integer greater or equal to 2. Similarly we consider the
polynomial expression

p =


 ∑

1�i1,···,in�l
∣∣∣
〈
D

(1)
i1,i3,···, in · q

(1)
i1,�,i3,···, in , · · · , D

(t)
i1,···,it,it+2···, in · q

(t)
i1,···,it, � ,it+2···, in , · · · ,

D
(t)
i2,···,in · q

(n)
�, i2,···,in

〉∣∣∣
n)n
− ‖A‖n
n (7.34)

and observe that
p /∈ I (7.35)

where I defines the ideal iduced by the spectral system of equation since

p ∈ I ⇒ ‖A‖n
2


n
= ‖A‖n
n (7.36)

which contradicts our assumption that ‖A‖n
n 
= 1, Hence we conclude that

‖A‖n
n 
= 1⇒ p /∈ I (7.37)

this completes the proof. �

The l “slices” of the scaled tensor Q̃t constitutes what we call the scaled
eigen-tensors of A which are (n− 1)-tensors.

7.3. Spectral Hierarchy

We recursively define the spectral hierarchy for a tensor A ∈ Cln . The
base case for the recursion is the case of matrices. The spectrum of an (l × l)
matrix is characterized by a set of l scaled eigen-vectors. The existence of
the spectral hierarchy relies on the observation that the spectrum of an or-
der n-tensor A ∈ Cln is determined by a collection of l-tuple (n− 1)-tensors
not necessarily distinct. Each one of these l-tuples corresponding to a scaled
orthogonal eigen-tensor. By recursively computing the spectrum of the re-
sulting scaled orthogonal (n− 1)-tensors, one determines a tree structure
which completely characterizes the spectral hierarchy associated with the
n-tensor A. The leaves of the tree will be made of scaled eigenvectors when
the spectral decomposition exists for all the resulting lower order tensors.
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It therefore follows that the tensor A can be expressed as a nested se-
quence of sums of outer products. We illustrate the general principle with
3-tensors. Let A denotes a third order tensor which admits a spectral de-
composition in the form described by Eq 5.4. We recall that the spectral
decomposition for 3-tensors is expressed by

A = ◦
(
Q̃, R̃

†2
, S̃
†
)

(7.38)

A=

l∑

k=1

⊗
(
(µm,k ·µk,p ·qm,k,p)m,p ,(νn,k ·νk,m ·rn,k,m)n,m ,(ξp,k ·ξk,n ·rp,k,n)p,n

)

(7.39)
by computing the spectrum of the scaled eigen-matrices we have :

∀ 1 � j1 � l

Q̃(k) = (µm,k ·µk,p ·qm,k,p)m,p =
∑

1�j1�l

(√
γj1(k)·/uj1(k)

)
⊗

(√
γj1(k)·/vj1(k)

)

(7.40)
∀ 1 � j2 � l

R̃(k) = (νn,k ·νk,m ·rn,k,m)n,m =
∑

1�j2�l

(√
λj2(k)·/wj2(k)

)
⊗
(√

λj2(k)·/xj2(k)

)

(7.41)
∀ 1 � j3 � l

S̃(k) = (ξp,k ·ξk,n ·rp,k,n)n,m =
∑

1�j3�l

(√
βj3(k)·/yj3(k)

)
⊗

(√
βj3(k)·/zj3(k)

)

(7.42)
where ∀ 1 � k � l , γj1(k), {/uj1(k),/vj1(k)},λj2(k),{/wj2(k), /xj2(k)} and
βj3(k),

{
/yj3(k),/zj3(k)

}
denote the eigenvalues and corresponding eigenvec-

tors respectively for the matrices S̃(k) ,Q̃(k), R̃(k). It therefore follows that
A can be expressed by the following nested sum of outer product expressions

A =

l∑

k=1

⊗





 ∑

1�j2�l

(√
γj1(k)·/uj1(k)

)
⊗

(√
γj1(k)·/vj1(k)

)
 ,


 ∑

1�j2�l

(√
λj2(k)·/wj2(k)

)
⊗

(√
λj2(k)·/xj2(k)

)
 ,


 ∑

1�j3�l

(√
βj3(k)·/yj3(k)

)
⊗

(√
βj3(k)·/zj3(k)

)



 (7.43)
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8. Relation to previously proposed decompositions

We shall present in this section a brief overview of the relationship be-
tween our framework and earlier proposed tensor decompositions

8.1. Tucker Decomposition

Let us show in this section how the Tucker decomposition in fact uses
matrix algebra more specifically orthogonality of matrices to express the sin-
gular value decomposition for 3-tensors. We use for this section the notation
and convention we introduced through this work. The Tucker factorization
scheme finds for an arbitrary 3-tensor D the following decomposition

D = T×1 Q(1) ×2 S(2) ×3 U(3), (8.1)

where T denotes a 3-tensor and Q(1),S(2),U(3) denote matrices. The prod-
uct expression used for the decomposition written above corresponds to our
proposed definition for triplet dot product with non trivial background as
described in Eq 3.8. Using our notation we can express the decomposition
of D as follows:

dm,n,p = 〈am,i,1, b1,n,j , ck,1,p〉T =
∑

i

∑

j

∑

k

am,i,1 ·b1,n,j ·ck,1,p ·ti,j,k (8.2)

Our starting point is the following invariance relation, which arises from the
matrix products with the identity matrix.

dm,n,p =
∑

i

∑

j

∑

k

γm,i,1 ·γ1,n,j ·γk,1,p ·di,j,k , (8.3)

where γm,i,1 = δm,i , γ1,n,j = δn,j and γk,1,p = δk,p which correspond to
transposes of the identity matrix. For any orthogonal matrices Q, S and U
we know that 




γm,i,1 =
∑

y qm,y,1 ·qi,y,1
γ1,n,j =

∑
r s1,n,r ·s1,j,r

γk,1,p =
∑

v uk,1,v ·up,1,v
(8.4)

Incidentally the expression in Eq 8.3 can be written as :

∑

i

∑

j

∑

k

(∑

y

qm,y,1 ·qi,y,1
)
·
(∑

r

s1,n,r ·s1,j,r

)
·
(∑

v

uk,1,v ·up,1,v
)
·di,j,k

(8.5)
by interchanging the order of the sums we get :

∑

y

∑

r

∑

v

(∑

i

qm,y,1qi,y,1

)
·


∑

j

s1,n,rs1,j,r


·

(∑

k

uk,1,v ·up,1,v
)

di,j,k

(8.6)
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we now separate out the products in the expressions to yield the general
form of the Tucker decomposition.

⇒
∑

y

∑

r

∑

v

qm,y,1 ·s1,n,r ·up,1,v


∑

i

∑

j

∑

k

qi,y,1 ·s1,j,r ·uk,1,v ·di,j,k




(8.7)

T ≡


ty,r,v =

∑

i

∑

j

∑

k

qi,y,1 ·s1,j,r ·uk,1,v ·di,j,k


 (8.8)

The preceding emphasizes that the Tucker decomposition reuses matrix or-
thogonality and does not provide a generalization of the notion of orthogo-
nality for n-tensors. Finally to determine the orthogonal matrices Q, S and
U to use we specify the following constraints

∑

l

∑

g

tl,g,α ·tl,g,β = δα,β ·


∑

l,g

(tl,g,α)
2


 (8.9)

∑

l

∑

g

tl,α,g ·tl,β,g = δα,β ·


∑

l,g

(tl,α,g)
2


 (8.10)

∑

l

∑

g

tα,l,g ·tβ,l,g = δα,β ·


∑

l,g

(tα,l,g)
2


 (8.11)

which is referred to as the total orthogonality condition.

8.2. Tensor Rank 1 decomposition.

The Rank 1 decomposition of tensor [29, 13, 15, 31, 6, 11, 12] corre-
sponds to solving the following optimization problem. Given an r-tensor
A = (ai1,·s,ir ) we seek to find:

min(
x(t)

k

)
1�t�r∈

(⊗
1�t�r Vt

) ||A−
∑

1�k�l

(λk)
r

⊗

1�t�r
/x

(t)
k || (8.12)

Since Johan Hästad in [15] established the intractability of the tensor rank
problem for 3-tensors we briefly discuss the relationship to our framework.
It follows from the definition of the outer product of matrices to form a
3-tensor that
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⊗
(
M1 ≡ (ms,1,t)s,t ,N1 ≡ (ns,t,1)s,t ,P1 ≡ (p1,s,t)s,t

)

≡ D ≡ (di,j,k = mi,1,k ·ni,j,1 ·p1,j,k) . (8.13)

We point out that for the very special matrices essentially made up of the
same vector as depicted bellow :

mi,1,k = ui,1,1 ∀ 1 � k � l (8.14)

ni,j,1 = v1,j,1 ∀ 1 � i � l (8.15)

p1,j,k = w1,1,k ∀ 1 � j � l (8.16)

the outer product of the matrices

⊗
(
M1 ≡ (ms,1,t)s,t ,N1 ≡ (ns,t,1)s,t ,P1 ≡ (p1,s,t)s,t

)
= /u⊗/v⊗ /w. (8.17)

This allows us to formulate the tensor rank problem in Eq 8.12 in terms of
the outer product operator for slices as follows

min

∥∥∥∥∥

( ∑

1�k�l

⊗
(
Mk≡(λk ·ms,k,t)s,t ,Nk≡(λk ·ns,t,k)s,t ,Pk≡(λk ·pk,s,t)s,t

))
−A

∥∥∥∥∥

3

(8.18)
⇔ min ‖◦ (M,N,P)−A‖
3 , (8.19)

where M,N,P are 3-tensors arising from the collection of matrices asso-
ciated with the collection of vectors. The preceding naturally related the
tensor rank problem to our proposed tensor product. Furthermore the gen-
eralized framework allows us to formulate the tensor rank problem for n-
tensor where n is a positive integer greater or equal to 2 as follows

min
∥∥∥
(
©n

t=1

(
M(t)

))
−A

∥∥∥

n

(8.20)

One may point out that the spectral decomposition associated with a Her-
mitian tensor comes quite close to the sought after decomposition at the
cost of the trading of the requirement that the matrices should be rank one
to the fact the matrices should arise from scaled eigen-tensors.

9. Conclusion

In this paper we introduced a generalization of the spectral theory for
n-tensors where n is a positive integer greater or equal to 2. We propose a
mathematical framework for 3-tensors algebra based on a ternary product
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operator, which generalizes to n-tensors. This algebra allows us to generalize
notions and operators we are familiar with from Linear algebra including
dot product, tensor adjoints, tensor hermicity, diagonal tensor, permutation
tensors and characteristic polynomials. We proved the spectral theorem for
tensors having Forbenius norm different from 1. Finally we discussed the
spectral hierarchy which confirms the intractability of determining the or-
thogonal vector components whose exterior product result in a given n-
tensor.

Starting from the recently proposed product formula in Eq 3.3 for order
3-tensors proposed by P. Bhattacharya in [2] we were able to formulate a
general algebra for finite order tensors. The order 3-tensor product formula
suggests a definition for outer product of matrices as discussed in Eq 3.5,
it also suggests how to express the action of a tensor on lower order ten-
sors. Most importantly with Eq 3.7 we propose a natural generalization for
the dot product operator and a generalization for the Riemann metric ten-
sor ideas. Furthermore the tensor algebra that we discuss sketches possible
approaches to investigate generalizations of inner product space theory.

One important characteristic of the product operator for tensor of or-
der strictly greater than 2 is the fact that the product is not associative.
Incidentally by analogy to matrix theory where the lost of commutativity
for matrix product results into a commutator theory and lie Algeras which
plays an important role in quantum mechanics, the lost of associativity as
expressed in Eq 3.12 could potentially give rise to an associator theory or
generalizations of lie algebras. Furthermore the transpose operator described
in Eq 3.15 emphasizes the importance of the roots of unity in generalizing
herminian and unitary tensors. The 3-tensor permutation tensors provided
a suprising representation for the permutation group Sn which provide a
glimpse at a tensor approach to a representation theory as well as a tensor
approach to Markov tensor models.

At the heart of our work lies the concept of orthogonal tensors. We em-
phasize the fact the orthogonal tensors discussed here are generalizations of
orthogonal matrices and are significantly different from orthogonal matrices.
One significant difference lie in the two distinct interpretation of the orthog-
onality property for tensor. The first interpretation expressed by Eq 3.51
is analogous to orthonormal for a set of vectors. The second interpretation
relates to the invariance of the Kronecker delta tensor under conjugation as
expressed in Eq 3.54. Furthermore we have through this work provided a
natural generalization for the familiar characteristic polynomial using the
important tool set of Gröbner Basis.
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Spectral analysis plays an important role in the theory and investiga-
tions of Graphs. Graph spectra have proved to be a relatively useful graph
invariant for determining Isomorphism class of graphs. It seem of interest
to note that the symmetries of a graph described by it’s corresponding au-
tomorphism group can also be viewed as depicting a 3-uniform hypergraph
which can in turn be investigated by through it spectral properties. Deter-
mining the relationship between spectral properties of a graph and the spec-
tral properties of it corresponding automorphism seems worthy of attention
in the context of determining isomorphism classes of graphs. The general
framework which address the algebra for arbitrarily finite order tensor al-
lowed us to derive the spectral hierarchy. The spectral hierarchy induces a
bottom up construction for finite order tensor from vectors. This explicit
construction may in fact prove useful in the context investigations on ten-
sor rank problems which also validate as illustrated in Eq 8.20 our product
operator.
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