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On the approximation of functions
on a Hodge manifold

Alessandro Ghigi(1)

ABSTRACT. — If (M,ω) is a Hodge manifold and f ∈ C∞(M,R) we
construct a canonical sequence of functions fN such that fN → f in the
C∞ topology. These functions have a simple geometric interpretation in
terms of the moment map and they are real algebraic, in the sense that
they are regular functions when M is regarded as a real algebraic variety.
The definition of fN is inspired by Berezin-Toeplitz quantization and by
ideas of Donaldson. The proof follows quickly from known results of Fine,
Liu and Ma.

RÉSUMÉ. — Soit (M,ω) une variété de Hodge et soit f ∈ C∞(M,R).
Nous definissons une suite canonique de fonctions fN telle que fN → f
dans la topologie C∞. Cette construction admet une interprétation très
simple du point de vue de l’application moment. En plus les fonctions fN
sont algébriques réelles, c’est-à-dire qu’elles sont des fonctions régulières
sur M vue comme variété algébrique réelle. La définition des fN est in-
spirée de la quantification de Berezin-Toeplitz et s’appuie sur des idées de
Donaldson. La preuve découle très vite de certains résultats dus à Fine,
Liu et Ma.
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1. Introduction

Let M be a complex projective algebraic manifold and let ω be a Hodge
metric, i.e. a Kähler metric such that [ω/2π] lies in the image of H2(M,Z)
inside H2(M,R). Using ideas of Donaldson [6, §4], Fine, Liu and Ma [7]
have already introduced a canonical way to approximate smooth functions
on M . More precisely, using the Fourier modes of the Szegö kernel they
defined a sequence of operators

QN : C∞(M,R)→ C∞(M,R) N = 1, 2, 3, . . .

with the property that for any f ∈ C∞(M,R) one has QNf → f in the
topology of C∞(M,R), see (3.7) below and Theorem 3.4. The importance
of these operators comes from the fact that QN is the derivative of the
nonlinear map that associates to a Kähler form ω its N -th Bergman metric
ωN , see [7, pp. 495-496].

The purpose of this note is to introduce another sequence of operators,
denoted PN , which are a variant of the QN . Theorem 3.5, which is the main
result in the paper, asserts that these operators still have the property that
PNf → f in C∞(M,R). But they have two other nice features. First, if
L is a polarization with 2πc1(L) = [ω], the operator PN admits a simple
geometric interpretation in terms of the complete linear system of LN and
the moment map. Next recall that Pm(C) can be embedded in the space of
Hermitian matrices by sending a line in Cm+1 to the orthogonal projector
onto it. This embedding is just the moment map of Pm(C) in disguise and it
endows Pm(C) with a canonical structure of (affine) real algebraic variety,
see e.g. [1, p. 73]. The same follows for every complex subvariety of Pm(C).
Thus every complex projective variety has a canonical structure of affine
algebraic variety over R. The real algebraic functions onM are the functions
which are regular with respect to this structure. The second nice feature of
the operators PN is that their range consists of real algebraic functions.
Thus an arbitray function f ∈ C∞(M,R) is approximated by functions
PNf which are real algebraic.

The author wishes to thank Roberto Paoletti for various crucial discus-
sions on the Szegö kernel. He also thanks Alberto Della Vedova, Christine
Laurent and Xiaonan Ma for useful emails. He also wishes to thank the
anonymous referee for a very careful reading of the manuscript, which im-
proved it a lot. Finally he acknowledges financial support from the PRIN
2007 MIUR “Moduli, strutture geometriche e loro applicazioni”.
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2. The geometric construction

Let W be a finite-dimensional complex vector space. Let P(W ∗) denote
the projective space of lines in W ∗. Any w ∈ W can be identified with a
section sw ∈ H0

(
P(W ∗),OP(W∗)(1)

)
defined by sw([λ])(tλ) = tλ(w). Here

tλ is the generic element of OP(W∗),[λ](−1). If 〈 , 〉 is a Hermitian product on
W , the line bundle OP(W∗)(1) inherits a Hermitian metric hFS such that

∣∣sw([λ])
∣∣
hFS

=
|λ(w)|
|λ| .

(With slight abuse we denote by |λ(w)| the absolute value of a complex
number and by |λ| the norm of a vector in W ∗.) If Θ(hFS) denotes the
curvature of hFS , then ωFS = iΘ(hFS) is by definition the Fubini-Study
metric on P(W ∗) induced by the product 〈 , 〉. The group SU(W, 〈 , 〉) acts
on (P(W ∗), ωFS) both holomorphically and isometrically and

Φ : P(W ∗)→ su(W ) Φ([λ]) = i

( 〈·, wλ〉wλ
|wλ|2

− idW
dimW

)

is the moment map. (Here wλ is the vector such that λ(·) = 〈·, wλ〉.) This
means that it is equivariant and that for any A ∈ su(W )

d (Φ, A) = −iξAωFS ,

where (X,Y ) := −trXY is the Killing product on su(W ) and ξA is the
fundamental vector field corresponding to A. Notice that

(Φ ([λ]) , A) = −i 〈Awλ, wλ〉|wλ|2
A ∈ su(W ). (2.1)

(For the proof see for example [9, p. 24].)

Let Mm be a projective manifold with an ample line bundle L → M
and let h be a Hermitian metric on L. Denote by Θ(h) the curvature of
the Chern connection of (L, h) and assume that ω := iΘ(h) ∈ 2πc1(L)
is a Kähler form. Let N be a natural number. Using h and the volume
form dVM := ωm/m! one can endow the space VN := H0(M,LN ) with the
L2-Hermitian product

〈s1, s2〉L2 :=

∫

M

h⊗N (s1(z), s2(z))dVM (z) s1, s2 ∈ VN .

Correspondingly, the projective space P(V ∗N ) is endowed with the Fubini-
Study metric induced from 〈 , 〉L2 . Denote by

ϕN :M → P(V ∗N ).

– 771 –



Alessandro Ghigi

the map associated to the complete linear system of LN , by ωN the Fubini-
Study metric on P(V ∗N ) induced by the Hermitian product 〈 , 〉L2 and by
ΦN : P(V ∗N )→ su(VN ) the moment map of (P(V ∗N ), ωN ) as described above.

Let L2(M,LN ) be the Hilbert space of L2 sections of LN . For any N let
ΠN : L2(M,LN )→ VN be the orthogonal projector onto VN = H0(M,LN ).
A function f ∈ C∞(M,C) induces a sequence of Toeplitz operators

Tf,N : L2(M,LN )→ L2(M,LN )

Tf,Ns := ΠN (f ·ΠNs) s ∈ L2(M,LN ).

Since the range of Tf,N is contained in VN and Tf,N ≡ 0 on V ⊥N , we will
identify Tf,N with its restriction to VN considered as an endomorphism of
VN . If s ∈ VN , then Tf,Ns := ΠN (fs). Since f is real valued, the operator
Tf,N is self-adjoint. Set

dN = h0(M,LN )− 1

and let T 0
f,N be the trace-free part of Tf,N :

T 0
f,N := Tf,N −

trTf,N
dN + 1

idVN .

Then iT 0
f,N ∈ su(VN ) and ( · , iT 0

f,N ) is a linear function on su(VN ). The
pull-back of this function to M via the map ΦN ◦ ϕN : M → su(VN ) is a
real valued smooth function on M , that we denote by P 0

Nf . More explicitly

(P 0
Nf)(z) :=

(
ΦN (ϕN (z)) , iT 0

f,N

)
. (2.2)

So we have defined a sequence of operators P 0
N : C∞(M,R) → C∞(M,R).

These operators are linear since the map f �→ Tf,N is linear.

3. Relation with the Szegö kernel

The operators P 0
N that we have just defined (and the related operators

PN to be defined below) admit a simple description in terms of the Fourier
modes of the Szegö kernel. This will enable us to deduce very quickly some
of their analytic properties from known results on the Szegö kernel. We start
by recalling some important facts regarding the Szegö kernel. (It should be
noted that all the constructions in the paper could be rephrased in terms of
the Bergman kernel of the line bundle L, as in [4] and [12], rather than using
the Szegö kernel of the circle bundle. The two approaches are completely
equivalent.)
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Set Vol(M) =
∫
M
dVM = (2π)mc1(L)m/m!. Let h∗ denote the Hermitian

metric on L∗ induced from h and let | · |h∗ denote the corresponding norm.
Define ρ : L∗ → R by ρ(λ) := |λ|2h∗ − 1 and set

D := {λ ∈ L∗ : ρ(λ) < 0} = {λ ∈ L∗ : |λ|h∗ < 1}

X := {λ ∈ L∗ : ρ(λ) = 0} = {λ ∈ L∗ : |λ|h∗ = 1}.
D is a strictly pseudoconvex domain in L∗ since ω = iΘ(h) is positive.
X = ∂D is a smooth hypersurface in L∗ and is a principal S1-bundle over
M . Set α := i∂̄ρ|X and

dVX :=
α ∧ (dα)m

2πm!
=
α ∧ π∗dVM

2π
.

For N ∈ Z, let ρN : S1 → Gl(1) = C∗ be the representation ρN (eiθ) = eiNθ.
Recall that the associated bundle X ×ρ−N C is the quotient (X × C)/S1,
where S1 acts on X × C according to the rule

eiθ · (λ, z) = (λeiθ, ρ−N (e−iθ)z) = (eiθλ, eiNθz).

The map

[λ, z] �→ z ·
(
λ−1(1)

)⊗N
u �→ [λ, λ⊗N (u)] (3.1)

is an isomorphism of X ×ρ−N C onto LN . Therefore a section s of LN

corresponds to an equivariant function ŝ : X → C defined by ŝ(x) =
x⊗N (s(π(x))). The equivariance means that

ŝ(eiθλ) = ρ−N (e−iθ)ŝ(λ) = eiNθ ŝ(λ). (3.2)

Denote by H2(X) the space of L2 functions on X that are annihilated
by the Cauchy-Riemann operator ∂̄b (see [19, p. 321]). H2(X) coincides
with the space of L2–boundary values of holomorphic functions on D. It
is a closed S1-invariant subspace of L2(X), hence splits as a direct sum
H2(X) = ⊕NH2

N∈Z(X), where H2
N (X) is the set of functions ŝ in H2(X)

that satisfy (3.2). Via the correspondence (3.1) the holomorphic sections of
LN correspond to elements of H2

N (X). If s1, s2 ∈ C∞(M,LN ), then

〈s1, s2〉L2 =

∫

X

ŝ1ŝ2dVX = 〈ŝ1, ŝ2〉L2(X).

If π : X → M denotes the projection of the circle bundle and x ∈ X, then
the linear functional

VN −→ C s �→ x⊗N (s (π(x))) = ŝ(x)
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is represented by a section ex,N ∈ VN . Equivalently, ŝ(x) = 〈s, ex,N 〉L2 =
〈ŝ, êx,N 〉L2(X) for any s ∈ VN . The sections ex,N are called coherent states
in the mathematical physics literature.

We use ΠN also to denote the projection ΠN : L2(X) → H2
N (X). Let

ΠN (x, x′) be the Schwartz kernel of ΠN (we use dVX to identify functions
with densities). In the following Proposition we gather various well-known
and elementary properties of ΠN .

Proposition 3.1. — (a) ΠN ∈ C∞(X×X). (b) ΠN (x, x′) = ΠN (x′, x).
(c) For any x ∈ X, êx,N = ΠN (·, x). (d) There are functions KN ∈ C∞(M×
M) and EN ∈ C∞(M) such that if x, x′ ∈ X, z = π(x), z′ = π(x′), then

KN (z, z′) = |ΠN (x, x′)|2 EN (z) = ΠN (x, x).

(e) KN (z, z′) = KN (z′, z). (f) If π(x) = z and {sj}dNj=0 is an orthonormal
basis of VN , then

EN (z) =

dN∑

j=0

|sj(z)|2h = |ex,N |2L2 . (3.3)

(g) For N large enough the function EN is strictly positive.

(EN coincides with the kernel of the Bergman projector L2(M,LN ) →
H0(M,LN ) restricted to the diagonal.)

Proof. — Let {sj}dNj=0 be an orthonormal basis of VN . Then for any
x, x′ ∈ X

ΠN (x, x′) =

dN∑

j=0

ŝj(x)ŝj(x′) (3.4)

This proves (a) and (b). If ex,N =
∑
j ajsj , then

aj = 〈sj , ex,N 〉L2 = ŝj(x).

Hence ex,N =
∑
j ŝj(x)sj . Together with (3.4) this proves (c). Observe that

by (3.2)

ΠN (eiθx, eiθ
′
x′) = eiN(θ−θ′)ΠN (x, x′).

Hence the function |ΠN |2 is S1 × S1–invariant on X ×X and descends to
a smooth function KN ∈ C∞(M ×M). Similarly ΠN (x, x) is S1-invariant
on X and descends to a smooth function EN ∈ C∞(M). This proves (d).
(e) follows from (b). To prove (f) it is enough to observe that if x ∈ X,
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then |x⊗N |h∗ = 1, hence |sj(z)|h = |x⊗N (sj(z)) | = |ŝj(x)|. This yields
immediately the first equality. For the same reason

|ex,N |2L2 =

dN∑

j=0

∣∣〈ex,N , sj〉L2

∣∣2 =

dN∑

j=0

∣∣x⊗N (sj(z))
∣∣2 =

dN∑

j=0

|sj(z)|2h.

The positivity of EN is equivalent to the fact that LN has no base points,
so (g) follows from the ampleness of L. �

Theorem 3.2. — If f ∈ C∞(M,R) and z ∈M , then

P 0
Nf(z) =

∫

M

KN (z, z′)
EN (z)

f(z′)dVM (z′)− trTf,N
dN + 1

, (3.5)

trTf,N =

∫

M

EN (z)f(z)dVM (z). (3.6)

Proof. — Let x ∈ X be such that z = π(x). Set λ(·) = 〈·, ex,N 〉L2 . Then
λ ∈ V ∗N and ϕN (z) = [λ]. By (2.2) and (2.1)

P 0
Nf(z) =

(
ΦN (ϕN (z)) , iT 0

f,N

)
= −i

〈iT 0
f,Nex,N , ex,N 〉L2

|ex,N |2L2

=

=
〈Tf,Nex,N , ex,N 〉L2

|ex,N |2L2

− trTf,N
dN + 1

〈Tf,Nex,N , ex,N 〉L2 = 〈fex,N , ex,N 〉L2 =

∫

M

f(z′) |ex,N (z′)|2h dVM (z′).

If z′ = π(x′), then |ex,N (z′)|2h = |êx,N (x′)|2 = |ΠN (x′, x)|2 = KN (z′, z) =
KN (z, z′). Hence

〈Tf,Nex,N , ex,N 〉L2 =

∫

M

KN (z, z′)f(z′)dVM (z′).

By (3.3) |ex,N |2L2 = EN (z), so

〈Tf,Nex,N , ex,N 〉L2

|ex,N |2L2

=
1

EN (z)

∫

M

KN (z, z′)f(z′)dVM (z′) =

=

∫

M

KN (z, z′)
EN (z)

f(z′)dVM (z′).

– 775 –



Alessandro Ghigi

This proves (3.5). To prove (3.6) observe that if {sj}dNj=0 is an orthonormal
basis of VN , then

trTf,N =

dN∑

j=0

〈Tf,Nsj , sj〉L2 =

dN∑

j=0

〈fsj , sj〉L2 =

=

dN∑

j=0

∫

M

f(z′)|sj(z′)|2hdVM (z′) =

∫

M

f(z′)EN (z′)dVM (z′).

In the last line we have used (3.3). �

Definition 3.3. — For N = 1, 2, 3, . . . let PN : C∞(M,R)→ C∞(M,R)
be the linear operator defined by

PNf(z) :=

∫

M

KN (z, z′)
EN (z)

f(z′)dVM (z′).

It follows from (3.5) that for any f ∈ C∞(M,R) the functions PNf and
P 0
Nf differ only by a constant (depending on N). We will prove now that

as N → ∞ this constant approaches the average of f , while PNf → f . It
follows that P 0

Nf → f for any function f with
∫

M

f(z)dVM (z) = 0

This result follows immediately from known results that we now recall.
In [6, §4] Donaldson introduced operators QN : C∞(M,R) → C∞(M,R),
defined by

QNf(z) =
Vol(M)

dN + 1

∫

M

KN (z, z′)f(z′)dVM (z′). (3.7)

(His definition is actually more general since integration is performed with
respect to a measure that does not necessarily coincide with dVM .) In [7,
Appendix, Thm. 26] Kefeng Liu and Xiaonan Ma proved the following result.

Theorem 3.4 (Liu-Ma). — For every k there is a constant Ck such
that

||QNf − f ||Ck(M) �
Ck
N
||f ||Ck+1(M). (3.8)

In [7, p. 519] the estimate is given in terms of ||f ||Ck(M) on the right
hand side, due to a small inaccuracy in the computations. The correct for-
mulation, as above, is given in [13, p. 1 note 1]. I thank Professor Ma for
pointing this out to me. It is important to notice that the operator QN
represents the derivative of the map ω �→ ωN , see [7, pp. 495-496].
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Theorem 3.5. — (a) There is a positive constant C such that
∣∣∣∣
trTf,N
dN + 1

− 1

Vol(M)

∫

M

f(z)dVM (z)

∣∣∣∣ �
C

N
||f ||∞.

(b) For any k there is a positive constant Ck such that

||PNf − f ||Ck(M) �
Ck
N
||f ||Ck+1(M).

Proof. — The first statement follows from a fundamental result of Zelditch
[19]: the sequence {EN}N admits an asymptotic expansion in C∞(M) of the
form

EN =

(
N

2π

)m
+O(Nm−1). (3.9)

(Apply [19, Cor. 2] with G = Ric(h).) By Riemann-Roch

dN + 1 = h0(M,LN ) =
c1(L)m

m!
Nm +O(Nm−1) =

=
Vol(M)

(2π)m
Nm +O(Nm−1). (3.10)

Using (3.9) we get

EN
dN + 1

=
1

Vol(M)
+O

(
1

N

)

in C∞(M). Integrating against f yields (a). To prove (b) it is enough to
observe that

PNf =
dN + 1

Vol(M) · EN
QNf.

Therefore (3.8) and (3.10) yield the result. �

4. Final remarks

1. Tian approximation theorem [17, 3, 19, 4] asserts that ϕ∗NωN
/
N → ω

in the C∞ topology. The metrics ϕ∗NωN are projectively induced hence
of algebraic/polynomial character. Theorem 3.5 can be considered as an
analogue for functions of Tian theorem. Indeed denote by A 0

N the set of
functions of the form (ΦN ◦ ϕN )∗λ where λ varies in the dual of su(VN ).
A 0
N is a finite dimensional subspace of C∞(M,R) whose elements are real

algebraic since ΦN is a real algebraic mapping. By construction the range
of P 0

N is contained in A 0
N and the range of PN is contained in

A N := R+ A 0
N ⊂ C∞(M,R)
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where R denotes the constant functions. Hence for any f ∈ C∞(M,R), the
function PNf is real algebraic function and projectively induced in a sense.

2. The elements of A 0
N are related to a particular kind of holomorphic

functions L∗×L∗, the so-called Hermitian algebraic functions, see [18, Def.
2.1 p. 297].

3. The construction of the operators P 0
N and PN is of course inspired by

Berezin-Toeplitz quantization and especially by a paper of Bordemann,
Meinrenken, Schlichenmaier [2] (see also [14]). In that paper the authors
did not use explicitly the Toeplitz operators to construct new functions on
M . Nevertheless what they showed in the proof of Theorem 4.1 is equiva-
lent, in our notation, to the fact that PNf(z0) → f(z0) at points z0 ∈ M
where |f | attains its maximum.

4. Let P̂N : C∞(X)→ C∞(X) be the operator with kernel

P̂N (x, x′) =
|ΠN (x, x′)|2
ΠN (x, x)

.

Then P̂N (π∗f) = π∗ (PNf) for any f ∈ C∞(M) and the relation between
P̂N and ΠN is identical with that between the Poisson-Szegö and the Szegö
kernels of a domain D, see e.g. [8, p. 79] and [11]. Since the Poisson-Szegö
operator reproduces holomorphic functions in H2(∂D), one might wonder if
something similar holds for P̂N . This is not the case. Indeed the trick used
to prove the reproducing property for the Poisson-Szegö operator [10, p. 65]
fails in our situation, since for f ∈ H2

K(X) the function

u(x′) = f(x′)
ΠN (x, x′)
ΠN (x, x)

belongs to H2
N+K(X). So P̂Nf = f if and only if f ∈ H2

0(X). This means

that P̂N reproduces only the constant functions.

5. One might try to prove (b) in Theorem 3.5 by another path, using the
following result. Consider Tf,N as an operator on C∞(X) and denote by
Tf,N (x, x′) its Schwartz kernel. The function Tf,N (x, x) descends to a func-
tion tN on M and

tN =

(
N

2π

)m
· f +O(Nm−1) (4.1)

in the topology of C∞(M). This follows from the main result in [5] and
can also be established using the scaling asymptotics of the Szegö kernel
(established in [15, 16]), see [12, Lemma 7.2.4]. (See also [13] for a study of
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higher terms in the asymptotic expansion.) IfMf : L2(X)→ L2(X) denotes
the operator of multiplication by f , then Tf,N = ΠNMfΠN so

Tf,N (x, x′′) =

∫

X

ΠN (x, x′)f (π(x′)) ΠN (x′, x′′)dVX(x′)

tN (z) = Tf,N (x, x) =

∫

X

|ΠN (x, x′)|2f (π(x′)) dVX(x′) =

=

∫

M

KN (z, z′)f(z′)dVM (z′).

Therefore

PNf(z) =
tN (z)

EN (z)
.

It follows from (3.9) and (4.1) that for every f ∈ C∞(M) and any k there
is C ′k such that ||PNf − f ||Ck(M) � C ′k/N . The constant C ′k depends on
f ∈ C∞(M) and we would like to show that it can be chosen in the form
C ′k = Ck||f ||Ck+1(M). Unfortunately it is not clear how to accomplish this
last step, so this method of proof is incomplete.

6. If M = P1, L = OP1(2) and ω = 2ωFS , i.e. if M = S2 with the round
metric, it would be interesting to relate this approximation procedure to
more classical constructions. The Szegö kernel of (P1,OP1(1), ωFS) is

ΠN (x, x′) =
N + 1

2π
〈x, x′〉N

where x, x′ ∈ X = S3 ⊂ C2 and 〈 , 〉 denotes the Hermitian product on C2

(see e.g. [14, p. 65]). So for (M,L, ω) =
(
P1,OP1(2), 2ωFS

)

ΠN (x, x′) =
2N + 1

4π
〈x, x′〉N

where x, x′ ∈ X = S3/{±1} = SO(3). Hence PN = QN and the Schwartz
kernel is

PN (z, z′) =
2N + 1

4π
|〈x, x′〉|2N π(x) = z, π(x′) = z′.

If we identify P1 with the sphere S2 ⊂ R3 in the standard way, this becomes

PN (y, y′) =
2N + 1

4π

(
1 + y · y′

2

)N
y, y′ ∈ S2

where y · y′ denotes the scalar product in R3. Apart from this expression,
which looks quite nice, one might try to express the operators PN in terms
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of spherical harmonics on S2. In fact this computation has already been
carried out by Donaldson in [6, p. 612ff] (recall that PN = QN in this case).
Since L2(S2) =

⊕∞
m=0Hm, where Hm is the space of degree k spherical

harmonics, and the operators PN are SO(3)-equivariant, PN (Hm) ⊂ Hm
and PN acts on Hm as multiplication by a scalar χm,2N . The range of PN
is

∑2N
m=0Hm. One might expect (and the writer did hope) that PN is just

orthogonal projection onto its range. This is equivalent to χm,2N = 1 for
m � 2N , but Donaldson’s computation shows this to be false. The only
thing which is evident from Donaldson’s formula is that χm,2N → 1 for
N →∞, which is the equivalent to Theorem 5 in the case at hand.
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