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The operation of polynomial mating is a procedure for producing a dy-
namical system on the two-sphere from a pair of complex polynomial dy-
namical systems. The concept was introduced by Douady and Hubbard after
computer investigations by Hubbard in 1982 showed that the Julia sets of
certain quadratic rational maps appeared to be closely related to the Julia
sets of certain pairs of quadratic polynomials [15]. A picture of the Julia
set for the mating of the basilica and rabbit quadratic polynomials now
adorns the cover pages of the widely circulated IMS Stony Brook preprints.
In this article, we give precise definitions, discuss foundational issues, survey
known results, pose numerous specific open problems, and conclude with a
(hopefully) comprehensive bibliography to date.

We focus on the case of mating two polynomials. We remark, however,
that there are similar operations in two other closely related areas. A pair of
Fuchsian groups can be mated via Bers’ simultaneous uniformization the-
orem [5]. Investigations of the limiting behavior of such matings feature
prominently in the work culminating in the resolution of the Ending Lami-
nation Conjecture for surface groups; see [20] for a gentle but non-up-to-date
introduction to the subject, [2] for the recent full resolution in the case of
surface groups, and [14] in this volume for more details. There is also a
related notion for mating a polynomial with a Fuchsian group, surveyed
in [6].

1. Notations and definitions

1.1. Sets

• R is the real line, R+ = (0,∞), R− = (−∞, 0).

• C is the complex plane, D := {z ∈ C | 1 > |z|}, U := {z ∈ C | 1 = |z|},

• S is the unit sphere in C× R ≈ R3,

• the upper hemisphere of S is H+ := S∩(C×R+), the lower hemisphere
of S is H− := S ∩ (C× R−), the equator of S is S ∩ (C× {0}).

1.2. Thurston maps

Let Σ be an oriented topological 2-sphere. An orientation-preserving ram-
ified self-covering map f : Σ → Σ of degree d � 2 is a Thurston map if it
is postcritically finite, that is, all the points in the critical set Cf have finite
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forward orbits, or equivalently, the postcritical set Pf is finite, where

Pf :=
⋃

n�1

f◦n(Cf ).

Thurston [9] gives necessary and sufficient homotopy-theoretic combinato-
rial conditions for a Thurston map f to be conjugate-up-to-isotopy to a
rational map. If this condition fails, we say that f is obstructed.

1.3. Rational maps

Let F : P1 → P1 be a rational map of degree d � 2. The Julia set JF is
the closure of the set of repelling cycles. The Fatou set FF is the complement
of the Julia set. The forward orbit of a point z ∈ P1 is

OF (z) := {F ◦n(z) | n � 1}.
The rational map is

• hyperbolic if the orbit of every critical point is attracted by some
attracting cycle;

• subhyperbolic if all critical points are either preperiodic or converge
to attracting cycles;

• geometrically finite if the closure of its postcritical set meets the Julia
set in finitely many points;

• semihyperbolic if it has neither parabolic points nor recurrent critical
points.

1.4. Polynomials

Let P : C → C be a monic polynomial of degree d � 2. The filled-in
Julia set is

KP :=
{
z ∈ C | n �→ P ◦n(z) is bounded

}
.

The Julia set JP is the boundary of the filled-in Julia set KP . The Green’s
function hP : C→ [0,+∞) is defined by

hP (z) := lim
n→+∞

1

dn
max

(
0, log |P ◦n(z)|

)
.

When KP is connected, we denote by bötP : C−D→ C−KP the (unique)
Böttcher coordinate which conjugates z �→ zd to P and which is tangent to
the identity at infinity. The external ray of angle θ ∈ R/Z is

RP (θ) :=
{
bötP (re2πiθ) with r > 1

}
.
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If KP is locally connected, the Böttcher coordinate extends to a continuous

map bötP : C − D → C −
◦
KP and we denote by γP : R/Z → JP the

Carathéodory loop defined as

γP (θ) := bötP (e2πiθ).

If KP is not locally connected, we may still define γP : Q/Z→ JP by

γP (θ) := lim
r→1+

bötP (re2πiθ).

1.5. Formal mating

Let P : C → C and Q : C → C be two monic polynomials of the
same degree d � 2. The formal mating of P and Q is the ramified covering
f = P �Q : S→ S obtained as follows.

We identify the dynamical plane of P to the upper hemisphere H+ of
S and the dynamical plane of Q to the lower hemisphere H− of S via the
gnomonic projections:

νP : C→ H+ and νQ : C→ H−

given by

νP (z) =
(z, 1)∥∥(z, 1)

∥∥ =
(z, 1)√
|z|2 + 1

and νQ(z) =
(z̄,−1)∥∥(z̄,−1)

∥∥ =
(z̄,−1)√
|z|2 + 1

.

The map νP ◦ P ◦ ν−1
P defined on the upper hemisphere and νQ ◦ Q ◦ ν−1

Q

defined in the lower hemisphere extend continuously to the equator of S by

(e2iπθ, 0) �→ (e2iπdθ, 0).

The two maps fit together so as to yield a ramified covering map

P �Q : S→ S

which is called the formal mating of P and Q.

1.6. Hausdorff and topological mating

Let us now consider the smallest equivalence relation ∼ray on S such
that for all θ ∈ R/Z,

• points in the closure of νP
(
RP (θ)

)
are in the same equivalence class,

and
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• points in the closure of νQ
(
RQ(θ)

)
are in the same equivalence class.

The equivalence relation ∼ray is closed if

{(x, y) ∈ S× S | x ∼ray y}
forms a closed subset of S×S. This is the case if and only if the quotient space
SP⊥⊥Q is Hausdorff. In this case, we say that P,Q are Hausdorff mateable.

Assume further now that each equivalence class is closed and connected
but is not the entire sphere. In this situation, a theorem of Moore asserts
that SP⊥⊥Q is a topological 2-sphere if and only if no equivalence class
separates S in two or more connected components. Further, when SP⊥⊥Q is
a topological sphere, the quotient map S→ SP⊥⊥Q induces isomorphisms of
homology, and hence imposes a preferred orientation on SP⊥⊥Q. We say the
polynomials P and Q are topologically mateable if SP⊥⊥Q is a topological
2-sphere. In that case, the formal mating P �Q induces a map

P ⊥⊥ Q : SP⊥⊥Q → SP⊥⊥Q

which is called the topological mating of P and Q. It can be shown that this
map is a ramified self-cover of SP⊥⊥Q.

1.7. Geometric mating

Assume P and Q are topologically mateable. Denote by FP⊥⊥Q the image

of
◦
KP ∪

◦
KQ in SP⊥⊥Q. When this open set is nonempty, it carries a preferred

complex structure induced by that on
◦
KP ∪

◦
KQ.

A geometric mating is a quadruple (P,Q, φ, F ) such that the following
diagram commutes:

SP⊥⊥Q
φ−−−−→ P1

P⊥⊥Q




 F

SP⊥⊥Q
φ−−−−→ P1.

where

• P : C → C and Q : C → C are monic polynomials of same degree
d � 2,

• F : P1 → P1 is a rational map of degree d � 2 and

• φ : SP⊥⊥Q → P1 is an orientation-preserving homeomorphism which
is conformal in FP⊥⊥Q.

We shall say that F is a geometric mating of P and Q and shall use the
notation F ∼= P ⊥⊥ Q.
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2. Fundamental questions (Pilgrim-Tan Lei)

Let Polyd, ratd, topd denote the spaces of degree d monic polynomials,
Möbius conjugacy classes of rational maps, and topological conjugacy classes
of branched coverings of the sphere to itself, respectively.

Mating may be viewed as a partially defined map

⊥⊥: Polyd ×Polyd −−> topd.

It is natural to formulate several questions.

(1) (Domains) Determine when the pair (P,Q) is (a) Hausdorff, (b)
topologically, (c) geometrically mateable. Identify obstructions to be-
ing mateable in each sense.

(2) (Images) Given F , determine when F is the geometric mating of two
polynomials. Identify obstructions to being a geometric, topological,
or Hausdorff mating.

(3) (Fibers) Given F , determine those (P,Q) such that (P,Q, φ, F ) is a
geometric mating for some φ.

(4) (Multiplicities) Given (P,Q, F ), determine the homeomorphisms φ
for which (P,Q, φ, F ) is a geometric mating.

(5) (Continuity) Investigate the extent to which the convergence of
(Pn, Qn) to (P,Q) implies the convergence of Pn⊥⊥Qn to P⊥⊥Q.

In the following sections, we discuss the interesting facts that mating,
viewed as a map, is neither well-defined, surjective, injective, or continuous.
We also pose numerous open problems.

2.1. Domains

On the one hand, flexible Lattès examples provide counterexamples to
seemingly natural statements. The discussion in this paragraph is taken
from [28, Section B-5]. The external rays of the Mandelbrot set of angles
1/12 and 5/12 land at parameter values f1/12 and f5/12. Taking

P = f1/12, Q = f5/12 and F (z) = −1

2

(
z +

1

z

)
+
√

2,

it turns out that F ∼= P ⊥⊥ Q, and hence that

G := F ◦ F ∼= P ◦ P ⊥⊥ Q ◦Q.

– 1154 –



Questions about Polynomial Matings

However, G is a flexible Lattès example. It follows that there are uncount-
ably many pairwise holomorphically nonconjugate maps Gt such that Gt ∼=
P ◦P ⊥⊥ Q◦Q, and hence that mating, viewed as a map, is not well-defined.

On the other hand, mating often behaves well. We organize our dis-
cussion along vaguely historical lines, treating cases in which the dynamical
regularity is successively relaxed. We consider

(1) P,Q both postcritically finite

(2) P,Q both subhyperbolic

(3) P,Q both geometrically finite

(4) one or both of P,Q is geometrically infinite.

2.1.1. Postcritically finite case

The formal mating f := P � Q is then a Thurston map. It may occur
that it has obstructions that are removable; in this case, one considers a
modified Thurston map f ′. Other obstructions we call nonremovable.

By using Thurston’s combinatorial characterization of rational functions,
and ideas of M. Rees, Tan Lei [42] and Shishikura [39] showed the following
result.

Theorem 2.1. — Suppose d = 2, and suppose

P (z) = z2 + cP , Q(z) = z2 + cQ

are postcritically finite. Then the following are equivalent.

(1) (P,Q) are geometrically mateable

(2) (P,Q) are topologically mateable

(3) cP , cQ do not lie in conjugate limbs of the Mandelbrot set.

That (2)⇒ (3) is easy to see, since if (3) fails then there is a periodic ray-
equivalence class in the formal mating that separates the sphere. However,
in degree 3, Shishikura and Tan [40] gave an explicit example of a pair
(P,Q) of postcritically finite, hyperbolic polynomials which is topologically
but not geometrically mateable (see also [8]).

2.1.2. Subhyperbolic case

Given a polynomial P0, let QC(P0) ⊂ Polyd be the space of polynomials
P for which P0 and P are quasiconformally conjugate on a neighborhood of
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their Julia sets. If P0 is e.g. hyperbolic, QC(P0) is the hyperbolic component
containing P0, and QC(P0) admits a smooth model as a family of Blaschke
products. If now P0 and Q0 are e.g. two hyperbolic polynomials that yield
a rational map F as their geometric mating, the hyperbolic component of
F in ratd is essentially the product QC(P0) × QC(Q0). It follows that in
this case mating can be extended in a reasonable way over the pairs of
(sub)hyperbolic parameters corresponding to points in QC(P0) × QC(Q0).
For example, taking P0 = Q0 = z2, the spaces QC(P0),QC(Q0) are disks
parameterized by the respective eigenvalues λ, µ of the unique attracting
fixed points, and the corresponding mating is, up to conjugacy,

Fλ,µ(z) :=
z(z + λ)

µz + 1

which has a fixed point with multiplier λ at 0 and a fixed point with mul-
tiplier µ at ∞.

2.1.3. Geometrically finite case

By letting (P,Q) tend to certain geometrically finite parameters on the
boundary of QC(P0)×QC(Q0), results of Häıssinsky and Tan [16] show that
e.g. mating extends to quadratic polynomials with parabolic cycles; their
results hold actually for a slightly wider class of maps.

2.1.4. Geometrically infinite case

Yampolsky and Zakeri [45] considered quadratic polynomials with Siegel
disks. They showed that if

Pλ(z) := λz + z2 and Qµ(z) := µz + z2

with λ = e2πiα, µ = e2πiβ , β �= −α and α, β irrational numbers which satisfy
the Diophantine condition of bounded type, then Pλ and Qµ are geometri-
cally mateable with Fλ,µ ∼= Pλ ⊥⊥ Qµ. Zhang [46] expanded this result to
the case where α and β are of Petersen-Zakeri type that is (log(an) ∈ O(

√
n)

with an the entries of the continued fraction); see Section 5 for related ques-
tions.

Blé and Valdez [4] showed that for θ irrational of bounded type and c a
real parameter depending in a certain way on θ, the pair (z2 +c, e2πiθz+z2)
is geometrically mateable.

A Yoccoz polynomial is one that has a connected Julia set, all cycles
repelling, and is not infinitely renormalizable. Luo [19] observed that the
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pair (z2 − 1, z2 + c) should be geometrically mateable whenever z2 + c is
Yoccoz and c does not lie in the 1/2-limb of the Mandelbrot set. Aspenberg
and Yampolsky [1] implemented Luo’s program.

If one or more of KP and KQ fail to be locally connected, it is difficult
to give a topological model for P⊥⊥Q. Dudko [10] gives an intepretation of
matings of the form (z2 − 1) ⊥⊥ (z2 + c) for a large class of parameters c
without assuming local connectivity of the corresponding Julia set.

In the next section, we consider topological questions lying at the foun-
dation of mating.

2.2. Images

Not every map arises as a mating. The situation is best understood when
F is hyperbolic and postcritically finite. In this case the following is known.

(1) F is a mating of two (postcritically finite, hyperbolic) polynomials
P and Q if and only if F has an equator. This is an oriented Jordan
curve γ ⊂ P1−PF such that F−1(γ) is connected and, as an oriented
curve, is homotopic in P1 − PF to γ.

(2) The (bounded) Fatou components of P and Q survive under mat-
ings. If we color these components of P say white, and the ones of Q
black, then the mating P ⊥⊥ Q maps each Fatou component to one
of the same color. Since in the hyperbolic case each critical point is
contained in a Fatou component, it follows that a necessary condition
for F to be a mating is as follows. We must be able to color half of
the critical points of F white, the other half black (counting multi-
plicities), such that the orbits of the white critical points is disjoint
from the orbits of the black critical points. This condition is however
not sufficient : the example considered by Tan and Milnor in [29] is,
according to Wittner [44], not a mating.

(3) Another necessary condition is as follows. There is a loop γ ⊂ P1−PF ,
based at say b, such that for each n ∈ N, the monodromy induced by
γ on the set F−n(b) is transitive. To see this, take γ to be an equator;
see [17, Proposition 4.2]. This condition is again not sufficient.

It easily follows from (1) that a postcritically finite hyperbolic map with
#PF = 3 is never a mating (unless it is conjugate to a polynomial, in which
case it may be viewed as the mating of this polynomial with zd).

For non-hyperbolic maps, we have the following striking result from [26].
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Theorem 2.2 (Meyer). — Suppose F is a postcritically finite rational
map without periodic critical points, so that JF = P1. Then every suffi-
ciently high iterate F ◦N is the geometric mating of two postcritically finite
polynomials without periodic critical points.

The image of the equator under the ray-equivalence quotient map from

the formal mating to F ◦N gives a semiconjugacy from z �→ zd
N

acting on
the unit circle U to F ◦N acting on P1, i.e. an F ◦N -invariant Peano curve;
here d = deg(F ). Moreover, the image is the limit of a Jordan curve passing
through points of PF under a so-called pseudo-isotopy. The following related
question appears in [17, Remark 3.9].

Question 2.3. — Is there a degree d critically finite rational map F
such that (i) there is a semiconjugacy from z �→ zd on U to F : JF → JF ,
but (ii) this semiconjugacy is not the limit of a pseudo-isotopy?

Mashanova and Timorin [21] identify arcs Ft, t ∈ [0, 1], contained in
the boundaries of hyperbolic components in the space of quadratic rational
maps such that Ft is a continuous family of geometric matings.

In higher degrees, Tan [41] shows that within the set of rational maps
arising from Newton’s method applied to cubic polynomials, there is a large
subset comprised of matings.

2.3. Multiplicities

Let (P,Q, φ, F ) be a geometric mating. If (P,Q, ψ, F ) is another geo-
metric mating, then χ := φ ◦ ψ−1 : P1 → P1 is a homeomorphism which
is conformal on the Fatou set FF and commutes with F . Conversely, if
χ : P1 → P1 is such a homeomorphism, then (P,Q, χ ◦ φ, F ) is a geometric
mating. If F is a flexible Lattès example, the set of such χ is countably
infinite. If F is geometrically finite but not a flexible Lattès example, such a
χ is a Möbius transformation, hence there are at most #Aut(F ) � 3d such
χ.

If the polynomials P and Q are varied, the situation is a little more
subtle. First, if ωd−1 = 1, replacing (P,Q) by (Pω, Qω) with

Pω(z) := ω−1P (ωz) and Qω(z) := ωQ(ω−1z)

yields a canonical orientation-preserving homeomorphism (of order d− 1)

χω : SPω⊥⊥Qω → SP⊥⊥Q.
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Figure 1. — A shared mating of two quadratic polynomials having critical points of
period 4 (pictures by I. Zidane). The rational map has a period 2 cluster. It can be seen

as a geometric mating in 4 distinct ways. Here, we see two of them. Left: mating the
left-most real quadratic polynomial of period 4 with the co-kokopelli. Right: mating the

bi-basilica with the kokopelli.
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If they exist, the geometric matings (P,Q, φ, F ) and (Pω, Qω, φ ◦ χω, F )
will be considered to be equivalent. Next, exchanging the roles of two topo-
logically mateable polynomials P and Q yields a canonical orientation-
preserving homeomorphism

χ : SQ⊥⊥P → SP⊥⊥Q.

If they exist, the geometric matings (P,Q, φ, F ) and (Q,P, φ ◦ χ, F ) will
be considered to be equivalent. A rational map F is a shared mating if
there are at least two inequivalent geometric matings (P1, Q1, φ1, F ) and
(P2, Q2, φ2, F ).

The existence of shared matings was first observed by Wittner [44]. How-
ever, it is becoming clear that shared matings are quite common (see [36],
[25], [38]).

The mating number of a rational map F is the number of equivalence
classes of geometric matings (P,Q, φ, F ). If F is critically finite and hyper-
bolic, its mating number is, by the above observations, at most 3d · N+ ·
N− · (d− 1), where d = deg(F ) and N± are the number of affine conjugacy
classes of critically finite hyperbolic polynomials with the appropriate dy-
namics on their critical orbits; the factor of (d−1) accounts for the number
of ways to glue together the dynamical planes of P and Q. The flexible
Lattès examples have infinite mating number.

Question 2.4. — When is the mating number finite? When the mating
number is finite, is there a bound in terms of the degree and the number of
postcritical points?

See Section 4 below for a more detailed discussion in the case of matings
of quadratic polynomials.

2.4. Continuity

Mating is not continuous. If

Pλ(z) := λz + z2 and Qµ(z) := µz + z2

with (λ, µ) ∈ D2 and µ �= λ, then Pλ ⊥⊥ Qµ ∼= Fλ,µ where

Fλ,µ(z) :=
z(z + λ)

µz + 1

fixes 0 with multiplier λ and ∞ with multiplier µ. Let �(s) > 1/2, t > 0
and set

λ :=
1− s+ ti

1 + ti
and µ :=

1− s− ti
1− ti .
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For fixed s, we have λ, µ → 1 as t → ∞. However, it can be shown that
there exists a quadratic rational map Fs which has a fixed point of multiplier
s/(s−1/2) such that Fλ,µ → Fs. So the limit of the matings can depend on
the manner of approach. This phenomenon is apparently widespread and
can occur when mating families of polynomials parameterized by multipliers
of attracting cycles of higher periods.

A. Epstein [11] has shown that other, much more subtle, types of dis-
continuities exist. However, in all known quadratic examples, the sequences
(Pn, Qn) leading to discontinuity have the property that both Pn and Qn
vary.

Question 2.5. — Can mating be discontinuous within a slice? That is,
do there exist a polynomial P and polynomials Q,Qn, n ∈ N with Qn con-
verging to Q such that P ⊥⊥ Qn converges to F �= P ⊥⊥ Q?

At places where mating is not defined, limits of matings need not exist.
Let P (z) = z2 − 1 and for Qr(z) = rz + z2. The pair (P,Q−1) is not
topologically mateable; the period 2 external rays of angles 1/3, 2/3 glue
together to form a ray equivalence class separating the sphere. So the point
(P,Q−1) is not in the domain of mating. If −1 < r � 0, however, then

Fr(z) = (z + 1)
z − (1 + r)

rz + (1 + r)
∼= P ⊥⊥ Qr.

A simple calculation shows that as r ↘ −1, the multiplier of Fr at a fixed-
point tends to infinity, and so Fr →∞ in rat2. An intuitive explanation is
related to the nonexistence of the mating of P and Q−1. If −1 < r � 0, there
is a pair of arcs joining infinity to a common fixed-point of Fr separating
the Julia set of Fr; they are interchanged with rotation number 1/2. As the
multiplier r of Fr at infinity tends to −1, in order for a limit to exist, this
pair of arcs must collapse to a point. See e.g. [43], [32], and the references
therein.

2.5. Computations

Algebraic and numerical methods for finding solutions to the systems of
polynomial equations associated to a geometric mating F will be effective
only in the most simple cases; they will never, for example, locate the mating
associated with two quadratic polynomials for which the critical points are
periodic of period, say, eight.

In contrast, an implementation of Thurston’s iterative algorithm is some-
times possible and can be used to find matings. Early versions were appar-
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ently used by Wittner and Shishikura. Hruska Boyd [13] and Bartholdi have
carried this out as well (see Figure 2).

Figure 2. — Mating of f1/255 with itself, found using the Medusa algorithm.

Another method, slow mating, gives a continuous interpolation of the
discrete orbits in Thurston’s algorithm (see Section 12 below).

3. Topological matings (Epstein-Meyer)

3.1. The structure of ray-equivalence classes

The proof that postcritically finite quadratic polynomials are mateable
if and only if they do not belong to conjugate limbs of the Mandelbrot set
relies on Thurston’s classification of postcritically finite branched covering
of the sphere.

Question 3.1. — Is it possible to give a proof without appealing to
Thurston’s theorem, but rather by studying the ray-equivalence classes and
showing they satisfy the hypothesis of Moore’s theorem?

Such an approach would require understanding the structure of ray-
equivalence classes. If an equivalence class for ∼ray contains a loop, the
quotient space SP⊥⊥Q is not a 2-sphere. Thus we assume for now that no
ray-equivalence class contains loops, whence each ray-equivalence class is a
tree. There are examples where the first return to a periodic ray class acts
by a combinatorial rotation which is not the identity. Sharland [37] proved
that if the mating of two hyperbolic polynomials is not obstructed, each
periodic ray class contains at most one periodic branch point with non-zero
combinatorial rotation number.
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Question 3.2. — What do ray-equivalence classes look like? What do
the periodic ones look like? How does the first return map to such a class
act?

If the ray-equivalence is not closed, we say that the mating is Hausdorff-
obstructed.

Question 3.3. — Are there Hausdorff-obstructions to matings?

Of course the above question can be asked in various settings. For ex-
ample the answer (and/or the proof) might depend on whether the involved
polynomials are postcritically finite or not. Furthermore the answer might
depend on the degree. This seems unlikely, though a proof might be much
easier in the quadratic case.

Let ! be the equivalence relation on R/Z induced by the Carathéodory
loops γ1, γ2, that is, the smallest equivalence relation satisfying

s ! t if γ1(s) = γ1(t) or γ2(s) = γ2(t) or γ1(s) = γ2(−t).
Note that ! is closed if and only if ∼ray is closed.

Question 3.4. — If the equivalence classes of ! are uniformly bounded
in size, must ! be closed?

3.2. Long ray connections

Given an injective path contained in a ray-equivalence class, we may ask
how often it crosses the equator. The diameter of a ray-equivalence class is
the supremum over all such paths; a priori this quantity may be infinite.
It is not difficult to show that if the ray-equivalence classes have uniformly
bounded diameter then the ray-equivalence relation is closed. On the other
hand, an infinite ray-equivalence class which is closed must separate, in
which case the quotient space cannot be a 2-sphere (see [27]).

Question 3.5. — Are there matings for which there are ray-equivalence
classes with infinite diameter? Are there matings for which each ray-equiva-
lence class has finite diameter, but such that the diameter of all equivalence
classes is unbounded? If not, are there effective bounds on the diameter of
the ray-equivalence classes?

In [24, Theorem 6.1] it is shown that for all matings which arise in
a certain way, the diameter of ray-equivalence classes is indeed uniformly
bounded. The diameter of a rational ray-equivalence class is always finite:
indeed, the rays landing at a given (pre)periodic point are rational numbers
of the same denominator.
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Question 3.6. — In matings of given degree, what is the maximum di-
ameter for ray-equivalence classes of angles of given period? Is this quantity
unbounded as the period tends to infinity?

For a given angle θ, consider the set Xθ of parameters c in the Mandel-
brot set such that, for z �→ z2+c, the rays of angle θ and some ϑ �= θ land at
the same point. For an odd-denominator rational θ, the set Xθ is a nonempty
finite union of compact connected sets, the intersection of M with appro-
priate wakes associated to the various partners ϑ. For even-denominator
rational θ, the set Xθ admits a similar, but somewhat more complicated
description. Nothing seems to be known in the irrational case.

Figure 3. — Example by Stuart Price. The largest known diameter of a ray-equivalence
class for the mating of two postcritically finite quadratic polynomials has length 12:
mating the rabbit polynomial with a real quadratic polynomial for which the critical

point is periodic of period 22.
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Question 3.7. — Is Xθ always nonempty? Can there be infinitely many
components?

Question 3.8. — Are there irrational angles which never participate in
ray-equivalence classes of infinite diameter?

Question 3.9. — Is there a combinatorially sensible place to expect to
find long ray-chains? For example, given a ray-chain of some period, can
we find longer ray-chains, of some higher period, which suitably shadows the
connection? If we do this with enough care, can we extract an infinite limit?

3.3. Mating and tuning

It was shown by Pilgrim that for hyperbolic quadratic (more generally,
bicritical) rational maps with two attracting cycles, neither of which is fixed,
the Fatou components are Jordan domains. One expects the intersection
between any two Fatou component boundaries to be small - perhaps finite,
perhaps involving specific internal angles - thereby leaving little opportu-
nity for connections between the small Julia sets of tunings. Since mat-
ing suitably commutes with tuning when both operations are defined, this
heuristic suggests that renormalizable maps are unlikely to furnish long(er)
ray-chains.

Question 3.10. — For quadratic rational maps with two superattract-
ing cycles, what are the possibilities for intersections of boundaries of im-
mediate basins? Whatever the situation is, can the result be recovered for
matings, using only ray combinatorics of polynomials? Can Pilgrim’s result
be recovered?

Question 3.11. — For a hyperbolic quadratic polynomial, consider the
Cantor set of rays landing on the boundary of the union of the immediate
attracting basins. What can be said about the intersection of two such Cantor
sets?

4. Quadratic rational maps (Rees)

Let F : P1 → P1 be a hyperbolic rational map of degree 2. Let Ω1

and Ω2 be the (possibly equal) connected components of the Fatou set FF
which contain the critical points of F . According to [34], the rational map
is of

type I if Ω1 = Ω2; in that case FF = Ω1 = Ω2 and JF is a Cantor set.

type II if Ω1 �= Ω2 belong to the same periodic cycle of Fatou components.
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type III if Ω1 belongs to a cycle of Fatou component and Ω2 is strictly prepe-
riodic to this cycle, or vice-versa.

type IV if Ω1 and Ω2 belong to distinct cycles of Fatou components.

The notion of Wittner flips and captures arises in [44] and have been
studied further by Rees [35] and Exall [12]. The notion of period 1 and
period 2 clusters arises in Sharland’s thesis [37].

4.1. The overcount of matings

Every geometric mating of critically periodic quadratic polynomials which
is a rational map is the centre of a type IV hyperbolic component. The ratio-
nal maps in such a hyperbolic component have two disjoint periodic orbits
of attractive fixed points, of some periods m and n. It is possible to count
the number of such hyperbolic components [18]. It is also possible to count
the number of matings of critically periodic polynomials P (z) = z2 +c1 and
Q(z) = z2 + c2 such that 0 is of period m under P and of period n under Q.

Surprisingly, the number of matings exceeds the number of hyperbolic
components for all n � 5 and sufficiently large m. In fact there is an excess
even if one discounts the shared matings arising from the Wittner flip, those
arising from period one clusters, when a mating with a starlike polynomial
can be realised in another way, and a slight generalisation of this: those
arising from a period two cluster when a mating with a critically periodic
polynomial for which the periodic Fatou components accumulate on a period
two repelling orbit can be realised in three other ways (see Figure 3). It
was, in fact, the overcount which led to the discovery of the shared matings
arising from period two clusters and removed the overcount in the case
of n = 4. There must be many more shared matings to account for the
overcount for all n � 5.

Question 4.1. — Can one give a simple description of more shared
matings?

Here is a brief description of the numerics. We write η′IV(m,n) of type
IV hyperbolic components with disjoint orbits of attractive periodic points
of periods � 3 and dividing n and m. For an integer q > 0, let ϕ(q) be the
number of integers between 0 and q which are coprime to q (the usual Euler
phi-function). Let νq(n) be the number of minor leaves of period dividing n
in a limb of period q, that is,

νq(n) =

⌊
2n−1

2q − 1

⌋
if q � n and

⌊
2n−1

2q − 1

⌋
+ 1 if q|n.
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Then η′IV(m,n) is
(

7

18
(2n−1 − 1)− 1

4

∑

3�q�n

ϕ(q)νq(n)

2q − 1

)
· 2m + o(2m) if nis odd, and

(
7

9
(2n−2 − 1)− 1

4

∑

3�q�n

ϕ(q)νq(n)

2q − 1

)
· 2m + o(2m) if n is even.

Meanwhile the number of critically periodic matings with critical points of
periods � 3, and dividing m and n respectively is

(
4

9
(2n−1 − 1)− 1

2

∑

3�q�n

ϕ(q)νq(n)

2q − 1

)
· 2m + o(2m) if nis odd, and

(
8

9
(2n−2 − 1)− 1

2

∑

3�q�n

ϕ(q)νq(n)

2q − 1

)
· 2m + o(2m) if n is even.

The shared matings coming from the Wittner flip and period two clusters
reduce this by, respectively,

(n− 2)ϕ(n)

2(2n − 1)
· 2m + o(2m) and

2nϕ(n/2)

2n − 1
· 2m + o(2m).

So, let θ(n,m) is the number of matings, discounting known sharings. Then,
η′IV(n,m)− θ(n,m) is

(
(n− 2)ϕ(n)

2(2n − 1)
− 1

18
(2n−1 − 1) +

1

4

∑

3�q�n

ϕ(q)νq(n)

2q − 1

)
2m + o(2m)

if n is odd and(
(n− 2)ϕ(n)

2(2n − 1)
+

2nϕ(n/2)

2n − 1
− 1

9
(2n−2 − 1) +

1

4

∑

3�q�n

ϕ(q)νq(n)

2q − 1

)
·2m+o(2m)

if n is even. For n = 3, 4 and 5 this is respectively

1

21
· 2m + o(2m),

6

35
· 2m + o(2m), − 156

1085
· 2m + o(2m)

But for n � 6

η′IV(n,m)− θ(n,m) � −
(

1

18
− 1

4

∑

3�q�n

q − 1

(2q − 1)2

)
· 2m+n−1

+

(
1

9
+

1

8

∑

3�q�n

q − 1

2q − 1
+

(n− 2)(3n− 1)

2(2n − 1)

)
· 2m

<

(
1− 1

27
· 2n−1

)
· 2m < 0.
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4.2. Type II components and adjacent type IV components

Question 4.2. — Are there type II hyperbolic components of quadratic
rational maps whose centers are not periodic Wittner captures?

Question 4.3. — Is there a postcritically finite quadratic rational map
with Fatou components in a single periodic orbit of clusters, which is not a
geometric mating?

The second question is slightly weaker than the first, and can be con-
sidered without understanding the definition of periodic Wittner capture. If
n � 3, the boundary of a type II hyperbolic component, with periodic Fatou
component of period n, intersects the boundaries of at most three, and at
least two, type IV hyperbolic components, with periodic Fatou components
in two orbits of period n. If there are less than three, then the original hy-
perbolic component is unbounded. In all the known examples, all the type
IV maps arising in this way are Thurston equivalent to matings. Are there
any which are not? The representation as a mating is not usually unique, if
it does exist, which, of course, raises other questions.

Any missing boundary points are certainly represented by inadmissible
matings. If at least one of these boundary rational maps is equivalent to
a mating, even an admissible mating, then the centre of the hyperbolic
component is equivalent to a periodic Wittner capture.

For any type II hyperbolic component of quadratic rational maps with
Fatou comoponent of period n � 3, and any q � 2, there are 6(2q−1−1) type
IV hyperbolic components with periodic Fatou components of periods n and
nq1, for q1 > 1 dividing q, such that the closures of the type II and type
IV components intersect. The intersection contains a rational map with one
critical point of period n and an orbit of parabolic basins of period dividing
nq. Much of this is proved in [34], although there is no count there; and the
count given here does need checking.

Question 4.4. — How many of the centers of these type IV hyperbolic
components can be represented as matings?

Such examples may occur even for n = 3 and q = 2, but this has not been
checked properly. There are two type II components of period 3, and hence
there are twelve type IV hyperbolic components to consider for n = 3 and
q = 2. Of these, ten are represented by matings, eight of them in a unique
way and two in two different ways. The last two of the twelve appear not to
be represented by matings. This situation is probably reproduced for n = 3
and any q > 2, but, again, this has not been checked properly.
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5. Quadratic polynomials with irrationally indifferent fixed
points (Buff-Koch)

There is a parallel between mating and constructions in the theory
of hyperbolic 3-manifolds. One may view mating as a combination proce-
dure. At a formal level, one can sometimes combine Kleinian groups G1, G2

via so-called Klein-Maskit combinations into a larger group G := 〈G1, G2〉.
In contrast, under mating, the dynamics of P,Q typically does not faith-
fully embed in an even topological way into that of P ⊥⊥ Q. An excep-
tion is mating Blaschke products. For example, the problem of realizing
(λz + z2) ⊥⊥ (µz + z2) when |λ| = |µ| = 1 is formally analogous to the dif-
ficult problem of establishing Thurston’s so-called Double Limit Theorem
(see [14] for more details).

More precisely, let α and β be two irrational numbers with β �= −α. Set

P (z) := λz+z2 and Q(z) := µz+z2 with λ := e2πiα and µ := e2πiβ .

Both polynomials fix 0. The respective multipliers are λ and µ. Let F be
the rational map defined by

F (z) :=
z(z + λ)

µz + 1

which fixes 0 with multiplier λ and ∞ with multiplier µ.

Question 5.1. — To which extent can F be seen as a mating of P and
Q?

The following question is due to Milnor [28].

Question 5.2. — If JP and JQ are locally connected, then are P and
Q topologically mateable, and do we have F ∼= P ⊥⊥ Q?

Yampolsky and Zakeri [45] proved that F ∼= P ⊥⊥ Q when α and β are
of bounded type. Zhang [46] expanded this result to the case where α and
β are of Petersen-Zakeri type.

When at least one of the Julia sets is not locally connected, we can still
expect to see the dynamics of P and Q reflected in that of F . We propose
the following questions.

Question 5.3. — Are there continuous surjective maps φ : JP → JF ,
ψ : JQ → JF such that the following three diagrams commute?

JP P−−−−→ JP
φ




 φ

JF −−−−→
F

JF

JQ Q−−−−→ JQ
ψ




 ψ

JF −−−−→
F

JF
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Q /Z

P

Q /Z

Q

JP JP

JF

→θ

γ

φ ψ

θ

γ

It is known that if P has a Siegel disk around 0 (this occurs if and only if
α is a Brjuno number), then F has a Siegel disk around 0. One may wonder
whether the converse holds.

Question 5.4. — Is there a local conjugacy between the dynamics of P
near 0 and the dynamics of F near 0? If it exists, what is its regularity?
For example, if F has a Siegel disk around 0, does P have a Siegel disk
around 0?

It is conjectured that if P has a Siegel disk around 0, then its boundary
is a Jordan curve.

Question 5.5. — Assume P has a Siegel disk ∆ around 0 so that F has
a Siegel disk D around 0. Are ∆ and D homeomorphic? Does the boundary
of ∆ contain the critical point of P if and only if the boundary of D contains
a critical point of F?

It follows from the Fatou-Shishikura Inequality that the two critical
orbits of F are disjoint. In addition, if F has a Siegel disk around 0 the
boundary of the Siegel disk is contained in the closure of at least one critical
orbit. Otherwise 0 is contained in the closure of at least one critical orbit.

Question 5.6. — Are the closures of the two critical orbits of F dis-
joint? In particular, if F has two Siegel disks D0 and D∞ around 0 and ∞,
do we have D0 ∩D∞ = ∅?

Lastly, we wish to understand the dynamics of a point randomly chosen
with respect to the Lebesgue measure. For each critical point c of F we set

Bc :=
{
z ∈ P1 | dist(F ◦n(z),OF (c)) −→

n→∞
0
}
.

Question 5.7. — Assume JP and JQ have positive Lebesgue measure.
Does F fail to be ergodic with respect to the Lebesgue measure? More pre-
cisely, if c1 and c2 are the critical points of F , are Bc1 and Bc2 disjoint and
do they have positive Lebesgue measure?
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6. Twisted matings of quadratic polynomials (Buff-Koch)

Let P be a monic polynomial of degree d � 2. Then for any integer
k � 1, and any α = dk − 1 root of unity the polynomial

P kα := z �→ α · P ◦k(z/α)

is monic with JPkα = α · JP .

Question 6.1 Given two quadratic polynomials P and Q, and an inte-
ger k � 1, for which (α, β) are P kα and Qkβ mateable?

If P (z) = z2 + c1 and Q(z) = z2 + c2 are postcritically finite, and k = 1,
the answer is well-known: P and Q are mateable if and only if c1 and c2 do
not belong to conjugate limbs of the Mandelbrot set, ([42], [33], [35], [39]).
It follows from this result that if P (z) = z2 + c1 and Q(z) = z2 + c2 are two
postcritically finite polynomials for which c1 and c2 are in conjugate limbs,
then for all k � 2, and α = β, then P kα and Qkβ are not mateable.

In the case of P (z) = Q(z) = z2 − 1, as long as k � 2 and α �= β, the
polynomials P kα and Qkβ are mateable, see [3].

Figure 4. — Twisted matings of the basilica, P = Q : z �→ z2 − 1. Left: a geometric
mating of P 2

1 and Q2
α with α = exp(−2πi/3). Right: a geometric mating of P 4

1 and Q4
β

with β = exp(−2πi/5).

7. Slow matings (Buff-Koch-Meyer)

7.1. Equipotential gluing

Let P and Q be two monic polynomials with connected Julia sets. Let
hP : C→ [0,+∞) and hQ : C→ [0,+∞) be the associated Green functions.
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Given η > 0, let UP (η) and UQ(η) be defined by

UP (η) := {z ∈ C | hP (z) < η} and UQ(η) := {w ∈ C | hQ(w) < η}.

Let Ση be the Riemann sphere obtained by identifying

bötP (z) ∈ UP (η) and bötQ(w) ∈ UQ(η) when zw = exp(η).

The restrictions P : UP (η) → UP (2η) and Q : UQ(η) → UQ(2η) induce
a holomorphic map fη : Ση → Σ2η. We wish to know whether the family
fη has a limit as η → 0+. For this, we need to normalize the family fη.
Choose x ∈ KP and y ∈ KQ. For η > 0 let φη : Ση → P1 be the conformal
isomorphism satisfying

φη(x) = 0, φη(y) =∞ and φη(exp(η/2)) = 1.

The map
Fη := φ2η ◦ fη ◦ φ−1

η : P1 → P1

is a rational map.

Question 7.1. — For which polynomials P and Q, and which points x
and y does the family of rational maps Fη converge uniformly on P1 to a
rational map F?

Question 7.2. — Assume KP and KQ are locally connected, and Fη
tends to F as η tends to 0+. Are P and Q mateable, and is it true that F
is a geometric mating of P and Q?

7.2. Holomorphic motions

The strong form of Moore’s theorem says that the semi-conjugacy from
the formal mating to the topological mating can be obtained as the end of a
pseudo-isotopy, i.e., each ray-equivalence class can be continuously deformed
to a point. Is it possible to do this deformation “in a nice way”? If so, what
can be said about this deformation? Particularly nice would be to do the
“ray-shrinking deformation” in a holomorphic motion.

Consider the sphere S divided by the equator in two hemispheres. Each
hemisphere is (conformally equivalent to) a unit disk. Draw the laminations
from the two polynomials P and Q whose mating we consider into each
hemisphere (more precisely map the laminations of the unit disk into each
hemisphere). Consider now a gap (i.e. a component of the complement) of
one lamination. Assume for simplicity that it is an ideal triangle. We can
think of this gap as consisting conformally of three half-strips that are glued

– 1172 –



Questions about Polynomial Matings

together at the center of the gap. Into each half-strip we put a Beltrami-
field of very long, thin, ellipses in the direction of the strip. When solving
the Beltrami-equation these ellipses will be deformed to be round, causing
everything in the strip to be “pulled together”.

Formally note that the map x+iy �→ 1
Kx+iy is a solution of the Beltrami

equation with µ = 1−K
1+K . Copy this Beltrami fields into each of the three

half-strips of the gap. More precisely we map the half-strip [0,∞) × [0, 1]
conformally to “one third” of the gap and use the conformal map to transfer
the Beltrami-field.

Similarly if the gap is an ideal n-gon we divide it into n conformal half-
strips and copy the Beltrami-field as above into each half-strip.

Now we can vary the construction above by setting µ on [0,∞) × [0, 1]
to be constant to another number z0 ∈ D. The solution of the resulting
Beltrami-equation yields a holomorphic motion.

Question 7.3. — Consider first the solutions obtained from setting µ =
(1 −K)/(1 + K) as in the first paragraph. Does the solution for large real
K tend to the pseudo-isotopy from Moore’s theorem? More precisely: show
that the solution hK (of the Beltrami equation) converges for large K to a
continuous map h∞. Show that preimages of h∞ are precisely the equivalence
classes of the ray-equivalence relation.

If the above indeed can be carried out one would get a very natural, as
well as powerful, description of the mating.

These holomorphic motions would be natural candidates for extremal
examples for Brennan’s conjecture a deep conjecture from the theory of
conformal maps.

8. Miscellany (Meyer)

8.1. Semi-conjugacies

A mating induces a semi-conjugacy between the multiplication by d act-
ing on R/Z and the rational map F acting on JF , i.e., there is a continuous,
surjective map γ:R/Z→ JF such that γ(d · θ) = F ◦ γ(θ) for all z ∈ R/Z.

There is a parallel in the theory of hyperbolic 3-manifolds. Suppose S is a
closed surface and ρ : π1(S)→ PSL2(C) is a discrete faithful representation
with image a Kleinian group G. By [29, Thm. 5.14] (see also [31]), there is an
associated semiconjugacy U→ P1 from the action of π1(S) on the boundary
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of its Cayley graph to the action of G on its limit set. Called the Cannon-
Thurston map, it is the analog of the Carathéodory loop; see also the main
result of [7] for the case of 3-manifolds fibering over the circle. This result
establishes the fact that the limit sets arising are always locally connected,
contrasting with our present setting of polynomials.

In the case when F is postcritically finite and JF = P1, there often
is also a semi-conjugacy between the multiplication by −d acting on R/Z
and the rational map F acting on P1. Indeed every sufficiently high iterate
Fn is a mating of two postcritically finite polynomials without periodic
critical points (see [24], [25]). This phenomenon seems to be as common
as the standard semi-conjugacies (which are associated with matings). One
may speculate that there is some other type of mating from which this
phenomenon arises. This should be related to orientation reversing equators
of the kind one encounters for the map U & z �→ z−2 ∈ U.

Question 8.1. — Give a proper definition of the “matings” that occur
as above.

8.2. Hausdorff dimension

Question 8.2. — Assume F is the geometric mating of postcritically
finite polynomials P and Q. Is there a relation between the Hausdorff di-
mension of the Julia sets JP , JQ and JF ? For example is it true that
max(Hdim JP ,Hdim JQ) � Hdim JF ?

Of course the question could also be asked in other settings, i.e., when
P,Q are not postcritically finite. Then however the answers is no, as the
following example shows. The mating of two complex conjugate perturba-
tions of z2 (whose Julia sets have Hausdorff dimension greater than 1) is a
Blaschke product (whose Julia set has Hausdorff dimension 1).
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