
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
ADAM EPSTEIN, THOMAS SHARLAND

A classification of bicritical rational maps with a pair of period two
superattracting cycles

Tome XXI, no S5 (2012), p. 907-934.

<http://afst.cedram.org/item?id=AFST_2012_6_21_S5_907_0>

© Université Paul Sabatier, Toulouse, 2012, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2012_6_21_S5_907_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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A classification of bicritical rational maps with a pair
of period two superattracting cycles

Adam Epstein(1), Thomas Sharland(2)

ABSTRACT. — We give a Thurston classification of those bicritical rational
maps which have two period two superattracting cycles. We also show that
all such maps are constructed by the mating of two unicritical degree d
polynomials.

RÉSUMÉ. — Nous donnons une classification de Thurston des fractions
rationnelles bicritiques possédant deux cycles superattractifs de période
deux. Nous montrons également que toutes les fractions rationnelles de ce
type sont construites par accouplement de deux polynômes unicritiques
de degré d.

1. Introduction

In this note we study bicritical rational maps whose critical points lie in
distinct period two cycles. These maps are completely classified by a natural
combinatorial invariant. A common strategy used in the classification of
rational maps is to invoke Thurston’s Theorem [1]. This will not be necessary
in this note, due to the availability of a purely algebraic classification of the
maps in question. However, we will still tackle the question of Thurston
equivalence at the end of the paper, since it motivates a discussion of the
combinatorial description of these maps, which is a characteristic that will
be much more useful than the algebraic classification in general. We refer
the reader to [5] for background material on the dynamics of rational maps.
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1.1. Thurston’s Criterion

Let F : Σ → Σ be an orientation-preserving branched self-covering of a
topological 2-sphere. We denote by ΓF the critical set of F and define

PF =
⋃

n>0

F ◦n(ΓF )

to be the postcritical set of F . We say that F is postcritically finite if
|PF | <∞.

Definition 1.1. — Let F : Σ → Σ and F̂ : Σ̂ → Σ̂ be postcritically fi-
nite orientation-preserving branched self-coverings of topological 2-spheres.
A combinatorial equivalence (or Thurston equivalence) is given by a pair of

orientation-preserving homeomorphisms (Φ,Ψ) from Σ to Σ̂ such that

• Φ|PF = Ψ|PF
• The following diagram commutes:

(Σ, PF )
Ψ−−−−→ (Σ̂, P

F̂
)

F

�
� F̂

(Σ, PF ) −−−−→
Ψ

(Σ̂, P
F̂
)

• Φ and Ψ are isotopic via a family of homeomorphisms t �→ Φt which
is constant on PF .

We say F and F̂ are equivalent if there exists an equivalence as above.
Given a branched covering F , we want to know when it is equivalent to a
rational map R: Ĉ→ Ĉ. Let Γ = {γi : i = 1, . . . , n} be a multicurve; that is,
each γi ∈ Γ is simple, closed, non-peripheral1, disjoint and non-homotopic
to all the other γj relative to PF . Γ is F -stable if for all γi ∈ Γ, all the non-
peripheral components of F−1(γi) are homotopic rel Σ\PF to elements of Γ.
In this case, we define FΓ = (fij)n×n to be the non-negative matrix defined
as follows. Let γi,j,α be the components of F−1(γj) which are homotopic to
γi in Σ \ PF . Now define

FΓ(γj) =
∑

i,α

1

degF |γi,j,α : γi,j,α → γj
γi

(1) non-peripheral means that each component of the complement of γ contains at
least two elements of PF
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Bicritical maps with two superattracting period two orbits

where deg denotes the degree of the map. By standard results on non-
negative matrices (see [2] or [7]), this matrix (fij) will have a leading non-
negative eigenvalue λ. We write λ(Γ) for the leading eigenvalue associated
to the multicurve Γ.

The significance of these definition lies in the following rigidity theorem
of Thurston.

Theorem 1.2 (Thurston). —

(1) A postcritically finite branched covering F : Σ → Σ of degree d � 2

with hyperbolic orbifold is equivalent to a rational map R: Ĉ → Ĉ if
and only if there are no F -stable multicurves with λ(Γ) � 12.

(2) Any Thurston equivalence of rational maps F and F̂ with hyperbolic
orbifolds is represented by a Möbius conjugacy.

Remark 1.3. —

• The condition that the maps have hyperbolic orbifolds is purely com-
binatorial and is readily ascertained by inspection of the postcritical
set. The condition will be satisfied by all the maps in this paper. For
further details see [1].

• For bicritical maps, any such conjugacy (indeed, any equivalence) ei-
ther fixes the two critical points or interchanges them. In our setting,
the post-critical set has (at least) four elements, and so any Möbius
conjugacy fixing the two critical points must be the identity.

Before moving on, we need to introduce a special kind of multicurve,
called a (good) Levy cycle.

Definition 1.4 A multicurve Γ = {γ1, . . . , γn} is a Levy cycle if for
each i = 1, . . . , n, the curve γi−1 (or γn if i = 1) is homotopic to some
component γ′i of F−1(γi) (rel PF ) and the map F : γ′i → γi is a homeomor-
phism. A Levy cycle is a good Levy cycle if the connected components of
Σ \ ⋃n

i=1 γi are D1, . . . , Dm, C, with the Dj all being disks. When n = 1,
we have C = ∅ and F |γ′1 : γ

′
1 → γ1 reverses the orientation. For n > 1,

there exists a component C ′ of F−1(C) which is isotopic to C and such that
F |C′ :C ′ → C is a homeomorphism.

It is clear that a good Levy cycle L is a Thurston obstruction, since
λ(L) = 1.

(2) Such a multicurve is known as a Thurston obstruction

– 909 –



Adam Epstein, Thomas Sharland

1.2. Matings

In this section, we review the basic terminology of matings, following
[4, 11, 13]. Let f and g be monic degree d polynomials. In this paper, f and
g will be unicritical (that is, taking the form z �→ zd+ c for some c) but this
is not needed in general. We define

C̃ = C ∪ {∞ · e2πit : t ∈ R/Z},

the complex plane compactified by the circle at infinity. We then continu-
ously extend the two polynomials to the circle at infinity by defining

f(∞ · e2πit) =∞ · e2dπit and g(∞ · e2πit) =∞ · e2dπit.

Label this extended dynamical plane of f (respectively g) by C̃f (respec-

tively C̃g). We create a topological sphere Σf,g by gluing the two extended
planes together along the circle at infinity:

Σf,g = C̃f 
 C̃g/ ∼

where ∼ is the relation which identifies the point ∞ · e2πit ∈ C̃f with the

point∞·e−2πit ∈ C̃g. The formal mating is then defined to be the branched
covering f 
 g: Σf,g → Σf,g such that

f 
 g|C̃f = f and

f 
 g|C̃g = g.

The definition of the topological mating requires discussion of external rays.
Suppose the (filled) Julia set K(f) of the degree d � 2 monic polynomial

f : Ĉ → Ĉ is connected (this will always be the case in this article). By
Böttcher’s theorem, there is a conformal isomorphism

φ = φf : Ĉ \ D→ Ĉ \K(f)

which can be chosen so that it conjugates z �→ zd on Ĉ \ D with the map

f on Ĉ \ K(f). There is a unique such conjugacy which is tangent to the
identity at infinity.

Definition 1.5. — The external ray of angle t is

Rf (t) = φf (rt)

where rt = {r exp(2πit) : r > 1} ⊂ C \ D is the corresponding radial line.
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Recall that K(f) (equivalently J(f)) is locally connected if and only if φ
extends continuously to the unit circle, thereby inducing a semi-conjugacy
γf :R/Z → J(f). The point γf (t) ∈ K(f) is called the landing point of the
external ray Rf (t). The points k/(d − 1) are fixed under the map t �→ dt
on R/Z with images βk = γf (k/(d − 1)) fixed under f . We call these the
β-fixed points of fc. In the case that these βk are distinct, there exists at
most one other fixed point, which we will call the α-fixed point of fc.

Lemma 1.6. — Suppose f is a unicritical polynomial. Then the β-fixed
points of f are all distinct.

Proof. — We consider f as a map on C̃ and suppose that βj = βk for

some j �= k. The external rays of angle β̂j and β̂k and their common landing
point divide the disk into two sectors. Denote by U the one which does not
contain the critical point. The smallest possible angular width of the sector
U is evidently 1/(d−1) > 1/d whence the image of the sector under f must

be the whole of the disk C̃. However since the critical point is not contained
in U , the critical value cannot be in its image f(U). Hence all the βi must
be distinct. �

We now define the topological mating of monic degree d polynomials f
and g with locally connected Julia sets. We first define the ray-equivalence
relation ≈ on Σf,g. We denote by ∼f the smallest equivalence relation on

C̃f such that x ∼f y if and only if x, y ∈ Rf (t) for some t; we denote by ∼g
the corresponding equivalence relation on C̃g. Then the equivalence relation

≈ is the smallest equivalence relation on Σf,g generated by ∼f on C̃f and

∼g on C̃g. We will denote the equivalence class of x under ≈ by [x] and by
[x]J the intersection of the Julia sets of the two polynomials with [x]. We
now observe that there is an evident surjection K(f) 
 K(g) → Σf,g/ ≈
formed by the composition

K(f) 
K(g) ↪→ C̃f 
 C̃g → Σf,g → Σf,g/ ≈ .

Moreover, since x ≈ y implies f 
g(x) ≈ f 
g(y), there exists a unique map
f ⊥⊥ g such that the following diagram commutes:

K(f) 
K(g)
f�g−−−−→ K(f) 
K(g)�

�
Σf,g/ ≈ −−−−→

f⊥⊥g
Σf,g/ ≈ .

We refer to this map f ⊥⊥ g as the topological mating of f and g. When
circumstances are favorable, the quotient space Σf,g/ ≈ is an oriented topo-
logical 2-sphere.
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We say that a rational map F is the geometric mating of f and g if
F is topologically conjugate via an orientation-preserving homeomorphism
ϕ: Σf,g/ ≈ → Ĉ which is holomorphic on the interior of Kf 
Kg. In this
situation, we will write F ∼= f ⊥⊥ g. It is important to realize that the same
rational map may arise as a mating in several different ways; as will in fact
be the case in this paper. This state of affairs is referred to as a shared
mating. The following key result on the matings of unicritical polynomials
will be of use in this article.

Theorem 1.7 (Tan Lei, [12]). — Let f1 and f2 be unicritical postcriti-
cally finite polynomials with α-fixed points α1 and α2 respectively. Then the
mating f1 ⊥⊥ f2 is equivalent to a rational map if and only if [α1] �= [α2].

1.3. Structure

Our classification will go as follows. First, we will consider all matings
f ⊥⊥ g where f and g both are monic unicritical polynomials with a critical
orbit of period two. We then show that such matings, when unobstructed,
yield rational maps whose Julia sets admit a simple combinatorial descrip-
tion. Finally, by using a simple counting argument, we show that these
rational maps account for all the rational maps that have a pair of period
two superattracting cycles. Our main result is the following.

Theorem A. — A degree d bicritical rational map with labeled critical
points and with two period two superattracting cycles may be realized as a
mating in precisely d− 1 ways. Furthermore, the rational map is completely
defined (up to Möbius conjugacy) by one piece of combinatorial data.

Despite the relative simplicity of the result, perhaps the most striking
observation is that the rational maps with a pair of period two superat-
tracting cycles have a common feature to their Julia sets, as will be seen in
Section 3. It was this observation that lead to the conjecture of Theorem A.

Remark 1.8. — The rational maps in question actually have clusters, as
studied in the second author’s thesis [8]. More general results on maps with
cluster cycles can be found in [9, 10].

At the end of this paper, we will show that the result could equally well
be obtained by demonstrating the Thurston equivalence of the maps with
the same combinatorial datum, which would allow us to avoid an explicit
algebraic description as in Section 2. This second approach more readily
adapts to the general setting of higher degree maps with cluster cycles,
hence it is included here. Indeed, it should be noted that in general, clus-
tering is not an algebraic condition; however, in the setting of this paper, it
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is a fortunate and perhaps surprising fact that the algebraic classification
suffices, hence there is no requirement to check the Thurston equivalence of
these maps.

2. Algebraic Classification

We remark that it is simple to classify the degree d rational maps with
two superattracting period two cycles in algebraic terms. Setting the two
critical points to be 0 and∞ and defining F (∞) = 1, we obtain the following
normal form:

Fa(z) =
zd − a
zd − 1

. (2.1)

Note that Fa(0) = a, so the critical values of Fa are 1 and a. For there to
be a second period two cycle, we require

0 = Fa(a) =
ad − a
ad − 1

=
a(ad−1 − 1)

ad − 1
.

It follows that in order for the map to have a second period two superat-
tracting cycle, we need a �= 1 and for a to be a (d−1)th root of unity. Hence
there are precisely d− 2 parameters a for which Fa has a pair of period two
superattracting cycles. The three period 5 examples are shown in Figure 1.

(c) a = i

(a) a = i (b) a =1

Figure 1. — The three period 5 bicritical rational maps for which both critical points
are of period two. In each diagram the basin of the periodic cycle containing 0 is shaded

black, the basin of the periodic cycle containing ∞ is white.

– 913 –



Adam Epstein, Thomas Sharland

3. Matings Classification

3.1. Structure of the polynomials

Let Md be the degree d multibrot set. That is, for Pc: z �→ zd + c,

Md = {c ∈ C : J(Pc) is connected} = {c ∈ C : (P◦nc (0))∞n=0 is bounded}.

For notation, we will write

β̂j =
j

d− 1
and θrj = β̂j +

r

d2 − 1
,

with subscripts taken modulo d−1 and r ∈ {1, . . . , d}. Note that the angles

β̂j are fixed under the map z �→ dz on S1; indeed, these angles are those of
the rays which land on the β-fixed points of the degree d polynomials under
consideration, so that βj = γf (β̂j). Moreover, the angles θrj all have period
2. By results of [6] (or by adapting the results of [3] to the degree d case),

there is a unique cj ∈ Ĉ such that fj = Pcj has a period two superattracting
cycle and such that the external rays of angles θ1j−1 and θdj−1 land on the α-
fixed point αj of fj . Figure 2 shows the location of these maps in parameter
space. Note that the α-fixed point of fj is also the principal root point of
both the critical point and critical value Fatou components. We prove some
elementary facts about the fj .

Lemma 3.1. —

(1) A point of J(fj) is biaccessible if and only if it is in the backward
orbit of αj.

(2) The only biaccessible periodic point of fj is αj.

Proof. — For the first claim, if z is biaccessible then it must eventually
map onto the Hubbard tree of fj . In this case, the Hubbard tree consists
of two internal rays meeting at the α-fixed point, whence the only point of
the Hubbard tree that belongs to J(fj) is αj , and so there exists some (
such that f◦�(z) = αj . Conversely, since αj and the critical point belong to
distinct grand orbits and since αj is biaccessible, every point on the grand
orbit of αj is biaccessible. The second claim follows immediately from the
first. �

We now discuss which periodic rays land on the periodic components of
J(fj).

– 914 –
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f1

f2

f3

f4

f5

β̂0

β̂1

β̂2

β̂3

β̂4

Figure 2. — The maps fj in the parameter space M6. The β̂j are labeling the rays of

angle β̂j and the fi labels are contained in the wake of the period two hyperbolic
component which contains fi.

Lemma 3.2. —

(1) The external rays of angles

θ2j−1, θ
3
j−1, . . . , θ

r
j−1, . . . , θ

d−1
j−1 (3.1)

land on the critical value component of fj.

(2) The external rays of angles

θd−1
j , θd−2

j+1 , . . . , θ
d−(r−1)
j+r−2 , . . . , θ2j−1+(d−2) = θ2j−2 (3.2)

land on the critical point component of fj.
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Proof. —

(1) The map f◦2j is a degree d map from the critical value component to

itself, and so there must exist precisely d − 1 fixed points of f◦2j on
the boundary of this component. One of these is the α-fixed point
and the others must be of period two, since the only fixed points of
fj are the αj and the β�. These points must be the landing points of
external rays whose period is divisible by two, and since a fixed ray
cannot land on a period 2 point, the periods of the rays landing there
is also exactly two. Furthermore, the angles of these rays must lie in
the arc (θ1j−1, θ

d
j−1) ⊂ S1, and the only period two angles in this arc

are
θ2j−1, θ

3
j−1, . . . , θ

r
j−1, . . . , θ

d−1
j−1

as required.

(2) The images under the map z �→ dz of the angles in (3.1) are precisely
those angles in (3.2), since

d(θrj−1) = dβ̂j−1 +
dr

d2 − 1

= β̂j−1 +
dr

d2 − 1

= β̂j−1 +
r − 1

d− 1
+
d− (r − 1)

d2 − 1

= β̂j+r−2 +
d− (r − 1)

d2 − 1

= θ
d−(r−1)
j+r−2 .

Since the rays of the angles given in (3.1) land on the critical value
component, the rays in (3.2) must land on the critical point compo-
nent.

�

Following custom, we refer to the fixed points of the first return map to
a periodic Fatou component as the root points of the component. If the root
point is the landing point of more than one external ray, we will call it the
principal root point. The other root points will be called co-roots. Here we
see that αj is the principal root point of both the critical value and critical
point components, and that the landing points of the rays of angles given
in (3.1) and (3.2) will land at the co-roots of the respective components.
Roots of preperiodic components are accordingly defined as the preimages
of roots of periodic components. See Figure 3 for an example of the rays
landing on the Julia set in the case d = 6 and j = 2.
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β̂0 = 0 /5

β̂1 = 1 /5
θ11 = 8 /35

θ61 = 13 /35

β̂2 = 2 5

β̂3 = 3 /5

β̂4 = 4 /5

/

Figure 3. — The Julia set of the map f2 in degree 6 with some important dynamical
rays labeled.

Lemma 3.3. — Let U be the critical point component of fj and let U ′ be
a component of f−1(U) that is not the critical value component. Then the
external rays landing at the principal root point of U ′ separate the critical
point 0 from precisely one of the fixed points βr.

Proof. — Let A ⊂ C be the region which is bounded by the external
rays landing at the principal root point, namely αj , of the critical value
component of fj and the level 2d equipotential curve, but which does not
contain the critical value component itself. Let g be the local inverse of fj
which takes U to U ′. Then g is a homeomorphism and g(A) ⊂ A, since
g(A) is bounded by the rays landing at the preimage of αj on the boundary
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of U ′ and the level 2 equipotential curve. Hence by the Schwarz Lemma, g
has a unique fixed point in g(A). This fixed point is not αj , since clearly
αj /∈ g(A) and it is not ∞ since g(A) is bounded. �

Note that the above result is equivalent to saying that the rays landing
at the principal root point of U ′ separate the critical point 0 from (precisely)

one the rays of angle β̂r.

3.2. Matings and ray classes

In this section we want to consider the ray classes of matings which are
not obstructed. For ease of notation, we will write γ+ (respectively γ−) for
the semi-conjugacy γfi+ (respectively γfi− ).

Lemma 3.4. — Suppose the mating fj ⊥⊥ fk is not obstructed and z ∈
J(fj) ∪ J(fk). Then the ray class [z]J has one of the following forms.

• If z is in the backward orbit of αj then [z]J = {z, γk(−t1), γk(−t2)}
where t1 and t2 are the angles of the external rays landing at z.

• If z is in the backward orbit of αk then [z]J = {z, γj(−τ1), γj(−τ2)}
where τ1 and τ2 are the angles of the external rays landing at z.

• If z is not in the backward orbit of αj or αk then [z]J = {γj(t), γk(−t)}
for some t.

Proof. — Note that [αj ] �= [αk] by Theorem 1.7. We claim that if z = αj
then the ray class [z]J contains three points. Indeed, all points in [αj ]J must
be periodic of period dividing two and by Lemma 3.1 the only biaccessible
periodic points of J(fj) ∪ J(fk) are αj and αk, whence the points γk(−t1)
and γk(−t2) are not biaccessible. Thus [αj ]J = {αj , γk(−t1), γk(−t2)} where
t1 and t2 are the angles of the external rays which land at αj . The case where
z = αk is analogous. Moreover, if z is in the backward orbit of αj or αk then
the ray class [z]J also contains three points since neither αJ or αk belong
to the grand orbit of a critical point. If z is not in the backward orbit of
αj or αk, then by Lemma 3.1, none of the points of [z]J will be biaccessible
and so [z]J = {γj(t), γk(−t)} for some t. �

Lemma 3.5. — The mating fj ⊥⊥ fk is obstructed if and only if k = d−j.

Proof. — If k = d−j then clearly [αj ] = [αk]. Conversely, by Lemma 3.4,

[αj ]J = {αj , γk(−θ1j−1), γk(−θdj−1)}.
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Now αk /∈ {γk(−θ1j−1), γk(−θdj−1)} since k �= d− j. In particular [αj ] �= [αk]
and the proof of the lemma follows from Tan Lei’s theorem (Theorem 1.7).
�

We can say more: the only periodic ray classes which contains more than
two points of J(fj) ∪ J(fk) are [αj ] and [αk].

Proposition 3.6. — Suppose j + k �= d. Then the rational map F ∼=
fj ⊥⊥ fk has the following properties.

• The closures of the two critical value components are disjoint.

• The closures of the two critical point components are disjoint.

Proof. — Note that the angles of the rays landing on the critical value
component of fj lie in the arc

(θ1j−1, θ
d
j−1)

and the angles of the rays landing on the critical value component of fk lie
in the arc

(θ1k−1, θ
d
k−1).

Since j + k �= d and −θrk−1 = θd−r+1
d−k−1, it follows that

(θ1j−1, θ
d
j−1) ∩ (−θdk−1,−θ1k−1) = ∅. (3.3)

By Lemma 3.4, all ray classes [z]J contain at most 3 points, and the result
follows since any ray class corresponding to a meeting point between the two
critical value components would contain a ray with angle in the intersection
in (3.3), which is empty. �

Lemma 3.7. — Let F ∼= fj ⊥⊥ fk. Then the following conditions hold.

• The only ray class which meets the boundary of the critical point
component of fj and the critical value component of fj is [αj ].

• The only ray class which meets the boundary of the critical point
component of fk and the critical value component of fk is [αk].

Proof. — We will prove the first claim; the proof of the second claim
is entirely analogous. Since the critical point component and the critical
value component of fj have closures intersecting at αj , the corresponding
Fatou components of F , Cj (which contains the critical point) and Vj (which
contains the critical value) meet at [αj ] ∈ J(F ). We claim that this is the
only meeting point. Indeed, any such point arises from a ray class which
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contains one boundary point from Cj and one boundary point from Vj . If
the ray class is not [αj ], then it contains a biaccessible point of J(fk) and
so, by Lemma 3.4, eventually maps onto [αk]. It follows that [αk] intersects
both component boundaries. Moreover, since [αk] is fixed, such intersection
points must be periodic and by considering the denominators of the angles of
the rays landing at αk, we see that these periodic points must have periods
dividing 2. However, the relevant periodic rays landing on Vj are given in
(3.1) and those landing on Cj are given in (3.2). These two sets of angles

are separated by the angles β̂j−1 and β̂j , whence the rays landing on αk
(namely the rays of angle θ1k−1 and θdk−1) would have to be separated by

the rays of angles −β̂(j−1) and −β̂j , which is a contradiction. �

Now let us consider the ray classes which connect the critical point
component on one side with the critical value component on the other.

Lemma 3.8. —

• There exists a ray class [z] of period 2 which contains a point on the
boundary of the critical value component of fj and a point on the
critical point component of fk.

• There exists a ray class [z′] of period 2 which contains a point on
the boundary of the critical value component of fk and a point on the
critical point component of fj.

Proof. — Observe that β̂r = −β̂d−1−r and θrk−1 = −θd+1−r
d−k and so

−θrj−1 = θd−r+1
d−j−1 (3.4)

In view of 3.1) and (3.2) if the two sets

{−θ2j−1,−θ3j−1, . . . ,−θrj−1, . . . ,−θd−1
j−1}

and
{θd−1
k , θd−2

k+1, . . . , θ
d−(r−1)
k+r−2 , . . . , θ2k−1+(d−2)}

intersect, then the intersections would correspond to points where the criti-
cal point component of fk meet the critical value component of fj at period

2 orbits. By (3.4) we see that the angle θj+kd−j−1 is the unique element in both
these sets and so the associated ray class will provide a periodic point of in-
tersection on the boundaries of the two components. This point is evidently
of period 2, and the other member of the period 2 cycle is the ray class that
suffices to prove the second claim. �

We refer to the points corresponding to the ray classes of Lemma 3.8 as
the periodic meeting points. We need to show that the periodic ray classes
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found in Lemma 3.8 are in fact the only ray classes which contain a point
on the boundary of the critical value component of one polynomial and a
point on the boundary of the critical point component of the other.

Proposition 3.9. —

• The critical orbit component of fj and critical value component of
fk have exactly one boundary point in common under the topological
mating.

• The critical orbit component of fk and critical value component of
fj have exactly one boundary point in common under the topological
mating.

In both cases, the meeting point corresponds to the periodic meeting points
of Lemma 3.8.

The proof of this proposition will be the goal of the remainder of this
section. First we introduce some terminology.

Definition 3.10. — A component U of the Fatou set of fj will be called
a level-n component if n is the least natural number such that f◦nj (U) is
the critical point component. A strictly preperiodic component will be called
a primary component if its principal root point lies on the boundary of a
periodic Fatou component. A level-n sector is the sector of the sphere which
is bounded by the rays landing at the root point of a level-n component and
which contains the component itself. A sector is primary if it is the sector
of a primary component (see Figure 4).

Non-primary sector

Non-primary component

Primary component

Periodic Component

Primary sector

Figure 4. — The definitions of primary components and sectors.
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Note that by definition the critical point component of fj is a level-0
component and that the critical value component is a level-1 component.
Moreover, if r is the principal root point of a level-n component other than
the critical value component, then f◦n(r) = αj . It is easy to see that all level-
1 components are primary, and that their root points lie on the boundary
of the critical point component. Also, by Lemma 3.3, each level-1 sector,
save for the sector corresponding to the critical value component, contains
exactly one ray of angle β̂r for some r. We define the angular width of a
sector to be |θ1 − θ2|, where θ1, θ2 are the angles of the rays landing at the
root of the sector.

Let U1, U2 be any two primary level-n components for the same polyno-
mial f . U1 and U2 both have roots which lie on the boundary of the same
critical orbit component C. Removing these two points will split ∂C into
two complementary Jordan arcs. We say that the primary level-n compo-
nent U1 is adjacent (to the periodic meeting point of Lemma 3.8) if there
exists a second primary level-n component U2 such that one of the com-
plementary arcs A ⊂ ∂C does not contain a root point of another level-k
primary component for all k � n but does contain a point which belongs to
the ray class which becomes one of the periodic meeting points under the
mating. Note that in this case U2 will also be adjacent. A primary level-n
sector will be referred to as being adjacent to the periodic meeting point if
it corresponds to an adjacent component. Given two adjacent level-n com-
ponents, there are two rays landing at each of their root points. There is a
unique such pair of rays (one landing at the root of each component) such
that these rays and A (where A is the complementary arc referred to in the
definition of adjacency) bound a region of C which does not contain either
of the two adjacent components but does contain a point which belongs to
the ray class which becomes the periodic meeting point on its boundary.
These rays will be called the closest rays to the periodic meeting point.

Lemma 3.11. — Suppose U is a primary level-n component. Then

• n is even if and only if U shares a boundary with the critical value
component.

• n is odd if and only if U shares a boundary with the critical point
component.

Proof. — Note that if U is not the critical value component, then its root
point r is such that f◦n(r) = α. It suffices to prove only the first claim, so
assume n is even and, to obtain a contradiction, assume U shares a boundary
with the critical point component C. Let r be the root point of U and
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consider sequences (xn), (yn) → r such that xn ∈ U and yn ∈ C for all n.
Then the sequences (f◦n(xn)) and (f◦n(yn)) both converge to α, with both
sequences contained in C. This would mean that for a small neighborhood
N � r, the intersection of f◦n(N) with the critical value component would
be empty, which is impossible since f◦n is locally a homeomorphism at r.
�

Given an external ray Rfj (θ), we will refer to the ray Rfk(−θ) as its
conjugate ray. Similarly, the conjugate ray to Rfk(θ), will be Rfj (−θ).

Lemma 3.12. — The conjugate rays to those landing on αj land on the
Julia set of fk in distinct level-1 sectors of fk. Moreover these sectors are
adjacent.

Proof. — The rays landing on αj have angles θ1j−1 and θdj−1. If θ ∈
{θ1j−1, θ

d
j−1} then the conjugate ray of angle −θ lands on a periodic point of

period dividing 2 on J(fk). As the only periodic points of period dividing
2 on the critical point component are αk and points corresponding to the
angles in (3.2), there exists n > 1 such that the ray of angle −θ lands inside
a primary level-n sector S. The root point of S lies on the boundary of
the critical point component of fk, as it is blocked from the critical value
component by the rays of angle −β̂j and −β̂j−1. If n > 1, the image of S
is a level-(n− 1) sector S′ which shares a boundary point with the critical
value component. However, S′ must contain the landing point of the other
ray in the 2-cycle, but this is impossible since again this ray is separated
from the critical value component by the rays of angles −β̂j and −β̂j−1.
Hence the sector must be a level-1 sector.

By Proposition 3.6, neither of the sectors correspond to the critical value
component, since otherwise the closures of the two critical value compo-
nents would meet. If the rays of angles −θ1j−1 and −θdj−1 landed inside the
same sector, then that sector would have angular width strictly greater than
1/(d+1). However, all level-1 sectors have angular width equal to 1/(d+1)
and so the two sectors are distinct. Suppose that the two components were
not adjacent. By Lemma 3.3, each level-1 sector must contain a ray of angle
β̂r. However, if the components were not adjacent, then there would exist
an angle of the form −β̂r = −r/(d− 1) between −θ1j−1 and −θdj−1. This is
a contradiction. �

The following lemma will allow us to locate the (primary) preimages of
primary components.
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Lemma 3.13. — The following hold for the polynomial fk.

(1) Given a primary level-n component U which has its root point on
the boundary of the critical point component, there exists a unique
primary level-(n+ 1) component U ′ which is a preimage of U .

(2) Given a primary level-n component U which has its root point on the
boundary of the critical value component, for each j �= k there exists
a unique primary level-(n+ 1) component U ′ which is a preimage of
U and such that the angles of the rays landing at the root point of U ′

lie in the arc (−θdj−1,−θ1j−1).

Proof. —

(1) If the level-n component has its root point on boundary of the criti-
cal point component, then there exists a unique preimage which has
a boundary point on the critical value component, and hence it is
primary.

(2) If the level-n component has its root point on the boundary of the
critical value component, then every preimage component must share
a boundary point with the critical point component and so will be
primary. The rays of angles −θdj−1 and −θ1j−1 land inside distinct
adjacent (primary) level-1 sectors of fk by Lemma 3.12 and so there
exists a unique preimage of U ′ which have rays landing at its root
point whose corresponding angles lie in (−θdj−1,−θ1j−1).

�

We now use this lemma to study the adjacent components and sectors
in the mating fj ⊥⊥ fk.

Corollary 3.14. — Consider the unobstructed mating fj ⊥⊥ fk. Then
for U and U ′ as in Lemma 3.13, U is adjacent if and only if U ′ is adjacent.

Proof. — We remark that fk restricted to the boundary of the critical
value component is a homeomorphism and so the proof for U ′ and U as in
the first part of Lemma 3.13 follows.

By Lemma 3.12, the rays of angle −θdj−1 and −θ1j−1 land inside adjacent
level-1 sectors. These root points divide the boundary of the critical point
component into two Jordan arcs, one of which, A contains the periodic
meeting point and no root point of another level-1 component. If U ′ is
adjacent to the periodic meeting point on the critical point component of
fk, then its root point must lie on A. However, fk restricted to A is a
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homeomorphism. The existence of this homeomorphism (and its inverse)
means that U is adjacent if and only if U ′ is adjacent in the second case of
Lemma 3.13. �

We can now rephrase the previous two results for sectors, to get the
following immediate corollary.

Corollary 3.15. — Consider the unobstructed mating fj ⊥⊥ fk.

(1) Given a primary level-n sector S of fk which has its root point on
the boundary of the critical point component, there exists a unique
primary level-(n+1) sector S′ which is a preimage of S. Moreover S
is adjacent if and only if S′ is adjacent.

(2) Given a primary level-n sector S which has its root point on the
boundary of the critical value component, there exists a unique pri-
mary level-(n + 1) sector S′ which is a preimage of S and such that
the angles of the rays landing at the root point of S′ lie in the arc
(−θdj−1,−θ1j−1). Moreover S is adjacent if and only if S′ is adjacent.

Lemma 3.16. — Consider the unobstructed mating fj ⊥⊥ fk. Let U be a
primary level-n component which is adjacent to the periodic meeting point
on a critical orbit component of fk. Then the conjugate ray to the closest
ray of U to the periodic meeting point lands inside a level-(n + 1) primary
sector S of fj. Furthermore, S is adjacent to the periodic meeting point on
the critical orbit component of fj.

Proof. — We proceed by induction. By Lemma 3.12, the conjugate rays
to those landing on αj land inside the two primary level-1 sectors which are
adjacent to the periodic meeting point on the Fatou component of fk which
contains the critical point. There are two rays landing at the root points of
each of these sectors, since these points belong to f−1

k (αk). Consider one of
the closest rays to the periodic meeting point. The conjugate ray must land
inside a level-2 sector of fj (by Lemma 3.12 and the fact that the preimage
of a level-1 sector is a level-2 sector) and this sector must have its root
point on the boundary of a preimage of the critical point component of fj .
It is clear that this component can only be the critical value component
of fj (Figure 5) since all the level-1 (preperiodic) components of fj will be
separated from this ray by the rays landing at αj , whence this sector is
primary. Furthermore, this sector is adjacent by Corollary 3.15.

Now suppose that the statement holds for the two primary level-n com-
ponents which are adjacent to the periodic meeting point on a critical orbit
component of fk and denote one of them by U ′. Take the unique (primary)
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preimage U of U ′ that satisfies the conditions of Lemma 3.13 (in the sec-
ond case, take the preimage for which the rays landing at the root point lie
in (−θdj−1,−θ1j−1)). By Corollary 3.14, the preimage U will be an adjacent
level-(n+1) component. The conjugate ray to the closest ray landing at the
root point of U lands inside a level-(n+ 2) sector, since it is the pre-image
of a level-(n+ 1) sector. Moreover, by Lemma 3.13 and Corollary 3.15, this
sector is adjacent. �

Vj

Ck

αj

E

3 3 3

θdj−1

θ1
j−1

11

2

2

2

Figure 5. — The diagram for Lemma 3.16. The dotted line shows the position of the
periodic (and by Proposition 3.9, unique) meeting point of the critical value component
Vj of fj and the critical point component Ck of fk. The numbers inside the components
signify their level and E is the equator. Note that any second meeting point would have

to correspond to a ray class contained in the region containing the dotted line.

Proof of Proposition 3.9. — Again by symmetry it suffices to prove only
the first claim. We begin with some notation. We call the complete ray
of an external ray R to be the union of the ray R along with its landing
point, the conjugate ray and the conjugate ray’s landing point. Let R1

0 and
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R2
0 be the complete rays landing at αk. By Lemma 3.12, R1

0 and R2
0 have

end points lying inside level-1 adjacent sectors of fj . We denote by R1
1 and

R2
1 the complete rays of the closest rays which land at the root points of

these two level-1 sectors. We inductively define pairs of rays R1
n and R2

n as
follows. Given R1

n−1 and R2
n−1, the complete rays landing at the root points

of adjacent level-(n− 1) sectors, then in light of Lemma 3.16 define R1
n and

R2
n to be the complete closest rays of the adjacent level-n sectors which

include landing points of the complete rays R1
n−1 and R2

n−1; see Figure 5
for the early steps of this construction. Now denote by Cn the connected
component of Σ \ (R1

n ∪ R2
n ∪K(fj) ∪K(fk)) which contains the ray class

which collapses to the periodic meeting point p.

If a second meeting point exists, it must correspond to a ray class that
is contained in Cn for all n. To see this, notice that if for any point z not
contained in Cn, the union

R1
n−1 ∪R2

n−1 ∪R1
n ∪R2

n ∪K(fj) ∪K(fk)

separates z from either Vk, the critical value component of fk or Cj , the
critical point component of fj , whence z cannot belong to a ray class that
becomes a second meeting point. Clearly Cn+1 ⊂ Cn for all n, so we define

C =

∞⋂

i=0

Cn.

We claim C ∩ J(fk) is a singleton {pk}, with pk being the point on the
boundary of Vk which becomes the periodic meeting point. Indeed, if C ∩
J(fk) were not singleton, then it would be an arc in ∂Vk which contains no
root points of any primary components. However, there would then exist a
neighborhood U of pk such that αk /∈ f◦n(U) for all n, which is impossible.
Hence C ∩ J(fk) and similarly, C ∩ J(fj) are singletons and thus there is
only one periodic meeting point. �

3.3. Structure of the Julia sets of the Rational Maps

We discuss what the above results tell us about the Julia set of the ra-
tional map F . Since the critical value components meet the critical point
components at precisely one point (as shown in Lemma 3.7 and Propo-
sition 3.9), by taking preimages we see that the preimages of the critical
point components meet the critical point components at a unique point.
Furthermore, the two critical value components and two critical point com-
ponents don’t share boundary points (by Proposition 3.6. Since it must also
have rotational symmetry, we see that the Julia set can be described by the
schematic as in Figure 6, which shows a period 4 example.
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∗

×

×

Figure 6. — The schematic for the Julia set of F ∼= fj ⊥⊥ fk. The first critical point is
labeled with ∗, the second critical point lies outside the larger circle. The two critical
values are labeled by × and here the displacement is 3. The reader is encouraged to

compare this schematic to the examples shown in Figure 1.

We now have a general picture of what the Julia set of F ∼= fj ⊥⊥ fk
will look like. An intuitive picture is the following: between the two critical
point components (which are neighborhoods of the north and south poles
at 0 and∞) there is a “belt” which contains all the preimages of the critical
point components, including the critical value components themselves. Each
of these preimage components meets each of the critical point components
in precisely one place. We will refer to all maps who have a Julia set with
this structure (whether or not they are matings) as type A maps.

The important piece of data that we require when studying type A maps
will be the displacement δ, which will measure the combinatorial distance

– 928 –



Bicritical maps with two superattracting period two orbits

between the critical values round the “belt” which forms the space between
the two critical point components of the rational map. Let the two criti-
cal points be c1 and c2 respectively, with respective critical values v1 and
v2. Form the star which made up of the internal rays in the critical point
component of c1 which go from c1 to the boundary point where the critical
point meets one of the preimages of a critical point component. On the end
points of the star thus formed, union the internal rays inside the preimage
components which go from the boundary point to the preimage of a critical
point contained in the component. Now label the arms which end with a
point in the set F−1(c2) by (1, (2, . . . , (d in clockwise order, where (1 is the
arm which is immediately clockwise of the (unlabeled) arm whose endpoint
is v1.

Definition 3.17. — Let F be a rational map of type A. Then the dis-
placement of F will be δ, where (δ is the arm of the star which has the
critical value of the second critical point as an endpoint.

See Figure 6 for an example where the displacement is 3. We note that
if F has displacement δ then the map with opposite critical marking F also
has displacement δ. We will show that if we know the displacement of a
rational map, we actually know the rational map up to Möbius conjugacy.
Clearly, the displacement is well-defined; the cyclic ordering of the critical
value components around the boundary of the critical point components
is maintained under Möbius conjugacy. We now show that the two critical
values can not be adjacent in the cyclic ordering.

Proposition 3.18. — The displacements δ = 1 and δ = d are not real-
ized for rational maps.

We will show that the displacements δ = 1 and δ = d allow the existence
of a Levy cycle. Suppose F is a rational map where the two critical values are
adjacent. Denote the Fatou component containing c1 by C1. The component
C1 shares a common fixed boundary point ζ with the Fatou component
containing v1 = F (c1) and has a common period two boundary point ω
with the Fatou component containing v2 = F (c2). Let λ1 be the internal ray
from v1 towards ζ with the Fatou component C1 containing c1 but perturbed
slightly so it does not pass through ζ and ends at a point on ∂C1 near ζ so
that it lies on the arc of ∂C1 \ {ζ, ω} which contains no boundary points of
components which are preimages of the Fatou components containing c1 or
c2. Let λ3 be the internal ray from v2 to ω and λ2 the arc in ∂C1 connecting
λ1 and λ3 such that λ2 does not contain any boundary points of pre-images
of the two critical point components (the existence of λ2 is guaranteed by
the adjacency of the critical value components in the cyclic ordering), see
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the part (a) of Figure 7. Define Λ = ∪3
i=1λi. The set F−1(Λ) is made up

of the union of d = degF paths from c1 to c2 which go from c1 along an
internal ray towards a preimage of ζ, then pass around this preimage to
a point on the boundary of the a Fatou component containing an element
of F−1(c1). It then travels along the boundary of this component to the
element in F−1(ω) which is also on the boundary. It then travels along an
internal ray to c2, see part (b) of Figure 7 for an example of one of these
preimages. It is clear that Λ and the set F−1(Λ) have an empty intersection.

Figure 7. — The curve Λ is shown in the bold line in (a), a branch of its preimage in (b)
and the curve γ (which is a Levy cycle) is shown in (c). Note that the curve in (b)

continues to the second critical point, which lies off the diagram.
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Proof of Proposition 3.18. — We use the Λ from the previous paragraph
to help us construct a multicurve Γ which we will show is a Levy cycle. Let
γ be the boundary of an ε-neighborhood of Λ so that the component of Ĉ\γ
containing the two critical values does not contain ζ, nor either of the critical
points, see part (c) of Figure 7. By considering the details of F−1(Λ), we
then see that F−1(γ) is made up of d−1 peripheral curves and one curve γ′

which is homotopic to γ relative to PF (but with the orientation reversed).
We then see that F|γ′ : γ

′ → γ is a homeomorphism and so Γ = {γ} is a
good Levy cycle. �

In the following proposition, we use d − 1 as the representative of the
integers equal to 0 modulo d− 1.

Proposition 3.19. — The degree d rational map F ∼= fj ⊥⊥ fk has
displacement δ ≡ j + k(d− 1).

Proof. — The displacement is equal to the number of preimage com-
ponents of the critical point component of fj between the critical value
component of fj and the critical value component of fk (inclusive of the
first component). By the result of Lemma 3.3, this is equal to the number

of angles of the form β̂r between β̂j−1 (inclusive) and −β̂k = β̂d−k−1. This
value is clearly j + k. �

Remark 3.20. — Notice that, using the convention above, the two non-
realizable cases δ = 1 and δ = d both correspond to j + k ≡ 1d− 1.

Corollary 3.21. — Each displacement can be obtained by matings in
precisely d− 1 ways.

Proof. — Suppose we want to get the displacement to be δ. Given any
fj , the rational map F ∼= fj ⊥⊥ fδ−j has displacement δ. The map fδ−j
exists and is unique for each j, and since there are d − 1 choices for j, the
result follows. �

Proof of Theorem A. — By the algebraic classification in Section 2 there
are exactly d−2 degree d rational maps (up to Möbius conjugacy) with two
period two superattracting cycles. Furthermore, by Proposition 3.19, we can
obtain d − 2 different displacements, each of which must correspond to a
different rational map and by Corollary 3.21 each displacement is obtained
in precisely d− 1 ways. �

4. Thurston Classification

We now show that the critical displacement is enough to classify a ratio-
nal map in the sense of Thurston. The advantage of this approach is that,
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in general, “clustering” (as defined in [9, 8, 10]) is not an algebraic condi-
tion, and therefore the approach used above, by using the algebraic normal
form of Section 2, will not work in the general case where the period of
the critical orbits is greater than 2. In this section we will show how the
result of Theorem A can be obtained without reference to this algebraic
classification.

Theorem 4.1. — Suppose F and G are bicritical rational maps of type
A and have the same displacement δ. Then F and G are equivalent in the
sense of Thurston.

Recall that to satisfy the conditions of Thurston equivalence, we need
to find two homeomorphisms Φ and Φ̂ with the following properties:

(1) Φ ◦ F = G ◦ Φ̂.

(2) Φ|PF = Φ̂|PF .

(3) Φ and Φ̂ are isotopic rel PF .

We will first of all construct the homeomorphism Φ, making use of the
Alexander trick. We will then define the homeomorphism Φ̂, making sure
that each condition above in turn is satisfied. Since we are considering maps
of type A, we can take advantage of what we know about the Julia sets of
these maps. Denote the critical points of F by c1 and c2, with values v1
and v2, and the critical points of G by c′1 and c′2, with values v′1 and v′2.
Construct a closed curve γ in the F -sphere as follows. Let γ1 be the path
through internal rays from c1 to v1, γ2 the path through internal rays from
v1 to c2, γ3 the path through internal rays from c2 to v2 and γ4 the path
through internal rays from v2 to c1. Define the curve γ′ in the G-sphere in
the analogous way.

We observe that F : γ → γ and G: γ′ → γ′ are homeomorphisms. It is
easy to see that there exists φ: γ → γ′ which conjugates the dynamics of F
and G on γ and γ′ respectively. Then, by two applications of the Alexander
trick, we can extend φ to a homeomorphism Φ: Ĉ → Ĉ. Notice that the
set F−1(γ) divides the F -sphere up into 2d regions and similarly, the set
G−1(γ′) divides the G-sphere up into 2d regions. Label the regions in the
F -sphere A1,A2, . . . ,A2d, starting with the region immediately anticlock-
wise of the curve γ at c1. Similarly label the regions in the G-sphere by
A′1,A′2, . . . ,A′2d.

Lemma 4.2. — There exists a homeomorphism Φ̂ so that Φ ◦F = G ◦ Φ̂
and Φ|γ = Φ̂|γ .
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Proof. — We now use this labeling to define the second homeomorphism
Φ̂. To satisfy the Thurston criterion, we require Φ ◦ F = G ◦ Φ̂, so that for
each z we have Φ̂(z) ∈ G−1(Φ(F (z))). If z ∈ Ai, then let Φ̂(z) be the unique

point in G−1(Φ(F (z))) ∩ A′i. We can extend the map Φ̂|Ai continuously to
the boundary for each i, and in particular, since the displacements of F and
G are the same, we have Φ|γ = Φ̂|γ . Finally, Φ̂ is a homeomorphism since
it is continuous and the sphere is a compact, Hausdorff space. �

Lemma 4.3. — Φ̂ is isotopic to Φ rel γ.

Proof. — We know that Φ|γ = φ = Φ̂|γ′ . The complement to γ is two

topological discs and so by the Alexander trick, Φ and Φ̂ are isotopic to
each other on both of these discs rel the boundary. Hence they are isotopic
rel γ. �

Proof of Theorem 4.1. — By Lemma 4.2, we see that Φ ◦F = G ◦ Φ̂ and
Φ|γ = Φ̂|γ , and hence Φ|PF = Φ̂|PF . Then, by Lemma 4.3, the homeomor-

phisms Φ and Φ̂ are isotopic rel γ and hence rel PF . Thus F and G are
equivalent.
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