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A holomorphic correspondence at the boundary
of the Klein combination locus

Shaun Bullett(1), Andrew Curtis(1)

ABSTRACT. — We investigate an explicit holomorphic correspondence
on the Riemann sphere with striking dynamical behaviour: the limit set
is a fractal resembling the one-skeleton of a tetrahedron and on each
component of the complement of this set the correspondence behaves like
a Fuchsian group.

RÉSUMÉ. — Nous étudions une correspondance holomorphe explicite sur
la sphère de Riemann ayant une dynamique remarquable: l’ensemble lim-
ite est un fractal qui ressemble au 1-squelette du tétrahèdre et sur chaque
composante du complémentaire de cet ensemble, la correspondance est
donnée par un groupe Fuchsien.

1. Introduction

A one (complex) parameter family of holomorphic correspondences Fa
containing matings between the modular group and quadratic polynomials
was discovered by the first author and Christopher Penrose nearly twenty
years ago [4], and further investigated in [3] and [2]. Two naturally defined
subsets of interest in the parameter space are:

1. The connectivity locusM.

2. The Klein combination locus K ⊃M.

Both loci will be given precise mathematical definitions below, in Section
2. But we mention now thatM is conjectured to be the set of values of a such

(1) School of Mathematical Sciences, Queen Mary, University of London, Mile End
Road, London E1 4NS, UK
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that Fa is a mating between PSL2(Z) and qc : z → z2 + c for some c ∈M ,
the Mandelbrot set, and that K is the interior of the set of values of a for
which the action of Fa is ‘faithful and discrete’, in a sense not yet formalised.
The set M is conjectured to be homeomorphic to the Mandelbrot set and
the set K is conjectured to be homeomorphic to a disc.

The correspondences Fa for a ∈ K \M may be thought of as ‘matings
between PSL2(Z) and maps qc for which the Julia set is a Cantor set’. A
classification of these correspondences will be presented in [5]. Any two such
Fa are quasiconformally conjugate, provided each has no critical relations.
The exceptional values of a, for which Fa has some critical relation, form a
countable set of isolated points in K\M. Our interest in the current article
is in the behaviour of Fa as a approaches the outer boundary of K and what
happens when a reaches that boundary. A good analogy is the behaviour of
a one (complex) parameter family of Kleinian groups, representations G→
PSL2(C) of a finitely generated abstract group G indexed by a parameter
a, as a approaches the boundary of the slice in which the representations
are discrete and faithful. In this paper we shall focus on one particular
boundary point of K, which we call the Penrose point, and investigate the
dynamical behaviour (Figure 1) of the correspondence which has this as its
parameter value, in particular showing that the complement of the limit set
has four components and that for each component the subcorrespondence
which stabilises it is conjugate to a Fuchsian group. More general results and
conjectures concerning correspondences in the family Fa, and the structure
of K and its boundary, will be presented elsewhere.

Figure 1. — The limit set of the correspondence Fa1/3 . The ‘gaps’ are an illusion
arising from the presence of parabolic points.
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2. The family of matings, the connectivity locus M, and the
Klein combination locus K

In this section we briefly introduce the family of holomorphic correspon-
dences Fa in which we are interested. For more details the reader should
consult the original paper [4].

The first ingredient in the definition of Fa is the notion of a covering
correspondence. For a given rational map q : Ĉ→ Ĉ the associated covering
correspondence Covq is defined by the relation

(z, w) ∈ Covq ⇔ q(z) = q(w).

For each z ∈ Ĉ, by letting Covq(z) = {w : (z, w) ∈ Covq} we can consider
the correspondence to be a multifunction. Doing so allows us to consider
correspondences from a dynamical perspective. Taking this point of view it is
often convenient to consider the associated deleted covering correspondence
Covq0 defined by

(z, w) ∈ Covq0 ⇔
q(z)− q(w)

z − w = 0.

Noting that all rational maps are branched covering maps of the sphere
to itself we make use of branch cuts to understand how Covq acts as a trans-
formation of the Riemann sphere. For the purposes of the current article we
make the following definition of a fundamental domain for this action.

Definition 2.1. — A fundamental domain for the action of Covq is any
component of Ĉ \ q−1(�), where � is any piecewise smooth simple arc which
starts and ends at two of the critical values of q and passes through all the
others.

Figure 2. — Fundamental domains for Cov0: the curves are the preimage of [−∞, 2]
under Q(z) = z3 − 3z.
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We note that if ∆ is a fundamental domain for Covq then ∆ is mapped
bijectively onto each of the other components of Ĉ \ q−1(�) by Covq0.

Up to conjugacy there are only two possibilities for covering correspon-
dences of cubic polynomials. This is because in addition to the critical point
∞, the polynomial either has a double critical point (which we may take to
be at 0) or two simple critical points. We restrict attention to the second
case and to the particular cubic polynomial Q(z) = z3 − 3z. The critical
points of Q are −1, 1 and∞, and the corresponding critical values are 2,−2
and ∞. The preimages of 2 are −1 and 2, the preimages of −2 are 1 and
−2, and the only preimage of ∞ is ∞. Consider the preimage under Q of
the real interval [−∞, 2] (see Figure 2). One possible choice of fundamental
domain ∆Cov is the right-hand component in Figure 2, with boundary the
curves running from 1 to ∞, at asymptotic angles ±π/3, together with the

cut from 1 to 2. The correspondence CovQ0 maps the cut [1, 2] one-to-two
onto the interval [−2, 1], sending 1 to −2 and to 1, and sending 2 to the

single point, −1. The point −2 also has a unique image under CovQ0 , namely

1, but all other points of Ĉ (except ∞) have two distinct images.

The (2 : 2) correspondences Fa with which we shall be concerned are

defined for all a ∈ Ĉ with a �= 1. We set Fa to be the composition J ◦CovQ0
where J = Ja is the (unique) involution of Ĉ which has fixed points 1

and a. Viewing J as Covq0 where q is the projection from Ĉ to Ĉ/J , a
fundamental domain ∆J for J (in the sense of Definition 1) is a component
of the complement of any piecewise smooth simple closed curve which passes
through 1 and a and is invariant under J (for example, any round circle
passing through 1 and a).

For certain values of the parameter a, there will exist fundamental do-
mains ∆J and ∆Cov which satisfy the following Klein combination condition:

(K) ∆Cov ∪∆J = Ĉ \ {1}.

Recall that we have defined our fundamental domains to be open sets, so
the point 1, being on the boundary of both ∆Cov and ∆J , cannot lie in
their union. Note also that condition (K) implies that ∆Cov ∩∆J �= ∅ since

Ĉ \ {1} is connected.

We can satisfy condition (K) by, for example, taking a in the half-open
real interval (1, 7]. Choose as ∆Cov the right-hand component in Figure 2.
For any value of a ∈ (1, 7] the circle C which passes through 1 and a and
has centre on the real axis meets the boundary of ∆Cov at the single point
1. If we take as ∆J the component of Ĉ \ C containing ∞ then the pair
∆Cov,∆J satisfy the condition (K).
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Figure 3. — DJ and D1 = Fa(DJ ), pictured on the left for a ∈ (2, 7] and on the right
for a ∈ (1, 2).

When condition (K) is satisfied, the closed disc DJ complementary to
∆J is mapped 1 to 2 into itself by the multifunction Fa. The image D1 =
Fa(DJ) ⊂ DJ of DJ will be either one topological disc or two, depending on
whether the critical value 2 of the map F−1

a lies inDJ or does not (see Figure
3). In either case, writing ∆ for ∆Cov∩∆J , we observe that DJ \D1 consists
of the union (modulo boundaries) of three ‘tiles’ which are homeomorphic
copies of ∆, namely J(∆) and the two images J ◦ Cov0(∆) of ∆. These
three tiles together make up J ◦Cov(∆). Writing Λ+ for

⋂∞
n=0 Fna (DJ), the

‘ping-pong principle’ underlying the Klein combination theorem for covering
correspondences, [1], ensures that DJ \ Λ+ is tiled by images of ∆ under
iterates of J ◦Cov0(= Fa) applied to these three tiles. Similarly, writing Λ−
for J(Λ+), the set J(DJ) \ Λ− is tiled by images of Cov(∆) under iterates
of Cov0 ◦ J(= F−1

a ). To state this more precisely, setting Λ to be the union
Λ = Λ+∪Λ− (which is closed and invariant under Fa and F−1

a ), and setting

Ω to be its complement in Ĉ, the Klein combination theorem for covering
correspondences tells us that:

1. The action of Fa on Ω is properly discontinuous and is the free pro-
duct of the actions of Cov and {Id, J}, in an appropriate sense (see
[1]);

2. ∆ = ∆Cov ∩∆J is a fundamental domain for this action, in the sense
that Ω =

⋃
n∈Z Fna (∆′) where ∆′ = ∆∪(∂∆\{1}) and the ‘tiles’ (the

images of ∆′ under single-valued restrictions of the Fna ) meet only at
their boundaries.

Remark. — Theorem 2 of [1] states this result for the simpler case that

∆Cov ∪∆J = Ĉ, rather than ∆Cov ∪∆J = Ĉ \ {1}, and is phrased in terms
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of transversals rather than fundamental domains, but the proof in [1] can
be adapted to prove the two statements above.

Definition 2.2. — The Klein combination locus for the family Fa is
the set K of values of a ∈ Ĉ such that there exist fundamental domains
∆Cov,∆J for CovQ and J satisfying condition (K).

When condition (K) is satisfied, and 2 ∈ DJ , the single-valued map
F−1
a : D1 → DJ is a pinched quadratic-like map with pinch point 1, critical

point J(−1) and critical value 2, and for certain values of a (see [4, 3, 2])
Fa is a mating in the sense of Definition 2.3 below.

Represent the action of the modular group PSL2(Z) on the complex
upper half-plane by the modular correspondence,

(z, w) ∈ FMod ⇔ ((τ1(z)− w)(τ2(z)− w) = 0.

where
τ1(z) = z + 1 and τ2(z) =

z

z + 1
.

Definition 2.3. — Let qc : z → z2 + c be a quadratic polynomial with
connected filled Julia set Kc. We say that a (2 : 2) holomorphic correspon-
dence F is a mating between qc and the modular group PSL2(Z) if:

1. There exist an open subset Ω of Ĉ invariant under the action of F,
and a conformal homeomorphism h from Ω to the upper-half plane
conjugating the action of F to FMod.

2. The complement of Ω in Ĉ is the union of two sets Λ+ and Λ−, with
Λ+∩Λ− consisting of a single point, and there exist homeomorphisms
h+ : Λ+ → Kc and h− : Λ− → Kc, which are conformal on interiors
and respectively conjugate the action of F−1 restricted to Λ+, and
that of F restricted to Λ−, to the action of qc on Kc.

For a ∈ K, the set Λ+ =
⋂∞
n=1 Fna (DJ) is connected if and only if the

critical value 2 of the pinched quadratic-like map (Fa)−1 : D1 → DJ lies in
(Fa)n(DJ) for all n > 0. (For a proof see [4], or the Remark following the
proof of Proposition 1 in Section 3 below.)

Definition 2.4. — The connectivity locus for the family Fa is the subset
M ⊂ K of values of a for which there is a pair of fundamental domains
∆Cov,∆J satisfying the condition (K), and with the additional property

that 2 ∈ ⋂∞
n=1(Fa)n(DJ) (where DJ = Ĉ \∆J).
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A computer plot of the connectivity locus was presented in the original
paper on this family of correspondences [4]. It bears a striking resemblance
to the Mandelbrot set M for quadratic maps. It is conjectured that the
family Fa contains a mating of qc with PSL2(Z) for every value of c ∈ M
and that M is homeomorphic to M . The first conjecture was proved for a
large subset of values of c ∈ M in [2]. Our interest in the current article
is in K \M, and in particular a specific point on the boundary of K. The
way that we have defined K ensures that K \M is an open subset of the
parameter space, and thus that the boundary points are outside K.

Remark. — There is experimental evidence which suggests that for all
a outside the closure K of K, the periodic points of Fa are dense in Ĉ.
It is tempting to hope that by analogy with the study of deformations of
Kleinian groups there might be some definition of ‘faithful and discrete’ for
a correspondence action which would allow us to characterise K as the set of
all values of a ∈ Ĉ for which Fa satisfies this yet to be formulated property.

3. Dynamics of the correspondence Fa when a lies in K \M

When a ∈ K \M we still have the ‘Klein combination’ set-up for ∆Cov

and ∆J , and we still have a partition of the Riemann sphere into invariant
regions Ω and Λ = Λ+ ∪ Λ−, but the filled Julia set Λ+ =

⋂∞
n=1(Fa)n(DJ)

of the associated ‘pinched quadratic-like map’ is no longer connected.

Proposition 1. — For a ∈ K \M, the set Λ = Λ+ ∪ Λ− is a Cantor
set.

Proof. — Recall that a subset X ⊂ Ĉ is a Cantor set if it is non-empty,
closed, perfect (X has no isolated points), and totally disconnected (each
component ofX is a single point). We consider the action of Fa = J◦Cov0 as
a one-to-two multifunction from DJ onto D1 = Fa(DJ). As we have already
observed, F−1

a : D1 → DJ is a single-valued two-to-one map. Since a /∈M,
the (unique) critical value 2 of this map does not lie in Λ+ =

⋂∞
n=0 Fna (DJ).

Hence there exists some least n0 such that 2 /∈ Fn0
a (DJ). Now Fn0−1

a (DJ)
will consist of a single topological disc E and Fn0

a (DJ) will consist of two
disjoint topological discs contained in E, one of which will have the pinch
point 1 on its boundary. Label these two discs E0 and E1, where E1 is the
disc which has 1 on its boundary. The two restrictions of Fa,

f0 = (J ◦ Cov0)|(E,E0)

f1 = (J ◦ Cov0)|(E,E1)
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are both homeomorphisms which are conformal on interiors. For any finite
sequence s = s1, s2, . . . , sn, si ∈ {0, 1}, we let

Es = fs1 ◦ fs2 ◦ . . . fsn(E),

and for an infinite sequence s = s1, s2, . . ., we let

Es =

∞⋂

i=1

fs1 ◦ fs2 ◦ . . . ◦ fsi(E).

Note that Λ+ is precisely the set of all points which are contained within an
infinite number of images of E under mixed iteration of f0 and f1. In other
words Λ =

⋃
s∈S Es, where S is the set of all possible infinite sequences with

elements in {0, 1}.

We now show that each Es consists of a single point. We separate the
sets Es into two distinct types.

Firstly, if s contains infinitely many 0’s then Es is contained within
infinitely many images of E under mixed forward iteration of f0 and f1. We
let A be a topological annulus, contained in E \ (E0 ∪ E1) and such that
E0 is surrounded by A, i.e. E0 is contained in the bounded component of
Ĉ \A. Then Es is surrounded by infinitely many conformal images of A, all
pairwise disjoint. Thus by use of the Grötzsch inequality [6] it follows that
each such Es is a single point.

Secondly, if s contains only finitely many 0’s then Es is an image, under
mixed iteration of f0 and f1, of E111..., the intersection of all images of E
under iteration of f1. By applying the Denjoy-Wolff Theorem [6] to f1 : E →
E, we know that either f1 has a fixed point in the interior of E or there is
a fixed point of f1 on the boundary of E to which every orbit converges.
The fixed points of f1 are of course fixed points of Fa, and there are just
four of these, counted with multiplicity, since the equation Fa(z) = z can
be manipulated into a polynomial equation of degree four. Moreover the
fixed point 1 of f1 has multiplicity two (being parabolic), the branch f0 of
Fa has a fixed point ζ ∈ E0 (since E0 = f0(E) has closure contained in E),
and since J(ζ) is also a fixed point of Fa (being a fixed point of F−1

a ) we
have now used up all four fixed points of Fa. Therefore f1 can have no fixed
point in the interior of E. The Denjoy-Wolff Theorem now tells us that all
orbits of f1 on E must converge to 1. Moreover 1 cannot be isolated, since
every point of Λ+ ∩ E has orbit under f1 accumulating at 1.

That Λ+ is perfect follows from the fact that for every infinite sequence
s = s1, s2, . . ., every set in the sequence Es1 , Es1,s2 , Es1,s2,s3 , . . . contains
infinitely many points of Λ+ (in the case of the point 1 this follows from the
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fact that every point of Λ+\{1} has orbit under f1 accumulating at 1). That
Λ+ is closed follows immediately from the fact that it is the complement of
Ω in DJ , together with the point 1 on the boundary of DJ .

Thus Λ+ is a Cantor set. By symmetry J(Λ+) is also a Cantor set. The
union of two Cantor sets contained in disjoint open discs, except for a single
point in common on the boundaries of these discs, is again a Cantor set. So
Λ = Λ+ ∪ J(Λ+) is a Cantor set. �

Remark. — When a ∈ M, similar reasoning to that in the proof above
shows that every Fna (DJ) is connected, and hence that Λ+ is connected.

It follows from Proposition 1 that for a ∈ K \M the action of Fa on Ω
can no longer be conjugate to that of the modular group on the complex
upper half-plane, since Ω is no longer simply-connected. Nevertheless the
action of Fa on Ω remains ‘discontinuous’, in the sense that the space of
grand orbits on Ω has the structure of an orbifold. As will be shown in
[5] and a future article, apart from a countable set of isolated parameter

values where the singular points 2 and −2 of CovQ0 lie on the same grand
orbit of Fa, all the correspondences Fa with a ∈ K \ M lie in a single
quasi-conformal conjugacy class, and can be obtained from one another by
deformations of the complex structure on the orbifold O = Ω/〈Fa〉. In the
final section of this paper we investigate an example where one can follow
a ray in deformation space all the way to the boundary.

Figure 4. — The fundamental domain ∆1 and its first few images under combinations of
Cov0 and J . (The points marked by black dots on the real axis are: −2,−1, a∗, 1 and 2.
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We begin by describing the dynamics of a generic correspondence, that
is to say an Fa with a ∈ K\M which does not have any critical coincidences.
For example any value of a in the real interval (−1,+1) will do. We pick some
a in this interval as the ‘base point’ of our parameter space and denote it by
a∗. We letH1 denote the image of [2,∞] under Cov0 and letH2 be the image
of [−∞,−2]. The region bounded by H1 and H2 is a fundamental domain
for Cov, and the Klein Combination Theorem tells us that the region ∆1

bounded byH1,H2, and the circle through a(= a∗) and 1 centred on the real
axis, is a fundamental domain for the action of J ◦Cov0 on the union of its
images. This fundamental domain and its two images ∆2 and ∆3 under Cov0
are shown in Figure 4. Write ∆ for the union of ∆1,∆2,∆3 together with the
parts [−∞,−2), [2,∞], H1 and H2\{1} of their boundaries which meet only
finitely many images of ∆1. The complement of ∆ consists of closed discs
D1, D2, and D3, where D1 is contained in the region between H1 and H2 in
the figure, and D2 and D3 are contained in left-hand and right-hand regions
respectively. Now J(∆) is contained in D1 and Cov0 ◦ J(∆) consists of two
components, one contained in D2 and the other in D3. Continued iteration
of J and Cov0 gives us an infinite collection of images of ∆ meeting along
pairwise common edges. Each of these ‘tiles’ is a simply-connected set with
the real axis as a mirror-symmetry line, so the set Ω, made up of the union
of these images together with their common edges, has as its complement a
Cantor set contained in the real line.

Figure 5. — ∆1 marked with its boundary identifications and the geodesic γ1/3.

The orbifold O, the grand orbit space of Ω under the correspondence, is
the quotient of ∆1 under the boundary identifications indicated in Figure
5. It is a sphere with four cone points of types π, π, 2π/3 and π/∞ (the last
one being a puncture point). One way to deform the complex structure on
O is to contract a geodesic, for example a geodesic arc from the cone point
−1 to the cone point a. Choices for such an arc correspond to rationals p/q
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with q odd, as follows. If we ‘de-identify’ the point 1 on the boundary of ∆1

then we have a (hyperbolic) rectangle. We label two of the sides l1 and l2
as shown in the diagram, and we say that a geodesic from −1 to a has slope
p/q, and denote it by γp/q, if it intersects l1 and l2 in p points and q points
respectively: the example γ1/3 is illustrated in Figure 5. The geodesic γp/q
lifts to a lamination Γp/q on Ω: we simply mark the same ‘pattern’ on each
‘tile’.

Figure 6. — The global lamination Γ1/3.

The global lamination corresponding to γ1/3 is illustrated in Figure 6.
It is tempting to try to deform Fa∗ to a correspondence Fa with a on the
boundary of K, by contracting the leaves of Γp/q to points, but there are
technical difficulties. Even once one has excluded the possibility of a topo-
logical obstruction arising from a pair of leaves with the same end points, it
is a daunting technical task to construct isotopies shrinking unions of arcs
to points in such a way that the resulting correspondence is holomorphic
(see [2]). We shall discuss this approach to the structure of the boundary
of K elsewhere. Here we content ourselves with showing explicitly that the
γ1/3 pinch point can be reached, and describing the behaviour of the corre-
spondence there. The way that we shall do this is by identifying a unique
candidate for the parameter value where the pinched dynamics could occur.
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4. An example on the boundary: Penrose point

It is apparent from Figure 6 that the leaf of Γ1/3 which passes through
−1 also passes through one of the two points J ◦ Cov0(a). Thus if we can
pinch the geodesic γ1/3 on the orbifold O, then this will happen at a value
of a where −1 ∈ J ◦ Cov0(a). But then we will also have a ∈ Cov0(J(−1))
and so, since a is fixed by J , we will now have both −1 ∈ Fa(a) and
a ∈ Fa(J(−1)). Since J(−1) ∈ Fa(−1) for any value of a, we see that the
three points a,−1, J(−1) will become a 3-cycle.

We next note that J(−1) ∈ Cov0(a) if and only if

a2 + aJ(−1) + J(−1)2 = 3.

But

J(z) =
(a+ 1)z − 2a

2z − (a+ 1)

so

J(−1) =
1 + 3a

3 + a
.

Thus

(a2 − 3)(3 + a)2 + a(1 + 3a)(3 + a) + (1 + 3a)2 = 0,

which simplifies to

a4 + 9a3 + 25a2 − 9a− 26 = 0,

and thence to

(a2 + 9a+ 26)(a2 − 1).

We deduce that

a = −9

2
+

√
23

2
i

or its complex conjugate, and we denote the value which has positive imagi-
nary part by a1/3. (The value with negative imaginary part will correspond
to pinching γ−1/3.)

Figure 7 illustrates the dynamics of Fa for a = a1/3. The grey curves are
the images of the circular arc which runs from −1 through +1 to J(−1).
Shown in black is the grand orbit of the point +1 under all branches, forward
and back, of the iterated correspondence Fa. An equivalent description of
the black set is that it is the set of all images of the point +1 under finite
‘words’ made up of the symbols J and Cov0.
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Figure 7. — The correspondence Fa1/3 . The complement Ω of the limit set is tiled by
‘ideal hexagons’ (Theorem 1).

Remark. — We have assigned a1/3 the name ‘Penrose point’ in honour
of Chris Penrose who originally found this example and plotted the limit set
in the early 1990’s (unpublished). Our re-discovery of it, and the analysis
of its Fatou and limit sets reported on here, provided a key impetus for the
formulation of conjectures (which we shall present elsewhere) describing the
structure of the boundary of the Klein combination locus K. ‘Penrose point’
lies at the tip of a promontory on the ‘outer shoreline’ of K.

Theorem 4.1. — The correspondence Fa1/3
is obtained from Fa∗ by

pinching the geodesic γ1/3 on the orbifold Ω(Fa∗)/〈Fa∗〉. Moreover:

1. The regular set Ω = Ω(Fa1/3
) of Fa1/3

is tessellated into ideal hexagons
by the images of the circular arc from −1 through +1 to J(−1).
The action of Fa1/3

on Ω is a faithful action of the free product of
the cyclic group {Id, J} with the (3 : 3) correspondence Cov (where
Cov0 = Cov \ {Id} acts on the hexagon containing ∞ as a pair of
rotations fixing ∞).

2. Ω has four connected components Ωk, k = 1, 2, 3, 4, each conformally
homeomorphic to the (open) upper half-plane.

3. For each of k = 1, 2, 3, 4 the action of the set of branches of iter-
ates of the correspondence Fa1/3

which stabilise Ωk is conformally
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conjugate to the action of a free product of groups C3 ∗ C∞ on the
upper half-plane, where C3 is generated by an elliptic Möbius trans-
formation of order three and C∞ is generated by a parabolic Möbius
transformation.

Figure 8. — Schematic picture of the components Ωi of Ω, the positions of key points,
the arc L ∪ J(L) (thick grey) and its images under Cov0 (thin grey) and J ◦ Cov0

(dashed). The incomplete dashed arcs at the top and left of the picture are in reality
joined by a large loop (see the computer plot on the left in Figure 9). The two images of

a under Cov0 are J(−1) and X.

Proof. — The positions of the key points we shall need in the proof are
indicated in Figure 8. The circular arc referred to in the statement of the
theorem is made up of an arc L from −1 to +1, and its image J(L) from
+1 to J(−1). Consider the images of L∪J(L) under the identity, Cov0, and
J ◦Cov0. These are shown in Figure 8 and the left hand plot of Figure 9. We
assert that L ∪ J(L), together with its image under Cov0 running from −1
to a = a1/3 (through a cusp at −2), and its image under J ◦ Cov0 running
from a to J(−1) (through a cusp at J(−2)), form a piecewise smooth simple
closed curve, invariant under J . Following the same notation as in earlier
sections of this paper, denote the component of the complement of this curve
containing ∞ by ∆J and the closure of the other component by DJ . We
further assert that DJ and its images under Cov0 (plotted on the right in
Figure 9) have disjoint interiors, that they are pairwise contiguous along L,
J(L) and the branch of Cov0(J(L)) emanating from +1, and that the union
of DJ with its two images is therefore again a topological disc bounded by
a piecewise smooth curve.
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These assertions can be proved as follows (we omit details). Firstly, local
analysis around the points of the period three cycle (which is parabolic), and
around the (also parabolic) fixed point +1 and its image −2 under Cov0,
can be used to verify that the intersections of the arcs with neighbourhoods
of the end points of L and their images are arranged as shown. Away from
these neighbourhoods the arcs and their images are a definite distance apart
and numerical estimation can be used complete the proof of the assertions.
The same methods, of local analysis around the period three cycle and
numerical estimation away from it, can be used to prove that the cycle
can be ‘unpinched’ by a suitable small perturbation of the parameter value
a1/3 (see the first remark following this proof), and thus that Fa1/3

is the
correspondence obtained from Fa∗ by pinching γ1/3.

Figure 9. — Computer plots. Left: L ∪ J(L) together with its images under Cov0 and
J ◦ Cov0. Right: this set together with its image under a further application of Cov0.

We deduce from the assertions above thatDJ can be extended as follows,
to become a fundamental domain for the action of Cov on Ĉ. Join a to∞ by
any smooth curve M which is disjoint from its images under Cov0 and from
∂∆J . Then the simple closed curve made up of M , the branch of Cov0(M)
running from ∞ to J(−1), and segments of the boundary of DJ running
fom J(−1) to −1 and −1 to a, will together bound a fundamental domain
∆Cov for Cov. Now observe that the complement ∆J of DJ is a fundamental
domain for J , and that

∆Cov ∪∆J = Ĉ.
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This is precisely the condition we need to apply the ‘ping-pong principle’.
The Klein Combination Theorem has a simple statement in the case that
the two fundamental domains concerned have disjoint boundaries, or when
these boundaries meet at a single point (as in Section 2) but one has to
take care when the boundaries meet along arcs, as in our situation here.
The intersection ∆ = ∆J ∩∆Cov is the interior of a triangle which has two
vertices of angle zero and one vertex of angle 2π/3 (the vertex at ∞). Let
H denote the ideal hexagon formed by the union of ∆ with its two images
under Cov0, together with the points which lie on the boundaries of two of
these triangles, and ∞ (which lies on the boundary of all three). Thus H is
the external region (containing∞) in the plot on the right in Figure 9. The
ping-pong principle tells us at once that the free product {Id, J} ∗Cov acts
faithfully on the union of images of int(H), but we can do better than this
and include the edges of H (though not its vertices). To see this, consider
the following four ideal hexagons, which are disjoint apart from certain of
their vertices: H1 = H, H2 = J(H), and the two images of H2 under Cov0,
which we denote H3 and H4.

Figure 10. — Sketch of the positions of the four ideal hexagons Hi. (The dashed lines
are the boundary of H1, which contains ∞.)

These four hexagons Hi are sketched in Figure 10 and can also be identi-
fied on the computer plot Figure 7. It is easily checked that any application
of J or a branch of Cov0 to any of these Hi takes it either to another of the
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Hi or to a hexagon that has an edge in common with one of them. Setting
Ω to be the union of the images of H together with its edges (but not its
vertices) we deduce that Fa1/3

has a proper discontinuous action on Ω, that
this is a faithful action of the free product of {Id, J} with Cov, and that
the ‘centres’ of the hexagons (the images of the point ∞ ∈ H), each have
stabiliser a conjugate of the correspondence Cov. This gives us Statement 1
of the Theorem. Furthermore, the components of Ω are built up inductively
from the four Hi by adjoining ideal hexagons along edges. Thus Ω is the
disjoint union of four components, each containing one of the Hi, and each
homeomorphic to a disc (Statement 2).

The way that the four components of Ω are mapped to one another
by Cov0 and J is determined by where the initial four ideal hexagons Hi
are mapped. Thus Cov0 stabilises Ω1 and sends each of Ω2,Ω3,Ω4 to the
other two, and J exchanges Ω1 with Ω2 and also exchanges Ω3 with Ω4 (see
Figure 8 for the labelling of the components). It is easily checked that Ω2 is
stabilised by J ◦Cov0 ◦ J (which is a pair of rotations of Ω2 of order three,
inverse to one another) and by the two branches of Cov0 ◦J ◦Cov0 (inverse
to one another) which fix the point −2 on the boundary of Ω2. Furthermore,
since the images of H2 under combinations of these elliptic and parabolic
transformations fully tile Ω2, we deduce that they freely generate the set of
branches of iterates of Fa1/3

which stabilise Ω2, and that this set of branches
forms a group isomorphic to C3 ∗ C∞. �

Figure 11. — The boundaries of ∆J (solid grey) and ∆Cov (solid black) coincide along
the segment between a and J(−1). We obtain new fundamental domains ∆′J and ∆′Cov
by modifying parts of these boundaries to the positions indicated by the dashed grey

and black lines respectively.
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Remarks. —

1. To show that the parabolic 3-cycle can be ‘unpinched’ to deform the
correspondence into one which satisfies the generic set-up of Definition 2.2,
we first keep the value of a fixed at a1/3 and modify ∆J and ∆Cov to new
fundamental domains ∆′J and ∆′Cov for J and Cov, in such a way that we

still have ∆′Cov ∪ ∆
′
J = Ĉ but now the boundaries of ∆′J and ∆′Cov meet

at just four points, namely the point +1 and the points of the 3-cycle.

We illustrate how this can be done in Figure 11 (one has to cut thin
strips off certain edges of ∆J and ∆Cov, and glue them onto other edges).
If one now makes a sufficiently small perturbation of the parameter a, in
a direction which splits the (parabolic) 3-cycle into a pair of 3-cycles, one
attracting and the other repelling, then ∆′J and ∆′Cov will move apart so
that their boundaries only meet at +1.

2. The limit set Λ of Fa1/3
(the complement of Ω) can be described

combinatorially as the quotient of the unpinched limit set (a Cantor set)
under the identifications induced by contracting the leaves of Γ1/3 to points.

Alternatively, we may view Fa1/3
on Ĉ as a kind of mating of four copies of

an action of C3∗C∞ on the unit disc, glued together along their boundaries,
and then Λ becomes a quotient space of the union of the four boundary
circles of these discs.

3. In this article we have considered just one example of a correspondence
at the boundary of the Klein combination locus. At other boundary points
the behaviour can be very different. Further examples, and conjectures con-
cerning the overall structure of the bounary of the Klein combination locus,
will be presented elsewhere.
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