
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
SÉBASTIEN GODILLON

Introduction to Iterated Monodromy Groups

Tome XXI, no S5 (2012), p. 1069-1118.

<http://afst.cedram.org/item?id=AFST_2012_6_21_S5_1069_0>

© Université Paul Sabatier, Toulouse, 2012, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2012_6_21_S5_1069_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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Introduction to Iterated Monodromy Groups

Sébastien Godillon(1)

ABSTRACT. — The theory of iterated monodromy groups was developed
by Nekrashevych [9]. It is a wonderful example of application of group
theory in dynamical systems and, in particular, in holomorphic dynam-
ics. Iterated monodromy groups encode in a computationally efficient way
combinatorial information about any dynamical system induced by a post-
critically finite branched covering. Their power was illustrated by a so-
lution of the Hubbard Twisted Rabbit Problem given by Bartholdi and
Nekrashevych [2].
These notes attempt to introduce this theory for those who are famil-
iar with holomorphic dynamics but not with group theory. The aims are
to give all explanations needed to understand the main definition (Def-
inition 3.6) and to provide skills in computing any iterated monodromy
group efficiently (see examples in Section 3.3). Moreover some explicit
links between iterated monodromy groups and holomorphic dynamics are
detailed. In particular, Section 4.1 provides some facts about combinato-
rial equivalence classes, and Section 4.2 deals with matings of polynomials.

RÉSUMÉ. — La théorie des groupes de monodromie itérée a été développée
par Nekrashevych [9]. C’est un magnifique exemple d’application de la
théorie des groupes à l’étude des systèmes dynamiques et en particulier
à ceux issus de l’itération d’une application holomorphe. Les groupes de
monodromie itérée fournissent un algorithme efficace qui encode des infor-
mations combinatoires de n’importe quel système dynamique induit par
un revêtement ramifié post-critiquement fini. Leur intérêt a été illustré
par la solution du problème de Hubbard des oreilles de lapins entortillées
démontrée par Bartholdi et Nekrashevych [2].
Ces notes introduisent cette théorie et s’adressent particulièrement aux
lecteurs intéressés par les systèmes dynamiques holomorphes mais non
experts en théorie des groupes. Les objectifs sont de donner toutes les
explications nécessaires à la compréhension de la définition principale
(définition 3.6) et de fournir des méthodes pour calculer efficacement dans
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ces groupes (voir les exemples de la section 3.3). De plus, des liens ex-
plicites entre les groupes de monodromie itérée et les systèmes dynamiques
holomorphes sont détaillés. En particulier, les classes d’équivalence com-
binatoire (section 4.1) et les accouplements de polynômes (section 4.2)
sont abordés.

Representations of groups, automata, bimodules and virtual endomor-
phisms are intentionally omitted in order to make this introduction more
elementary. All the proofs are mainly based on the path and homotopy
lifting properties (Proposition 1.12) from algebraic topology. For further
reading see [11], [9] and [4].

These notes come from lectures given in the Chinese Academy of Sciences
in Beijing in September 2011. The way to introduce iterated monodromy
groups by using two trees (one left to label the vertices and one right for
the edges, see Section 2) was explained to the author by Tan Lei although it
implicitly appears in [9] and some others works. The author would like very
much to thank Laurent Bartholdi for his fruitful discussion and patience
in explaining his works, the referee for his helpful comments and relevant
suggestions and Tan Lei for her support and encouragement.
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1. Preliminaries

1.1. Tree automorphism

A tree T is a (simple undirected) graph which is connected and has no
cycles. More precisely, a tree T = (V,E) is the data of a set of vertices V
and a set of edges E which are pairs of two distinct vertices, such that for
any two distinct vertices v, v′ there is a unique path of edges from v to v′.
For every edge {v, v′}, the vertices v and v′ are said to be adjacent which

is denoted v
T∼ v′ (being adjacent is a symmetric binary relation).

A tree T is said rooted if one vertex t ∈ V has been designated the root.
In this case, one can write the set of all vertices as the following partition
V =

⊔
n�0 V

n where V n is the set of all the vertices linked to the root t by

a path of exactly n edges (and V 0 = {t}). Each V n is called the set of all
vertices of level n.

Definition 1.1. — Two rooted trees T = (V,E) and T̂ = (V̂ , Ê) are
said to be isomorphic if there is a bijection ϕ from V =

⊔
n�0 V

n onto

V̂ =
⊔

n�0 V̂
n satisfying the following two axioms

Level preserving: ∀n � 0, ϕ(V n) = V̂ n

Edge preserving: ∀v, v′ ∈ V, v
T∼ v′ ⇒ ϕ(v)

T̂∼ ϕ(v′)

Such a bijection ϕ is called a tree isomorphism. A tree automorphism is a
tree isomorphism from a rooted tree T onto itself.

The set of all tree automorphisms of T is denoted by Aut(T ) and it is
equipped with the group structure coming from composition of maps. For ev-
ery pair of tree automorphisms g, h in Aut(T ), their composition is denoted
by g.h where the map g is performed first (this notation is more convenient
for computations in Aut(T ) than h ◦ g).

Given the alphabet E = {0, 1, . . . , d − 1} of d � 2 letters, consider the
following sets of words

• E0 = {∅}

• ∀n � 1, En = {words of length n with letters in E}
= {ε1ε2 . . . εn / ∀k, εk ∈ E}

• E� =
⊔

n�0 En
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Definition 1.2. — The regular rooted tree Td is defined as follows

Root: the empty word ∅
Vertices: the set of words E� =

⊔
n�0 En

Edges: all the pairs {w,wε} where w is a word in E� and ε is a letter in E

The graph below shows the first three levels of the regular rooted tree
T2.

The regular rooted tree Td is an example of self-similar object. Namely
for every word v ∈ E�, the map ϕv : E� → vE�, w → vw is a tree isomor-
phism from Td onto the regular subtree Td|v rooted at v.

For any tree automorphism g ∈ Aut(Td) and any word v ∈ E�, notice
that the following map

Rv(g) = (ϕg(v))
−1 ◦ g|vE� ◦ ϕv

is well defined from E� onto itself since the restriction g|vE� : vE� → g(v)E� is
a tree isomorphism from the regular subtree Td|v rooted at v onto the regular
subtree Td|g(v) rooted at g(v). Actually Rv(g) defines a tree automorphism
of Td as it is shown in the commutative diagram below.

Td
Rv(g)−−−−→ Td

ϕv

�
� ϕg(v)

Td|v −−−−→
g|vE�

Td|g(v)
Definition 1.3. — For any tree automorphism g ∈ Aut(Td) and any

word v ∈ E�, the following tree automorphism

Rv(g) = (ϕg(v))
−1 ◦ g|vE� ◦ ϕv

is called the renormalization of g at v.

A subgroup G of Aut(Td) is said to be self-similar if the following con-
dition holds

∀g ∈ G, ∀v ∈ E�, Rv(g) ∈ G
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Since ϕv ◦ ϕv′ = ϕvv′ for every pair of words v, v′ in E�, it follows that
Rv′ (Rv(g)) = Rvv′(g) for every tree automorphism g ∈ Aut(Td). Therefore
a quick induction shows that one only needs to check the condition above
for words v ∈ E� of length 1. That is

G is self-similar⇐⇒ ∀g ∈ G, ∀ε ∈ E , Rε(g) ∈ G

Example 1.4. — One can remark that any tree automorphism g ∈ Aut(Td)
induces a permutation g|E1 of E1 = E . Although it is not a one-to-one cor-
respondence, one can conversely define a tree automorphism gσ ∈ Aut(Td)
from a given permutation σ ∈ Sym(E) by gσ : E� → E�, ε1ε2 . . . εn →
σ(ε1)σ(ε2) . . . σ(εn). Such a tree automorphism satisfies gσ(ww′) = gσ(w)gσ(w′)
for every pair of words w,w′ in E�. Therefore every renormalization of gσ is
equal to gσ and any subgroup of Aut(Td) generated by such tree automor-
phisms induced by some permutations of E is self-similar.

Remark that every tree automorphism g ∈ Aut(Td) satisfies

∀ε ∈ E ,∀w ∈ E�, g(εw) =
(
g|E1(ε)

)(
Rε(g)(w)

)

Consequently any tree automorphism is entirely described by its renormal-
izations at every vertex in the first level together with its restriction on the
first level which describes how the regular subtrees rooted at every vertex in
the first level are interchanged. That provides a convenient way to encode
tree automorphisms in order to make computations in Aut(Td).

Definition 1.5. — Every tree automorphism g ∈ Aut(Td) may be uniquely
written as follows

g = σg〈〈g0, g1, . . . , gd−1〉〉
where

• σg = g|E1 ∈ Sym(E) is called the root permutation of g

• and for every letter ε ∈ E, gε = Rε(g) ∈ Aut(Td) is the renormaliza-
tion of g at ε

This decomposition is called the wreath recursion of g.

More precisely the map g → (g|E1 , (R0(g),R1(g), . . . ,Rd−1(g))) is a
group isomorphism from Aut(Td) onto the semi-direct product Sym(E) �
(Aut(Td))

d called the permutational wreath product (its binary operation
is described below). Remark that a subgroup G of Aut(Td) is said self-
similar if and only if its image under this group isomorphism is a subgroup
of Sym(E)�Gd.
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It is more convenient to think wreath recursion as in the graph below.

0
g0−−−−→ σg(0)

1
g1−−−−→ σg(1)

. . . . . .

d− 1
gd−1−−−−→ σg(d− 1)

Be aware that each arrow does not depict the map on its label. In fact, all
the arrows describe the root permutation σg whereas the labels correspond
to the renormalizations of g. In practice the arrows are often “tied” to sort
out the image on the right-hand side in the same order as on the left-hand
side. The root permutation σg is then described by intertwined arrows.
Furthermore a label is often forgotten if the corresponding renormalization
is the identity tree automorphism Id ∈ Aut(Td).

This kind of graph provides an easy way to compute with wreath re-
cursions. Namely for every pair of tree automorphisms g, h in Aut(Td), one
get

0
g0−−−−→ σg(0)

hσg(0)−−−−→ σh(σg(0))
1

g1−−−−→ σg(1)
hσg(1)−−−−→ σh(σg(1))

. . . . . . . . .
d− 1

gd−1−−−−→ σg(d− 1)
hσg(d−1)−−−−→ σh(σg(d− 1))

Lemma 1.6. — The wreath recursion of a composition of two tree auto-
morphisms g, h in Aut(Td) is given by

g.h = (σh ◦ σg)
〈〈

g0.hσg(0), g1.hσg(1), . . . , gd−1.hσg(d−1)

〉〉

In particular, the inverse wreath recursion of a tree automorphism g in
Aut(Td) is given by

g−1 = σ−1
g

〈〈
g−1

σ−1
g (0)

, g−1

σ−1
g (1)

, . . . , g−1

σ−1
g (d−1)

〉〉

Example 1.7 (Example - the adding machine). — Every word in E� may
be thought as a d-ary integer whose digits are written from left to right. Let
g ∈ Aut(Td) be the adding machine on E�, namely the process of adding
one to the left most digit of every d-ary integer (with the convention that
adding one to the word 11 . . . 1 ∈ En gives the word 00 . . . 0 ∈ En of same
length). More precisely, the adding machine g is recursively defined by

∀ε ∈ E ,∀w ∈ E�, g(εw) =

{
(ε + 1)w if ε ∈ {0, 1, . . . , d− 2}
0g(w) if ε = d− 1

Then g may be seen as the wreath recursion g = σ〈〈Id, Id, . . . , Id, g〉〉 where
σ is the cyclic permutation such that σ(ε) = ε + 1 if ε ∈ {0, 1, . . . , d − 2}
and σ(d− 1) = 0, namely σ = (0, 1, . . . , d− 1) (using circular notation).
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Lemma 1.6 allows to compute easily the inverse wreath recursion g−1 =
σ−1〈〈g−1, Id, . . . , Id〉〉 since

gives after “untying”

A similar computation gives gd = 〈〈g, g, . . . , g〉〉, and thus a quick induc-
tion shows that the adding machine acts as a cyclic permutation of order
dn on the n-th level of Td for every n � 1.

Example 1.8 (Example – Hanoi Towers group (due to Grigorchuk and
S̆unić [4])). — The popular Towers of Hanoi Problem deals with three rods
and a given number n of disks of different sizes which can slide onto every
rod. The problem starts with all the disks in ascending order of size on one
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rod making a conical shape (see Figure 1), and consists to move the entire
stack to another rod with respect to the following rules

1. Only one disk may be moved at a time.

2. Each move consists of taking the upper disk from one of the rods
and sliding it onto another rod, on top of the other disks that may
already be present on that rod.

3. No disk may be placed on top of a smaller disk.

Figure 1. — The starting configuration 0000 for the Hanoi Towers with four disks

If the n disks 1, 2, . . . , n are labeled with their size (1 being the smallest
and n the largest) and each rod is labeled with one letter from the alphabet
E = {0, 1, 2}, then every word w = ε1ε2 . . . εn ∈ En of length n encodes a
unique configuration of the problem in which the k-th disk is placed on the
rod εk (and then the order of disks on any rod is determined by their size).
Figure 1 and Figure 2 depict the starting configuration 0000 ∈ E4 and the
configuration 1210 ∈ E4 for n = 4 disks.

Figure 2. — The configuration 1210 for the Hanoi Towers with four disks

It turns out that each move between two rods is represented by either
of the following wreath recursions
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For instance, one can go from the starting position 0000 in Figure 1
to the position 1210 in Figure 2 by the following sequence of basic moves
between two rods

b→ c→ a→ b→ a

In terms of wreath recursions, that gives

or shortly after “untying”: b.c.a.b.a = (0, 1)〈〈c.b, a, b.a〉〉

The Hanoi Towers group H is defined to be the subgroup of Aut(T3)
generated by the wreath recursions a, b, c. It follows that the Towers of
Hanoi Problem is equivalent to find an element g in the Hanoi Tower group
H = 〈a, b, c〉 (that is a sequence of basic moves between two rods) such that
the image of the starting configuration (the word 00 . . . 0 ∈ En) is a goal
configuration: g(00 . . . 0) = 11 . . . 1 or 22 . . . 2.
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Furthermore remark that the Hanoi Towers group H is self-similar since
every renormalization of the wreath recursions a, b, c is either a, b, c or Id.

The following lemma is often used to prove that a given tree automor-
phism is actually equal to the identity tree automorphism. Indeed it may
happen although its wreath recursion is not trivial. For instance, it turns
out that the wreath recursion g = 〈〈g, g, . . . , g〉〉 is actually the identity tree
automorphism Id ∈ Aut(Td) (for instance by applying lemma below).

Lemma 1.9. — Let g1, g2, . . . , gm be m � 1 tree automorphisms in Aut(Td)
such that

• every root permutation σgk = gk|E1 is the identity permutation on the
the alphabet E

• and every renormalization gk,ε = Rε(gk) belongs to the subgroup of
Aut(Td) generated by g1, g2, . . . , gm

In terms of wreath recursions, g1, g2, . . . , gm are assumed to be written as
follows




g1 = 〈〈g1,0, g1,1, . . . , g1,d−1〉〉
g2 = 〈〈g2,0, g2,1, . . . , g2,d−1〉〉

. . .
gm = 〈〈gm,0, gm,1, . . . , gm,d−1〉〉

where ∀k,∀ε ∈ E , gk,ε ∈
〈
g1, g2, . . . , gm

〉

Then g1, g2, . . . , gm are all equal to the identity tree automorphism Id ∈
Aut(Td).

Proof. — Let n � 2 be an integer and assume by induction that every
gk acts as the identity on the set of all words of lenght n − 1. Let w =
ε1ε2 . . . εn ∈ E� be a word of length n. The image of w under any tree
automorphism gk may be written as follows

gk(w) = gk(ε1ε2 . . . εn) =
(
gk|E1(ε1)

)(
Rε1(gk)(ε2 . . . εn)

)

=
(
σgk(ε1)

)(
gk,ε1(ε2 . . . εn)

)

The first assumption gives σgk(ε1) = ε1. Furthermore it follows from the
second assumption and from the inductive hypothesis that gk,ε1(ε2 . . . εn) =
ε2 . . . εn since ε2 . . . εn is a word of length n−1. Finally gk(w) = (ε1)(ε2 . . . εn)
= w and the result follows by induction (the inductive start is given by the
first assumption). �

In practice, to show that a given tree automorphism g ∈ Aut(Td) is
actually the identity tree automorphism, the aim is to find together with
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g = g1 some tree automorphisms g2, . . . , gm which satisfy the assumptions
from Lemma 1.9.

1.2. Partial self-covering

Definition 1.10. — Let M be a path connected and locally path con-
nected topological space. A partial self-covering of M is a degree d � 2
covering p :M1 →M where M1 ⊆M.

A partial self-covering can be iterated and the iterates, denoted by pn :
Mn →M where Mn = p−n(M) ⊆M, are also partial self-coverings.

. . . −−−−→ M3 −−−−→
p
M2 −−−−→

p
M1 −−−−→

p
M

Example 1.11 (Examples). — Let f be a post-critically finite branched
covering map on the topological sphere S2 and denote by Pf its post-critical
set. Since Pf ⊂ f−1(Pf ), f induces the following partial self-covering.

f :M1 = S2\f−1(Pf ) −→M = S2\Pf

The same holds for post-critically finite rational maps on the Riemann
sphere Ĉ or for post-critically finite polynomials map on the complex plane C.

Recall that a partial self-covering satisfies the following path and homo-
topy lifting properties.

Proposition 1.12. —

(1) For every path � in M with base point �(0) = t ∈M and any preimage
x ∈ p−1(t), there exists a unique path Lx in M1 with base point
Lx(0) = x such that p◦Lx = � (see the commutative diagram below).
Lx is called the p-lift of � from x.

(2) Furthermore if l : [0, 1]×[0, 1]→M is a homotopy of paths with l(0, .) =
� then there exists a unique homotopy of paths Lx : [0, 1]×[0, 1]→M1

such that Lx(s, .) is the p-lift of l(s, .) from l(s, 0) for every s ∈ [0, 1]
(in particular Lx(0, .) = Lx for s = 0).
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(3) Therefore for every loop γ in M with base point �(0) = t ∈ M and
any preimage x ∈ p−1(t), the terminal point y = Γx(1) of the p-
lift Γx of γ from x depends on γ only through its homotopy class
[γ] ∈ π1(M, t). Since y is also a preimage of t under p, it turns out
that the fundamental group π1(M, t) acts on p−1(t) by [γ]x = Γx(1).

The same holds for pn : Mn → M as well, namely the fundamental
group π1(M, t) acts on the set of preimages p−n(t) by [γ]x = Γx(1) where
Γx is the pn-lift of γ from x.

2. Tree of preimages

Let p : M1 → M be a partial self-covering of degree d � 2 and t be a
point inM.

2.1. A right-hand tree

Definition 2.1. — The (right-hand) tree of preimages T (p, t) is the
rooted tree defined as follows

Root: the point t

Vertices: the abstract set of preimages
⊔

n�0 p
−n(t)

Edges: all the pairs {p(x), x} where p(x) ∈ p−n(t) and x ∈ p−(n+1)(t) for
some n � 0

By “abstract set”, one distinguishes a same point that belongs to two distinct
levels. More precisely, some preimages corresponding to distinct levels may
coincide in M1 but are distinguished in T (p, t) (in particular every edge is
well defined).

The graph below shows the first levels of a tree of preimages of a degree
d = 2 partial self-covering.
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Example 2.2. — Consider the degree d = 2 partial self-covering Q0 :
C\{0} → C\{0}, z → z2 and let t = 1 be the root. The first two levels of
the tree of preimages T (Q0, 1) are then

It turns out that the tree of preimages T (p, t) of a degree d partial self-
covering is isomorphic to the regular rooted tree Td. However there is no
canonical choice for a tree isomorphism between them. Actually Definition
2.1 does not provide a canonical labeling of all vertices of T (p, t).

2.2. A left-hand tree

Definition 2.3. — A labeling choice (L) for the partial covering p :
M1 →M and the base point t ∈M is the data of

• a numbering of the set p−1(t) = {x0, x1, . . . , xd−1}
• and for every letter ε ∈ E = {0, 1, . . . , d− 1}, a path �ε in M from t

to xε
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Definition 2.4. — Let (L) be a labeling choice. Applying Proposition
1.12 for every path �ε, one can consider the p-lifts of �ε from xw for every
w ∈ E1 = E. Terminal points of those lifts are denoted by xεw and are
preimages of t under p2. One can iterate this process by induction. More
precisely from every preimage xw ∈ p−n(t) labelled with a word w ∈ E� of
length n, there is a unique pn-lift of �ε whose terminal point is a preimage
of t under pn+1 denoted by xεw.

Then the left-hand tree of preimages T (L)(p, t) is the rooted tree defined
as follows

Root: the point t = x∅

Vertices: the abstract set of labeled preimages

⊔
n�0 p

−n(t) =
⊔

n�0{xw / w ∈ En}

Edges: all the pairs {xεw, xw} where w is a word in E� and ε is a letter in E

The graph below shows the first levels of a left-hand tree of preimages
of a degree d = 2 partial self-covering (for convenience, the lifts of �ε are
still denoted by �ε for every ε ∈ E).
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It turns out that the set of all vertices of a left-hand tree of preim-
ages T (L)(p, t) is the same as that one of the (right-hand) tree of preimages
T (p, t). However T (L)(p, t) provides a labeling of all vertices of T (p, t) (ac-
cording to Definition 2.4).

Example 2.5. — For Q0 : C\{0} → C\{0}, z → z2, the preimages of
t = 1 are x0 = 1 and x1 = −1. Choose the paths �0, �1 as follows

Lifting these paths gives (for convenience, the lifts of �0, �1 are still denoted
by �0, �1 respectively)

One can deduce the first two levels of the left-hand tree of preimages T (L)(Q0, 1)

Notice that distinct choices of paths �0, �1 induce distinct left-hand trees of
preimages. For instance
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gives after lifting

and thus the left-hand tree of preimages T (L)(Q0, 1) becomes

for this choice of �0, �1.

Proposition 2.6. — For every vertex xw of T (L)(p, t) labeled with a
word w ∈ E�, the preimages of xw under p are

p−1(xw) = {xwε / ε ∈ E}

Proof. — Since xw has exactly d preimages under p, one only needs
to check that xwε is a preimage of xw for every word w ∈ E� and every
letter ε ∈ E . The main idea is that the path from xε to xwε formed by
concatenation of some lifts (following Definition 2.4) is a p-lift of the path
from t to xw formed by concatenation of some lifts (following Definition 2.4
as well). However an induction will be used in order to avoid overloaded
notations.

The result obviously holds for the empty word, that is p−1(x∅) = p−1(t) =
{x0, x1, . . . , xd−1}. Let w = ε1ε2 . . . εn ∈ E� be a word of length n � 1.
From Definition 2.4, xw is the terminal point of the pn−1-lift of �ε1 from
xε2...εn , say L ε1

ε2...εn . Assume by induction that the result holds for the word
ε2 . . . εn of length n − 1 and let xε2...εnε be a preimage of xε2...εn for some
ε ∈ E . Following Definition 2.4, there is a unique pn-lift of �ε1 from xε2...εnε,
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say L ε1
ε2...εnε, whose terminal point is denoted by xxε1ε2...εnε = xwε. Since

L ε1
ε2...εnε is a p-lift of L ε1

ε2...εn , xwε is a preimage of xw under p. The result
follows by induction.

�

Example 2.7. — For Q0 : C\{0} → C\{0}, z → z2 with t = 1, x0 = 1
and x1 = −1, choose the paths �0, �1 as follows

Recall the first two levels of the left-hand and right-hand trees of preima-
ges.

One can deduce the induced labeling on the first levels of the tree of preimages
T (Q0, 1)
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Proposition 2.8. — Label all vertices of the tree of preimages T (p, t)
like those of T (L)(p, t) for some given labeling choice (L). Then the following
holds

- The edges of T (p, t) are all the pairs {xw, xwε} where w is a word in E�
and ε is a letter in E (compare with the edges of T (L)(p, t))

- The map ϕ(L) : xw → w is a tree isomorphism from T (p, t) onto the
regular rooted tree Td

Proof. — The first point and the edge preserving axiom for ϕ(L) follow
from Proposition 2.6. The level preserving axiom comes from Definition 2.4.
�

3. Iterated monodromy group

Let p : M1 → M be a partial self-covering of degree d � 2 and t be a
point inM.

3.1. Monodromy action

From Proposition 1.12, the fundamental group π1(M, t) acts on p−n(t)
for every n � 0, that is on the set of vertices of level n in the tree of
preimages T (p, t).

Definition 3.1. — The action of π1(M, t) on the set of all vertices in
the tree of preimages T (p, t) is called the monodromy action. It may be seen
as the following group homomorphism.

Φ : π1(M, t)→ Sym

(⊔

n�0

p−n(t)

)
, [γ] →

(
Φ[γ] : x → [γ]x

)

Furthermore for any labeling choice (L), the tree isomorphism ϕ(L) from
Proposition 2.8 induces a monodromy action on the set of all words E�
defined as follows

Φ(L) : π1(M, t)→ Sym (E�) , [γ] →
(
Φ

(L)
[γ] : w → [γ]w

)
where x[γ]w = [γ]xw

More precisely the monodromy action induced by a given labeling choice
(L) is defined as follows

∀[γ] ∈ π1(M, t), ∀w ∈ E�,
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Φ
(L)
[γ] (w) = [γ]w = ϕ(L)

(
[γ]xw

)
=

(
ϕ(L) ◦ Φ[γ] ◦

(
ϕ(L)

)−1
)

(w)

In particular the monodromy action induced by another labeling choice
(L′) is conjugate to that one coming from (L) by the map ϕ(L),(L′) = ϕ(L) ◦(
ϕ(L′)

)−1

∈ Aut(Td) in the following way

∀[γ] ∈ π1(M, t), Φ
(L′)
[γ] =

(
ϕ(L),(L′)

)−1

◦ Φ
(L)
[γ] ◦

(
ϕ(L),(L′)

)

As a consequence, the monodromy action on E� is well defined up to conju-
gation by a tree automorphism of the form ϕ(L),(L′) for any pair of labeling
choices (L) and (L′).

In practice, it is more convenient to use Φ(L) than Φ for a “relevant”
labeling choice (L) in order to compute the monodromy action of a partial
self-covering (since (L) provides a labeling of every vertex in the tree of
preimages).

As Theorem 3.5 will show, the monodromy action actually acts by tree
automorphisms, namely Φ[γ] ∈ Aut(T (p, t)) for every homotopy class [γ] ∈
π1(M, t) (and therefore Φ

(L)
[γ] ∈ Aut(Td) for any labeling choice (L)).

Example 3.2. — For Q0 : C\{0} → C\{0}, z → z2 with t = 1, x0 = 1
and x1 = −1, choose the paths �0, �1 as follows

The fundamental group π1(C\{0}, 1) may be described as the infinite cyclic
group generated by the homotopy class [γ] coming from the following loop

where γ surrounds the point 0 in a counterclockwise motion. Lifting this
loop gives
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One can deduce the monodromy action of [γ] on the first level Q−1
0 (t), that

is [γ]x0 = x1 and [γ]x1 = x0. Equivalently the action on E1 = {0, 1} is given
by [γ]0 = 1 and [γ]1 = 0. Lifting the loop γ by Q2

0 : z → z4 gives

One can deduce the action of [γ] on the second level Q−2
0 (t) or equivalently

on E2 = {00, 10, 01, 11}, that is [γ]00 = 10, [γ]01 = 01, [γ]01 = 11 and
[γ]11 = 00.

More generally, it turns out that the pn-lifts of any loop γ are needed
to compute the monodromy action of [γ] on the n-th level. However the
following lemma gives a recursive way to compute the monodromy action
that only uses the p-lifts of γ.

Lemma 3.3. — Let [γ] be a homotopy class in π1(M, t) and w be a word
in E�. For every letter ε ∈ E, denote by Γε the p-lift of γ from xε. Then,
for any labeling choice (L),

[γ]εw =
(
[γ]ε

)( [
�ε.Γε.�

−1
[γ]ε

]
w

)

The following graph depicts the concatenation of paths �ε.Γε.�
−1
[γ]ε.

In particular, it is a loop with base point t and the homotopy class
[
�ε.Γε.�

−1
[γ]ε

]

is well defined in π1(M, t).
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Proof. — Let δ be the loop �ε.Γε.�
−1
[γ]ε. Consider the pn-lift of δ from xw

and denote by xv its terminal point, that is v = [δ]w. This lift is exactly the

concatenation of three paths L ε
w.Γεw.

(
L

[γ]ε
v

)−1
where

• L ε
w is the pn-lift of �ε from xw (whose terminal point is xεw from

Definition 2.4)

• Γεw is the pn+1-lift of γ from xεw (whose terminal point is [γ]xεw =
x[γ]εw)

• L
[γ]ε
v is the pn-lift of �[γ]ε from xv (whose terminal point is x([γ]ε)v

from Definition 2.4)

In particular Γεw and L
[γ]ε
v have the same terminal point, and thus [γ]εw =

([γ]ε)v = ([γ]ε)([δ]w). �

Example 3.4. — Go further with the partial self-covering Q0 : C\{0} →
C\{0}, z → z2 using the same labeling choice as before. Recall that the
Q0-lifts Γ0,Γ1 of γ are

The loop �0.Γ0.�
−1
[γ]0 = �0.Γ0.�

−1
1 is homotopic to the constant loop at base

point t and the loop �1.Γ1.�
−1
[γ]1 = �1.Γ1.�

−1
0 is homotopic to γ. It follows

from Lemma 3.3 that

∀w ∈ E�, [γ]0w = 1w and [γ]1w = 0 ([γ]w)

Therefore the tree automorphism g = (w → [γ]w) ∈ Aut(T2) may be de-
scribed as the wreath recursion g = (0, 1)〈〈Id, g〉〉 which is the adding ma-
chine on T2, namely the process of adding one to a binary integer (see
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Section 1.1). One can depict this monodromy action on every vertex of the
tree of preimages T (Q0, 1) as follows

Remark that the monodromy action of [γ] actually acts by tree automorphism
on T (Q0, 1). In particular it is edge preserving (whatever the labeling of all
vertices) as it is shown in the graph above.

The previous remark can be generalized for any monodromy action.

Theorem 3.5. — The monodromy action acts by tree automorphisms
on the tree of preimages T (p, t). Equivalently speaking, the monodromy ac-
tion may be seen as the following group homomorphism.

Φ : π1(M, t)→ Aut (T (p, t)) , [γ] →
(
Φ[γ] : x → [γ]x

)

This result motivates the introduction of the right-hand tree of preimages
T (p, t). Indeed the monodromy action is not necessarily edge preserving on
the left-hand tree of preimages T (L)(p, t).

Proof. — Let [γ] be a homotopy class in π1(M, t). If follows from Def-
inition 3.1 and Proposition 1.12 that Φ[γ] is level preserving. So one only
needs to check that Φ[γ] is furthermore edge preserving.

Let {p(x), x} be an edge of T (p, t) where x ∈ p−(n+1)(t) for some n � 0.
Let Γp(x) be the pn-lift of γ from p(x) (whose terminal point is [γ]p(x)) and
Γx be the pn+1-lift of γ from x (whose terminal point is [γ]x). Since Γx is
a p-lift of Γp(x), it follows that p([γ]x) = [γ]p(x) and thus {[γ]p(x), [γ]x},
which is also equal to {Φ[γ](p(x)),Φ[γ](x)}, is an edge of T (p, t).
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�

The monodromy action may also be seen as a group homomorphism
from π1(M, t) into Aut(Td). In this case, its image is well defined for a
given labeling choice (L) or up to conjugation by a tree automorphism of

the form ϕ(L),(L′) = ϕ(L) ◦
(
ϕ(L′)

)−1

for any pair of labeling choices (L)

and (L′).

However these group homomorphisms are in general not injective or
equivalently, in terms of group action, the monodromy action is in general
not faithful.

3.2. Definition

Definition 3.6. — The iterated monodromy group of the degree d � 2
partial self-covering p :M1 →M with base point t ∈M is defined to be

IMG(p, t) = π1(M, t)/Ker(Φ)

where Ker(Φ) =
{

[γ] ∈ π1(M, t) / ∀x ∈
⊔

n�0

p−n(t), [γ]x = x
}

Equivalently speaking, it may be seen as

• the image of the monodromy action in Aut(T (p, t)) which induces a
faithful action by tree automorphisms on the tree of preimages T (p, t)

• the following subgroup of Aut(Td)

IMG(p, t) =
{

(w → [γ]w) ∈ Aut(Td) / [γ] ∈ π1(M, t)
}

which is defined for a given labeling choice (L)

Recall that, up to group isomorphism, the fundamental group π1(M, t)
does not depend on the choice of base point t ∈ M. The same obviously
holds, up to tree isomorphism, for the tree of preimages T (p, t) as well.
Consequently, up to group isomorphism, the iterated monodromy group
IMG(p, t) only depends on the partial self-covering p :M1 →M.
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The definition of the iterated monodromy group IMG(p, t) as a subgroup
of Aut(Td) depends on a labeling choice (L). Recall that another labeling
choice (L′) induces a monodromy action on Td which is conjugate to that

one coming from (L) by the map ϕ(L),(L′) = ϕ(L) ◦
(
ϕ(L′)

)−1

∈ Aut(Td).

Therefore the iterated monodromy group IMG(p, t) is well defined as sub-
group of Aut(Td) up to conjugation by a tree automorphism of the form
ϕ(L),(L′) for any pair of labeling choices (L) and (L′). In particular, it is
also well defined up to conjugation by a tree automorphism of Td (or equiv-
alently up to post-composition with an inner automorphism of Aut(Td)),
but there is then a loss of information since Aut(Td) is much bigger than its
subgroup of all maps of the form ϕ(L),(L′) for any pair of labeling choices
(L) and (L′).

Example 3.7. — Back to the partial self-covering Q0 : C\{0} → C\{0},
z → z2. Recall that π1(C\{0}, 1) is the infinite cyclic group generated by [γ]
and that [γ] acts as the adding machine g = (0, 1)〈〈Id, g〉〉. In particular [γ]
acts as a cyclic permutation of order 2n on the set of all vertices of level
n, and thus the kernel of the monodromy action on the n-th level is Kn =
〈[γ2n ]〉. It follows that Ker(Φ) =

⋂
n�0 Kn only contains the identity element

and the monodromy action is faithful. Finally IMG(Q0, 1) is isomorphic to
π1(C\{0}, 1), that is isomorphic to Z.

The following result deals with one of the many remarkable properties
satisfied by iterated monodromy groups.

Theorem 3.8 (Nekrashevych). — The iterated monodromy group
IMG(p, t) seen as a subgroup of Aut(Td) (for any given labeling choice (L))
is a self-similar group.

Proof. — Recall that a subgroup of Aut(Td) is said to be self-similar if
it is invariant under any renormalization (see Definition 1.3). Furthermore
a quick induction shows that one only needs to check that it is invariant
under renormalizations at every vertex in the first level.

So let [γ] be a homotopy class in π1(M, t) seen as a tree automorphism
(w → [γ]w) ∈ Aut(Td) and ε be a letter in E . For every word w ∈ E�,
Lemma 3.3 gives [γ]εw = ([γ]ε)([�ε.Γε.�

−1
[γ]ε]w) with [�ε.Γε.�

−1
[γ]ε] ∈ π1(M, t)

and therefore

Rε

(
w → [γ]w

)
=

(
w → [�ε.Γε.�

−1
[γ]ε]w

)

belongs to the iterated monodromy group IMG(p, t) making it a self-similar
group. �
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For further reading about self-similar groups, see [9] and [4].

Abusing notation, every tree automorphism (w → [γ]w) ∈ Aut(Td) in-
duced by some homotopy class [γ] ∈ π1(M, t) is often denoted simply by γ

(instead of Φ
(L)
[γ] ) for convenience. As it is shown in the proof above, Lemma

3.3 allows to compute efficiently the wreath recursion of every such tree
automorphism (see Section 1.1).

3.3. Examples

Basilica group

Consider the quadratic polynomial Q−1 : z → z2 − 1 whose Julia set,
called Basilica, is shown in Figure 3. Its critical point 0 is periodic of pe-
riod 2.

That induces a degree 2 partial self-covering Q−1 : C\{−1, 0, 1} → C\{−1, 0}.

Figure 3. — The Basilica and two generators of π1(C\{−1, 0}, t)

Choose the fixed point t = 1−
√

5
2 as base point. The fundamental group

π1(C\{−1, 0}, t) may be described as the free group generated by two ho-
motopy classes [a], [b] where the loop a surrounds the post-critical point −1
and the loop b the post-critical point 0 both in a counterclockwise motion
(see Figure 3).
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Figure 4. — The labeling choice �0, �1 and the lifts of a, b

Let x0 = t, x1 = −t be the preimages of t and choose two paths �0, �1
from t to x0, x1 as it is shown in Figure 4. This picture also depicts the lifts
of the loops a and b. In particular, one can deduce the monodromy action
of [a] and [b] on the first level.

{
[a]0 = 1
[a]1 = 0

and

{
[b]0 = 0
[b]1 = 1

Furthermore
{

[�0.A0.�
−1
1 ] = [b]

[�1.A1.�
−1
0 ] = [1t]

and

{
[�0.B0.�

−1
0 ] = [a]

[�1.B1.�
−1
1 ] = [1t]

where [1t] is the homotopy class of the constant loop at base point t (that is
the identity element of the fundamental group π1(C\{−1, 0}, t)). It follows
from Lemma 3.3 that

∀w ∈ E�,
{

[a]0w = 1([b]w)
[a]1w = 0w

and

{
[b]0w = 0([a]w)
[b]1w = 1w

Therefore the iterated monodromy group of Q−1 seen as a subgroup of
Aut(T2) is generated by the following wreath recursions

IMG(Q−1, t) =
〈
a = (0, 1)〈〈b, Id〉〉, b = 〈〈a, Id〉〉

〉

This group is called the Basilica group. It is not isomorphic to the free group
on a set of two elements. Indeed it follows from Lemma 1.6 that
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And thus the monodromy action of [b−1.a−1.b−1.a.b.a−1.b.a] is given by the
following wreath recursion

that is after “untying” (see Lemma 1.6)

0
a−1.a = Id−−−−−−−−−−−−−−−−−−−−−−−−→ 0

1
b−1.a−1.b.b−1.a.b = Id−−−−−−−−−−−−−−−−−−−−−−−−→ 1

Therefore [b−1.a−1.b−1.a.b.a−1.b.a] ∈ Ker(Φ). In particular for every pair
of generators of IMG(Q−1, t), the relation b−1.a−1.b−1.a.b.a−1.b.a = Id im-
plies a relation between these generators. It follows that IMG(Q−1, t) is not
isomorphic to the free group on a set of two elements.

Notice that the monodromy action of Q−1 : C\{−1, 0, 1} → C\{−1, 0}
is not faithful. More precisely this group was studied in [5] where it was in
particular proved that

Ker(Φ) =
〈
[b−p.a−p.b−p.ap.bp.a−p.bp.ap], [a−2p.b−p.a−2p.bp.a2p.b−p.a2p.bp]/p = 2j , j � 0

〉

Chebyshev polynomials and infinite dihedral group

Consider the degree d � 2 Chebyshev polynomials defined by Cd : z →
cos(d arccos(z)) or equivalently by the following recursive formula

∀z ∈ C, C0(z) = 1, C1(z) = z and Cd(z) = 2zCd−1(z)− Cd−2(z)

Its Julia set is the real segment [−2, 2]. For every k ∈ {1, 2, . . . , d− 1}, the
point ck = cos(πkd ) is a simple critical point and is mapped to Cd(ck) =
(−1)k. Moreover Cd(1) = 1, Cd(−1) = (−1)d, and thus the post-critical
set is {−1, 1}. It follows that every Chebyshev polynomial induces a partial
self-covering Cd : C\C−1

d ({−1, 1}) −→ C\{−1, 1}.

Choose t = 0 as base point. The fundamental group π1(C\{−1, 1}, t)
may be described as the free group generated by two homotopy classes
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[a], [b] where the loop a surrounds the post-critical point −1 and the loop b
the post-critical point 1 both in a counterclockwise motion (see the graph
below).

The preimages of t = 0 are xε = cos( π
2d + πε

d ) where the letter ε belongs
to the alphabet E = {0, 1, . . . , d − 1}. For every letter ε ∈ E , let �ε be
the straight path from t to xε. Remark that every real segment [xk+1, xk]
contains only one critical point, namely ck+1, and the restriction of Cd on
this segment is a double covering map onto [−1, 0] for k even and onto [0, 1]
for k odd.

Each of the loops a and b has exactly d lifts. The pattern of these lifts
is depicted in the following graph

and the last lift on left, which is a loop surrounding −1, is a lift of b for d
even and of a for d odd. It follows from Lemma 3.3 that

∀w ∈ E�,





[a]0w = 1w
[a]1w = 0w
[a]2w = 3w
[a]3w = 2w
. . .

and





[b]0w = 0([b]w)
[b]1w = 2w
[b]2w = 1w
[b]3w = 4w
[b]4w = 3w
. . .

with

{
[b](d− 1)w = (d− 1)([a]w) if d is even
[a](d− 1)w = (d− 1)([a]w) if d is odd

That leads to the following wreath recursions
{

a = σa〈〈Id, Id, . . . , Id, Id〉〉 and b = σb〈〈b, Id, . . . , Id, a〉〉 if d is even
a = σa〈〈Id, Id, . . . , Id, a〉〉 and b = σb〈〈b, Id, . . . , Id, Id〉〉 if d is odd

where σa = (0, 1)(2, 3) . . . and σb = (1, 2)(3, 4) . . .
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Using Lemma 1.6, one may compute the wreath recursions a2 and b2.
{

a2 = 〈〈Id, Id, . . . , Id, Id〉〉 and b2 = 〈〈b2, Id, . . . , Id, a2〉〉 if d is even
a2 = 〈〈Id, Id, . . . , Id, a2〉〉 and b = 〈〈b2, Id, . . . , Id, Id〉〉 if d is odd

Applying Lemma 1.9, it follows that a2 = b2 = Id, or equivalently, in terms
of monodromy action,

〈
[a2], [b2]

〉
⊂ Ker(Φ) ⊂

〈
[a], [b]

〉
= π1(C\{−1, 1}, t)

Remark that if Ker(Φ) is strictly larger than 〈[a2], [b2]〉, then Ker(Φ) must
contain at least one element of the form either [(a.b)j ] or [(b.a)j ] with j � 1
or of the form either [a.(b.a)j ] or [b.(a.b)j ] with j � 0. One will prove that
is not the case.

The wreath recursion a.b is given by (using Lemma 1.6)
{

a.b = σa.b〈〈Id, b, Id, . . . , Id, a, Id〉〉 if d is even
a.b = σa.b〈〈Id, b, Id, . . . , Id, Id, a〉〉 if d is odd

where (using circular notation)

σa.b =
(
(1, 2)(3, 4) . . .

)
◦

(
(0, 1)(2, 3) . . .

)

=

{
(0, 2, 4, . . . , d− 4, d− 2, d− 1, d− 3, . . . , 5, 3, 1) if d is even
(0, 2, 4, . . . , d− 3, d− 1, d− 2, d− 4, . . . , 5, 3, 1) if d is odd

In particular [a.b] acts as a cyclic permutation of order d on the first level of
the regular rooted tree Td (since σa.b is of order d). Moreover, using Lemma
1.6 again, it appears that

(a.b)d = 〈〈a.b, a.b, a.b, . . . , b.a, b.a, b.a〉〉
Recall that (b.a) = (a.b)−1 since a2 = b2 = Id, and thus [b.a] also acts as a
cyclic permutation of order d on the first level. Therefore a quick induction
implies that [a.b] and [b.a] act as a cyclic permutation of order dn on the
n-th level of Td. It follows that none of the elements of the form either
[(a.b)j ] or [(b.a)j ] with j � 1 acts as the identity tree automorphism. The
same holds as well for the elements of the form either [a.(b.a)j ] or [b.(a.b)j ]
with j � 0 since a and b are of order 2 in Aut(Td). Finally

Ker(Φ) =
〈
[a2], [b2]

〉

and IMG(Cd, t) = π1(C\{−1, 1}, t)/Ker(Φ) =
〈
[a], [b]

〉
/
〈
[a2], [b2]

〉

This group is called the infinite dihedral group. It is isomorphic to the
isometry group of Z (for instance the permutations α → −α and α → 1−α
play the same role as a and b).
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The quadratic rational map z →
(
z−1
z+1

)2

Consider the quadratic rational map R : z →
(
z−1
z+1

)2

whose Julia set is

shown in Figure 5. The critical points are −1 and 1. Since R(−1) = ∞,
R2(−1) = 1 and R(1) = 0, R2(1) = 1, the post-critical set is {0, 1,∞}.

That induces a degree 2 partial self-covering R : C\{−1, 0, 1} −→ C\{0, 1}.

Figure 5. — The Julia set of R : z �→
(
z−1
z+1

)2
and two generators of π1(C\{0, 1}, t) a, b

Choose the real fixed point t ≈ 0.296 as base point. The fundamental
group π1(C\{0, 1}, t) may be described as the free group generated by two
homotopy classes [a], [b] where the loop a surrounds the post-critical point
0 and the loop b the post-critical point 1 both in a counterclockwise motion
(see Figure 5).
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Figure 6. — The labeling choice �0, �1 and the lifts of a, b a, b

Let x0 = t, x1 = t−1 ≈ 3.383 be the preimages of t and choose two paths
�0, �1 from t to x0, x1 as it is shown in Figure 6. This picture also depicts
the lifts of the loops a and b. By using Lemma 3.3, one can compute the
monodromy action of [a] and [b].

∀w ∈ E�,
{

[a]0w = 1([b]w)
[a]1w = 0w

and

{
[b]0w = 0([a]w)
[b]1w = 1([b−1.a−1]w)

Therefore the iterated monodromy group of R seen as a subgroup of
Aut(T2) is generated by the following wreath recursions

IMG(R, t) =
〈
a = (0, 1)〈〈b, Id〉〉, b = 〈〈a, b−1.a−1〉〉

〉

Notice that these wreath recursions are not convenient to compute with
since two generators occur in the renormalization R1(b) = b−1.a−1 and
only one renormalization is the identity tree automorphism. However one
may find a nicer pair of generators of IMG(R, t) by taking another pair of
generators of π1(C\{0, 1}, t) and another labeling choice.
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Indeed consider the tree automorphism g in Aut(T2) whose wreath re-
cursion is given by

g = 〈〈g.a, g〉〉
This tree automorphism is well defined by induction on the successive levels
of the regular rooted tree T2. Now consider the following wreath recursions

Remark that 〈a, b〉 is obviously generated by a.b and a. Consequently
〈a, b〉 and 〈a′, b′〉 = g.〈a.b, a〉.g−1 = g.〈a, b〉.g−1 are conjugate subgroups in
Aut(T2)

Recall that the iterated monodromy group IMG(R, t) seen as a sub-
group of Aut(T2) is defined for a given labeling choice. In particular the
subgroup 〈a, b〉 was obtained for the labeling choice, say (L), depicted in
Figure 6. With similar computations, one can show that the labeling choice
(L′) depicted in Figure 7 gives the subgroup 〈a′, b′〉. In other words, the
tree automorphism g ∈ Aut(T2) corresponds to the map ϕ(L),(L′) = ϕ(L) ◦(
ϕ(L′)

)−1

∈ Aut(T2) which describes the change of labeling choices from

(L) to (L′) (see Proposition 2.8 and Definition 3.1).

It follows from the labeling choice (L′) that

IMG(R, t) =
〈
a′ = (0, 1)〈〈Id, Id〉〉, b′ = (0, 1)〈〈a′, b′−1〉〉

〉

for which the wreath recursions of generators are nicer than for 〈a, b〉. In-
deed, that immediately shows a′2 = Id, and thus IMG(R, t) is not isomorphic
to the free group on a set of two elements, or equivalently the monodromy
action of R : C\{−1, 0, 1} → C\{0, 1} is not faithful.
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Figure 7. — The labeling choice �′0, �
′
1 and two generators [a′] = [a.b], [b′] = [a] of

π1(C\{0, 1}, t)

Sierpinski gasket and towers of Hanoi (due to Grigorchuk and S̆unić [4])

Consider the cubic rational map H : z → z2 − 16
27z whose Julia set is a

Sierpinski gasket (see Figure 8). The critical points are ∞ and ck = − 2
3ζ

k

where k ∈ {0, 1, 2} and ζ = − 1
2 +

√
3

2 (a third root of unity). Since H(∞) =
∞ and H(ck) = 4

3ζ
2k, H2(ck) = 4

3ζ
k, the post-critical set is

{
4
3 ,

4
3ζ,

4
3ζ

2,∞
}
.

That induces a degree 3 partial self-covering H : C\H−1
({

4
3 ,

4
3ζ,

4
3ζ

2
})
−→

C\
{

4
3 ,

4
3ζ,

4
3ζ

2
}
.
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Figure 8. — A Sierpinski gasket and three generators of π1(C\{ 4
3
, 4
3
ζ, 4

3
ζ2}, t)

Choose t = 0 as base point. The fundamental group π1(C\{ 4
3 ,

4
3ζ,

4
3ζ

2}, t)
may be described as the free group generated by three homotopy classes
[a], [b], [c] where the loops a, b, c surround the post-critical points 4

3 ,
4
3ζ,

4
3ζ

2

respectively in a counterclockwise motion (see Figure 8).

The preimages of t are xε = 24/3

3 ζε where the letter ε belongs to the
alphabet E = {0, 1, 2}. For every letter ε ∈ E , let �ε be the straight path (in
C) from t to xε as it is shown in Figure 9. This picture also depicts the lifts
of the loops a, b, c.

One can deduce the monodromy action of [a], [b], [c] on the first level.





[a]0 = 0
[a]1 = 2
[a]2 = 1

and





[b]0 = 1
[b]1 = 0
[b]2 = 2

and





[c]0 = 2
[c]1 = 1
[c]2 = 0

Furthermore




[�0.A0.�
−1
0 ] = [a]

[�1.A1.�
−1
2 ] = [1t]

[�2.A2.�
−1
1 ] = [1t]

and





[�0.B0.�
−1
1 ] = [1t]

[�1.B1.�
−1
0 ] = [1t]

[�2.B2.�
−1
2 ] = [c]

and





[�0.C0.�
−1
2 ] = [1t]

[�1.C1.c
−1
1 ] = [b]

[�2.C2.�
−1
0 ] = [1t]
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where [1t] is the homotopy class of the constant loop at base point t (that
is the identity element of the fundamental group π1(C\{ 4

3 ,
4
3ζ,

4
3ζ

2}, t)). It
follows from Lemma 3.3 that

∀w ∈ E�,





[a]0w = 0([a]w)
[a]1w = 2w
[a]2w = 1w

and





[b]0w = 1w
[b]1w = 0w
[b]2w = 2([c]w)

and





[c]0w = 2w
[c]1w = 1([b]w)
[c]2w = 0w

Figure 9. — The labeling choice �0, �1, �2 and the lifts of a, b, c

Therefore the iterated monodromy group of H seen as a subgroup of
Aut(T3) is generated by the following wreath recursions

IMG(H, t) =
〈
a = (1, 2)〈〈a, Id, Id〉〉, b = (0, 1)〈〈Id, Id, c〉〉, c = (0, 2)〈〈Id, b, Id〉〉

〉

IMG(H, t) is not isomorphic to the free group on a set of three ele-
ments (for instance one can prove that a2 = b2 = c2 = Id by using
Lemma 1.6 and Lemma 1.9) or equivalently the monodromy action of H :
C\H−1

({
4
3 ,

4
3ζ,

4
3ζ

2
})
→ C\

{
4
3 ,

4
3ζ,

4
3ζ

2
}

is not faithful.

Moreover IMG(H, t) looks like the Hanoi Towers group H (see Section
1.1). Indeed consider two tree automorphisms g, h in Aut(T3) whose wreath
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recursions are given by

g = (1, 2)〈〈h, h, h〉〉 and h = 〈〈g, g, g〉〉

This pair of tree automorphisms is well defined by induction on the succes-
sive levels of the regular rooted tree T3. Now consider the following wreath
recursions

with

Therefore a quick induction gives





a′ = (1, 2)〈〈a′, Id, Id〉〉
b′ = (0, 1)〈〈Id, Id, b′〉〉
c′ = (0, 2)〈〈Id, c′, Id〉〉

These wreath recursions are the three generators of the Hanoi Towers
group H (see Section 1.1), and thus g.〈a, b, c〉.g−1 = H. Consequently the
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iterated monodromy group IMG(H, t) seen as a subgroup of Aut(T3) is
conjugate to the Hanoi Towers group H by a tree automorphism of T3.

But one can show that g does not correspond to a map of the form

ϕ(L),(L′) = ϕ(L) ◦
(
ϕ(L′)

)−1

for some pair of labeling choices (L) and (L′),

or equivalently there is no labeling choice for which IMG(H, t) and H are
equal as subgroup of Aut(T3).

However similar computations show that IMG(H, t) = H where H : z →
H(z) = z2 − 16

27z .

4. Some properties in holomorphic dynamics

4.1. Combinatorial invariance

Let f and g be two post-critically finite branched coverings on the topo-
logical sphere S2 and denote by Pf and Pg their respective post-critical sets.
Recall that f and g are said to be combinatorially equivalent (or Thurston
equivalent) if there exist two orientation-preserving homeomorphisms ψ0, ψ1

on S2 such that

(i) ψ0 ◦ f = g ◦ ψ1

(ii) ψ0(Pf ) = ψ1(Pf ) = Pg and ψ0|Pf = ψ1|Pf
(iii) ψ0 is isotopic to ψ1 relatively to Pf

Let t ∈ S2\Pf be a base point. Remark that the push-forward map
(ψ0)� : [γ] → [ψ0 ◦ γ] realizes a group isomorphism from π1(S2\Pf , t)
onto π1(S2\Pg, ψ0(t)) since ψ0(Pf ) = Pg. Applying the fundamental ho-
momorphism theorem, one gets a group isomorphism, say (ψ0)� again, from
IMG(f, t) onto a quotient group of π1(S2\Pg, ψ0(t)).

Proposition 4.1. — If f and g are two combinatorially equivalent post-
critically finite branched coverings on the topological sphere S2, say ψ0 ◦f =
g ◦ ψ1, then for any base point t ∈ S2\Pf

(ψ0)�

(
IMG(f, t)

)
= IMG(g, ψ0(t))

More precisely, for every loop γ in S2\Pf with base point t, the monodromy
action induced by [ψ0 ◦γ] on the tree of preimages T (g, ψ0(t)) is the same as
that one induced by [γ] on the tree of preimages T (f, t) (up to conjugation
by tree isomorphism).
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Equivalently speaking, the iterated monodromy group is an invariant with
respect to combinatorial equivalence classes. But it is not a complete invari-
ant (some additional algebraic data are required, see [9]).

Proof. — At first, remark that h = ψ−1
1 ◦ψ0 is an orientation-preserving

homeomorphism isotopic to IdS2 relatively to Pf such that f◦h = ψ−1
0 ◦g◦ψ0.

It follows that (ψ0)�(IMG(f ◦ h, t)) = IMG(g, ψ0(t)) (by definition of the
push-forward isomorphism (ψ0)�). Therefore one only needs to check that
IMG(f, t) = IMG(f ◦h, t), or equivalently from Definition 3.6, the kernel of
the monodromy action of f ◦ h is the same as that one of f (as subgroups
of π1(S2\Pf , t)).

So let γ be a loop in S2\Pf with base point t such that [γ] is in the kernel
of the monodromy action of f , namely for every preimage y ∈ ⊔

n�0 f
−n(t)

the fn-lift of γ from y is again a loop.

Let x1 be a preimage in (f ◦ h)−1(t). Since [γ] is in the kernel of the
monodromy action of f , the f -lift Γh(x1) of γ from h(x1) ∈ f−1(t) is a loop.
It easily follows that h−1 ◦ Γh(x1), which is the (f ◦ h)-lift of γ from x1, is a
loop as well. Furthermore remark that h−1 ◦ Γh(x1) is homotopic to Γh(x1)

in S2\Pf (since h is isotopic to IdS2 relatively to Pf ).

Now assume by induction that every (f ◦h)n-lift of γ is a loop homotopic
to some fn-lift of γ. Let xn+1 be a preimage in (f ◦ h)−(n+1)(t). From

assumption, the (f ◦ h)n-lift of γ from xn = (f ◦ h)(xn+1), say Γ̃xn , is a
loop homotopic to some fn-lift of γ, say Γyn where yn ∈ f−n(t). Using
the homotopy lifting property from Proposition 1.12, it follows that the f -
lift Γ̃h(xn+1) of Γ̃xn from h(xn+1) ∈ f−1(xn) is homotopic to some f -lift

of Γyn , say Γyn+1
where yn+1 ∈ f−(n+1)(t). Since [γ] is in the kernel of the

monodromy action of f , Γyn+1 is a loop (as fn+1-lift of γ) and thus Γ̃h(xn+1)

also. It easily follows that h−1 ◦ Γ̃h(xn+1), which is the (f ◦ h)(n+1)-lift of γ

from xn+1, is a loop as well. Furthermore h−1 ◦ Γ̃h(xn+1) is homotopic to

Γ̃h(xn+1) and therefore to Γyn+1 .

The graph in the next page depicts this argument in short.

It follows by induction that [γ] is in the kernel of the monodromy action of
f ◦ h. Consequently

(ψ0)�(IMG(f, t)) ⊃ (ψ0)�(IMG(f ◦ h, t)) = IMG(g, ψ0(t))

The reciprocal inclusion follows by symmetry since (ψ0)� = (ψ1)
−1
� .

– 1106 –
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�

Example 4.2. — Example – Classification of quadratic branched cover-
ings with three post-critical points. Although the iterated monodromy group
is not a complete invariant, it may be used to characterize some combinato-
rial equivalence classes. For instance, consider degree 2 branched coverings
on the topological sphere S2 whose post-critical sets contain exactly three
points. Such branched covering has exactly two simple critical points. By
a quick exhaustion, there are exactly four ramification portraits with two
simple critical points and three post-critical points, which are as follows

According to Thurston topological characterization of post-critically finite
rational maps [3], any combinatorial equivalence class of quadratic branched
coverings with exactly three post-critical points contains a unique rational
map up to conjugation by a Möbius map. Some easy computations show
that each of the ramification portraits above corresponds to exactly one
quadratic rational map up to conjugation by a Möbius map. These rational
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models are

Q−1 : z → z2−1, C2 : z → 2z2−1, R : z →
(
z − 1

z + 1

)2

and F : z → 1− 1

z2

The first three of them have already studied in Section 3.3. The rational
map F (and R too) was studied in [2] where the authors proved that the
corresponding iterated monodromy group (seen as a subgroup of Aut(T2),
for some base point t ∈ C\{0, 1} and some labeling choice) is generated by
the following wreath recursions

IMG(F, t) =
〈
a = (0, 1)〈〈Id, a−1.b−1〉〉, b = 〈〈a, Id〉〉

〉

It follows that each row of the following table corresponds to exactly one
combinatorial equivalence class.

Since these iterated monodromy groups are pairwise not isomorphic (for
instance, see [1]), they entirely characterize the four combinatorial equiva-
lence classes of quadratic branched coverings with exactly three post-critical
points.

Example 4.3. — Example – Hubbard Twisted Rabbit Problem (due to
Bartholdi and Nekrashevych [2]). In the previous example, iterated mon-
odromy groups are redundant since the four combinatorial equivalence classes

– 1108 –
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are actually characterized by their ramification portraits. However there ex-
ist combinatorial equivalence classes with same ramification portrait which
are distinguished by their iterated monodromy groups. The first example
is due to Pilgrim [10]. Another example is provided by the solution of the
Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych [2]
and for which Proposition 4.1 is essential.

Namely consider a quadratic polynomial Qc : z → z2 + c where c ∈ C is
chosen in order that the critical point 0 is on a periodic orbit of period 3.
There are precisely three such parameters c which are denoted by cairplane ≈
−1.755, crabbit ≈ −0.123 + 0.745i and ccorabbit ≈ −0.123− 0.745i.

Consider now a Dehn twist D around the two nonzero post-critical points
of Qcrabbit . Then for every integer m ∈ Z, the map Dm ◦ Qcrabbit is again
a branched covering with the same post-critical set (and same ramification
portrait) as Qcrabbit . According to Thurston topological characterization of
post-critically finite rational maps [3], the map Dm ◦Qcrabbit is combinatori-
ally equivalent to one of Qcairplane , Qcrabbit , Qccorabbit . The question asked by
Hubbard [3] is which one ? A sketch of the solution given by Bartholdi and
Nekrashevych is to compute the iterated monodromy group of Dm ◦Qcrabbit

and to compare it with those ones of Qcairplane , Qcrabbit and Qccorabbit .

Example 4.4. — Example – Characterization of Thurston obstructions.
Proposition 4.1 suggests that the topological criterion from Thurston char-
acterization of post-critically finite rational maps (see [3]) may be alge-
braically reformulated in terms of the associated iterated monodromy group.
Actually it was done in [13] (see also [12]). To illustrate this, one can easily
show how to check that a certain kind of Thurston obstructions, namely
Levy cycles (see [6]), does not occur by using the wreath recursions of the
associated iterated monodromy group.

Let f be a post-critically finite branched covering on the topological
sphere S2 of degree d � 2 and denote by Pf its post-critical set. Recall that
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a multi-curve is a finite set Γ = {γ1, γ2, . . . , γm} of m � 1 disjoint Jordan
curves in S2\Pf which are non-isotopic and non-peripheral (namely each
connected component of S2\γk contains at least two points of Pf for every
k ∈ {1, 2, . . . ,m}). Also recall that a multi-curve Γ = {γ1, γ2, . . . , γm} is
called a Levy cycle if for every k ∈ {1, 2, . . . ,m}, f−1(γk) has a connected
component δk−1 isotopic to γk−1 relatively to Pf (with notation γ0 = γm)
and the restriction f |δk−1

: δk−1 → γk is of degree one.

Up to isotopy, all the loops in a multi-curve Γ = {γ1, γ2, . . . , γm} may
be assumed to have a common base point t ∈ S2\Pf . Using the monodromy
action, every loop in Γ induces a tree automorphism of Td (for any given la-
beling choice) which may be uniquely written as wreath recursion as follows
(see Definition 1.5)





γ1 = σγ1〈〈γ1,0, γ1,1, . . . , γ1,d−1〉〉
γ2 = σγ2

〈〈γ2,0, γ2,1, . . . , γ2,d−1〉〉
. . .

γm = σγm〈〈γm,0, γm,1, . . . , γm,d−1〉〉

It follows from Lemma 3.3 that if the multi-curve Γ = {γ1, γ2, . . . , γm} is
a Levy cycle then for every k ∈ {1, 2, . . . ,m}, there exists a letter εk ∈
E = {0, 1, . . . , d− 1} such that σγk(εk) = εk and γk,εk , γk−1 (with notation
γ0 = γm) are two tree automorphisms of Td induced by two loops which are
isotopic relatively to Pf . Although this algebraic necessary condition is not
a sufficient condition since the monodromy action is in general not faith-
ful (two non-homotopic loops may induce the same tree automorphism in
Aut(Td)), it may be used in order to prove that a combinatorial equivalence
class does not contain some Levy cycles (according to Proposition 4.1).

4.2. Matings

Let f1 and f2 be two monic polynomials on the complex plane C of same
degree d � 2. Let C1 and C2 be two copies of the complex plane and let
f1 and f2 act on the corresponding copy. Compactify each copy by adding
circles at infinity, that is

C̃1 = C1 ∪ {∞ · e2iπθ / θ ∈ R/Z} and C̃2 = C2 ∪ {∞ · e2iπθ / θ ∈ R/Z}

The actions of f1 and f2 are continuously extended to the action∞·e2iπθ →
∞ · e2iπdθ on the circle at infinity. Now glue the copies C̃1 and C̃2 along the
circle at infinity in the opposite direction, namely

C1⊥⊥C2 = C̃1 � C̃2/(∞ · e2iπθ ∈ C̃1) ∼ (∞ · e−2iπθ ∈ C̃2)
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This makes C1⊥⊥C2 a topological sphere and that provides a degree d
branched covering f1⊥⊥ f2 on C1⊥⊥C2 whose restrictions on the hemispheres
C1 and C2 are equal to f1 and f2 respectively. f1⊥⊥ f2 is called the formal
mating of f1 and f2. Furthermore, f1 and f2 are said to be matable if the
formal mating f1⊥⊥ f2 is combinatorially equivalent to a rational map (see
[14]).

If f1 and f2 are post-critically finite, then f1⊥⊥ f2 is post-critically finite
as well. In that case one can consider the iterated monodromy group of
partial self-covering induced by f1⊥⊥ f2 (or that one induced by the corre-
sponding rational map in case f1 and f2 are matable) and compare it with
those ones induced by f1 and f2 respectively. The following result is an easy
consequence of Definition 3.6 and construction of the formal mating.

Proposition 4.5. — The iterated monodromy group of a formal mating
f1⊥⊥ f2 is generated by two subgroups which are isomorphic to the iterated
monodromy groups of f1 and f2 respectively.

Remark this provides a sufficient condition to prove that a rational map
is not combinatorially equivalent to a formal mating (according to Proposi-
tion 4.1). Unfortunately this criterion (the iterated monodromy group of a
given post-critically finite rational map of degree d � 2 is not generated by
some pair of iterated monodromy groups of degree d monic polynomials) is
too hard to check.

The following result is more useful with this aim in view.

Proposition 4.6. — The iterated monodromy group of a formal mating
f1⊥⊥ f2 of degree d � 2 contains a tree automorphism which acts as a cyclic
permutation of order dn on the n-th level for every n � 1.

In order to prove that a rational map f is not combinatorially equivalent
to a formal mating, that provides finitely many conditions to check for
every level n � 1. Indeed one only need to show that the finite subgroup of
permutations generated by the monodromy actions on the n-th level induced
by the finitely many generators of π1(Ĉ\Pf , t) (for any base point t ∈ Ĉ\Pf )
does not contain a cyclic permutation. Unfortunately this criterion is not
an equivalence as it will be shown in the next example.

Proof. — Without loss of generality, choose the base point t to be the

fixed point∞.e2iπ0 on the circle at infinity of the copies C̃1 and C̃2. Consider
the loop γ which describes the circle at infinity (in one turn from t to
t). Remark that the (f1⊥⊥ f2)-lifts of γ are the arcs of circle at infinity
between two consecutive preimages of t. For ε describing the alphabet E =
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{0, 1, . . . , d− 1}, denote successively by xε these consecutive preimages and
by �ε the arcs of circle at infinity between t and xε (going along the circle
at infinity in the same direction as γ). By using Lemma 3.3, one can deduce
the monodromy action of [γ]

∀w ∈ E�,





[γ]0w = 1w
[γ]1w = 2w
. . .
[γ](d− 2)w = (d− 1)w
[γ](d− 1)w = 0([γ]w)

Consequently, the iterated monodromy group IMG(f, t) seen as a subgroup
of Aut(Td) contains the wreath recursion γ = σ〈〈Id, Id, . . . , Id, γ〉〉 where
σ = (0, 1, . . . , d − 1) (using circular notation) which defines the adding
machine. In particular, [γ] acts as a cyclic permutation of order dn on the
n-th level for every n � 1. �

Example 4.7. — Example – The non-mating Wittner example (due to
Milnor and Tan Lei [8]). Consider the following quadratic rational map

W : z → λ

(
z +

1

z

)
+ µ

where the parameters λ, µ ∈ C are chosen in order that the critical point
c0 = 1 is on a periodic orbit of period 4 and the critical point c′0 = −1 is
on a periodic orbit of period 3. Such parameters are actually unique and
computation gives λ ≈ −0.138 and µ ≈ −0.303. The following ramification
portrait depicts the pattern of the critical orbits along the real line R.

Wittner proved that W is not combinatorially equivalent to a formal
mating (see [8]). Proposition 4.6 suggests a different proof of this result by
using iterated monodromy groups. Unfortunately one will show that there
exists a tree automorphism in the iterated monodromy group of W which
acts as a cyclic permutation on every level although W is not combina-
torially equivalent to a formal mating. However one will see that iterated
monodromy groups provide an efficient way to prove that W 5 is combina-
torially equivalent to a formal mating.
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For convenience, conjugate W by the Möbius map z → z+i
iz+1 which

interchanges the extended real line R∪{∞} and the unit circle S1 (keeping
the critical points 1 and −1 fixed). Abusing notation, the resulting map is
still denoted by W and the post-critical points, which belong to the unit
circle S1, are still denoted by ck = W k(1) and c′k = W k(−1) for every
integer k. Choose the fixed point t = −i as base point (which corresponds
to ∞ in the first model).

The fundamental group π1(Ĉ\PW , t) may be described as the free group
generated by six homotopy classes among [a0], [a1], [a2], [a3] and [b0], [b1], [b2]
where every loop ak (respectively bk) surrounds the post-critical point ck
(respectively c′k) in a counterclockwise motion (see Figure 10). In fact,
these seven loops together are linked by a circular relation of the form
[b2.a0.a2.b1.a1.b0.a3] = [1t] where [1t] is the homotopy class of the constant
loop at base point t (that is the identity element of the fundamental group

π1(Ĉ\PW , t)).

Let x0 = −i, x1 = i be the preimages of t = −i. Choose �0 to be the
constant path at base point t = x0 and �1 to be the straight path from t to
x1. Figure 11 depicts the W -lift of Figure 10.

Figure 10. — Seven generators of π1(Ĉ\PW , t)
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Figure 11. — The W -lift of Figure 10

It follows from Lemma 3.3 that the iterated monodromy group IMG(W, t)
seen as a subgroup of Aut(T2) is generated by the following wreath recur-
sions

Recall that every homotopy class in π1(Ĉ\PW , t) may be uniquely writ-
ten as [γν1

1 .γν2
2 . . . . .γνmm ] where the loops γj are chosen among a0, a1, a2, b0, b1, b2

(disregarding a3) and the exponents νj belong to Z. Notice that for every
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k ∈ {0, 1, 2}, the following maps

αk : [γν1
1 .γν2

2 . . . . .γνmm ] −→
∑

γj=ak

νj and βk : [γν1
1 .γν2

2 . . . . .γνmm ] −→
∑

γj=bk

νj

are well defined on π1(Ĉ\PW , t) (the cartesian product of maps α0×α1×α2×
β0×β1×β2 is actually a projection onto the abelianization of π1(Ĉ\PW , t),
namely Z6).

Claim. — Let [γ] ∈ π1(Ĉ\PW , t) be a homotopy class such that αk([γ]) =
0 and βk([γ]) = 1 for every k ∈ {0, 1, 2}. Then the tree automorphism in-
duced by the monodromy action of [γ] acts as a cyclic permutation of order
2n on the n-th level for every n � 1.

For instance, the wreath recursion b2.b1.b0 = (0, 1)〈〈a−1
3 , b1.b0.a3.b2〉〉 sat-

isfies the conclusion of Proposition 4.6 although W is not combinatorially
equivalent to a formal mating.

Proof of the Claim. — At first, remark that the result holds on the first
level for every tree automorphism γ ∈ Aut(T2) coming from a homotopy
class [γ] = [γν1

1 .γν2
2 . . . . .γνmm ] which satisfies the assumptions. Indeed, since

Sym(E) = {Id, (0, 1)} is an abelian group, the root permutation γ|E1 ∈
Sym(E) gives

γ|E1 = γαmm |E1◦. . .◦γα2
2 |E1◦γα1

1 |E1 = b0|E1◦b1|E1◦b2|E1 = Id◦(0, 1)◦Id = (0, 1)

Let n � 2 be an integer and assume by induction that the result holds on
the (n − 1)-th level for every tree automorphism coming from a homotopy
class which satisfies the assumptions. Let γ ∈ Aut(T2) be a tree automor-
phism coming from a homotopy class [γ] which satisfies the assumptions.
Denote by γ0 and γ1 the renormalizations of γ at 0 and 1 induced by some
homotopy classes [γ0] and [γ1] (see Lemma 3.3), in order that the wreath
recursion of γ is given by γ = (0, 1)〈〈γ0, γ1〉〉. Lemma 1.6 gives

Furthermore, it follows from the wreath recursions of the generators a0, a1,
a2, b0, b1, b2 and from the relation a−1

3 = b2.a0.a2.b1.a1.b0 that
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α0([γ0]) + α0([γ1]) = −α0([γ]) + α1([γ]) + β1([γ])− β1([γ]) = 0
α1([γ0]) + α1([γ1]) = −α0([γ]) + α2([γ]) + β1([γ])− β1([γ]) = 0
α2([γ0]) + α2([γ1]) = −α0([γ]) + β1([γ])− β1([γ]) = 0
β0([γ0]) + β0([γ1]) = −α0([γ]) + β1([γ])− β1([γ]) + β1([γ]) = 1
β1([γ0]) + β1([γ1]) = −α0([γ]) + β1([γ])− β1([γ]) + β2([γ]) = 1
β2([γ0]) + β2([γ1]) = −α0([γ]) + α1([γ]) + β0([γ]) + β1([γ])− β1([γ]) = 1

Hence

∀k ∈ {0, 1, 2},
{

αk([γ0.γ1]) = αk([γ1.γ0]) = αk([γ0]) + αk([γ1]) = 0
βk([γ0.γ1]) = βk([γ1.γ0]) = βk([γ0]) + βk([γ1]) = 1

Therefore the renormalizations γ0.γ1 and γ1.γ0 of γ2 satisfy the assumptions,
and thus (from the inductive hypothesis) they act as cyclic permutations
of order 2n−1 on the (n − 1)-th level. Consequently γ acts as a cyclic per-
mutation of order 2n on the n-th level and the result follows by induction.
�

However the iterated monodromy group of W may be used to prove that
W 5 is combinatorially equivalent to a formal mating. The key is that wreath
recursions provide an efficient way to compute the W 5-lifts of any loop (up
to isotopy of loops). For instance, consider the wreath recursion b2.b1.b0 =
(0, 1)〈〈a−1

3 , b1.b0.a3.b2〉〉 induced by the loop b2.b1.b0. From Lemma 3.3, this
loop has only one W -lift which is isotopic to a−1

3 .b1.b0.a3.b2 relatively to PW .
This W -lift induces the following wreath recursion (according to Lemma 1.6)

Therefore it follows from Lemma 3.3 that the loop a−1
3 .b1.b0.a3.b2 has only

one W -lift which is isotopic to a−1
3 .a2.b1.a

−1
2 .b0.a3.b2 relatively to PW . Equiv-

alently the loop b2.b1.b0 has only one W 2-lift which is isotopic to a−1
3 .a2.b1.a

−1
2 .

b0.a3.b2 relatively to PW . Repeating this process gives after computations
(using the circular relation b2.a0.a2.b1.a1.b0.a3 = Id)

a−1
3 .a2.b1.a

−1
2 .b0.a3.b2 = (0, 1)〈〈a−1

3 .a−1
1 .a2.b1, a

−1
2 .a1.b0.a3.b2〉〉
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a−1
3 .a−1

1 .a2.b1.a
−1
2 .a1.b0.a3.b2 = (0, 1)〈〈b2.a1.b0.a3.b2.a0.a2.b1, a

−1
2 .a−1

0

.b−1
2 .a−1

3 .a−1
1 .b−1

2 .b2〉〉
= (0, 1)〈〈b2, a−1

2 .a−1
0 .b−1

2 .a−1
3 .a−1

1 〉〉
b2.a

−1
2 .a−1

0 .b−1
2 .a−1

3 .a−1
1 = (0, 1)〈〈a−1

3 .b2, b1.a
−1
1 .b−1

1 .a−1
2 .a−1

0 .b−1
2 〉〉

= (0, 1)〈〈a−1
3 .b2, b1.b0.a3〉〉

Finally the loop b2.b1.b0 has only one W 5-lift which is isotopic to a−1
3 .b2.b1.b0.

a3 relatively to PW (see Figure 12). Remark that these two loops are ac-
tually orientation-preserving isotopic to a same Jordan curve relatively to
PW = PW 5 . It is known (see for instance [7]) that the existence of such a
Jordan curve, called an equator, is a sufficient condition to prove that W 5

is combinatorially equivalent to a formal mating.

Figure 12. — The loop b2.b1.b0 and its W 5-lift
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