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Gaussian process modeling
with inequality constraints

Sébastien Da Veiga1, Amandine Marrel2

ABSTRACT. — Gaussian process modeling is one of the most popular
approaches for building a metamodel in the case of expensive numerical
simulators. Frequently, the code outputs correspond to physical quanti-
ties with a behavior which is known a priori: Chemical concentrations lie
between 0 and 1, the output is increasing with respect to some parame-
ter, etc. Several approaches have been proposed to deal with such infor-
mation. In this paper, we introduce a new framework for incorporating
constraints in Gaussian process modeling, including bound, monotonicity
and convexity constraints. We also extend this framework to any type of
linear constraint. This new methodology mainly relies on conditional ex-
pectations of the truncated multinormal distribution. We propose several
approximations based on correlation-free assumptions, numerical integra-
tion tools and sampling techniques. From a practical point of view, we
illustrate how accuracy of Gaussian process predictions can be enhanced
with such constraint knowledge. We finally compare all approximate pre-
dictors on bound, monotonicity and convexity examples.

RÉSUMÉ. — La modélisation par processus Gaussiens est une des ap-
proches les plus utilisées pour construire un métamodèle dans le cas de
simulateurs numériques coûteux. Souvent, les sorties du code correspon-
dent à des quantités physiques dont le comportement est connu à l’avance:
les concentrations chimiques sont comprises entre 0 et 1, la sortie est
croissante par rapport à un des paramètres, etc. Plusieurs approches ont
été proposées pour prendre en compte de telles informations. Dans cet
article, nous introduisons un nouveau cadre théorique pour inclure des
contraintes dans la modélisation par processus Gaussiens, qui englobe
les contraintes de bornes, de monotonie et de convexité. Nous étendons
également ce cadre à tous les types de contraintes linéaires. Cette nouvelle
méthodologie fait appel aux moments conditionnels de lois normales mul-
tivariées tronquées. Nous proposons plusieurs approximations basées sur
une hypothèse de décorrélation, des outils d’intégration numérique et des
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techniques d’échantillonnage. D’un point de vue pratique, nous illustrons
l’amélioration des performances de prédiction par processus Gaussiens
lorque l’on inclut des contraintes. Nous comparons finalement les différents
prédicteurs approchés sur des exemples avec contraintes de bornes, mono-
tonie et convexité.

1. Introduction

To provide guidance to a better understanding of numerical simulators
and to reduce the response uncertainties most efficiently, sensitivity mea-
sures of the input importance on the output variability are highly infor-
mative indicators [36]. For models that require a reasonable computational
time, direct sampling methods (Monte Carlo) can be used to conduct uncer-
tainty propagation studies or sensitivity analysis. In the case of simulators
that take several hours or days for a single run, such direct sampling methods
are impractical. To deal with these expensive models, several metamodel-
based methods have been proposed in the past few years [28], [7]. Their
potential was clearly illustrated when dealing with expensive simulators,
since they outperform standard Monte-Carlo techniques. All these meth-
ods consist of the following steps. At first, an approximating metamodel
is built from a small number of simulations so as to reproduce the expen-
sive model. Then, this proxy model is used to compute sensitivity indices,
through analytical or Monte-Carlo formulations. Among them, the Gaus-
sian process approach is one of the most popular due to the wide range of
applications where it was successfully used [25]. Frequently, the expensive
model is built upon physical equations that involve symmetries, positiveness
or monotonicity constraints. Accounting for such knowledge, while building
the proxy model, could greatly improve the quality of approximation. Conse-
quently, the estimation of sensitivity indices is more accurate while reducing
the number of simulations required to build the proxy model. However, so
far, very few of the metamodel-based methods are able to use this a priori
information. In a one-dimensional setting, monotonicity constraints were
investigated by [17], [31] and [3]. In a general kernel regression framework
with no dimensionality restriction, monotonicity has been studied by [8]
and [30]. In [17], monotonicity is incorporated through several optimiza-
tion constraints in kernel weights identification and involves, in practice,
quadratic programming techniques. [30] further propose to include convex-
ity constraints with a sequential quadratic programming point of view. In
the kriging community, [1] proposed a data-augmentation based simulation
algorithm to account for bound constraints on a Gaussian process. Later,
[41] applied the optimization constraint idea of [17] to the identification
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of the kriging weights in the case of bound constraints. A different point
of view is taken by [26], where bounded kriging simulations are generated
by means of a Gibbs sampler. Recently, [20] examined monotonicity con-
straint in the kriging setting. The authors develop a bootstrap approach
in order to select only monotonic kriging realizations, which are then used
to build a new predictor through averaging. Besides, let us point out the
theoretical contribution to symmetry constraints by [15]. In this paper, we
focus mainly on linear constraints for Gaussian process modeling. In Section
2, we develop first a theoretical framework capable of accounting for such
constraints. This work mainly relies on the literature related to truncated
multinormal variables ([38], [39], [23], [24], [27]). Starting from analytical
expressions of truncated moments, we show how it is possible to incorpo-
rate bound, monotonicity and convexity prior information on the expensive
model. Available formulas involve the computation of integrals with dimen-
sionality directly linked to the number of constraints. When this number is
large (or even infinite, when monotonicity is imposed on a given interval for
example), it is then necessary to provide efficient approximations. We pro-
pose in Section 3 a list of powerful approximation methods, which consist
of numerical integral approximations and sampling techniques. Section 4 is
dedicated to several illustrations of our methodology on prediction exam-
ples. Finally, we conclude with a brief summary and outline questions for
future research.

2. Theoretical formulation

In this section, we first briefly introduce the Gaussian process modeling
framework. We then detail the theoretical setting for incorporating con-
straints. In what follows, we assume that the complex computer code is
represented by a function f : RD → R which is assumed to be continu-
ous. For a given value of the vector of inputs x =

(
x1, . . . , xD

)
∈ RD, a

simulation run of the code yields a real value y = f(x), which corresponds
to the output of interest. In practice, one evaluation of the function f can
take several hours or even days. As a result, we make use here of response
surface methods. The idea is the following. For a given set of input vectors
{x1, . . . ,xn}, we compute the corresponding outputs y1, . . . , yn. The goal is
to build an approximating model of f using the sample (xi, yi)i=1,...,n. We

let Xs =
[
xT1 , . . . ,x

T
n

]T
and Ys = [y1, . . . , yn]

T
denote the matrix of sample

locations and the vector of responses, respectively.
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2.1. Standard Gaussian process modeling

Gaussian process modeling [35] considers the deterministic response y =
f(x) as a realization of a random field Y (x) given by the following decom-
position:

Y (x) = f0(x) +W (x)

where f0(x) is the mean function (e.g. a polynomial) and W (x) is a sta-
tionary centered Gaussian field with variance σ2 and correlation function R.
Note that stationarity implies that its covariance function C(x,x′) can be
written as C(τ) = σ2R(τ) with τ = x− x′. In this setting, the conditional
distribution of the response at a new location x∗ is a Gaussian distribution
with moments given by

E (Y (x∗)|Y (Xs) = Ys) = f0(x
∗) + k(x∗)TΣ−1

S (Ys − Fs) (2.1)

Var (Y (x∗)|Y (Xs) = Ys) = σ2 − k(x∗)TΣ−1
S k(x∗) (2.2)

where Fs = [f(x1), . . . , f(xn)]
T

is the vector of the mean function at sample
locations, k(x∗) is the covariance vector between x and sample locations Xs
and ΣS is the covariance matrix at sample locations. The conditional mean
(2.1) serves as the predictor at location x, and the prediction variance is
given by (2.2). In practice, the mean function f0(x) has a parametric form

f0(x) =
∑J
j=1 βjfj(x) = F (x)β where functions F (x) = [f1(x), . . . , fJ(x)]

are known and β = [β1, . . . , βJ ]T are regression parameters to be esti-
mated. Moreover, R is chosen among a class of standard correlation func-
tions (Gaussian, Matérn, ...) given up to some unknown hyperparameters ψ,
corresponding to correlation lengths for example, see [32]. R is then denoted
by Rψ. As a result, in order to use the conditional expectation as a predic-
tor, these parameters need to be estimated. Maximum likelihood estimators
are usually preferred. For example, provided that ψ is known, regression
parameters are obtained with the generalized least square estimator

β̂ = (FsR
−1
ψ Fs)

−1FTs R
−1
ψ Ys

and the maximum likelihood estimator of σ2 is

σ̂2 =
1

n
(Ys − Fsβ̂)TR−1

ψ (Ys − Fsβ̂).

In addition, estimation of hyperparameters consists in solving the following
minimization problem

ψ∗ = arg min
ψ
σ̂2 det(Rψ)

1
n .
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Consequently, the conditional field Ỹ (x∗) = Y (x∗)|Y (Xs) = Ys with esti-
mated parameters is a Gaussian field with mean µ̃(x∗) given by

µ̃(x∗) = F (x∗)β̂ + k(x∗)TΣ−1
S

(
Ys − Fsβ̂

)

and covariance function equal to

C̃(x,x′) = C(x,x′)− k(x)TΣ−1
S k(x′).

Note that the covariance function has an additional component if the vari-
ance estimation on β̂ is accounted for ([37]), but this case will not be con-
sidered here.

As stated in the introduction, our goal is to incorporate constraints on

the so-called kriging predictor µ̃(x∗) = E
(
Ỹ (x∗)

)
. In contrast to previous

work on constrained kriging ([41], [20]), we propose to keep the conditional
expectation framework. For instance, if we know that predictions must lie
between two real values a and b for all points in a subset I of RD, the
predictor is naturally replaced with the conditional expectation

E
(
Ỹ (x∗)|∀x ∈ I, a � Ỹ (x) � b

)
. (2.3)

Similarly, in a one-dimensional setting, a monotonicity condition on I would
lead to some conditional expectation

E
(
Ỹ (x∗)|∀x ∈ I, Ỹ ′(x) � 0

)
. (2.4)

Let us remark that computation of such expectations is strongly linked
to the theory of extrema of random fields. Indeed, equation (2.3) can be
rewritten as

E
(
Ỹ (x∗)|min

x∈I
Ỹ (x) � a,max

x∈I
Ỹ (x) � b

)
. (2.5)

Explicit formulation of these quantities is not available in general. Indeed,
distribution functions of extrema of random fields can be approximated
through Rice formulas [2]. But here, equation (2.5) implies that we also
need the joint distribution of the field Ỹ (x) and its extrema, which is not
available. Hence, we suggest a discrete-location approximation. Instead of
imposing a constraint on a given subset, we discretize it into a (large) num-
ber of conditioning points. As an illustration, consider a set of N points
x1, . . . ,xN chosen in a subset I. Then, the conditional expectation in equa-
tion (2.3) is approximated by

E
(
Ỹ (x∗)|∀i = 1, . . . , N, a � Ỹ (xi) � b

)
. (2.6)
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Note that this conditioning does not imply that the computer code f must
be evaluated at points x1, . . . ,xN . More generally, in this work, any con-
straint defined on a subset will be replaced with its discrete-location coun-
terpart. We will discuss the quality of this approximation according to the
value of N in Section 4. In the following subsections, we will examine com-
mon constraints and the corresponding conditional expectation predictors
that we propose.

2.2. Bound constraints

The most common type of constraints concerns bounds on the predic-
tor. Indeed, it is highly frequent that computer code outputs correspond to
physical quantities that are known to lie in a given interval. In chemical sci-
ence, such quantities would be species concentration (between 0 and 1), or,
in reservoir engineering, they would be oil production (strictly positive) for
instance. Incorporation of these physical constraints should provide better
predictions, and, in worst cases, neglecting them can even yield non-physical
estimations. Let I ⊂ RD denote a subset of RD and x1, . . . ,xN be a set of
N points chosen in I. We assume that for all points in I, predictions must
lie between two functions a(x) and b(x). Then, denoting ai = a(xi) and
bi = b(xi) for all i = 1, . . . , N , our constrained predictor is given by

E
(
Ỹ (x∗)|∀i = 1, . . . , N, ai � Ỹ (xi) � bi

)
. (2.7)

This is a straightforward generalization of equation (2.6). Since the random

vector
(
Ỹ (x∗), Ỹ (x1), . . . , Ỹ (xN )

)
follows a multivariate Gaussian distri-

bution, the conditional expectation in equation (2.7) actually corresponds
to the mean of the so-called truncated multinormal distribution [38], see
Section 3 for details.

2.3. Derivative constraints

Another usual available constraint is related to monotonicity. The in-
creasing or decreasing behavior of the output with respect to some vari-
ables is often governed by physical equations. In this case, differentiability
of f is generally first assumed. Consequently, the covariance function C is
chosen among functions yielding differentiable trajectories. Here, we focus
on fields which are mean-square differentiable, i.e. ∂2C(τ)/∂τ2

j exists and
is finite for all 1 � j � D ([6]). Assume that predictions must be increasing
with respect to some variable xj , 1 � j � D, on some subset I ⊂ RD and
denote x1, . . . ,xN a set of N points chosen in I. Therefore, the constrained
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predictor is equal to

E

(
Ỹ (x∗)|∀i = 1, . . . , N,

∂Ỹ

∂xj
(xi) � 0

)
. (2.8)

Derivative constraints related to other variables on other subsets can be
readily incorporated in this conditional expectation. An important result
is that all vectors encompassing Ỹ (x∗) and any of its partial derivatives is
Gaussian, since the differential operator is linear. As a result, equation (2.8)
is also the mean of a truncated multinormal distribution. Note that we have
for example the following relations [6]:

Cov

(
Ỹ (x),

∂Ỹ

∂x′j
(x′)

)
=

∂

∂x′j
C̃(x,x′). (2.9)

Cov

(
∂Ỹ

∂xi
(x),

∂Ỹ

∂x′j
(x′)

)
=

∂2

∂xi∂x′j
C̃(x,x′). (2.10)

2.4. Convexity constraints

Sometimes, the practitioner further knows that f is convex at some lo-
cations, due to physical insight. Assuming that f is twice-differentiable im-
poses to choose a covariance function C such that ∂4C(τ)/∂τ4

j exists and
is finite for all 1 � j � D. In a one-dimensional setting, if we require that
predictions must be convex at some locations x1, . . . , xn, the constrained
predictor is

E

(
Ỹ (x∗)|∀i = 1, . . . , N,

∂2Ỹ

∂x2
(xi) � 0

)
. (2.11)

In a two-dimensional setting, it becomes

E
(
Ỹ (x∗)|∀i = 1, . . . , N,∇2

x∗x∗ Ỹ (xi, x
′
i) � 0

)
(2.12)

for locations (xi, x
′
i) ∈ R2, i = 1, . . . , N . Equation (2.11) corresponds to a

standard truncated multinormal distribution because a vector with compo-
nents consisting of Ỹ (x∗) and any of its second-order derivatives is Gaussian.
In a two-dimensional setting, the predictor (2.12) involves the mean of the
so-called elliptically truncated multinormal distribution [39]. Convexity in
higher dimensions can also be incorporated if we impose that the Hessian
matrix of the Gaussian field Ỹ (x∗) is positive-semidefinite at each constraint
point. By Sylvester’s criterion, this is equivalent to impose that each lead-
ing principal minor of the Hessian is positive. However, since this involves
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computing determinants, such a constraint leads to polynomial constraints,
which have not been treated yet from a truncation perspective in the liter-
ature. Even if it is possible to deal with them through the Gibbs sampler
which will be presented in Section 3.2, note that at each constraint point
there are D minors. As a result, the number of constraints is equal to N×D
and will increase with dimension D. For simplicity, we will only investigate
convexity constraints for D = 1 and D = 2 in the following sections. Let us
remark that more generally, if we consider Ỹ (x∗) derivatives:

Ỹ (κ)(x) =
∂|κ|

∂(x1)κ1 · · · ∂(xD)κD
Ỹ (x), (2.13)

we have:
Cov

(
Ỹ (κ)(x), Ỹ (λ)(x′)

)

=
∂|κ|+|λ|

∂(x1)κ1 · · · ∂(xD)κD∂(x′1)λ1 · · · ∂(x′D)λD
C̃(x,x′) (2.14)

where κ = (κ1, . . . , κD) and λ = (λ1, . . . , λD) are non-negative integers with
|κ| = ∑

i κi and |λ| = ∑
i λi, see [6].

2.5. Linear constraints

The last type of constraints that we study here concerns linear inequality
constraints. For illustration, imagine that the output of the computer code
is a physical quantity subject to some conservation-type constraint, e.g.∫
x∈Ω

f(x)dx � M for some constant M and a subset Ω ⊂ RD. If we seek
predictions satisfying this equation, the constrained predictor should be

E
(
Ỹ (x∗)|

∫

x∈Ω

Ỹ (x)dx �M
)
. (2.15)

Unfortunately, this integral has no analytical formulation. In practice, it
can be approximated through numerical integration. In the following, we
will assume that it is approximated linearly, i.e.

∫

x∈Ω

Ỹ (x)dx ≈
N∑

i=1

wiỸ (xi) (2.16)

for some locations x1, . . . ,xN and associated weights w1, . . . , wN . This in-
cludes trapezoidal and Gaussian quadrature rules for D = 1, and Monte-
Carlo approximation for any value ofD. Hence, the approximate constrained
predictor is

E

(
Ỹ (x∗)|

N∑

i=1

wiỸ (xi) �M
)
. (2.17)
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This is the mean of a Gaussian vector subject to a plane truncation, which
has been studied by [40].

2.6. Parameter estimation

As mentioned in Section 2.1, regression parameters β , variance param-
eter σ2 and covariance hyperparameters ψ are preliminarily estimated by
maximizing the unconditional likelihood of the observations. In other words,
all the above constraints are not used in this estimation process and are in-
cluded in subsequent predictions exclusively. In the context of bound trun-
cation of multinormal variables, mean and covariance estimation can be
performed via Gibbs sampling, see [16]. To the best of our knowledge, no
extension was developed for general linear constraints and covariance hy-
perparameters. Since there is no successful stragey currently available, we
propose to investigate conditional maximum likelihood estimation in future
research and to work only with unconditional estimations in what follows.

3. Approximations of truncated moments

As mentioned in the previous section, all constrained predictors exhib-
ited so far fall into the framework of truncated multinormal distributions.
There is a large amount of literature dedicated to truncation of Gaus-
sian vectors, the pioneering work being that of Tallis ([38], [39], [40]). In
this section, we first detail the analytical derivations which are available
in the literature. Since they consist of several integral computations, we
then present adapted numerical integration tools. Alternatively, we discuss
convenient simulation algorithms capable of generating samples from a trun-
cated Gaussian vector. This makes it possible to estimate the constrained
predictors through averaging. For simplicity, we work in this section with
a D-dimensional Gaussian vector denoted Z = (Z1, . . . , ZD) with mean
µ ∈ RD and covariance matrix Σ. Its probability density function (pdf) is
then given by

φµ,Σ(z) =
1

(2π)D/2|Σ|1/2 exp

(
−1

2
(z− µ)TΣ−1(z− µ)

)
, z ∈ RD.

For example, Z will stand for the vector(
Ỹ (x∗), Ỹ (x1), . . . , Ỹ (xN ), Ỹ ′(x′1), . . . , Ỹ

′(x′N )
)

if one wishes to build the

kriging predictor at some location x∗ with bound constraints on both the
predictor and its derivative imposed at points x1, . . . ,xN and x′1, . . . ,x

′
N

respectively.

– 537 –
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3.1. Available formulas

Let us study first the case of bound constraints, i.e. a � Z � b for two
vectors a and b in RD. The pdf of the truncated Gaussian vector Z, or
equivalently the conditional pdf of Z knowing a � Z � b, is given by:

φµ,Σ,a,b(z) =

{
φµ,Σ(z)
P(a�Z�b)

, for a � z � b,

0, otherwise.

In what follows, we denote α = P(a � Z � b) and assume without loss of
generality that µ = 0 (all variables and truncation points are translated by
−µ). Following [38], a direct computation shows that the moment generating
function of the truncated distribution is given by

m(t) = E (exp(〈t,Z〉)) =
exp(T )

α
Φ(a− ξ,b− ξ; Σ) (3.1)

where T = 1
2t
TΣt, ξ = Σt and function Φ is defined by

Φ(u,v; Σ) =

∫ v1

u1

. . .

∫ vD

uD

φ0,Σ(z)dz.

[38] then uses equation (3.1) to derive the first- and second-order moments
for the truncated distributions by computing the partial derivatives of m(t)
at the origin. More precisely, coming back to a general µ and denoting

fi(z) =

∫ b1

a1

. . .

∫ bi−1

ai−1

∫ bi+1

ai+1

. . .

∫ bD

aD

φµ,Σ,a,b(z1, . . . , zi−1, z, zi+1, . . . , zD)dz1 . . . dz−i (3.2)

the i-th marginal density of the truncated distribution, we have

E(Zi|a � Z � b) = µ+

D∑

j=1

σij (fj(aj)− fj(bj)) (3.3)

where σij = (Σ)ij . Other contributions include recursive formulas in [23],
[24], as well as explicit ones for the two-dimensional case in [27] and other
properties related to marginalization and conditioning in [19]. In the case
D = 1, truncated moments are then given by the following formulas:

E(Z1|a1 � Z1 � b1) = µ1 + σ1
φ(ã1)− φ(b̃1)

Φ(b̃1)− Φ(ã1)
(3.4)

Var(Z1|a1�Z1�b1)=σ2
1


1 +

ã1φ(ã1)− b̃1φ(b̃1)

Φ(b̃1)− Φ(ã1)
−

(
φ(ã1)− φ(b̃1)

Φ(b̃1)− Φ(ã1)

)2

(3.5)
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where ã1 = (a1−µ1)/σ1 and b̃1 = (b1−µ1)/σ1 with σ1 =
√
σ11. These mono-

dimensional results also correspond to equation (3.3) when all correlations
are neglected for D > 1, i.e. they can be used to compute all expectations
and variances of the truncated distribution if Σ is assumed to be diagonal.
Equation (3.3) yields an analytical expression for the constrained predictors
in equations (2.3), (2.8) and (2.11). Similar results were derived by [40] for
the case of linear inequality constraints which, after linear transformation,
involve the same formulas as for bound constraints. This yields an analyt-
ical expression for the constrained predictor of equation (2.17) as well. In
addition, [39] computed the moment generating function of the elliptically
truncated Gaussian distribution for standardized variables and ellipses cen-
tered at the origin. [5] extended this result to general variables and ellipses.
In their work, approximations of first- and second-order moments are ob-
tained through Laguerre expansions. We do not report the calculations here.

From a computational perspective, a result on general truncation given
in [22] will be useful. In equation (3.3), if not all the variables are trun-
cated, we can naively replace the corresponding bounds by infinite ones
and compute the corresponding D− 1 dimensional integrals. However, it is
possible to reduce the problem complexity. Up to permutation of its com-
ponents, we can assume that Z consists of truncated variables Z1, . . . , Zk
and non-truncated ones Zk+1, . . . , ZD for k < D. Truncation here is to be
understood in a general way, i.e. bound, linear or even elliptical. Without
loss of generality, we take µ = 0 and let the non-truncated covariance matrix
Σ be partitioned as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 corresponds to the covariance of the non-truncated version of
Z1, . . . , Zk, Σ22 to the non-truncated version of Zk+1, . . . , ZD and Σ12 to
their non-truncated cross-covariance. Assume that the mean ν1 and the
covariance matrix Γ11 of Z1, . . . , Zk after truncation are available, by using
for example the expansions of [38]. Then, the mean ν2 and covariance matrix
Γ22 of the remaining variables Zk+1, . . . , ZD are given by

ν2 = Σ21Σ
−1
11 ν1 (3.6)

and

Γ22 = Σ22 − Σ21

(
Σ−1

11 − Σ−1
11 Γ11Σ

−1
11

)
Σ12. (3.7)

In the case of bound constraints, equation (3.6) is easily obtained from (3.3).
Indeed, non-truncated variables Zk+1, . . . , ZD correspond to infinite bounds
in (3.2), meaning that their mean only involves the marginals fi for i =
1, . . . , k in equation (3.3). This yields ν2 = Σ21w with
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w := (fj(aj)− fj(bj))1�j�k. But, in this case, the fi for i = 1, . . . , k degen-
erate into the marginals of the truncated distribution of variables Z1, . . . , Zk
only. This means that we also have ν1 = Σ11w. Eliminating w in these equa-
tions finally gives (3.6). A similar reasoning yields (3.7). In other words, com-
putation of truncated moments will only be performed in a space of dimen-
sionality k−1, where k < D is the number of constrained components. Once
the truncated moments are computed, moments of non-truncated variables
are obtained by standard Gaussian regression formulas. From a practical
point of view, let us consider for instance that we want to incorporate bound
constraints on Ỹ (x). Since we impose constraints at points x1, . . . ,xN only,
the procedure for building predictions at a new location x∗ is the following.

First, we compute the truncated mean of
(
Ỹ (x1), . . . , Ỹ (xN )

)
with equation

(3.3). This yields ν1 in equation (3.6). Second, we solve the linear system
Σ−1

11 Σ12 of equation (3.6). Note that it only requires information on the non-
truncated covariance matrix of the field Ỹ (x). Finally, the prediction at x∗

is given by (3.6). Generalization to other types of constraints is straight-
forward, as long as all constraint points for each constrained field (bounds,
monotonicity, linear inequality) are included in the vector Z1, . . . , Zk which
is subject to truncation. Note also that when considering several kind of
constraints, it is possible to impose them at different locations.

In general, we will mainly rely on equation (3.3) for the evaluation of
the truncated mean ν1 at constraint points. Remark that it involves compu-
tation of normal integrals of dimension D− 1 (or k− 1 as explained above).
When D is large, as should be the case in the discrete-location method we
propose, it is necessary to have powerful algorithms capable of producing
accurate approximations. In this work, we will use the latest versions of the
algorithms based on the methodology introduced by Genz ([11], [12]). It
relies on a preliminary Cholesky decomposition of Σ and successive mono-
dimensional integrations with a Quasi Monte-Carlo procedure. Algorithms
are available on Allan Genz’s webpage (http://www.math.wsu.edu/faculty/
genz/homepage). In practice, we have been able to use this methodology
for D around 1000. Interested readers can find an introduction and de-
tails on available algorithms in [13]. The algorithm complexity depends on
the dimension D (the number of constraints) and on the size of the Quasi
Monte-Carlo sample denoted by q. More precisely, the complexity is given
by O(D3 +Dq), where the O(D3) term correponds to the Cholesky decom-
position and O(Dq) to mono-dimensional integrations.
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3.2. Sampling techniques

Another approach for approximating truncated moments involves sam-
pling techniques. Practically, if we were able to generate samples from the
truncated vector Z, empirical moments calculated on the basis of this sam-
ple would yield approximations of the constrained predictors. Literature on
simulation of truncated multinormal variables is abundant. In the case of
linear truncations, most algorithms are based on MCMC methods. Some
call for a Gibbs sampler ([14], [33], [21], [34]), while others are rooted in
the perfect simulation framework ([29], [10]). All MCMC methods for mul-
tivariate sampling involve numerous calls to a sampling algorithm for the
univariate truncated normal. Inversion of the cumulative distribution func-
tion is possible, but approximation errors occur when the probability of the
normal variable to be inside the truncation bounds is low. Similarly, crude
rejection sampling from the normal distribution will be inefficient in the
same case. [14] and [33] proposed rejection samplers with a high acceptance
rate. Since we will use the algorithm of [33], we detail its implementation
in what follows. Assume without loss of generality that we sample from a
normal distribution with mean µ = 0 and variance σ2 = 1 in the interval
[a, b]. The rejection algorithm is

1. Generate a uniform random number z in [a, b]

2. Compute

g(z) =





exp(−z2/2) if 0 ∈ [a, b]
exp((b2 − z2)/2) if b < 0
exp((a2 − z2)/2) if 0 < a

3. Generate a uniform random number u in [0, 1] and accept z if u �
g(z); otherwise go back to step 1.

Note that [4] also designed a univariate algorithm based on tables, which
seems to be the fastest algorithm so far. The complete algorithm (Gibbs
sampler with the previous rejection technique) has a complexity equal to
O(D3 + Dq), where q is the size of the requested truncated sample. Once
again, the O(D3) term comes from a preliminary Cholesky decomposition
used for the Gibbs sampler, while calls to the univariate sampler have com-
plexity O(Dq).

In the case of elliptically truncated multinormal vectors, it is still possi-
ble to use the Gibbs sampler of [33] since it is actually designed for general
convex truncation sets, provided that one-dimensional slices of the subset
are easily computable. However, let us mention that an efficient multidi-
mensional rejection sampler has been developed by [9]. Their idea is based
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on the following result concerning truncated simulation outside a sphere for
zero-mean normal vectors. Let X ∼ ND(0, I) and let Y be independent of
X and distributed as

fY (y) ∝ exp(−y/2)y
D
2 −11(y > r).

Then, Z =
√
Y X
‖X‖ has density given by

fZ(z) ∝ exp

(
−zT z

2

)
1(zT z > r),

i.e. Z follows a truncated normal distribution outside the sphere of radius
r. Sampling from the univariate variable Y is straightforward, which im-
plies that sampling from Z is very fast. The authors then develop a method
for computing the largest origin-centered sphere contained in the trunca-
tion ellipsoid, as well as the smallest origin-centered sphere containing the
ellipsoid. These two spheres are finally used in a rejection algorithm.

4. Numerical studies

Let us illustrate the behavior of the constrained predictors on several an-
alytical examples with bound, monotonicity and convexity constraints. For
all examples with bound and monotonicity, we will compare the constrained
predictors given by three different techniques:

• Genz approximation,

• Gibbs sampling technique,

• Correlation-free approximation (equation (3.4)).

4.1. Examples on 1-D functions

Consider first the one-dimensional function f1 given by

f1(x) =
sin(10πx)

10πx

for x ∈ [0, 1]. We assume that n observations (xi, yi = f1(xi))i=1,...,n are
available, where the xi are sampled according to the uniform distribution
on [0, 1]. These observations are used to build the conditional field Ỹ (x) and

the corresponding unconstrained kriging predictor µ̃(x∗) = E
(
Ỹ (x∗)

)
in-

troduced in Section 2.1. The mean function f0(x) is assumed to be constant
and the hyperparameters are estimated by maximum likelihood. Now, we
suppose further that f1 is known to be positive on every interval

[
2m
10 ,

2m+1
10

]

and negative on
[
2m+1

10 , 2m+2
10

]
for m = 0, . . . , 4. Consequently, we build the
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constrained predictor E
(
Ỹ (x∗)|∀i = 1, . . . , N, ai � Ỹ (xi) � bi

)
of equation

(7) by choosing N locations uniformly on [0, 1] and by setting ai and bi ac-
cording to the above intervals. We then compute its approximation by Genz
algorithm, Gibbs sampling and the correlation-free formula. To evaluate the
accuracy of the metamodels, we use the predictivity coefficient Q2. It is the
determination coefficient R2 computed from a test sample (composed here
by ntest = 100 uniformly chosen points):

Q2(Y, Ŷ ) = 1−
∑ntest

i=1

(
Yi − Ŷi

)2

∑ntest

i=1

(
Yi − Ȳ

)2 ,

where Y denotes the ntest true observations (or exact values) of the test set,
Ȳ their empirical mean and Ŷ the metamodel predicted values. Results for
a random sample of xi with n = 10 observations and N = 20 constraint
locations are given in Figure 1, top. The predictor variance (equation (3.7))
is depicted in Figure 1, bottom. Here, the covariance function is the Gaussian
one and predictions are performed on a set of 100 points chosen uniformly
on [0, 1].

First note that Genz algorithm and Gibbs sampling yield the same re-
sults for the predictor and its variance. The unconstrained predictor cannot
reproduce the shape of f1 on the left part, since no observation points fall in
this region. The behavior is similar on the far right part, leading to an overall
Q2 equal to 0.021, which is very low. Incorporation of positivity constraints
makes it possible to greatly improve the prediction in the regions with few
observation points. The correlation-free approximation still exhibits incor-
rect variations on the far left and the far right, but it yields a Q2 equal
to 0.83, which is much higher than the unconstrained predictor. Genz and
sampling approximations both produce extremely well-behaved predictors,
with similar Q2 equal to 0.98. Concerning the predictor variance, we can
observe that it is heavily reduced when accounting for constraints, especially
with Genz and sampling approximations. This example, with an unfortu-
nate sample, clearly illustrates the added value of constraint incorporation
in the predictions.

In order to validate our approach on a larger set of possible locations,
we repeat this procedure 100 times with both the Gaussian and the Matérn
3/2 covariance functions. We selected the Matérn 3/2 covariance function
because it usually gives good predictions in many of our numerical exper-
iments. Note however that it produces trajectories which are only differ-
entiable at order one (in the mean square sense). We also study several
choices for n and N . Results on the Q2 for each method are given in Table 1
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and Table 2 for the Gaussian and the Matérn covariance function, respec-
tively. When the number of observations is small (10 or 15), accounting for
constraints yield better prediction in mean, and the standard deviation is
smaller. Also note that Genz and sampling approximations yield equivalent
results and outperform the correlation-free formula. As expected, when the
number of observations increases, incorporation of constraints is less inter-
esting. In addition, the number of location points is not influential, meaning
that 20 constraints are already sufficient for a good approximation. Besides,
in this example, the Gaussian covariance function is superior to the Matérn
3/2 one.
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Figure 1. — Unconstrained and bound-constrained predictor (top) and predictor
variance (bottom) for function f1. Constraint points are marked with a cross.
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Table 1. — Mean and standard deviation of Q2 for different values of n and N with a
Gaussian covariance for function f1.

n N Unconstrained Genz Sampling Correlation-free
n = 10 N = 20 0.30 +/- 0.46 0.53 +/- 0.36 0.47 +/- 0.39 0.42 +/- 0.29
n = 10 N = 30 0.24 +/- 0.43 0.41 +/- 0.39 0.39 +/- 0.43 0.41 +/- 0.30
n = 15 N = 20 0.58 +/- 0.53 0.72 +/- 0.36 0.72 +/- 0.36 0.69 +/- 0.34
n = 15 N = 30 0.62 +/- 0.56 0.80 +/- 0.34 0.77 +/- 0.37 0.74 +/- 0.33
n = 20 N = 20 0.93 +/- 0.28 0.96 +/- 0.12 0.96 +/- 0.12 0.91 +/- 0.28
n = 20 N = 30 0.91 +/- 0.34 0.95 +/- 0.14 0.95 +/- 0.15 0.93 +/- 0.18
n = 25 N = 20 0.99 +/- 0.03 0.99 +/- 0.03 0.99 +/- 0.03 0.99 +/- 0.03
n = 25 N = 30 0.96 +/- 0.29 0.99 +/- 0.05 0.99 +/- 0.05 0.98 +/- 0.10

Table 2. — Mean and standard deviation of Q2 for different values of n and N with a
Matérn 3/2 covariance for function f1.

n N Unconstrained Genz Sampling Correlation-free
n = 10 N = 20 0.46 +/- 0.61 0.60 +/- 0.41 0.46 +/- 0.58 0.45 +/- 0.33
n = 10 N = 30 0.29 +/- 0.46 0.52 +/- 0.33 0.32 +/- 0.39 0.47 +/- 0.28
n = 15 N = 20 0.60 +/- 0.40 0.72 +/- 0.32 0.70 +/- 0.34 0.68 +/- 0.31
n = 15 N = 30 0.55 +/- 0.45 0.74 +/- 0.34 0.65 +/- 0.42 0.69 +/- 0.31
n = 20 N = 20 0.73 +/- 0.39 0.83 +/- 0.29 0.80 +/- 0.33 0.81 +/- 0.30
n = 20 N = 30 0.79 +/- 0.33 0.85 +/- 0.25 0.84 +/- 0.26 0.83 +/- 0.25
n = 25 N = 20 0.82 +/- 0.38 0.87 +/- 0.27 0.87 +/- 0.27 0.86 +/- 0.28
n = 25 N = 30 0.89 +/- 0.28 0.92 +/- 0.20 0.92 +/- 0.20 0.91 +/- 0.21

Our second example involves function f2 given by

f2(x) =
sin(10πx5/2)

10πx

for x ∈ [0, 1]. This function is more difficult to approximate because it has
a frequency which exhibits strong variations on [0, 1]. As before, we select
n observations (xi, yi = f2(xi))i=1,...,n where the xi are sampled according
to the uniform distribution on [0, 1] and we build the unconstrained krig-
ing predictor. Again, the mean function f0(x) is assumed to be constant
and the hyperparameters are estimated by maximum likelihood. We first
include bound constraints as in previous example; i.e. we choose N loca-
tions uniformly on [0, 1] and impose positivity or negativity according to
f2. The so-obtained constrained predictor is approximated by Genz algo-
rithm, Gibbs sampling and the correlation-free formula. By repeating this
procedure 100 times, we obtain the mean and the standard deviation of
the Q2 for each method, for different values of n and N , as illustrated in
Table 3 and Table 4 for the Gaussian and the Matérn 3/2 covariance func-
tion, respectively. Once again, the number of constraints does not seem
to impact the results. However, when the number of observations is small
(10, 20 and 30), accounting for constraints improves much more the uncon-
strained predictor than in the previous example. This can be explained due
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to the non-stationary behavior of function f . Moreover, in this example,
the correlation-free formula performs very well. Note also that this time,
the Matérn 3/2 covariance function gives slightly better results than the
Gaussian one.

Let us investigate now the incorporation of derivative constraints for
the approximation of f2. In what follows, we will focus on the case n = 15
and fix N = 20 locations where we will impose constraints. We then build
constrained predictors with three different types of constraints:

• Bound constraints only at the N locations (positive / negative);

• Derivative constraints only at the N locations (increasing / decrea-
sing);

• Bound and derivative constraints at the N locations;

• Bound, derivative and convexity constraints at the N locations (only
for the Gaussian covariance function, which is sufficiently differen-
tiable).

In each case, we use Genz approximation to evaluate the constrained pre-
dictor. The mean and the standard deviation of the Q2 for a Matérn 3/2
and a Gaussian covariance function are given in Table 5.

Table 3. — Mean and standard deviation of Q2 for different values of n and N with a
Gaussian covariance for function f2.

n N Unconstrained Genz Sampling Correlation-free
n = 10 N = 20 0.43 +/- 0.24 0.71 +/- 0.19 0.68 +/- 0.20 0.71 +/- 0.26
n = 10 N = 30 0.43 +/- 0.24 0.67 +/- 0.21 0.65 +/- 0.23 0.77 +/- 0.14
n = 10 N = 50 0.45 +/- 0.22 0.61 +/- 0.20 0.69 +/- 0.23 0.76 +/- 0.16
n = 10 N = 100 0.47 +/- 0.21 0.52 +/- 0.19 0.66 +/- 0.25 0.81 +/- 0.14
n = 20 N = 20 0.71 +/- 0.19 0.87 +/- 0.16 0.85 +/- 0.17 0.86 +/- 0.14
n = 20 N = 30 0.71 +/- 0.20 0.82 +/- 0.20 0.83 +/- 0.20 0.84 +/- 0.18
n = 20 N = 50 0.73 +/- 0.15 0.84 +/- 0.14 0.85 +/- 0.14 0.88 +/- 0.08
n = 20 N = 100 0.69 +/- 0.21 0.77 +/- 0.22 0.80 +/- 0.23 0.86 +/- 0.16
n = 30 N = 20 0.86 +/- 0.18 0.94 +/- 0.10 0.94 +/- 0.10 0.93 +/- 0.08
n = 30 N = 30 0.89 +/- 0.14 0.92 +/- 0.12 0.92 +/- 0.14 0.93 +/- 0.11
n = 30 N = 50 0.82 +/- 0.22 0.85 +/- 0.23 0.88 +/- 0.21 0.93 +/- 0.10
n = 30 N = 100 0.89 +/- 0.15 0.91 +/- 0.16 0.91 +/- 0.16 0.95 +/- 0.07
n = 40 N = 20 0.93 +/- 0.14 0.95 +/- 0.09 0.95 +/- 0.09 0.94 +/- 0.10
n = 40 N = 30 0.91 +/- 0.17 0.93 +/- 0.15 0.94 +/- 0.14 0.94 +/- 0.14
n = 40 N = 50 0.95 +/- 0.10 0.96 +/- 0.09 0.96 +/- 0.09 0.97 +/- 0.07
n = 40 N = 100 0.93 +/- 0.18 0.92 +/- 0.18 0.93 +/- 0.15 0.94 +/- 0.15
n = 50 N = 20 0.98 +/- 0.08 0.98 +/- 0.06 0.98 +/- 0.06 0.98 +/- 0.06
n = 50 N = 30 0.98 +/- 0.08 0.98 +/- 0.06 0.98 +/- 0.06 0.98 +/- 0.06
n = 50 N = 50 0.96 +/- 0.13 0.96 +/- 0.12 0.96 +/- 0.12 0.97 +/- 0.11
n = 50 N = 100 0.97 +/- 0.08 0.97 +/- 0.08 0.97 +/- 0.08 0.98 +/- 0.06
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Table 4. — Mean and standard deviation of Q2 for different values of n and N with a
Matérn 3/2 covariance for function f2.

n N Unconstrained Genz Sampling Correlation-free
n = 10 N = 20 0.43 +/- 0.29 0.80 +/- 0.11 0.74 +/- 0.19 0.78 +/- 0.12
n = 10 N = 30 0.44 +/- 0.27 0.83 +/- 0.10 0.76 +/- 0.24 0.79 +/- 0.12
n = 10 N = 50 0.47 +/- 0.22 0.83 +/- 0.13 0.75 +/- 0.21 0.79 +/- 0.10
n = 10 N = 100 0.47 +/- 0.24 0.77 +/- 0.17 0.74 +/- 0.20 0.80 +/- 0.10
n = 20 N = 20 0.74 +/- 0.15 0.91 +/- 0.06 0.89 +/- 0.07 0.90 +/- 0.06
n = 20 N = 30 0.77 +/- 0.12 0.93 +/- 0.05 0.91 +/- 0.08 0.91 +/- 0.06
n = 20 N = 50 0.75 +/- 0.20 0.94 +/- 0.05 0.89 +/- 0.19 0.91 +/- 0.07
n = 20 N = 100 0.75 +/- 0.14 0.93 +/- 0.07 0.90 +/- 0.12 0.92 +/- 0.06
n = 30 N = 20 0.87 +/- 0.10 0.96 +/- 0.02 0.95 +/- 0.03 0.95 +/- 0.03
n = 30 N = 30 0.89 +/- 0.09 0.96 +/- 0.02 0.95 +/- 0.07 0.96 +/- 0.04
n = 30 N = 50 0.88 +/- 0.09 0.97 +/- 0.02 0.97 +/- 0.02 0.96 +/- 0.02
n = 30 N = 100 0.87 +/- 0.16 0.96 +/- 0.14 0.94 +/- 0.15 0.95 +/- 0.04
n = 40 N = 20 0.94 +/- 0.05 0.97 +/- 0.01 0.97 +/- 0.02 0.97 +/- 0.02
n = 40 N = 30 0.94 +/- 0.06 0.98 +/- 0.01 0.98 +/- 0.01 0.98 +/- 0.01
n = 40 N = 50 0.95 +/- 0.06 0.98 +/- 0.01 0.97 +/- 0.04 0.98 +/- 0.02
n = 40 N = 100 0.94 +/- 0.06 0.99 +/- 0.01 0.98 +/- 0.01 0.98 +/- 0.01
n = 50 N = 20 0.97 +/- 0.04 0.98 +/- 0.01 0.98 +/- 0.01 0.98 +/- 0.01
n = 50 N = 30 0.97 +/- 0.04 0.98 +/- 0.01 0.98 +/- 0.01 0.98 +/- 0.01
n = 50 N = 50 0.97 +/- 0.05 0.99 +/- 0.01 0.99 +/- 0.01 0.98 +/- 0.01
n = 50 N = 100 0.97 +/- 0.05 0.99 +/- 0.01 0.99 +/- 0.02 0.99 +/- 0.01

Table 5. — Mean and standard deviation of Q2 when accounting for several constraints
for function f2.

Constraints Gaussian Matérn 3/2
No 0.62 +/- 0.20 0.63 +/- 0.19

Bounds only 0.79 +/- 0.19 0.88 +/- 0.06
Derivatives only 0.80 +/- 0.19 0.77 +/- 0.11

Bounds and derivatives 0.80 +/- 0.23 0.91 +/- 0.06
Bounds and derivatives and convexity 0.85 +/- 0.19 ×

Observe first that the Matérn 3/2 covariance function is superior to the
Gaussian one in terms of both the mean and the standard deviation of
Q2. When we account for bound and derivative constraints together, the
predictions are improved, as expected. Note that in the Matérn 3/2 case,
bound constraints alone yield better results than derivatives only.

Here, convexity can also be accounted for in the case of a Gaussian
covariance function. We show in Figure 2 the cumulative incorporation of
bounds, first derivatives and convexity for n = 12 and N = 20 on f2,
as well as the corresponding predictor variance. While the unconstrained
predictor fails at retrieving information between observed points (Q2 =
0.43), constraints greatly help reconstruct the function in these regions.
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Bound constraints start by improving predictions on the right part (Q2 =
0.84 in Figure 2, top). First-derivatives further enhance the approximation
on the left part (Q2 = 0.95 in Figure 2, middle), but deteriorate it on the
right. This phenomenon is finally compensated by second-order derivatives
(Q2 = 0.98 in Figure 2, bottom). The predictor variance is first largely
reduced with bound constraints and one can observe further reduction with
derivatives. Convexity has a small impact on variance reduction, since there
is only a slight improvement between predictions with first- and second-
order derivatives.
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Figure 2. — Unconstrained and constrained predictor (left) and predictor variance
(right) accounting for constraints on bounds only (top), on bounds and derivatives

(middle) and on bounds, derivatives and convexity (bottom) on function f2.
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Figure 3. — Unconstrained and constrained predictor accounting for constraints on
bounds only (top), on bounds and derivatives (middle) and on bounds, derivatives and

convexity (bottom) on function f2 with random constraint locations.

In this last example, constraint points were chosen equally spaced on
[0, 1]. In order to examine the behavior of our predictor with respect to other
constraint locations, we now generate them at random. Results are reported
in Figure 3. Predictions are deteriorated in this case, with Q2 = 0.58 for con-
straints on bounds, Q2 = 0.72 for constraints on bounds and first derivatives
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and Q2 = 0.76 for constraints on bounds, first derivatives and convexity.
The largest difference with the previous result in Figure 2 is observed on
the right part, where constraints cannot reconstruct the true behavior of the
unknown function. This can be explained by the unfortunate choice for the
constraint points. Indeed, in the right part, there are no constraint points
imposing a negative value to the predictor. On the left part, the wide peak
is also ignored when derivative constraints are included. Once again, this
is due to the absence of constraint points imposing a positive value to the
first-derivative near the peak. As already illustrated in Table 5, incorpora-
tion of constraints improve predictions in average. However, specific sets of
locations can lessen this improvement. We mention in the last section ded-
icated to discussion a possible approach for an efficient placement of these
locations, which will be studied in future work.

4.2. Example on the 2-D Schwefel’s function

Finally, we propose to investigate our constrained predictors on a two-
dimensional example with bound constraints only. We consider the Schwe-
fel’s function defined by f(x1, x2) = −x1 sin(

√
|x1|) − x2 sin(

√
|x2|) on

[−200, 200]2. This function is displayed in Figure 4.

Figure 4. — 2-D Schwefel’s function.

Once again, we choose at random n observations in [−200, 200]2 and
impose positivity and negativity according to f on N locations selected
uniformly on [−200, 200]2. We repeat this procedure 100 times with both
the Gaussian and the Matérn 3/2 covariance functions, for several values
of n and N . Results on the mean and standard deviation of the Q2 are
reported in Table 6 and Table 7 for the Gaussian and the Matérn 3/2
covariance function, respectively. In both cases, the correlation-free formula
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and Genz approximation yield similar results. They both outperform the
unconstrained predictor until n = 200, where the number of observation is
sufficient enough to capture most of the information on f . Again, note that
the number of constraint points does not seem to influence the quality of
prediction in average.

Table 6. — Mean and standard deviation of Q2 for different values of n and N with a
Gaussian covariance function for the 2-D Schwefel’s function.

n N Unconstrained Genz Correlation-free
n = 50 N = 100 0.29 +/- 0.08 0.57 +/- 0.07 0.56 +/- 0.06
n = 50 N = 225 0.31 +/- 0.09 0.58 +/- 0.14 0.61 +/- 0.19
n = 50 N = 400 0.29 +/- 0.09 0.41 +/- 0.16 0.60 +/- 0.21
n = 100 N = 100 0.52 +/- 0.07 0.68 +/- 0.04 0.68 +/- 0.04
n = 100 N = 225 0.52 +/- 0.08 0.69 +/- 0.09 0.70 +/- 0.11
n = 100 N = 400 0.52 +/- 0.07 0.61 +/- 0.10 0.64 +/- 0.44
n = 150 N = 100 0.66 +/- 0.06 0.76 +/- 0.04 0.76 +/- 0.04
n = 150 N = 225 0.67 +/- 0.05 0.74 +/- 0.07 0.76 +/- 0.06
n = 150 N = 400 0.66 +/- 0.05 0.69 +/- 0.06 0.77 +/- 0.05
n = 200 N = 100 0.75 +/- 0.04 0.81 +/- 0.03 0.81 +/- 0.03
n = 200 N = 225 0.75 +/- 0.04 0.80 +/- 0.05 0.81 +/- 0.05
n = 200 N = 400 0.74 +/- 0.05 0.76 +/- 0.05 0.81 +/- 0.05
n = 300 N = 100 0.84 +/- 0.05 0.87 +/- 0.04 0.87 +/- 0.04
n = 300 N = 225 0.84 +/- 0.05 0.85 +/- 0.03 0.86 +/- 0.03
n = 300 N = 400 0.84 +/- 0.04 0.85 +/- 0.04 0.88 +/- 0.04

Table 7. — Mean and standard deviation of Q2 for different values of n and N with a
Matérn 3/2 covariance function for the 2-D Schwefel’s function.

n N Unconstrained Genz Correlation-free
n = 50 N = 100 0.32 +/- 0.09 0.60 +/- 0.10 0.60 +/- 0.07
n = 50 N = 225 0.32 +/- 0.09 0.69 +/- 0.10 0.69 +/- 0.06
n = 50 N = 400 0.32 +/- 0.10 0.63 +/- 0.11 0.68 +/- 0.04
n = 100 N = 100 0.64 +/- 0.07 0.78 +/- 0.03 0.77 +/- 0.03
n = 100 N = 225 0.65 +/- 0.07 0.81 +/- 0.05 0.79 +/- 0.05
n = 100 N = 400 0.64 +/- 0.08 0.78 +/- 0.05 0.80 +/- 0.03
n = 150 N = 100 0.82 +/- 0.05 0.88 +/- 0.03 0.87 +/- 0.03
n = 150 N = 225 0.83 +/- 0.06 0.88 +/- 0.03 0.87 +/- 0.03
n = 150 N = 400 0.83 +/- 0.04 0.87 +/- 0.03 0.88 +/- 0.02
n = 200 N = 100 0.92 +/- 0.03 0.94 +/- 0.02 0.94 +/- 0.03
n = 200 N = 225 0.92 +/- 0.03 0.93 +/- 0.02 0.93 +/- 0.02
n = 200 N = 400 0.92 +/- 0.03 0.93 +/- 0.03 0.94 +/- 0.02
n = 300 N = 100 0.98 +/- 0.02 0.99 +/- 0.01 0.99 +/- 0.01
n = 300 N = 225 0.98 +/- 0.02 0.98 +/- 0.02 0.98 +/- 0.02
n = 300 N = 400 0.98 +/- 0.02 0.98 +/- 0.02 0.99 +/- 0.01
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5. Discussion and conclusion

In this paper, we introduced a new theoretical framework for incorporat-
ing constraints in Gaussian process modeling, including bound, monotonic-
ity and convexity constraints. We also extended this framework to any type
of linear constraint, such as bounds on some integral of the output. The
final constrained predictor is based on a discrete-location approximation
of conditional expectations. From a computational perspective, the main
result which makes it possible to evaluate the proposed predictors is that
a vector encompassing the kriging underlying Gaussian field and any of
its derivatives is still Gaussian. Consequently, our constrained predictors
can be written as expectations of the truncated multinormal distribution,
which has been extensively studied in the past years. We then detailed the
explicit formulas on such truncated expectations. Since they involve com-
putation of integrals of dimensionality equal to the number of constraints,
we proposed several numerical approximations. The first one is based on a
simple correlation-free assumption, the second one on numerical integration
tools and the last one calls for sampling techniques. All of them not only
yield an approximation of the constrained predictor but also an estima-
tion of the prediction error like in the standard Gaussian process modeling
framework. Finally, we compared these predictors on bound, monotonicity
and convexity examples. Results showed that incorporation of constraints
greatly improve predictions. Future work is necessary to further improve
the methodology.

First, we provided examples on 1-D and 2-D functions only. Theore-
tically, generalization to more dimensions is straightforward. However, the
discrete-location approximation for the constraints will require many points
and subsequent integral approximations will suffer from the curse of di-
mensionality. At first glance, two remedies can be envisioned. Following the
ideas of covariance tapering and of sequential Gaussian simulation in geo-
statistics, a solution would be to place a reasonable amount of constraints
only in a neighborhood around the prediction point. Another point of view
would consist in accomodating sequential strategies already used in Gaus-
sian process modeling for adaptive designs, in the context of efficient global
optimization for instance. Starting from given initial locations of constraint
points, additional locations would be proposed where the predictor is more
likely to violate the constraints, in a sequential way. Such relevant constraint
points can be easily identified with the Gaussian process assumption.

Second, maximum-likelihood estimation of kriging hyperparameters
should be investigated for consistency under constraint assumptions. In
practice, this should also limit the number of constraint points needed for
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an effective discrete-location approximation. Further, error bounds on this
discrete-location approximation should be examined. Apart from quality
control, they could also be used in order to propose suitable locations for
the constraints.
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