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AND RICHARD TAYLOR®)

ABSTRACT. — We prove the compatibility of the local and global Lang-
lands correspondences at places dividing [ for the l[-adic Galois represen-
tations associated to regular algebraic conjugate self-dual cuspidal auto-
morphic representations of GL, over an imaginary CM field, under the
assumption that the automorphic representations have Iwahori-fixed vec-
tors at places dividing ! and have Shin-regular weight.

RESUME. — Nous prouvons la compatibilité entre les correspondances de
Langlands locale et globale aux places divisant [ pour les représentations
galoisiennes l-adiques associees a des représentations automorphes cus-
pidales algébriques et régulieres de GL,, sur un corps CM qui sont duales
de leur conjuguée complexe, sous les hypotheses supplémentaires que ces
représentations automorphes ont des vecteurs fixes par un sous-groupe
d’Iwahori aux places divisant | et ont un poids régulier au sens de Shin.
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Introduction

In this paper we prove the compatibility at places dividing [ of the local
and global Langlands correspondences for the I-adic Galois representations
associated to regular algebraic conjugate self-dual cuspidal automorphic rep-
resentations of GL,, over an imaginary CM field in the special case that the
automorphic representations have Iwahori-fixed vectors at places dividing [
and have Shin-regular weight. In the sequel to this paper [2] we build on
these results to prove the compatibility in general (up to semisimplification
in the case of non-Shin-regular weight).

Our main result is as follows (see Theorem 1.2 and Corollary 1.3).

THEOREM A.— Let m > 2 be an integer, | a rational prime and
1: Q = C. Let F be an imaginary CM field and 11 a regular algebraic,
conjugate self-dual cuspidal automorphic representation of GLy,(Ap). If T

has Shin-regular weight and v|l is a place of F such that Iy =+ {0}, then
AWD(r, (1) G, )™ 22 rec(IL, @ | det |(17™)/2),
In particular WD(ry,(I)|ay, ) is pure.

(See Section 1 for any unfamiliar terminology.) The proof is essentially
an immediate application of the methods of [14], applied in the setting of [13]
rather than that of [8], and we refer the reader to the introductions of those
papers for the details of the methods that we use. Indeed, if II is square-
integrable at some finite place, then the result is implicit in [14], although it
is not explicitly recorded there. For the convenience of the reader, we make
an effort to make our proof as self-contained as possible.

Notation and terminology

We write all matrix transposes on the left; so !4 is the transpose of A.
We let B,,, C GL,, denote the Borel subgroup of upper triangular matrices
and T;, C GL,, the diagonal torus. We let I,,, denote the identity matrix
in GL,,. We will sometimes denote the product GL,, x GLy by GLy, .

If M is a field, we let M denote a separable closure of M and Gum
the absolute Galois group Gal (M /M). Let ¢; denote the [-adic cyclotomic
character

Let p be a rational prime and K/Q, a finite extension. We let O denote
the ring of integers of K, py the maximal ideal of Ok, k(vk) the residue
field Ok /pK, vk : K* — Z the canonical valuation and | |g : K* — Q%
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the absolute value given by |z|x = #(k(vk)) <), We let | |}(/2 KX —
RZ, denote the unique positive unramified square root of | |x. If K is clear
from the context, we will sometimes write | | for | |x. We let Frobg denote
the geometric Frobenius element of G(,,.) and Ik the kernel of the natural
surjection G — Gi(yy)- We will sometimes abbreviate Frobg, by Frob,,.

We let Wi denote the preimage of Frob%( under the map G — G (k)
endowed with a topology by decreeing that I'x C Wg with its usual topology
is an open subgroup of Wy. We let Art x : K* = W2 denote the local
Artin map, normalized to take uniformizers to lifts of Frobg.

Let € be an algebraically closed field of characteristic 0. A Weil-Deligne
representation of Wi over Q is a triple (V,r, N) where V is a finite di-
mensional vector space over Q, r : Wx — GL(V) is a representation with
open kernel and N : V — V is an endomorphism with r(o)Nr(o)™1 =
|Art ' (0)|x N. We say that (V,r, N) is Frobenius semisimple if  is semisim-
ple and we let (V,r, N)¥~* denote the Frobenius semisimplification of
(V,r,N) (see for instance Section 1 of [14]) and we let (V,r, N)* denote
(V,r,0). If Q has the same cardinality as C, we have the notions of a Weil-
Deligne representation being pure or pure of weight k — see the paragraph
before Lemma 1.4 of [14].

We will let reck be the local Langlands correspondence of [8], so that
if 7 is an irreducible complex admissible representation of GL, (K), then
reci () is a Weil-Deligne representation of the Weil group Wg. We will
write rec for reck when the choice of K is clear. If p is a continuous rep-
resentation of Gx over Q; with I # p then we will write WD(p) for the
corresponding Weil-Deligne representation of Wi (See for instance Section
1 of [14].)

If m > 11is an integer, we let Iw,,, k C GL,,,(Ok ) denote the subgroup of
matrices which map to an upper triangular matrix in GL,, (k(vk)). If wis an
irreducible admissible supercuspidal representation of GL,,(K) and s > 1 is
an integer we let Sp ,(7) be the square integrable representation of GL,,s(K)
defined for instance in Section 1.3 of [8]. Similarly, if r : Wx — GL,, () is
an irreducible representation with open kernel and = is the supercuspidal
representation recy’(r), we let Sp,(r) = recx (Sp,(7)). If K’/K is a finite
extension and if 7 is an irreducible smooth representation of GL,,(K) we
will write BC g, () for the base change of 7 to K which is characterized
by recg: (mx:) = reck (7)|w,, -

If p is a continuous de Rham representation of G over @p then we will
write WD(p) for the corresponding Weil-Deligne representation of Wi (its
construction, which is due to Fontaine, is recalled in Section 1 of [14]), and
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ifr: K — @p is a continuous embedding of fields then we will write HT - (p)
for the multiset of Hodge-Tate numbers of p with respect to 7. Thus HT, (p)
is a multiset of dim p integers. In fact, if W is a de Rham representation of
Gk over Q, and if 7 : K < Q, then the multiset HT (W) contains i with

multiplicity dim@ (W ®,.x K(i))9%. Thus for example HT, (¢;) = {—1}.
P

If F is a number field and v a prime of F, we will often denote Frobg,,
k(vp,) and Iwy, g, by Frob,, k(v) and Iwy,,. If 0 : F < Q, or C is an
embedding of fields, then we will write F, for the closure of the image of o.
If F'/F is a soluble, finite Galois extension and if 7 is a cuspidal automorphic
representation of G L, (Ar) we will write BC g/ p(m) for its base change to
F’, an automorphic representation of GL,(Ar). If R : Gr — GL,,(Q))
is a continuous representation, we say that R is pure of weight w if for all
but finitely many primes v of F', R is unramified at v and every eigenvalue
of R(Frob,) is a Weil (#k(v))*-number. (See Section 1 of [14].) If F' is an
imaginary CM field, we will denote its maximal totally real subfield by F+
and let ¢ denote the non-trivial element of Gal (F/F™).

1. Automorphic Galois representations

We recall some now-standard notation and terminology. Let F' be an
imaginary CM field with maximal totally real subfield F*. By a RACSDC
(regular, algebraic, conjugate self dual, cuspidal) automorphic representa-
tion of GL,,(AFr) we mean that

— II is a cuspidal automorphic representation of GL,,(Ar) such that
II has the same infinitesimal character as some irreducible algebraic
representation of the restriction of scalars from F' to Q of GL,,,

— and II¢ 2 I1V.

We will say that II has level prime to | (resp. level potentially prime to 1)
if for all v|l the representation II, is unramified (resp. becomes unramified
after a finite base change).

If © is an algebraically closed field of characteristic 0 we will write
(zm)Hom (F2).+ for the set of a = (a,;) € (Z™)Tom () satisfying

ar1 2 v 2 Q7 om-

We will write (Zm)gom(F’Q) for the subset of elements a € (Z™)Hom (F:)
with
Qr + Qroc,m+1—i = 0.

— 60 —



Local-global compatibility for | = p, I

If F'/F is a finite extension we define ap: € (Z™)Hom (F'.Q).+ by

(U“F')T’i = Or|pi-

Following [13] we will be interested, inter alia, in the case that either m
is odd; or that m is even and for some 7 € Hom (F,€2) and for some odd
integer ¢ we have a,; > a, ;41. If either of these conditions hold then we will
say that a is Shin-regular. (We warn the reader that this is often referred
to as ‘slightly regular’ in the literature. However as this notion is strictly
stronger than ‘regularity’ we prefer to use the term Shin-regular.)

If a € (zm)Hom(FC)+ et =, denote the irreducible algebraic repre-

sentation of GLE™ O which is the tensor product over 7 of the irre-

ducible representations of GL,, with highest weights a,. We will say that
a RACSDC automorphic representation II of GL,,(Ar) has weight a if TIo,
has the same infinitesimal character as =Y. Note that in this case a must

lie in (Zm)gom (FO),

We recall (see Theorem 1.2 of [3]) that to a RACSDC automorphic
representation II of GL,,(Ar) and 1 : Q; = C we can associate a continuous
semisimple representation

r.(I) : Gal (F/F) — GL,,(Q)
with the properties described in Theorem 1.2 of [3]. In particular
7“171(H)C = ’I“lﬂ(H)v ® ell_m.

For v|l a place of F, the representation 7;,(II)|g, is de Rham and if 7 :
F < Q, then

HT, (ri (7)) ={awr1+m—1,a,;2+m—2,....0rm}
If v /I, then the main result of [4] states that

WD (ry, (1) | e, ) ¥ ™ 22 rec(IT, ® | det |1 7™)/2).
We recall the following result which will prove useful.

PROPOSITION 1.1. — Let Q be an algebraically closed field of character-
istic 0 and of the same cardinality as C.

1. Suppose K/Q, is a finite extension. Let (V,r,N) and (V',7',N’) be
pure, Frobenius semisimple Weil-Deligne representations of Wx over
Q. If the representations (V,r*) and (V', (r')*®) are isomorphic, then
(Vyr, N) = (V' v/, N").
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2. If F is an imaginary CM field and 11 is a RACSDC automorphic
representation of GL,(Ar), then for each 1 : Q = C and each finite
place v of F, 17 'rec(Il,) is pure.

Proof. — The first part follows from Lemma 1.4(4) of [14]. For the
second part, Theorem 1.2 of [4] states that I, is tempered for each finite
place v of F. If ¢ is an automorphism of C, then there is a RACSDC
automorphic representation II' = 711 @ 11 of GL,,(Ar) (see Théoréme
3.13 of [5]) and we deduce that oII, is tempered. The second part then
follows from this and Lemma 1.4(3) of [14]. O

We can now state our main results.

_ THEOREM 1.2. — Let m > 2 be an integer, | a rational prime and 1 :
Q, = C. Let L be an imaginary CM field and II a RACSDC' automorphic
representation of GL,,(ArL). If I has Shin-regular weight and v|l is a place

of L such that II)"™" # {0}, then

"WD(ry,(I1) |, )F ™ 2 rec(Il, @ | det |17™)/2).

Before turning to the proof, we first record a corollary.

COROLLARY 1.3. — Let m > 2 be an integer, | a rational prime and
1:Q; = C. Let L be an imaginary CM field and I1 a RACSDC' automorphic
representation of GL,,(Ar). If I has Shin-regular weight and v|l is a place
of L then WD(ry,(IT)|g, ) is pure.

Proof. — Choose a finite CM soluble Galois extension F/L such that
for each prime wlv of F, BC g, /1, (IL,)™™ = # {0}. Then WD(ry,(II)| ¢, )
is pure by Theorem 1.2 and Proposition 1.1. Lemma 1.4 of [14] then implies
that WD(ry,(IT)|q,, ) is pure. O

The rest of this paper will be devoted to the proof of Theorem 1.2.

2. Notation and running assumptions

For the convenience of the reader, we recall here the following notation
which appears in [13]:

— IfII is a RACSDC automorphic representation of GL,,(Ar) for some
integer m > 2 and an imaginary CM field F, or if II is an alge-
braic Hecke character of A}, /M* for a number field M, then R;,(II)
denotes 7, (I1V).
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— If L/F is a finite extension of number fields, then Ramp,/p (resp.
Unrp,p, resp. SplL/F) denotes the set of finite places of F' which are
ramified (resp. unramified, resp. completely split) in L. We denote
by Sply, /g the set of rational primes p such that every place of F'
above p splits completely in L.

— If F is a number field and 7 is an automorphic representation of
GLy,r, then Ramg(7) denotes the set of rational primes p such that
there exists a place v|p of F' with 7, ramified.

— If G is a group of the form H(F') for F/Q, finite and H/F a reductive
group; or H(AL) for F a number field, H/F a reductive group and
T a finite set of places of F' containing all infinite places (where as
usual AT is defined in the same way as Ap, except that one takes
the restricted direct product over the places not in T'); or a product
of groups of this form, then we let Irr(G) (resp. Irry(G)) denote the
set of isomorphism classes of irreducible admissible representations
of G on C-vector spaces (resp. Q;-vector spaces). We let Groth (G)
(resp. Groth;(G)) denote the Grothendieck group of the category
of admissible C-representations (resp. Q,-representations) of G. (See
Section 1.2 of [8].)

— €:7Z — {0,1} is the unique function such that ¢(n) = n2.
— (I)n is the matrix in GLn with ((I)n)lj = (71)i+1517n+1_j.

— If R — S is a homomorphism of commutative rings, Rg/r denotes
the restriction of scalars functor.

— If 7 is a representation of a group G with a central character, we
denote the central character by ..

We now fix the following notations and assumptions which will be in
force from Section 3 to Section 6:

— F is a quadratic imaginary field;

— F7T is a totally real field with [F'T : Q] > 2;
— F = EF* and Ramp,q C Splg, p+ i

— 7:F < Cis an embedding and 75 = 7|g;
— ®¢ = Hom (F,C) and &} = Hom g, (F, C);
— n >3 is an odd integer;

— p € Splgq Is a rational prime and u|p is a prime of E;
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— w is a prime of F' above v and wy = w,ws, ..., w, denote all of the
primes of F' above u;

— Uy @p 5 C is an isomorphism such that szl o7 induces the place w;

— 1 is a rational prime (possibly equal to p) and 7 : Q, = C.
Define algebraic groups G,, and G,, over Z by setting

Gn(R) = {(\,g9) € R* x GL,(Op ®7 R) : ¢®,'¢° = \®,,}, and
Gu(R) = Roy/z(Gn %2 O5)(R) = Ga(Os &z )

for any Z-algebra R. Then G, x7 Q and G,, xz Q are reductive. We let 6
denote the action on G,, induced by (1,¢) on G,, xz Op.

If R is an E-algebra, then G, (R) is a subgroup of R* x GL,(F ®gR) =
R*xGL,(F®gR)xGL,(F®g .R) and the projection onto R* xGL, (FQg
R) defines an isomorphism

Gn(R) = R* x GL,(F ®g R).

It follows that G, Xg E = G, X Rp/p(GLy,). [Note that here G, is the
multiplicative group, rather than G,, in the case n = m.|

If v € Unrg/qg, then K, := Gn(Z,) (resp. K, := G,(Z,)) is a hyper-
special maximal compact subgroup of G, (Q,) (resp. G,(Q,)). In this case
we say that a representation of G,,(Q,) (resp. G,(Qy)) is unramified if the
space of K,-invariants (resp. K,-invariants) is non-zero. Furthermore, we
define the unramified Hecke algebras H" (G, (Q,)) and H"(G,(Q,)) with
respect to K, and K, respectively, as in Section 1.1 of [13]. (We note that
these are C-algebras.) If T is a set of places of Q with {co} URamp,g C T,
we let KT = [logr Kv C Gn(AT).

We say that a representation II, of G, (Q,) is #-stable if 1T, o § = TI,,
and we let I’ %G, (Q,)) C Irr(G,(Q,)) be the subset of #-stable rep-
resentations. For v € Unrp,qg, we let It (G(Q,)) C Irr(G(Qy)) (resp.

I (G (Qy)) C Trr(G(Qy)), resp. Tr™ (G, (Q,)) C G, (Qy)) denote
the subset consisting of unramified (resp. unramified, resp. unramified, 6-
stable) representations.

Let # : Rp/o(GLn) = Rpg(GLy) denote the map g — ®,'g~ @, 1. If
v is a rational prime, then

Gn(@v) = Gn(E ®Q Qv) = (E ®Q Qv)x X GLn(F ®Q Qv)

If (A, g) € Gn(Qy), then O()\,g) = (A, X\°g7). Let I, € Irr(G,(Q,)) and
write I, = v, @ II} with respect to the above decomposition of G, (Q,).
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Then II, is -stable if and only if (IT})Y = II, o ¢, and Y |(pe,Q,)x =
o/ o
We now recall the existence of local base change maps in the following
cases (see Section 4.2 of [13] for details):

— Case 1:If v € Unrp,qg, we have a map

BC, : It (G, (Qy)) — Irrur’efst(Gn(Qv)).

(Note that the assumption v ¢ Ramg(w) in Case 1 of Section 4.2
of [13] plays no role there.) This is induced by a homomorphism of
C-algebras BCJ : H' (G, (Qy)) — H™ (Gr(Qy)).

— Case 2:1If v € Splg/p+ @, we have a map

BC, : Irr(Gn(Q,)) — It =%(G,,(Q,)).

If in addition v € Unrg/q, then this map is compatible with the map
in Case 1.

In Case 2, the map BC, is described explicitly in [13]. We recall the
explicit definition here, assuming v € SplE/Q. Let y|v be a place of E, and

regard Q, as an E-algebra via Q, — E,. We get an isomorphism

Gn(Qy) = Q) x [[ GLn(F)

x|y

where the product is over all places of F' dividing y. Let 7, € Irr(G,,(Qy))
and decompose m, = 7, ¢ ® T, with respect to the above decomposition of
G, (Qy). If we decompose

Gn(Qu) = B x B)e x | [ GLn(F2) x [ [ GLn(Fie)
zy zly

then BC ,(my) = (¥y, ¥ye, 11, I1c ), where
(wyu %c, Hy7 Hyc) = (7Tp,07 Wp,o(¢wy ‘Ej © C), Ty, W;#)

and wf(g) = my (@, '@, ). (In particular, 7T;f =m/oc.)

~ The discussion above can be carried out equally well in the setting of
Q,-representations, and we define Trr! (G, (Q,)), Irr}" (G(Q,)) etc. in the
obvious fashion. We also define a base change map BC, in Case 1 (resp.
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Case 2) by setting BC,(7) = +71BC,(ur) for 7 € Irr}"(G,(Q,)) (resp.
7w € Irr(Gr(Qy)))-

Let £ denote an irreducible algebraic representation of G,, over C. There
is an isomorphism G,,(C) = G,,(E ®g C) = G,,(C) x G,,(C) induced by the
isomorphism E ®g C = C x C which sends e ® z to (7(e)z, 7(e)z). We
associate to ¢ a O-stable irreducible algebraic representation = of G,, over
C by setting Z := £ ® €. Every such = arises in this way.

We also fix the following data:

— V = F™ as an F-vector space;

— () : VxV — Q is a non-degenerate pairing such that (fvq,vs) =
(v1, fCv9) for all v1,v9 € V and f € F;

— h:C — Endp(V) ®g R is an R-algebra embedding such that the
bilinear pairing (V ®g R) x (V ®g R) — R; (v1,v2) = (v1, h(i)vs) is
symmetric and positive definite.

Under the natural isomorphism End (V) ®gR = Ho@bg M, (C) we assume

that h sends
<zlp6 0 )
Z _
0 Zqu cedt

for some p,, qs € Z>o With p, + g = n.
Define a reductive algebraic group G/Q by setting
G(R)={(\ g) e R*XGL,(FRqR) : (gv1, gv2) = A (v1,v2) for all v1,vs €VRgR}

for each Q-algebra R. Note that G, is a quasi-split inner form of G. Let
v: G — G, denote the homomorphism which sends (), g) to A.

By Lemma 5.1 of [13] we can and do assume that (-,-) and & have been
chosen so that

— G, is quasi-split for each rational prime v;

— foreach o € @E, we have (ps,q,) = (1,n—1) if 6 = 7 and (ps, ¢5,) =
(0,n) otherwise.

As a consequence, we can and do fix an isomorphism
G XQ A® = @G, XQ A%,

Using this isomorphism, we will henceforth identify the groups G,,(Q,) and
G(Q,) for all primes v. Let Cg € Zw¢ be the integer | ker'(Q, G)| - 7(G) in
the notation of [13].
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Let T be a (possibly infinite) set of places of Q containing co and let
Thin = T —{o0}. Let I be a Galois group with its Krull topology, or the Weil
group of a local field, or a quotient of such a group. We define an admissible
Q[G(AT) xT'J-module to be an admissible Q,[G(AT)]-module R with a com-
muting continuous action of I' (the continuity condition here means that for
each compact open subgroup U C G(AT), the induced map I' — Aut (RY)
is continuous for the l-adic topology on RY). We let Groth ;(G(AT) xT) de-
note the Grothendieck group of the category of admissible Q,[G(AT) x I']-
modules. If R is an admissible Q;[G(AT) x I']-module, we let [R] denote
its image in Groth ;(G(AT) x T'). We let Irr;(G(AT) x T') denote the set of
isomorphism classes of irreducible admissible Q;[G(AT) x T']-modules. (See
Section 1.2 of [8].)

Now suppose that T is finite, that p € T and let J/Q, be a reductive
group. Let G’ be a topological group which is of the form G(Ar,, ) x T, or
G(ATﬁn—{p}) x I, or G(ATﬁn—{p}) X J(Qp) Let [X] S Grothl(G(AT) X G/)
and write [X] ="+ n(rT®p)- [T @p] where n(rT ®p) € Z and 77" (resp.
p) runs through Irr; (G(AT)) (resp. Irr;(G")). For a given n1 € Irr;(G(AT)),
we let

(X][x"] = n(x" @p) - [v" @ p] € Groth ;(G(AT) x &).

If Ramp g C T and 11" € Irr(G,(A”)) is unramified at all v € T, then we
define
(X][M"] =) [X])[x"] € Groth(G(A") x &)
T
where the sum is over all 77 € Irr;(G(AT)) with 77 unramified at all v & T
and BC T (1nT) := ®grBC LTy =117,

Finally, suppose G’ of the form G(Ap, _(p3) x I' or G(Ag,,) x T' and
let R be an admissible Q;[G(AT) x G']-module. Suppose Ramp,g C T
and 7" € Irr(G,(AT)) is unramified at all v ¢ T. Let HY(G(AT)) =
@per "™ (G(Qy)), a commutative polynomial algebra over C in countably
many variables. Similarly, let #" (G, (AT)) = @] o7 H" (Gn(Qy)). Then IT"
corresponds to a maximal ideal n of H" (G,,(AT)) with residue field C. Note
that the space of K T-invariants R is a module over LTIHE(G(AT)). We
define

R = PR € R
m
where m runs over the maximal ideals of H" (G(AT)) with residue field C
and which pull back to n under ®,grBC . Then RET{TIT} is a G'-stable

direct summand of RK" .
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3. Shimura varieties

In this section we recall some results from [13]. We begin with some
definitions and refer the reader to Section 5 of [13] for more details. Let
U be a compact open subgroup of G(A*>) and define a functor Xy from
the category of pairs (5,s), where is S is a connected locally Noetherian
F-scheme and s is a geometric point of .9, to the category of sets by sending
a pair (S, s) to the set of isogeny classes of quadruples (A, A, 4,7) where

— A/S is an abelian scheme of dimension [F" : Q]n;

— A: A— AV is a polarization;

— 4i: F < End(A) ®z Q such that Aoi(f) =i(f¢)" o ;

— 7is am (9, s)-invariant U-orbit of isomorphisms of F'®gA>-modules
n:V ®gA>® — VA, which take the pairing (-,-) on V to a (A>)*-
multiple of the A-Weil pairing on VA := Hi(As, A®) (see Section 5
of [11]);

— for each f € F there is an equality of polynomials detpg (f|Lie A) =
detg(f|V?') in the sense of Section 5 of [11] (here V! C V ®@g E C
V ®q C is the E-subspace where h(7z(e)) acts by multiplication by
1®e for all e € E);

— two such quadruples (4, \,:,7) and (A’,N,#,7') are isogenous if
there exists an isogeny A — A’ taking \,4,7 to v\ ,7', 5 for some
v € Q*.

If s and s are two geometric points of a connected locally Noetherian F-
scheme S then there is a canonical bijection from Xy (S, s) to Xy (S, s"). We
may therefore think of Xy as a functor from connected locally Noetherian
F-schemes to sets and then extend it to a functor from all locally Noetherian
F-schemes to sets by setting Xu ([, Si) = [, Xv(Si). When U is sufficiently
small the functor Xy is represented by a smooth projective variety Xy /F
of dimension n — 1. The variety Xy is denoted Shy in [13]. Let Ay be the
universal abelian variety over Xy .

If U and V are sufficiently small compact open subgroups of G(A*) and
g € G(A™) is such that ¢g~'Vg C U, then we have a map g : Xy — Xy
and a quasi-isogeny ¢g* : Ay — ¢* Ay of abelian varieties over Xy . In this
way we get a right action of the group G(A™) on the inverse system of the
Xy which extends to an action by quasi-isogenies on the inverse system of
the Ay.

Let [ be a rational prime and let £ be an irreducible algebraic represen-
tation of G over ;. Then £ gives rise to a lisse [-adic sheaf £¢ on each Xy .
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We let
H*(X, L¢) =lim H*(Xy xp F, Le).
p— ,
U

This is a semisimple admissible representation of G(A*) with a commuting
continuous action of Gr and therefore decomposes as

H(X, L¢) @w ® RE (m)

where 7 runs over Irr;(G(A*)) and each ng’l(ﬂ'oo) is a finite dimensional
continuous representation of G over Q.

We now recall results of Shin on the existence of Galois representations

in the cohomology of the Shimura varieties in the following two cases:

3.1. The stable case
Assume we are in the following situation:

— II! is a RACSDC automorphic representation of GL,, (AF);

— ¢ : A /E* — C* is an algebraic Hecke character such that ¢ | AL =
LR
— II:= ¢ ®II! (an automorphic representation of G, (A) = GL;(Ag) x

GL,(Ar)) is E-cohomological for some irreducible algebraic repre-
sentation = of G,,/C;

— RamQ(H) C SplF/F+7@.
Then = is #-stable and so comes from some irreducible algebraic rep-
resentation &¢ of G, over C as in Section 2. Let & = 1~ '¢¢, regarded as

a representation of G/Q;. Let R;(Il) denote the set of 7°° € Irr;(G(A>))
such that

o RIECJ(WOO) 7"é (0) for some k;
— 7 is unramified at all v ¢ Ramp,q U Ramg(II) and

BC > (ar™) = II™°.
(We note that BC ,(vm,) is defined for all v Joo.)

Let RE,(I1) = @D, e, () BEL (7).
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Now, let 7" O {oo} be a finite set of places of Q with Ramp,g U
Ramg(Il) C Thn C Splp,p+ @- Note that

HE (X, L) (T} = Py, © RE(7°°) € HE(X, L)

oo

where the sum is over all 7° = 77 ® 7q, where 7! is unramified and

BC (1 T) 2 TIT. We then define an admissible Q,[G,, (A7, ) x Gr]-module

BC 1y, (H*(X, L)X {I1"}) := @D BC 1y, (w7,,,) @ RE (),

where 7°° runs over the same set.
THEOREM 3.1. —
1. If 7> € Ry(I1) then ng,l(ﬂ'oo) #(0) if and only if k =n — 1.
2. We have
BC 1y, (H"H(X, L)X {IT}) = (¢ Mi,,) @ R (1),
3. We have _
RETHID™ 2= Ry (1) © Ry ()l

Proof. — The first part follows from Corollary 6.5 of [13]. The second
part follows from the proof of Corollary 6.4 of op. cit.. The third part follows
from the proof of Corollary 6.8 of op. cit. (Note that the character rec;,, (¢)
which appears in the proof of this corollary is equal to Ry, (1)~1).) O

3.2. The endoscopic case
We now assume we are in the following situation:

— m1,my are positive integers with my > mo and my + mo = n;

— fori =1,2,1I; is a RACSDC automorphic representation of GL,,, (Ar)

— w:Aj/E* — C* is a Hecke character such that
— Ramg(w@) C Splg,p+ g
— o A% /Qx is the quadratic character corresponding to the quadratic
extension E/Q by class field theory.

— 1 : Aj/E* — C* is an algebraic Hecke character such that
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_ (¢H1¢H2)|A§ - (1/)®wN(m1,m2))c/(¢®wN(m1,m2)) where N(mq, msy) =
[F*:Q](mie(n —my) + mae(n —my))/2 € Z;
- RamQ(T,ZJ) C SplF/FJr’Q.
— fori=1,2, Tl :=1; ® (woNg/go det)f(”fmi);

— II:=¢ ®n—Ind gL:’nl X G L, (ITaz1 ® Ipz2) (an automorphic repre-
sentation of G, (A)) is E-cohomological for some irreducible algebraic
representation Z of G,,/C. (We note that the normalized induction is
irreducible as ITps 1 and IIj 2 are unitary.)

_ As above, we let £ be the irreducible algebraic representation of G' over
Q; such that Z is associated to €. Let Ry(II) denote the set of 7> €
Irr; (G(A®)) such that

- ng,l(ﬁw) # (0) for some k;

— 7% is unramified at all v ¢ Ramp, g U Ramg(Il) U Ramg(w) and

BC > (1r™) = II*°.

Let R’g’l(H) = ®7TO°6RL(H) R’g’l(w"o).

Let T' D {oo} be a finite set of places of Q with Ramp,q U Ramg(IT) U
Ramg(w) C Thin C Sply/p+ g- We define

BC ., (H* (X, £e){1I"})
exactly as in the previous subsection.
THEOREM 3.2. —

1. If 7 € Ry(IT), then ng,l(ﬂ'oo) #(0) if and only if k =n — 1.
2. We have

BC 1,,, (H*(X, L)X {TIT}) = (0" g,,) @ RE7H(T0).

3. There exists an integer ex(Il, G) € {£1} depending on II and G such
that

(a) If eo(II,G) =1 then

R ()™ = Ry ()96 @ Ry (w0 (702,
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(b) If eo(II,G) = —1 then
REp () 2 Ry (11)°0 @ Ry (oot [0772)/2) g,

Proof. — The first and second parts follow respectively from Corollary
6.5 and the proof of Corollary 6.4 of [13]. The third part follows from the
proofs of Corollaries 6.8 and 6.10 of op. cit. (Alternative 3.a corresponds
to the case when e; = ey in the notation of op. cit., while alternative 3.b
corresponds to the case when e; = —eo. Note however that by Corollary 6.5
of op. cit., e; = (=1)"~1 = 1. We therefore take es(II, G) = e5.) O

4. Integral models

We now proceed to introduce integral models for the varieties Xy and to
deduce various results on these models, following the arguments of Section
3 of [14]. Recall that we have fixed an isomorphism G xg A*™ = G, xg A*.
Since p € Splg @, we have an isomorphism

G(Qp) = Q) x [[GLn(Fu,)
i=1
and we decompose G(A>) as
G(A™) = G(A™P) x Q) x [[ GLn(Fu,).
i=1
If m = (ma,...,m,) € ZZ;", set
Uy (m) = [ [ ker(GLn(OFw,) = GLn(Opw, /wi™)) € [[ GLa(Fu,).
i=2 i=2
We consider the following compact open subgroups of G(Q,):
Ma(m) = Z; x GLy(OFp.w) x Uy’ (m)
Iw(m) = Z; X Iwy x U’ (m).

Fix an m as above. If UP C G(A®P) is a compact open subgroup, we let
Up =UPxMa(m) and U = UP xIw(m). Fori=1,...,r,let A; CVQpF,,
be a GL,(OF,, )-stable lattice.

For each sufficiently small U? as above, an integral model of Xy, over
Op, is constructed in Section 5.2 of [13] (note that Xy, is denoted Shyp ()
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in [13] with m = (0,ma,...,m,)). We denote this integral model also by
Xy, It represents a functor Xy, from the category of locally Noetherian
OF,-schemes to sets which, as in the characteristic O case, is initially defined
on the category of pairs (S,s) where S is a connected locally Noetherian
Op w-scheme and s is a geometric point of S. It sends a pair (S, s) to the
set of equivalence classes of (r + 3)-tuples (A, A, i, 77, {o; }7_,) where

— A/S is an abelian scheme of dimension [F* : Q|n;
— A: A — AV is a prime-to-p polarization;
— 1:0p = End (A) ®7 Zp) such that Ao i(f) =i(f)Y o N

— 7P is a m (S, s)-invariant UP-orbit of isomorphisms of F' ®g A>P-
modules 7”1 V ®@g A®P — VP A, which take the pairing (-,-) on V
to a (A°P)*-multiple of the A-Weil pairing on VP Ag;

— for each f € Op there is an equality of polynomials detog (f|Lie A) =
detg(f|V?1) in the sense of Section 5 of [11];

— for 2 <i<rya;: (wi™ A /A)s — Alw!™] is an isomorphism of
S-schemes with O ,,,-actions;

and

— two such tuples (A, A, 4,77, {o; }i_5) and (A", N, #, (7P), {a}}i_,) are
equivalent if there is a prime-to-p isogeny A — A’ taking A, i, 7¥ and
a; to v, @, () and o} for some v € Z(Xp).

The scheme Xy, is smooth and projective over Op,,. As UP varies, the
inverse system of the Xy,’s has an action of G(A>P).

Given a tuple (A, A, 4,77, {a; }i_y) over S as above, we let G4 = A[w™],
a Barsotti-Tate Op ,,-module over S. If p is locally nilpotent on S, then G4
has dimension 1 and is compatible (which means that the two actions of
Op . on LieG4 (coming from the structural morphism S — Spec Op,,, and
from i : Op — End (A) ®z Z,)) coincide). We let Ay, denote the universal
abelian scheme over Xy, and we let G =G4, -

Let Xy, denote the special fibre Xy, X0, k(w) of Xy,, and for 0 <

h <n-—1,let ngj denote the reduced closed subscheme of X, whose

closed geometric points s are those for which the maximal étale quotient of
Gs has Op,,-height at most h. Let

() _ splhl  plh—1]
)([J0 == XU() - XU[)
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(where we set YB_OH = (). Then YS)O) is non-empty. [We exhibit an F,, point

of YS)O) Consider the p-adic type (F,n) over F where 0, = 1/(n[k(w) : Fp))
and 7, = 0 for 7 > 1. It corresponds to an isogeny class of abelian varieties
with F-action over F,. Let (A,7)/F, be an element of this isogeny class.
Then

— A has dimension [FT : Q|n;

— Co = End%.(A) is the division algebra with centre F which is split
outside ww® and has Hasse invariant 1/n at w;

— and the p-divisible group A[w®°] has pure slope 1/(n[F,, : Qp]), while
Alwse] is étale for i > 1.

?

(See section 5.2 of [8].) Just as in the proof of Lemma V.4.1 of [8] one
shows that there is a polarization g : A — AV and an F-vector space Wy
of dimension n together with a non-degenerate alternating form ( , )¢ :
Wy x Wy — Q such that

— Xgoi(a) =i(ca)¥ o for all a € F}

— (ax,y)o = (z, (ca)y)o for all @ € F and x,y € Wy;

— VPA =W, ®g A™P as Ay "P-modules with alternating pairings de-
fined up to (A°P)*-multiples (the pairing on V? A being the Ao-Weil
pairing);

- Wo®gR =V @R as F'®g R-modules with alternating pairings up
to R*-multiples.

(In fact Wy will be the Betti cohomology of a certain lift of (A,) to char-
acteristic 0.) Let Gy denote the denote the algebraic group of F-linear au-
tomorphisms of W, that preserve ( , )o up to scalar multiples, and let
b0 € HY(Q, Gy) represent the difference between (Wo, { , )o) and (V,{ , )).
So in fact
$o € ker(H*(Q,Go) — H' (R, Gyp)).
Let 1, denote the Ao Rosati involution on C and define an algebraic group
HgV /Q by
HyV(R) = {g € (Co®g R)* : gg™ € R*}.
There is a natural isomorphism
HEY xg A™P =5 Go xg A®P

coming from the isomorphism V?A = Wy ®g A°P. As in Lemma V.3.1 of
[8] the polarizations of A which induce complex conjugation on i(F') are
parametrized by

ker(H'(Q, Hy") — H'(R, Hy")).
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Let A(Go) and A(HAV) be the groups defined in Section 2.1 of [10], so that
there are sequences

HY(Q,Go) — HYQ,Go(A)) — A(G))

and
HY(Q, Hy"V) — HY(Q, HyV (&) — A(Hy"Y),

which are exact in the middle. Note that as all primes of F'+ above p split
in F' we have H'(Q,,Go) = (0) and H*(Q,, Hy"V) = (0). Thus the image
o5 of ¢p in HY(Q, GO(KOO’p)) maps to 0 in A(Gp). By Lemma 2.8 of [11]

Hl(Q’ HGAV(KOOW)) — H' (@7 GO(KOO’;D»
\J \
A(HgY) = A(Go)
commutes. Thus thinking of ¢o°" € H'(Q, H{V (A™")) we see that it can
be lifted to
5V € ker(HH(Q, HyV) — H' (R, HYY)).

Let A\ denote the corresponding polarization of (A,4). There is an isomor-
phism

PV @g AP =5 VPA
of A%"P-modules with alternating pairings up to (A°?)*-multiples. More-

over for i = 2,...,r the p-divisible group A[w?] is étale and so there are

%

isomorphisms (w; ™ Ai/Ai)F 5 A[w!™]. Thus

L , (0) —
(AN 0,77, {uYiy) € X (F,),

as desired.]

Just as in Section II1.4 of [8], one deduces that each 78? is non-empty

. . < (h .
and smooth of pure dimension h. Over X EJo) there is a short exact sequence
0-6"=G—-G%=0

where GO is a formal Barsotti-Tate O Fw-module and G°* is an étale Barsotti-
Tate Op,-module of O 4,-height h.

We define an integral model for Xy over Op,,, (for sufficiently small UP)
as on page 480 of [14]. It represents a functor Xy from the category of locally
Noetherian O ,-schemes to sets which, as above, is initially defined on the
category of connected locally Noetherian O ,-schemes with a geometric
point. It sends a pair (S, s) to the set of equivalence classes of (r + 4)-tuples
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(AN 6,77, C, {a; }1_y) where (A, N\, 4,77, {a;}I_,) is as in the definition of
Xy, (S, s) and C is a chain of isogenies

C:Ga=Gy—G1— - —G,=0Ga/Gaw]

of compatible Barsotti-Tate O ,,-modules, each of degree #k(w) and with
composition equal to the canonical map G4 — Ga/Ga[w]. By Lemma 3.2
of [14], which holds equally well in our situation, the functor Xy is repre-
sentable by scheme Xy which is finite over Xy, .

Let U? be sufficiently small and let Xy = Xy Xo,., k(w) denote the
special fibre of Xy;. By parts (1) and (2) of Proposition 3.4 of [14] (whose
proof applies in our situation), Xy has pure dimension n, it has semistable
reduction over OF,, it is regular and the natural map Xy — Xy, is finite
and flat. We let Ay denote the universal abelian variety over Xy .

We say that an isogeny G — G’ of one-dimensional compatible Barsotti-
Tate Op,,-modules of degree #k(w) over a scheme S of characteristic p has
connected kernel if it induces the zero map LieG — LieG’. Let Yy ; denote
the closed subscheme of Xy over which G;_; — G; has connected kernel.
By part (3) of Proposition 3.4 of [14], each Yy; is smooth over Spec k(w) of
pure dimension n — 1, Xy = U, Yy, and for ¢ # j the schemes Yz;; and
Yy,; have no common connected component. It follows that Xy has strictly
semistable reduction.

For each S C {1,...,n}, we let

0
Yus = () Yvi and Y9 g = Yus — | Yo
ieS T2S8

Since Xy has strictly semistable reduction, each Yy g is smooth over k(w)
of pure dimension n — #5 and the Yg’ g are disjoint for different S.

The inverse systems Xy and Xy, for varying UP, have compatible ac-
tions of G(A>P). For each S C {1,...,n}, the inverse systems Yy, g and Y)
are stable under this action. As in the characteristic zero case, the actions
of G(A>P) extend to actions on the inverse systems of the universal abelian
varieties Ay and Ay, . Here the action is by prime-to-p quasi-isogenies.

Let £ be an irreducible algebraic representation of G over Q. If I # p,
then the sheaf £, extends to a lisse sheaf on the integral models Xy and
Xu,. There exist non-negative integers m¢ and ¢ and an idempotent e¢ €
Q [Sme x F¢] (where S, is the symmetric group on meg-letters) such that

> Qe (VY ®g Q)M
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This follows from the discussion on pages 97 and 98 of [8] (applied in our
setting). Let N > 2 be prime to p and let

e(mg, N H H - Nv € Q(N7=0)me]

r=1y#1

where [N], is the element of (N%>0)™¢ with N in the z-th entry and 1 in
the other entries and where y runs from 0 to 2[F* : Q|n but excludes 1.
Thinking of (N%Z>0)™s C F™¢ we set

ag = ag, N = Ega(mg, N)2n71 S @l[Smg X Fmi].
Let proj denote the map AZLE — Xy and for a = 1,...,m¢, let proj, :
Ay — Xy denote the composition of the a-th inclusion Ay — A?}g with
proj. Then we have the following (see page 477 of [14]):

o (0) (J # me)
_ ,N)R .Q, = m . o= s ;
e(meg, N)R/proj,Q { R, Rlproja,*@l (J =me)
— ece(mg, N)R™proj,Q; = Ly;

— ag acts as an idempotent on each HY (A,* X g, Fy, Q;(t¢)) and more-
over

. — = 0 j<m
agH (A X o, Fu, Qulte)) = {Eﬁlg—mé(XU X, Fu,Le) ((J > m;))

Let .AU 5= AZ% X x, Yu,s. As UP varies, the inverse system of the .AZ%S
inherits an action of G(AP*°) by prime-to-p quasi-isogenies. We now make
the following definitions.

— Define admissible Q,[G(A>?) x G r]-modules:

H? (Xty(m), L¢) = lm H (Xy xp F,L¢) = H (X, L) im)
—
Ur

HI(AL s Q1) = lim HI (A xp Q).
Up

— If | # p, we define admissible Q;[G(AP>) x FrobZ]-modules:
H? (Yig(m),s, Le) = 1i_H>1Hj(YU,s X (w) k(w), L)
Up
H] (Yigy(my 50 L&) 1= M HI(Y] g Xy k(w), Le)
Up
H (Aty(m),s: L¢) = lim H? (Av.s Xk(w) k(w), Q).
Up
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— Ifl=pand o : Wy — Q over Z, = Z;, where Wy is the Witt ring of
k(w), then we define the admissible Q;[G(A>*?) x FrobZ]-module
H (Ary(m),5/Wo) @we,e Q) i= Hi{lHj (Av,s/Wo) @wy,e Q-
Ur
(Here H7( Ay, s/Wy) denotes crystalline cohomology and Frob,, acts
by the [k(w) : Fp]-power of the crystalline Frobenius.)

We note that if | # p, then a¢ acts as an idempotent on Hj(AIW(m),S, Q)
and

_ . [(0) (J <me)
agH? (Atw(m),s, Q) = {Hj—ma(YIW(m)’s,ﬁg) (J = me).

If | = p, then ag acts as an idempotent on H’ (Arw(m),s/Wo) @wy,0 Q. We
also note that Ir, acts trivially on WD(H? (X1y(m), L¢)|ar, ) and thus the

w

latter can be regarded as a Frobw—module.

PROPOSITION 4.1. — Let T be a finite set of places of Q containing
{p,00} URamp g and let 1" € Irr(G,(AT)) be unramified at all v & T.

Ifl =p, let o : Wy — Q, over Z; = Z,. Then there is a spectral sequence
in the category of admissible Q[G(Aqy, _(p}) ¥ FrobZ]—modules

By (Tw(m), €)X {17} = WD(H™ (X1 (), Le)lar, )< {17}
where Ey” (Tw(m), §) = ®s>max(0 _iy P as—itost Hs,s> and

, ag HIFme=25 (A Iw (m),S? Qi(te = 5)) = H"% (Yiw(m),s, Le(—3))
Hé',s — (l 7é p)
agHJJ'_m{ 26(AIW (m), S/WO) ®W0 o Ql(tﬁ - 8) <l = p)

Moreover, the monodromy operator N on WD (H™ (X1 (m), Le)| G, )KT {nty
1s induced by the identity map

N: @ aﬁH]erE zs(Alw(m) s> Ql( —5))
#S=i4+2s5+1
adN @ %H(a 2)+me—2(s— 1)<Alw(m sa@l(tﬁ —(s—1)))
#5=(i42)+2(s—1)+1
in the case when I # p (resp.
N : ED agHﬂers QS(AIW(m) S/WO) OWy,o Ql(tE — S)
#S=i+2s+1
-~ @ ae HO=DFme=2(s— 1)(Alw(m s/Wo) ®wy.o Qilte — (s — 1))
#5=(i+2)+2(s—1)+1

in the case when l =p).
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Proof. — The proof of Proposition 3.5 of [14] shows that we have a
spectral sequence Ej”7 (Iw(m), &) = WD(H" (X 1y (), Le)|Gp, ) and that
the monodromy operator N on WD(H ™ (X, Le)|ap, ) is induced by
the maps above. The result now follows from the fact that R — R¥ T{HT}
is an exact functor from the category of admissible Q;[G(A>?) x FrobZ]-

modules to the category of admissible Q;[G(Ar,, _{p}) X FrobZ]-modules.
t

5. Relating the cohomology of Yy s to the cohomology
of Igusa varieties

Let UP C G(A*P) be sufficiently small and let m € Z;gl. Following
Section 4 of [14], we can relate the cohomology of the open strata Y[% g to
the cohomology of Igusa varieties of the first kind. For h =0,...,n—1 and
my € Zsg, let I((]};),(mhm) /78;) denote the Igusa variety of the first kind
defined as on page 121 of [8]. It is the moduli space of isomorphisms

aft : (wfmloF,w/OF,w)h}(h) = G w™].
Uo

Let [, [(Jh) /Y(LZ)) be the Iwahori-Igusa variety of the first kind defined as on
page 487 of [14]. It is the moduli space of chains of isogenies

G =Gy —= G — - — Gp=G"/G"w]

of étale Barsotti-Tate O ,-modules, each of degree #k(w) and with compo-

sition equal to the natural map G°* — G°*/G°*[w]. Then I[(]’;) () a0 I((Jh)
(h)

Ur,(1,m)
and Galois with Galois group By, (k(w)). The inverse systems I

— I((Jh) is finite étale
(h)

Ur,(my,m)
Il(]h), for varying U”, inherit an action of G(A°?). Let £ be an irreducible
algebraic representation of G over Q. If I # p, then & gives rise to a lisse
) and IV

U

Ur,(my,m)

~(h
are finite étale over X 5]0) and the natural map I

and

sheaf L on

For S C {1,...,n} and h = n — #S, there is a natural map ¢ : Y&S —

I I(]h) which is defined by sending the chain of isogenies C to its étale quotient.
By Lemma 4.1 of [14] this map is finite and bijective on geometric points.
By Corollary 4.2 of op. cit. we have

~

7 ENAY 7 h Tl
Hc(Y(?,S Xk(w) k’(u}),ﬁg) — HC(I((]) Xk(w) k(w),ﬁg)
><lf(w) k(w)a ‘C§>Bh(k(w))

~ i h
AN HC(Ig,)’(Lm)
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for each i € Z-( and these isomorphisms are compatible with the action of
G(AP*°) as UP varies.

If | # p, set
Hi(I{yf,ys £e) = T HIIG Xy K(w), Le).

Iw(m)’
Up

This is an admissible Q;[G(A>P) x Frob%]—module. Define
[H(}/Iw(m),Sa ‘CE)] = Z(_l)n7#37iHi (}/Iw(m),Sa ‘Cf)

[He(VS iy 50 L)) = D (=1 FITHIYY, ) 50 Le)
[Ho (I, L)) = D (V)" HI(I ), Le)

in Groth (G(A®?) x FrobZ).

There is, up to isomorphism, a unique one-dimensional compatible for-
mal Barsotti-Tate Op ,-module Xp, ,_p over k(w) of Op,,-height n—h. We
have End o, ,, (XF, n-n) ®2 Q= Dg, n_p, the division algebra with centre

F,, and Hasse invariant 1/(n—h). For my € Zso, let 1" /(Yg;) X o (w)

Ue,(mi,m)

k(w)) denote the moduli space of O, -equivariant isomorphisms
7 (w ™ OF, w/OFw) < (m) - G w™]

XUy Xk(w )k(w)
jO : (ZFw,n—h[ ])X( Xk(w)k(w) — go[wml]

that extend étale locally to any level mj > mj. (In the notation of [13], for
each 0 < h < n—1, there is a unique b € B(Gg,, —p) corresponding to h (see
displayed equation (5.3) of op. cit.). If m = (mq,...,mq), then Igglp)’(mhm) is
denoted Igy, 175 ,,, in [13] (see Section 5.2 of op. cit. and Section 4 of [12]). We
have simply extended the definition to ‘non-parallel’ (mq, m) € Z>o X Z;El.
We also note that the notation Ig(h) is used in place of Ig; in Section 7.3 of
[13].) If | # p and ¢ is an irreducible algebraic representation of G over Q;,

then & gives rise to a lisse sheaf L¢ on each Igglg (mam)” Let
, ) R
H(1g™, L) = lim HUTa) (1, oy Lo)-
Ur,myi,m

This is an admissible Q;[G(A%?) x J")(Q,)]-module where
JM(Q,) = Q) x (DF, _py X GLu(Fy)) X HGL
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(see Section 5 of [13], where J)(Q,) is denoted J,(Q,), with b being the
element of B(Q,, —p) corresponding to h; in Section 7.3 of op. cit., Jp is
denoted JM). We have

X
VA X(ODFW,n—h, XIwp, ) XU (m)

Hi(Ig™, L) = HI(IM - Le),

(m)?

where the latter is regarded as an admissible Q;[G(A?*°)]-module. More-
over, the action of Frob,, on the right hand side corresponds to the action
of

(1,p W Tl ot 11) e GAP™®)x Q) x D} XGLy(Foy) x| [GLn(Fu,)
=2

on the left hand side, where wp, . _, is any uniformizer in Dp,, n—p. We
let

[He(1g™, L)) =D (1) Hi(1g™, L¢)

i

in Groth;(G(A>"?) x J"M(Q,)). As on page 489 of [14], we have

[H (Yiw(m).s: Le)] = Y (=1)n#)=(n=#1) [Hc(fl(x(_nﬁﬂ:ﬁ&)]-
758

As there are <n h#S) subsets T' D S with n — #T = h, we deduce the

following:

LEMMA 5.1. — Suppose | # p and S C {1,...,n}. Then we have an
equality

[H(}/iw(m),Sa ‘Cﬁ)] =
n—+#S

n—#5—n [ M —H#S ZX x (0} Iwp,w) XU (m)
> (e "( " )[Hcagwmg)} By o X
h=0

in Groth (G(AP>°) x FrobZ).
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6. Computing the cohomology of Yy s

In this section we deduce analogues of Proposition 4.4 of [14].

6.1. The stable case

Let IT! be a RACSDC automorphic representation of the group GL, (Af).
Suppose that II' is Z'-cohomological where Z! is an irreducible algebraic
representation of Ryp/QGLy, over C. Assume that

— Ramg(I') C Splp/pt Q-

By Lemma 7.2 of [13], we can and do choose an algebraic Hecke character
¢ A /E* — C* and an algebraic representation ¢ of G over C such
that

- '(/)H1|A}>§ = ¢C/¢;

— If Z is the representation of G, over C corresponding to ¢ as in

Section 2, then =! is isomorphic to the restriction of Z to

(RF/QGLn) XQ (C;
- §<C|;31x = 1<, (see below);

— Ramg(y) C Splp) e Qs

— 1 is unramified at u (recall that w is the prime of E below the w;).

(We note that Lemma 7.2 of [13] does not guarantee that ¢ be unramified at
u, but the fact that this can be achieved follows from the proof of Lemma
VI.2.10 of [8].) In the third bullet point, we consider EX embedded in
GR) C R* x GL(V ®qg R) via the map z — (22¢ 2). It then follows from
the third bullet point that R;,(1) is pure of weight m¢ — 2t¢. Set

II:=¢ .

Then II is a Z-cohomological automorphic representation of G, (A) =
GLi(Ag) x GL,(AFr). Note that II*, ¢ and II satisfy the assumptions of
Section 3.1. Let £ = 1~ !¢, an irreducible algebraic representation of G' over
Q. Let m, € Irry(G(Q,)) be such that BC ,(em,) = II, (note that m, is

unique as p splits in FE).

The next result follows from Proposition 7.14 of [13].
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PROPOSITION 6.1. — Suppose that | # p and 7rp ;é (0). Let T D
{oo} be a finite set of places of Q with Ramp,g U Ramg(IT) U {p} C Thn C
Splp/p+.@- Then for every S C {1,...,n}, we have

HI (Y. 5 Lg)KT '} = (0)
for j #£n—#S.

The following corollary can be proved in the same way as Corollary 4.5
of [14].

COROLLARY 6.2. — Suppose that | = p and o : Wy — Q, over Ly =174.
Let T' D {oc} be a finite set of places of Q with Ram /g URamg(IT) U{l} C

Thn C Splp/p+ - Ifﬂllw(m) # (0), then for every S C {1,...,n}, we have

ag(HIT™S (AL o /Wo) @0 @) {117} = (0)
forj #n—#S.

In the next result we place no restriction on the primes [ and p.

COROLLARY 6.3. — If Wll,w(m) # 0, then WD(ﬁglfl(Hﬂng) is pure of
weight me — 2te +n — 1 and WD(R;,,(II') |, ) is pure of weight n — 1.

Proof — Let T = {oo} URamp,g U Ramg(Il) U {p} and let D =

dim 771) Y Let T = Ty — {p}. By Theorem 3.1, we have an isomorphism
of Q[G,, (A7) x Gr]-modules

BC 1 (H™ (X (my, L)X {TIT}) 2 (0l ) @ RE (1)) ©P.
By proposition 4.1, there is a spectral sequence
Ey (Iw(m), &)X {17} = WD(H" ! (Xtw(m) Le)lar, )< {7}

Using Proposition 6.1 (when ! # p) and Corollary 6.2 (when | = p) we
see that Ei’j(lw(m),f)KT{HT} = (0) unless ¢ +j = n — 1, and thus
the spectral sequence degenerates at Fy. Let mp/ denote the unique ele-
ment of Irr;(G(Azr)) with BC g/ (77+) = 2+~ '/. Then, for i +j = n — 1,
EY (Iw(m),f)KT {17} is of the form 77+ ® R; where R; is a finite dimen-
sional Q;[FrobZ]-module which is pure of weight j + me — 2t (and pos-
sibly zero). The first statement now follows from this and the description
of the monodromy operator N in Proposition 4.1. The second statement
follows from the first statement together with Theorem 3.1 and Lemma 1.7
of [14]. O
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6.2. The endoscopic case
Suppose we are in the following situation:

— TII; is a RACSDC automorphic representation of GL,_1(Ar);
- RamQ(Hl) C SplF/F+,@7

— I is cohomological for an irreducible algebraic representation =; of
the group Rp/q(GL,—1) over C;

— II; has Shin-regular weight.

LEMMA 6.4. — We can find

— a continuous algebraic character Ty : A% /F* — C* with Ty =
Ils o ¢

— a continuous algebraic character ¢ : Aj,/E* — C*;
— a continuous character w : Ay, /E* — C*; and

— an irreducible algebraic representation ¢ of G over C
such that if we set

HM,l = Hl & (w o NF/E o det)
1T

n—Ind&m o (Mg @y o)

a2
I -

and let

— = be the irreducible algebraic representation of G, over C which cor-
responds to {c as in Section 2;

_=l._=
==

‘RF/Q(GL")XQ(C)

— Ramg(Il2) C Splg,p+ g
— Iy is unramified at u;

— Ramg(y) C SPIF/F+,Q;
— &clpx =¥
— % is unramified at u;

— Ramg(w) C SplF/FﬂQ;
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— wax factors through A* /Q*RZ, and equals the composite of Art g

with the surjective character Gf@b - Gal(E/Q) & {#£1} (note that

1

this implies w™ = w o ¢);

— w s unramified at u;

— ' is cohomological for Z' (note that II' is irreducible, as Hpr1 and
a2 are unitary, and also that (II')Y = 1I' o ¢);

— m |AE = /1 (recall that 1 denotes the central character of I1%).

Moreover, if we apply Theorem 3.2 to II, then alternative (2)(a) holds. In
other words, the integer ex(I1, G) equals 1 and if € =1~ ¢¢, then

RETHID™ = Ry, (1)° @ Ry, (vl - |2

Proof. — This follows by combining Lemmas 7.1, 7.2 and 7.3 of [13].
(More precisely, we first choose w using Lemma 7.1. The extra condition
that @ be unramified at u is easily achieved — in the proof of Lemma 7.1
we add the primes u and u® to the set R and insist that " takes value 1
onp € EX and on p € E... We then make two candidate choices x and x’
for Ty with x ™" = x o ¢, Ramg(x) C Splp/p+(Q) and x unramified at u
and with x’ having the same properties. In addition, we assume that the
infinity type of x and x’ are as prescribed in the paragraph before Lemma
7.2 of [13]. (The fact that we can find such characters follows for instance
from Lemma 2.2 of [7].) Lemma 7.2 of [13] then tells us that we can choose
pairs (¢, {c) and (¢',{) corresponding to the choice of Il = x or Iz = x’
and satisfying all the required properties except the requirement that ¢ and
¥’ be unramified at v and the requirement that the integer ey (I, G) equal
1. However, the proof of Lemma VI.2.10 of [8] shows that we may choose
¥ and ¢’ to be unramified at v and Lemma 7.3 of [13] shows that for one
of the choices (x,,&c) or (x',9', &), the corresponding integer e (11, G)
equals 1.) O

Choose Iy, ¥, @ and &¢ as in the above lemma and keep all additional
notation introduced there. Let

=y I,

an automorphic representation of G, (A). Let m, € Irr;(G(Q,)) be the
unique representation with BC (1) = IT,,. Write m, = ) @y @ (®)_yTu;,)
corresponding to the decomposition G(Q,) = QX X G Ly, (Fy) X[ ]i_y GLn(Fy,).
Let Taprw1 = v a1 € Ity (GLy—1(Fy)) and marwe = 0 o, €
IIII(GLl(Fw)).
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For a,b € Z>y, let
n — Red™” : Groth (GLa4s(Fy)) — Groth (D}, x GLy(Fy,))

denote the composition

T op

Grothl(GLa+b(Fw)) - Grothl(GLa(Fw) X GLb(Fw))
FeB9 Groth (DY, , x GLy(Fy))

where N,” is unipotent radical of the parabolic subgroup of GL,,, consisting
of block lower triangular matrices with an (a x a)-block in the upper left
corner and a (b x b)-block in the lower right corner;

JIngr + Groth | (GLm(Fy)) = Groth (GLa(Fu) x GLy(Fu))
is the normalized Jacquet module functor; and
L, : Groth(GL(Fy)) — Groth (D, )
is the map denoted LJ; in Proposition 3.2 of [1]. (See Section 2.4 of [13].)

Let 1/
5p,  JM(Q,) - C*

denote the character which sends (gp.0, (d, 9), 9:) € Q x(Dg., ., XxGLy(Fy))
% [Tjs GLn(Fu,) to |det(d)" det(g)~ "M%,

THEOREM 6.5. — Suppose | # p. Let T D {oo} be a finite set of places
of Q with Ramp,q U Ramg(II) URamg(w) U {p} C Than C Splp,p+ - Then

[He(1g, £¢)][T"] = (0)
while for 1 < h <n—1, we have an equality

BCP([Ho(1g™, £)][IT7]) = Cor™ ' 1P x

[(”p,o ®n—Indg, ") (0 Red" ™" (mar00) © Tarw,2) @ (®]_amu, )) ® ,ﬂg}j}f]

in Groth (G, (A®P) x JM(Q,)).

Proof. — The result is essentially a rewording of part (i) of Theorem
6.1 of [13]. We freely make use of the notation of op. cit. for the rest of
this proof. Let 0 < h < n—1 and let b € B(Qp, —u) correspond to h (in
the sense explained above). The constant e; which appears in the statement
of Theorem 6.1 of [13] is equal to (—1)"~! = 1 by Corollary 6.5(ii) of op.
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cit. Lemma 6.4 above, and the choices made after it, guarantee that the
constant eg also equals 1. Applying Theorem 6.1 of [13], we obtain

BCP([H (g™, L¢)]TT]) =
Ca(—=1)"=1I%°P] x [% (Redfl(wp) +Redf;,1,1(7rH,p))} :

(We remark that our definition of [H.(Ig™, L¢)] differs from Shin’s def-

inition of H.(Igy,, L¢) by a factor of (—1)".) We have Red%fl’l(ﬂH,p) =

n-— Red2_171(ﬁH7p) ®z_13}3/h2 (see Section 5.5 of [13]). By Lemma 5.9 of [13]
and the discussion immediately preceding it, we have

n-— Redz(ﬂp) +n-— Redfz—l,l(ﬂ-H,p) = ep(Jb)WP,0®2X1(h’a 7.‘-H,Z’))(g (®::27Twi)

where
0 (h=0)
Xi(h, i) = 4 n=Tnd gL (0= Red™ ™" (was1) @ Tar,,2)
(h #0)

Moreover, e,(.Jy) = (—1)"""~1 = (—1)" (see Case 1 in Section 5.5 of [13]).
The result follows. O

In Remark 7.16 of [13], Shin indicates that the following result can proved
in the same way as Proposition 7.14 of op. cit.. We give a self-contained proof
here for the benefit of the reader.

PROPOSITION 6.6. — Suppose | # p and ﬂzl,w(m) # (0). Let T D {oo} be
a finite set of places of Q with Ramp g U Ramg(Il) U Ramg(w) U {p} C
Tin C Splpp+ g- Then for every S C {1,...,n} we have

H (Yig(my.s» L) {117} = (0)

for j #£n—#S.

Proof. — Let D = Cg(dim(®7_ymy,)Y» ™). We deduce from Theorem
6.5 and Lemma 5.1 that

n—#S

BC?[H (Yiw(m.s: £OIMT] = D™ 7] x Y~ (—1)" 7 #57" (" _h#s>
h=1
Ly GLy, (Fuw) —1/2 of XIWp,
Tl'pyg ® (n — Ind GL:—llj’l(Fw)(n — Rednfh’hfl(er,w,l) ® TM,w,2) ® z’léph ) Fuy,n—h
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in Groth (G, (AP>) x FrobZ) (recall that Frob, acts Via (p~ k() Fp],

(@pr, o 1) in @ x (DR, X GLy(F,))). Since m," VM 0), w
can write maz w1 = Spg, (m1) B ... B Sp, (m;) where each 7; is an un-

. —x . .
ramified character m; : F\ — Q; . As Iz is generic, we know that

Twm,wa =0 — Ind G(L" )1 “’)(Spsl(m) ®...®Sp,,(m)) where P C GL,,_1 is

an appropriate parabolic subgroup.

Using Lemma 1.3.9 of [8] and Théoréme 3.1 and Proposition 3.2 of [1],
we see that for 1 < h <n—#S,

n — Ind giz(?i)@ )( Redn_h’h_l(ﬂM,wJ) @ TMw,2) =
GL}L(F )

Sillms Y [T o det] x [ — Tnd 555 (Spy, oy (mil - (1"
(®5iSPs, (7)) © Tas,w,2)]

Fy

in Grothl(D;w n_n X GLy(Fy)), where the sum is over all ¢ such that s; >
n—h, and P’ C GLy, is an appropriate parabolic subgroup. (As pointed out
n [14], there is a typo in Lemma 1.3.9 of [8] — ‘positive integers hy, ..., h
should be replaced by ‘non-negative integers hy, ..., h;’.) Moreover,

Twh w
. GLp(Fy n— >
dim (n — Ind 55 (S, ey (il - [1") © (29D, (7)) © 7TM,w,2))
h!

RO | T
(see page 490 of [14]). From this we deduce that
BCPH (Yiw(my,s» Le)|[IIT] = D[~ TI%7] x

n—+#5S
_us_p [ n—#S h!
(_1)n #S—h ( > [‘/1]7
; h z‘:s;—h (si = (n — R, s)!
where V; = rec(m; * 27! - |%:")/2(7Tp70 oNpg,/g,)""). As on page 490 of
[14], it follows that
oo n — #5)!
BOYH (Yiwg 5. LI = Do) Y0 C=F
:8; =#S J#i 55

As II; 4, is unitary and tempered (by Corollary 1.3 of [13]) and rec(m, o) =
1 'rec(¢),,) is strictly pure of weight 2t — m¢ (since f(c|;1x = ¢<), we

see that rec(my ,; ® 7' - (- n)/2(7rp70 oNp,/p,)"") is pure of weight
me —2te +n—1. If 5; = #S ‘it follows that V; is strictly pure of weight
me — 2t +n—1— (#S — 1) = mg — 2te + n — #S. The Weil conjectures
now imply that if j # n — #S5 then

[H? (Yiw(my, 55 L] = ag[H™H (Ary(ny. 55 Qu(te) ][] = (0)
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in Groth;(G(AP>°) x FrobZ). Since

T

[H (Yiw(my, s L&) {7 Y] = ([H? (Yiw(my, s, L) [T E

in Groth ;(G(Arq,, —(p}) FrobZ), the result follows. O

The proof of Corollary 4.5 of [14] allows us to deduce the following.

COROLLARY 6.7. — Suppose that l = p and o : Wy — Q; over Z, = 7.
Let T 'O {oc} be a finite set of places of Q with Ram /g URamg(IT) U{p} C

Thin C Splp/p+ Q- Ifﬂll,w(m) # (0), then for every S C {1,...,n}, we have
. m —_— T
ag(H7 ™ (AL s/ Wo) @wo,o Q) {TT7} = (0)

for j#£n—#S.

The next corollary follows from the previous two results combined with
Theorem 3.2 and the proof of Corollary 6.3.

COROLLARY 6.8. — If wll,w(m) # 0, then WD(ﬁg;l(H)|GF) is pure of
weight me — 2te +n — 1 and WD(Ry,(I11)|gy, ) is pure of weight n — 2.

7. Proof of Theorem 1.2

We now complete the proof of Theorem 1.2. Suppose that v|l is a place

of L with TI,"™" # {0}. Choose a finite CM soluble Galois extension F'/L
such that

— [FT:Q) is even;
— F = EF* where F is a quadratic imaginary field in which [ splits;

F splits completely above v;
— BC /1 (IT) is cuspidal;
— Ramp,qU Ramg(BC g/ (IT)) C SpleF/F%

(See the argument in the penultimate paragraph of [13].) Let [ and 2 : Q; =
C as given to us by the statement of Theorem 1.2. Choose another prime
I' # 1 and ¢ : Q, = C. Recall that in Section 2 we introduced notation
that was then in force from Section 3 to Section 6. We will shortly apply
the results of these sections in two scenarios — one where the pair (I,1) of
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Section 2 is equal to the pair (I,2) of the statement of Theorem 1.2 and
one where the (I,2) of Section 2 is equal to the pair (I’,2") chosen above.
The rest of the notation we fix as follows: we take E, F and F* as chosen
above. We take p = [ and let w be a prime of F' lying above the prime v
of L. This determines u and wy,...,w,. We choose some 7 : F' — C and
p - @p 5 C such that z;l o7 induces w. We take n = m if m is odd and
n =m + 1 otherwise. Finally we choose a set of data (V, (-,-), h) satisfying
the assumptions of Section 2.

Suppose first of all that m is odd. Denote BC g/, (1) by IT'. We choose

¢ and ¢ as in Section 6.1 and set II = PRI, € =1 15 and ¢’
(/)" t¢c. Define R” 1( ) and Rg, l,l( ) as in Section 3.1. Then RZ, l,l( )ss
Ry (TT1)% @ ng /( ¥)|gr by Theorem 3.1 and hence

IIZ ||

YWD(RE ) (I, ) rec((IL,) Y @17 2odet) “ @rec(y, ' oN g, /1,)
by Theorem 1.2 of [13]. Let T D {oo} be a finite set of places of Q with
Ramp,qg U Ramg(Il) U {p} C Thn C Splp,p+ g and let 7" = Th, — {p}. Let
7wy, be the unique element of Irry (G(Ar, )) with BCr,, (V77 ) = Iy, .
Choose m € Z'~! and a compact open subgroup U C G (AT/) such that
(why Ywm)xUr o2 {0}, Let (¢/)7 € Qu[KT\G(AT)/KT] be an idempo-
tent with (¢/)TRE" = RE"{II”} whenever R is one of HI (X 1y (m), Ler)
or agH J (.A;@g(lm) S’@l') Then each of these spaces is 7/ -isotypic. Let e_:
17 1'¢’. Then for each « € W, j >0, S C {1,...,n} and 0 : Wy — @
over Z;, we have

Vtr (ae’ag | HY ( S’Ql’) XUT’) —

itr <aeag|<Hﬂ<AI';‘f(’m),s/wo> w0 Q)K" *Vr)

by the main results of [9] and [6]. For each j > 0, we have
eag(Hj (A?zvg(/m),s/WO) OWo,o @l) c aE(H] (Alw(m) s/WO) QOWo,o Ql) {ﬁT}

e(Hj (XIW(m)/WO) ®Wo,U @l) C (HJ (XIw(m)/WO) ®VVo,U Ql) {HT}

We then deduce from the previous equality of traces together with Propo-
sition 6.1, Corollary 6.2, Proposition 4.1 and Theorem 3.1 that the two
inclusions above are equalities (for dimension reasons) and moreover that

o (@l WD(RE ) (D), ) = otr (@l WD(RE, (D), )
for each a € Wy, and hence
TWD(RE (M6, )™ = (rec((IL,) Y@ det |1 7)/2)*) C @rec(, ' oNp, /5, )-
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Since ~g’l_l(ﬁ)SS ~ R, (N ® Ry, (1)|Gr, by Theorem 3.1, we see that
"WD(Ry, ()|, )™ == rec((IT,)Y @ | det [(177/2),

By Proposition 1.1, it suffices to show that WD(R;,(IT')|,, ) is pure and
this is established in Corollary 6.3. As v splits completely in F', we have
established Theorem 1.2 in the case when m is odd.

Now suppose that m is even and denote BC F/L(HL) by II;. We choose
¥, &¢, @, 1T, and IT* as in Lemma 6.4. Set ﬁ~= P @I and € =171 and
¢ = (/)" and define Rgl_l(l_[) and g,jl,l(l_[) as in Section 3.2. The proof
now proceeds exactly as in the case where m is odd except that we replace
the appeals to Theorem 3.1, Proposition 6.1, Corollary 6.2 and Corollary 6.3
with appeals to Theorem 3.2, Proposition 6.6, Corollary 6.7 and Corollary

6.8 respectively.
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