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Products of conjugacy classes in finite unitary groups
GU(3, q2) and SU(3, q2)

S.Yu. Orevkov(1)

ABSTRACT. — For the groups GU(3), SU(3), GL(3), SU(3) over a finite
field we solve the class product problem, i.e., we give a complete list of
m-tuples of conjugacy classes whose product does not contain the identity
matrix.

RÉSUMÉ. — Pour les groupes GU(3), SU(3), GL(3), SU(3) sur un corps
fini on résout le problème du produit des classes, c-à-d, on donne une liste
complète de tous les m-uplets de classes de conjugaison dont le produit
ne contient pas la matrice identité.

1. Introduction and statement of main results

1.1. Introduction

We study here the following problem (the Class Product Problem). Let
c1, . . . , cm be conjugacy classes in a given group. Does the unity of the
group belong to their product? For the usual unitary group SU(n), this
problem is completely solved in [2] and [3]. Various partial cases of the class
product problem (in particular, estimates for the covering number) for many
groups were studied by many authors see, e. g., [1, 9, 11, 12] and numerous
references therein.

In this paper we give a complete solution to the class product problem
for the finite unitary groups GU(3, q2) and SU(3, q2), see §1.7 for precise
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statements. Due to Ennola duality (see §1.3), as a by-product, we obtain a
solution for the groups GL(3, q), SL(3, q). For the sake of completeness, we
also give in §5 a solution for the groups GL(2, q), GU(2, q2) and SU(2, q2)∼=
SL(2, q). A solution for corresponding projective groups PGL, PSL, PGU
and PSU easily follows.

Our interest to the class product problem in all kinds of unitary groups
is motivated by the study of braid monodromy of plane algebraic curves
(see [14]).

As in [1, 12], the main tool used here for solving the class product prob-
lem is Burnside’s formula for the structure constants via the character ta-
ble. Namely, for a finite group Γ and its elements x1, . . . , xm, we denote the
number of m-tuples (y1, . . . , ym) such that yi is a conjugate of xi in Γ and
y1 . . . ym = e by NΓ(x1, . . . , xm). Then Burnside’s formula (see, e. g., [13;
Th. I-5.8] or [1; Ch. 1, 10.1]) reads as

NΓ(x1, . . . , xm) =
|xΓ

1 | · . . . · |xΓ
m|

|Γ|
∑

χ∈Irr(Γ)

χ(x1) . . . χ(xm)

χ(1)m−2
(1)

where Irr(Γ) is the set of irreducible characters of Γ and xΓ denotes the
conjugacy class of x in Γ. We denote the sum in the right hand side of (1)
by N̄Γ(x1, . . . , xm).

We use the character tables from [6] (GU/GL) and [15, 7] (SU/SL).

Acknowledgements. — I am grateful to M. Geck, A. A. Klyachko,
N. A. Vavilov and I. A. Vedenova for useful advises and discussions.

1.2. Determinant Relation and Rank Condition

If Γ is a subgroup of GL(n,K) over any commutative field K and
A1, . . . , Am ∈ Γ are such that I ∈ AΓ

1 . . . A
Γ
m, then an evident restriction

is the determinant relation

det(A1) · . . . · det(Am) = 1 (2)

Another evident restriction which takes place for any field, is the rank con-
dition: if λ1 . . . λm = 1, then

rk(Aj − λjI) �
∑

i �=j
rk(Ai − λiI) for any j = 1, . . . ,m (3)

(I is the identity matrix). Indeed, if we denote the λi-eigenspace of Ai
by Vi, then

⋂
i �=j Vi ⊂ Vj , thus codimVj � codim

⋂
i �=j Vi �

∑
i �=j codimVi.
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When m > n, this condition is always satisfied for any m-tuple of non-scalar
matrices.

One more general restriction (see Case (viii) in Theorem 1.3(a)) is

Proposition 1.1. — Let K be a perfect field and A ∼ B ∈ GL(3,K).

If A does not have eigenvalues in K, then A−1B �=




1 0 0
1 1 0
0 0 1


.

Proof. — Suppose the contrary. Let V be the eigenspace of A−1B. Then
A|V = B|V . Since A has no eigenvalues in K, we have A(V ) �= V . Let
e2 ∈ V ∩ A(V ), e1 = A−1(e2), and e3 = A(e2). Then B(e1) = A(e1) = e2
and B(e2) = A(e2) = e3. Thus, A and B take the canonical form in the
same basis (e1, e2, e3). Since A ∼ B, this implies A = B. Contradiction.
�

It happens (see Theorem 1.3 in §1.7) that in the case of GL(3, q), q �= 2,
there are no other restrictions on A1, . . . , Am. In the case of GU(3, q2),
there are much more restrictions (see the lines in Table 2 not marked by the
asterisk). An interesting question is to generalize them for any field and for
any dimension.

1.3. Ennola duality and the sign convention

Throughout the paper, q is a prime power and GU (resp. SU , GL, SL)
is an abbreviation of GU(3, q2) (resp. SU(3, q2), GL(3, q), SL(3, q)) except
§5 where the same convention is used with 3 replaced by 2.

Ennola [6] observed that the character tables of groups GU(n, q2) and
GL(n, q) are obtained from each other by changing the sign of q. The same is
true for SU(n, q2) and SL(n, q). Since the character table is our main tool,
it is not surprising that all computations are almost the same for GU/SU
and GL/SL. So, throughout the paper (except §4 and §5.3), we use the
following sign convention: if a symbol ± or ∓ occurs in a formula, then the
upper sign corresponds to the case of GU (resp. SU , PSU) and the lower
sign corresponds to the case of GL (resp. SL, PSL). Throughout the paper
(except §4 and §5.3), G (resp. S; PG; PS) stands for GU or GL (resp SU
or SL; PGU or PGL; PSU or PSL) and we set

δL =
1∓ 1

2
=

{
1, G = GL,
0, G = GU.

(4)
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1.4. Conjugacy classes in GU(3, q2) and GL(3, q)

Recall that GU(3, q2) is the group of 3× 3 matrices A with coefficients
in the finite field Fq2 such that A∗A = I where A∗ = At and z 
→ z̄ is the
Frobenius automorphism of Fq2 defined by z 
→ zq.

We set Ω = {z ∈ Fq2 | zq±1 = 1}, i. e., Ω is the multiplicative group
F∗q when G = GL and Ω is “the unit circle” Ω = { z ∈ Fq2 | zz̄ = 1} when
G = GU .

We fix a multiplicative generator τ of F∗q6 and we set ρ = τ q
4+q2+1 (a

generator of F∗q2), ω = ρq∓1 (a generator of Ω), and θ = τ q
3∓1.

The conjugacy classes in GL(n, q) are determined by the Jordan normal
form (JNF). The conjugacy classes in GU(n, q2) have been computed in [5]
and [16]. Each conjugacy class of GU(n, q2) is the intersection of GU(n, q2)
with a conjugacy class of GL(n, q2), so, it is determined by JNF. The classes
of GL and those of GU (represented by JNF in GL(3, q6)) are listed in Table
1 which, for the reader’s convenience, we reproduce from [6]. For an integer
k, we denote the set {1, . . . , k} by [k]. We set Rq2−1 = {k ∈ [q2 − 1] | k �≡
0 mod q ∓ 1} and Rq3±1 = {k ∈ [q3 ± 1] | k �≡ 0 mod q2 ∓ q + 1}.

Table 1. — Conjugacy classes in G.

Class JNF over Fq6 det class size
range of the

parameters

C
(k)
1

k 0 0
0 k 0
0 0 k

3k 1 k [q 1]

C
(k)
2

k 0 0
1 k 0
0 0 k

3k (q 1)(q3 1) k [q 1]

C
(k)
3

k 0 0
1 k 0
0 1 k

3k q(q2 1)(q3 1) k [q 1]

C
(k,l )
4

k 0 0
0 k 0
0 0 l

2k+l q2(q2 q +1) (k, l ) [q 1]2, k l

C
(k,l )
5

k 0 0
1 k 0
0 0 l

2k+l q2(q 1)(q3 1) (k, l ) [q 1]2, k = l

C
(k,l,m )
6

k 0 0
0 l 0
0 0 m

k+l+m q3(q 1)(q2 q +1) 1 k <l <m q 1

C
(k,l )
7

k 0 0
0 l 0

0 0 ql

k l q3(q3 1)
(k, l ) [q 1] Rq2 1

C
(k,l )
7 = C

(k, ql)
7

C
(k)
8

k 0 0

0 q2k 0

0 0 q4k

k q3(q 1)2(q 1)
k Rq3 1

C
(k)
8 = C

(q2k)
8 = C

(q4k)
8

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

 ∈

 ∈

 ∈

 ∈

 ∈

 ∈

 ∈

=
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1.5. Conjugacy classes in SU(3, q2) and SL(3, q)

If 3 does not divide q ± 1, then G = S × Z(G) where Z(G) = C1
∼= Ω

is the center of G, and hence, the classes of S are just those classes of G
which are contained in S.

Let q = 3r ∓ 1. In this case, the splitting of conjugacy classes in SL is
described in [4; Ch. 11, §224] (see also [17]). As stated in [15], “it can be

shown that the same splitting takes place in the unitary case”. Each of C
(k)
3 ,

k = 0, r, 2r, splits into three classes which we denote by C
(k,l)
3 , l = 0, 1, 2.

The class C
(k,l)
3 in SU(3, q2) (resp. in SL(3, q)) consists of matrices which

are conjugate in SL(3, q2) (resp. in SL(3, q)) to1



ωk 0 0
zl ωk 0
0 1 ωk


 , z =

{
ρ, S = SU(3, q2),
ω, S = SL(3, q).

Other conjugacy classes of G contained in S are conjugacy classes of S.

Proposition 1.2. — If A ∈ C
(k,l)
3 , then A−1 ∈ C

(−k,l)
3 and ωk

′
A ∈

C
(k+k′,l)
3 .

Remark. — Each conjugacy class of SU is the intersection of SU with a
conjugacy class of SL(3, q2). The situation is quite different for SU(2, q2),
see §5.3.

1.6. Notation for eigenvalues

We denote the union of the conjugacy classes C
(...)
i by Ci, i = 1, . . . , 8.

We denote the number of distinct eigenvalues of matrices from Ci by ni and
the number of distinct eigenvalues belonging to Ω by n′i. So, we have

n1 = n2 = n3 = 1, n4 = n5 = 2, n6 = n7 = n8 = 3;
n′i = ni (i = 1, . . . , 6); n′7 = 1, n′8 = 0.

We denote the multiplicity of an eigenvalue λ of a matrix A by mA(λ).
Let A ∈ Ci. We denote the eigenvalues of A by λ1 = λ1(A), . . . , λni =
λni(A). We number them so that

mA(λ1) � . . . � mA(λni) and λ1, . . . , λn′
i
∈ Ω. (5)

(1) there is a misprint here in [15].
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For an m-tuple of matrices )A = (A1, . . . , Am), Aν ∈ Ciν , ν = 1, . . . ,m,
we use the multi-index notation:

)a = (a1, . . . , am), [)n] = [ni1 ]× . . .× [nim ], [)n′] = [n′i1 ]× . . .× [n′im ],

(recall that [k] stands for {1, . . . , k}) and for )a ∈ [)n] we set

λ�a = λa1(A1) . . . λam(Am), δ�a = δ�a( )A) =

{
1, λ�a = 1,
0, λ�a �= 1.

In this notation, the rank condition (3) for )A = (A1, A2, A3) takes the
form

n′i3∑

a=1

δ1,1,a > 0 if {i1, i2} ⊂ {2, 4} (3′)

1.7. Statement of main results

In Theorems 1.3 and 1.6, we restrict ourselves by the case whenA1, . . . , Am
are non-scalar andm � 3. To reduce the general case to this one, it is enough
to know the class of the inverse of a given matrix and the class of its multi-
ple by a scalar. For G, this is clear from JNF; for S, the answer is given in
Proposition 1.2 in §1.5.

Theorem 1.3. — Let A1, . . . , Am ∈ G \ C1, m � 3, satisfy (2) and (3).
Let Aν ∈ Ciν , ν = 1, . . . ,m.

(a) If G = GU , we suppose that one of the following conditions (i)–(vii)
holds:

(i) m = 3, i1 ∈ {6, 7}, i2 ∈ {3, 5}, i3 ∈ {2, 4}, and δ111 = 1;

(ii) m = 3, i1 = 5, i2 ∈ {3, 5}, i3 ∈ {2, 4}, and δ211 = 1;

(iii) m = 3, i1 = i2 ∈ {6, 8}, i3 = 2, and δ111δ221δ331 = 1 (when i1 = i2 =
8, the last condition is equivalent to δ111 = 1);

(iv) m = 3, (i1, i2, i3) = (3, 2, 2) or (4, 4, 2);

(v) m = 3, (i1, i2, i3) = (5, 4, 4), and δ112δ121δ211 = 1 (see Remark 1.5);

(vi) m = 4, (i1, i2, i3, i4) = (3, 2, 2, 2), and δ1111 = 1;

(vii) m = 4, (i1, i2, i3, i4) = (4, 4, 4, 2), and δ1121δ1211δ2111 = 1 (see Re-
mark 1.5).
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If G = GL, we suppose that one of the following conditions (viii)–(ix)
holds:

(i) m = 3, (i1, i2, i3) = (8, 8, 2) and δ111 = 1;

(ii) q = 2, m = 3, (i1, i2, i3) = (8, 8, 3) and AG1 = AG2 .

Then I �∈ AG1 . . . AGm.

(b) Suppose that none of the conditions of Part (a) holds for any per-
mutation of A1, . . . , Am and for any renumbering of the eigenvalues of the
matrices under the restrictions (5). In the case G = GU , we suppose also
that q �= 2. Then I ∈ AG1 . . . AGm.

Remark 1.4. — In Table 2 we present the list of all the cases when (2) can
be satisfied for non-constant matrices A1, . . . , Am ∈ G, m � 3, Ai ∈ Ciν ,
iν � 2, but I �∈ AG1 . . . A

G
m for q > 2. The cases marked by an asterisk

concern the both groups GU and GL; as stated in §1.2, in all of them
except (8, 8, 2) the rank condition (3) is not satisfied. The cases not marked
by an asterisk concern only GU .

Table 2. — Cases when detA1 . . . Am = 1, I �∈ AG1 . . . AGm for q > 2 (see Remark 1.4)

(i1, . . . , im) (i1, . . . , im)

(2, 2, 2)* δ111 = 0 (6, 4, 2)* δ111 + δ211 + δ311 = 0
(3, 2, 2)* δ111 = 0 (6, 4, 3) δ111 + δ211 + δ311 = 1
(3, 2, 2) δ111 = 1 (6, 4, 4)* δ111 + δ211 + δ311 = 0
(4, 2, 2)* (6, 5, 2) δ111 + δ211 + δ311 = 1
(4, 3, 2)* (6, 5, 4) δ111 + δ211 + δ311 = 1
(4, 4, 2)* δ111 = 0 (6, 6, 2)

∑
α∈S3

δ11α1δ22α1δ33α1 = 1
(4, 4, 2) δ111 = 1 (7, 2, 2)* δ111 = 0
(4, 4, 3)* δ111 = 0 (7, 3, 2) δ111 = 1
(4, 4, 4)* δ111 + δ112δ121δ211 = 0 (7, 4, 2)* δ111 = 0
(5, 2, 2)* δ211 = 0 (7, 4, 3) δ111 = 1
(5, 3, 2) δ211 = 1 (7, 4, 4)* δ111 = 0
(5, 4, 2)* δ111 + δ211 = 0 (7, 5, 2) δ111 = 1
(5, 4, 3) δ211 = 1 (7, 5, 4) δ111 = 1
(5, 4, 4)* δ111 + δ211 = 0 (8, 2, 2)*
(5, 4, 4) δ211δ121δ112 = 1 (8, 4, 2)*
(5, 5, 2) δ211 = 1 (8, 4, 4)*
(5, 5, 4) δ211 = 1 (8, 8, 2)* δ111 + δ121 + δ131 = 1
(6, 2, 2)* δ111 + δ211 + δ311 = 0 (3, 2, 2, 2) δ1111 = 1
(6, 3, 2) δ111 + δ211 + δ311 = 1 (4, 4, 4, 2) δ1121δ1211δ2111 = 1
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Remark 1.5. — Conditions (v) and (vii) in Theorem 1.3 mean that

(µ1A
G
1 , . . . , µmA

G
m) is

(
C

(−k,0)
5 , C

(0,k)
4 , C

(0,k)
4

)
or

(
C

(0,k)
4 , C

(0,k)
4 , C

(0,k)
4 , C

(−k)
2

)

for some k ∈ {1, . . . , q} and for some µi ∈ Ω with µ1 . . . µm = 1.

The case of q = 2 also is treated completely in Propositions 4.2 and 4.3
(for GU) and in Corollary 4.5 (for SU).

If 3 does not divide q ± 1, then G ∼= S × Ω, thus the class product
problem in S reduces to that in G. Otherwise (when 3|q ± 1) the solution
is as follows.

Theorem 1.6. — Let A1, . . . , Am, m � 3, be as in Theorem 1.3. We
suppose in addition that q = 3r ∓ 1 and A1, . . . , Am ∈ S, recall that S is
SU(3, q2) or SL(3, q).

(a) Suppose that m = 3.

If S = SU , we suppose that

(i) i1 = i2 = 3, i3 ∈ {2, 4}, A1 ∈ C(k1,l1)
3 , A2 ∈ C(k2,l2)

3 , l1 �= l2.

If S = SL, we suppose that one of the following conditions (ii)–(v) holds:

(i) (i1, i2, i3) = (3, 3, 2), A1 ∈ C(k1,l1)
3 , A2 ∈ C(k2,l2)

3 , l1 �= l2, δ111 = 0;

(ii) (i1, i2, i3) = (3, 3, 4), A1 ∈ C(k1,l1)
3 , A2 ∈ C(k2,l2)

3 , l1 �= l2;

(iii) q = 4, (i1, i2, i3) = (3, 3, 3), Aν ∈ C(kν ,lν)
3 , ν = 1, 2, 3, l1 = l2 �= l3,

and δ111 = 1;

(iv) q = 4, (i1, i2, i3) = (3, 3, 3), Aν ∈ C(kν ,lν)
3 , ν = 1, 2, 3, l1 = l2 = l3,

and δ111 = 0.

Then I �∈ AS1AS2AS3 .

(b) Suppose that q > 2 and I ∈ AG1 . . . A
G
m. Suppose that for any per-

mutation of A1, . . . , Am, the hypothesis of Part (a) is not satisfied. Then
I ∈ AS1 . . . ASm.

If 3 does not divide q ± 1, then PG = PS = S. If 3 divides q ± 1, the

solution of the class product problem for PG and PS is as follows. Let C̃
(...)
i

be the conjugacy class of PG or PS corresponding to C
(...)
i .
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Corollary 1.7. — Let q = 3r ∓ 1, q �= 2. If m � 4 (resp. m � 3),
then the product of any m-tuple of nontrivial conjugacy classes of PGU
(resp. PGL) contains the identity matrix. All triples of nontrivial conjugacy
classes of PGU which have representatives in GU satisfying (2) and (3), but
whose product does not contain the identity matrix, are

(i) C̃
(0)
3 C̃

(0)
2 C̃

(0)
2

(ii) C̃
(0)
2 C̃

(0,k)
4 C̃

(0,−k)
4 k = 1, . . . q;

(iii) C̃
(0,k)
5 C̃

(0,k)
4 C̃

(0,k)
4 k = 1, . . . , q, k �∈ {r, 2r};

(iv) C̃
(0,r,2r)
6 C̃

(0)
3 C̃

(0)
2

(v) C̃
(0,r,2r)
6 C̃

(0,k)
5 C̃

(0,−k)
4 k = 1, . . . , q;

(vi) C̃
(0,r,2r)
6 C̃

(0,r,2r)
6 C̃

(0)
2

Corollary 1.8. — Let q = 3r ∓ 1, q �= 2. If m � 4, then the product
of any m-tuple of nontrivial conjugacy classes of PS contains the identity
matrix. All triples of nontrivial conjugacy classes which have representatives
in S satisfying (3), but whose product does not contain the identity matrix,
are

(i) C̃
(0,l)
3 C̃

(0)
2 C̃

(0)
2 l = 0, 1, 2;

(ii) C̃
(0)
2 C̃

(k,−2k)
4 C̃

(−k,2k)
4 k = 1, . . . r − 1;

(iii) C̃
(k,−2k)
5 C̃

(k,−2k)
4 C̃

(k,−2k)
4 k = 1, . . . , r − 1, 3k �∈ {r, 2r};

(iv) C̃
(0,r,2r)
6 C̃

(0,l)
3 C̃

(0)
2 l = 0, 1, 2;

(v) C̃
(0,r,2r)
6 C̃

(k,−2k)
5 C̃

(k,−2k)
4 k = 1, . . . , r − 1;

(vi) C̃
(0,r,2r)
6 C̃

(0,r,2r)
6 C̃

(0)
2

(vii) C̃
(0,l1)
3 C̃

(0,l2)
3 C̃

(0)
2 0 � l1 < l2 � 2;

(viii) C̃
(0,l1)
3 C̃

(0,l2)
3 C̃

(k,−2k)
4 0 � l1 < l2 � 2, k = 1, . . . , r − 1

in the case PS = PSU , and only the triples (viii) in the case PS = PSL.

1.8. Covering number and extended covering number

Let Γ be a group. The covering number of Γ is the minimal integer m such
that for any nontrivial conjugacy class c, we have cm = Γ. It is denoted by
cn(Γ). The extended covering number of Γ is the minimal integer m such
that for any nontrivial conjugacy classes c1, . . . , cm we have c1 . . . cm = Γ.
Covering numbers were studied in [1, 12].
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Corollary 1.9. —

cn(PSL) = 3 and ecn(PSL) = 4;

cn(PSU) = 3 and ecn(PSU) = 4 if gcd(q + 1, 3) = 3 and q �= 2;

cn(PSU) = 4 and ecn(PSU) = 5 if gcd(q + 1, 3) = 1.

Remark 1.10. — Karni [10] computed the numbers cn(PS) and ecn(PS)
for q = 3, 4, 5; Lev [11] proved that cn(PSL(n,K)) = n for any n � 3 and
for any field K which has more than 3 elements.

2. Class products in GU(3, q2) and GL(3, q).
Proof of Theorem 1.3

2.1. The character tables of GU(3, q2) and GL(3, q)

In this section we represent the character table of G (see [6]) in a form
convenient to apply (1). The irreducible characters of G divide into 8 series
parametrized by the same sets of parameters as the conjugacy classes. We
denote the dimension of the irreducible representations corresponding to the
j-th series by dj . So,

d1 = 1 d3 = q3 d5 = q(q2 ∓ q + 1) d7 = q3 ± 1
d2 = q2 ∓ q d4 = q2 ∓ q + 1 d6 = (q ∓ 1)(q2 ∓ q + 1) d8 = (q ± 1)(q2 − 1)

The characters χ
(t,...)
di

, i = 1, . . . , 8, are irreducible and pairwise distinct only
for some values of the parameters t, u, v, but we define them by the same
formulas for any values of the parameters. Recall that for an integer n, we
denote the set {1, . . . , n} by [n]. Let

Xj = {χ(t)
dj
| t ∈ [q ± 1]}, j = 1, 2, 3, X ′j = {χ(t,t)

dj
| t ∈ [q ± 1]}, j = 4, 5,

Xj = {χ(t,u)
dj
| (t, u) ∈ [q ± 1]2}, j = 4, 5, X ′6 = {χ(t,u,u)

d6
| (t, u) ∈ [q ± 1]2},

X6 = {χ(t,u,v)
d6

| (t, u, v) ∈ [q ± 1]3}. X ′7 = {χ(t,(1∓q)u)
d7

| (t, u) ∈ [q ± 1]},
X7 = {χ(t,u)

d7
| (t, u) ∈ [q ± 1]× [q2 − 1]}, X ′8 = {χ((q2∓q+1)t)

d8
| t ∈ [q ± 1]},

X8 = {χ(t)
d8
| t ∈ [q3 ± 1]}, X ′′6 = {χ(t,t,t)

d6
| t ∈ [q ± 1]}

and Ξ1 = {X1, X2, X3, X
′
4, X

′
5, X

′′
6 , X

′
8}, Ξ2 = {X4, X5, X

′
6, X

′
7}, Ξ3 =

{X6}, Ξ4 = {X7}, Ξ5 = {X8}, Ξ = Ξ1 ∪ . . . ∪ Ξ5. It is clear that if E
is any expression depending on a character of G, then

∑

χ∈Irr(G)

E(χ) =
∑

X∈Ξ

s(X)
∑

χ∈X
E(χ) (6)
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where the symmetry factors s(X) are given in Tables 3.1 and 3.2.

We fix a homomorphism of multiplicative groups f : F∗q6 → C∗ which

takes τ to exp(2πi/(q6 − 1)), thus,

f(ω) = e2πi/(q±1), f(ρ) = e2πi/(q
2−1), f(θ) = e2πi/(q

3±1).

Let A ∈ Ci and let λ1, . . . , λni be its eigenvalues numbered as in (5).
Then

χ(t)(A) = cXi f(detA)t, χ(t) ∈ X ∈ Ξ1

χ(t,u)(A) =

n′i∑

a=1

cXi,af(λa)
tf(λ−1

a detA)u, χ(t,u) ∈ X ∈ Ξ2,

χ
(t,u,v)
d6

(A) =
∑

α∈A6,i

cX6
i f(λtα(1)λ

u
α(2)λ

v
α(3)),

χ
(t,u)
d7

(A) =
∑

α∈A7,i

cX7
i f(λtα(1)λ

u
α(2)), χ

(t)
d8

(A) =

ni∑

a=1

cX8
i f(λta).

where A6,i and A7,i are sets of triples α = (α(1), α(2), α(3)) and pairs
(α(1), α(2)) respectively defined by

A6,i = {(1, 1, 1)}, A7,i = {(1, 1)}, i = 1, 2, 3,
A6,i = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}, A7,i = {(2, 1)}, i = 4, 5,
A6,6 = S3, A7,7 = {(1, 2), (1, 3)},
A6,7 = A6,8 = ∅, A7,6 = A7,8 = ∅.

The coefficients cXi and cXi,a (the latter denoted just by cXi in the cases when
n′i = 1) are given in the Tables 3.1 and 3.2.

Table 3.1

X cX1 cX2 cX3 cX4 cX5 cX6 cX7 cX8 s(X)

X1 1 1 1 1 1 1 1 1 1
X2 d2 q 0 1 q 1 2 0 1 1
X3 d3 0 0 q 0 1 1 1 1
X4 d4 1 q 1 2 q 2 3 1 0 1
X5 d5 q 0 2q 1 1 3 1 0 1
X6 d6 2q 1 1 3q 3 3 6 0 0 1 /3
X8 d8 q 1 1 0 0 0 0 3 1 /3

X6 d6 2q 1 1 q 1 1 1 0 0 1/6
X7 d7 1 1 q 1 1 0 1 0 1 /2
X8 d8 q 1 1 0 0 0 0 1 1 /3

'

'

'

''

±

±

±
±

±

±
±

± ±

±
±
±

±

±

± ±

±
±

±

±

±

±

±

± ±

±

±

± ± ±

±
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Table 3.2

X cX2 cX2 cX3 cX4,1 cX4,2 cX5,1 cX5,2 cX6,a cX7 s(X)

X4 d4 1 q 1 1 q 1 1 1 1 1 1
X5 d5 q 0 q 1 q 1 0 1 1 1
X6 d6 2q 1 1 2(q 1) q 1 2 1 2 0 1 /2
X7 d7 1 1 0 q 1 0 1 0 2 1   /2

±

± ±

±

±

±
± ±

±
±

±
±

± ± ± ±

±

±
'
'

2.2. Structure constant formulas for GU(3, q2) and GL(3, q)

Let A1, . . . , Am ∈ G, Aν ∈ Ciν , detA1 . . . Am = 1. We use the multi-
index notation as explained in §1.6 and we set also

)Aj = Aj,i1 × . . .×Aj,im , j = 6, 7.

Substituting the formulas from §2.1 into (1) and using (6), we obtain

N̄G(A1, . . . , Am) = Σ1 + . . .+ Σ5

where Σi is the sum over Ξi:

Σ1 =
∑

X∈Ξ1

s(X)

q±1∑

t=1

cXi1 . . . c
X
im
f
(
detA1 . . . Am

)t

(cX1 )m−2
= (q±1)

∑

X∈Ξ1

s(X)cXi1 . . . c
X
im

(cX1 )m−2

Σ2 =
∑

X∈Ξ2

s(X)
∑

�a∈[�n′]

cXi1,a1 . . . c
X
im,am

(cX1 )m−2

q±1∑

t=1

f
(
λ�a

)t q±1∑

u=1

f
(
λ−1
�a detA1 . . . Am

)u

= (q ± 1)2
∑

X∈Ξ2

s(X)
∑

�a∈[�n′]

cXi1,a1 . . . c
X
im,am

δ�a

(cX1 )m−2

Σ3 =
1

6

∑

�α∈ �A6

cX6
i1

. . . cX6
im

dm−2
6

q±1∑

t=1

f(λ�α(1))
t

q±1∑

u=1

f(λ�α(2))
u

q±1∑

v=1

f(λ�α(3))
v

=
(q ± 1)3

6

∑

�α∈ �A6

cX6
i1

. . . cX6
im

dm−2
6

δ�α(1)δ�α(2)δ�α(3)

Σ4 =
1

2

∑

�α∈ �A7

cX7
i1

. . . cX7
im

dm−2
7

q±1∑

t=1

f(λ�α(1))
t

q2−1∑

u=1

f(λ�α(2))
u

=
(q ± 1)(q2 − 1)

2

∑

�α∈ �A7

cX7
i1

. . . cX7
im

dm−2
7

δ�α(1)δ�α(2)

Σ5 =
1

3

∑

�a∈[�n]

cX8
i1

. . . cX8
im

dm−2
8

q3±1∑

t=1

f(λ�a)
t =

(q3 ± 1)

3

∑

�a∈[�n]

cX8
i1

. . . cX8
im

dm−2
8

δ�a
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2.3. Structure constants for triple products in GU(3, q2) and GL(3, q)

Using the formulas from §2.2, we computed the structure constants for
all triples (i1, i2, i3). To write down the result in a compact form, we in-

troduce the following notation. We define )A∗6 as the quotient of )A6 by the
action of the symmetric group S3 defined by )απ = (απ1 , . . . , α

π
m) where

απν = (αν(1
π), αν(2

π), αν(3
π)). Similarly, we define )A∗7 as the quotient of

)A7 by the action of Z2 which exchanges the elements of A7,7.

Given )a ∈ [)n′], let |)a| be the number of ν such that aν = 1 and iν ∈ {4, 5}.
We set

∆ =
∑

�α∈ �A∗6

δ�α(1)δ�α(2)δ�α(3) +
∑

�α∈ �A∗7

δ�α(1)δ�α(2), ∆a =
∑

�a∈[�n′],|�a|=a
δ�a.

We set also
∆′ =

∑

�a∈[�n]

δ�a.

We do the following substitutions (we may do them because of the de-
terminant relation):

(i) δ2�a = δ�a;

(ii) δ�aδ�b = 0 if )a and )b differ at exactly one position, i. e., if there exists
ν0 such that aν = bν if and only if ν = ν0, for example, δ122δ132 = 0;

(iii) δ�a = 0 if there exists ν0 such that aν � n′ν if and only if ν = ν0, for
example, we set δ321 = 0 if (i1, i2, i3) = (7, 5, 4);

(iv) δ111δni1 ,ni2 ,ni3 = δ111 if i1, i2, i3 � 5;

(v) δ111 = 0 if i1 ∈ {4, 5} and {i2, i3} ⊂ {2, 3}.
The result of computation is presented in Table 4. Recall that δL is

defined by (4). In the third column, which is entitled “length of ∆”, we give
the number of monomials in ∆ or in ∆′ survived after the substitutions
(i)–(v). If there are restrictions on δ�a imposed by the rank condition, then
we write them in the brackets in the second column (if the rank condition
is never satisfied, then we write “[false]”).

It is clear from Table 4 that NG(A1, A2, A3) = 0 in the cases (i)–(ix) of
Theorem 1.3(a).

Also, when G = GL, it is clear from Table 4 that NG(A1, A2, A3) �= 0
unless the cases (viii) and (ix) of Theorem 1.3; maybe, it worth to note only
that ∆ � δ1,1,ni3 for i1 = i2 = 7, i3 ∈ {2, 3, 4, 5} and that for (i1, i2, i3) =
(8, 8, 2) the proof is the same as in the case G = GU .
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Table 4. — Structure constants for GU(3, q2)

(
δL = 0
± = +

)
and GL(3, q)

(
δL = 1
± = −

)
.

(i1, i2, i3) NG(A1,A2,A3)/ |AG1 | length proof of

Th. 1.3

(2, 2, 2) (2q2 L q 2) 111 [ 111 =1] ev.
(3, 2, 2) 2 L 111 [ 111 =1] ev.
(3, 3, 2) q q2(1 111) +( q 1) 111 4 L 111 ev.
(3, 3, 3) q2(q2 2)+ q(q2 2q 2) 111 ev.
(4, 2, 2) 0 [false] ev.
(4, 3, 2) 0 [false] ev.
(4, 3, 3) q(q 1)2(q 1) ev.
(4, 4, 2) 2(q2 1) L 111 [ 111 =1] ev.
(4, 4, 3) (q 1)2(q 1) 111 [ 111 =1] ev.

(4, 4, 4) (2q2 L 1) 111 + q(q 1) 112 121 211

[ 111 + 112 121 211 =1] ev.

(5, 2, 2) 211 [ 211 =1] ev.
(5, 3, 2) q

q
(q 1)(1 211) tbl. 5

(5, 3, 3) q
q

q

(q 1)2 (q 2)+ 211 ev.
(5, 4, 2) (q q 1) 111 + 211 [ 111 + 211 =1] ev.
(5, 4, 3) (q 1) q +(2 L 1) 111 211 tbl. 5
(5, 4, 4) (q q1) 111 + 211(1 112 121) [ 111 + 211 =1] tbl. 5
(5, 5, 2) q2 q +2 (q 1)2 L 1

1

1)

111 (q2 q 1 q

q

2
221 tbl. 5

(5, 5, 3) (q 1) q(q2 2q 2) +( q2 4 L +1) 111

+q(q 1 + q2 221 ev.

(5, 5, 4) q(q 1) 112 121 211 121 211 +1
q2 221 +(2 q2 L 2q 1) 111 tbl. 5

(5, 5, 5) q(q 1)(q2 3q 2 + q 1) +( q3 3q2 2q2 +3 q
1) 111 + q(q 1)2 2 112 121 211 + q3 222 ev.

(6, 2, 2) (q 0 0 =1] ev.
(6, 3, 2) (q 1)2(1 0) tbl. 5
(6, 3, 3) (q 1)2 q2 2q 1 +( q 0 ev.
(6, 4, 2) (q 1 1 =1] ev.
(6, 4, 3) (q 1)2(1 1) tbl. 5
(6, 4, 4) (q 2 q 2 =1] 6 ev.
(6, 5, 2) (q 1) (q 1)(1 1) q 0 tbl. 5
(6, 5, 3) (q 1)2 (q2 3q 1) +( q 1 + q 0 ev.
(6, 5, 4) (q 1) (q 1)(1 2) q( 121+ 221+ 321)+ q 6 tbl. 5

(6, 5, 5) (q 1) (q 1)(q2 4q 1) +(

4+

q 1)

1)

2
2

+q(q 1 q2 0 6 §2.5

(6, 6, 2) (q 1) (q 1) q 0 +(2 q 6 tbl. 5
(6, 6, 3) q(q 1)2 q 0 6 §2.5
(6, 6, 4) (q 1) 1 + q(1 1) + q2 18 §2.5
(6, 6, 5) q(q 1) (q 1)(q 5) +( q 1 + q 0 q 18 §2.5
(6, 6, 6) (q 1)2(q2 6q +1)+ q2(q 0 q3 36 §2.5

±

±

±

±

±

±
± ±
±

±
±

±
±

± ±
±

±

±
±

±
±

±
±

±
±

±±
± ±

±
±

±
±

±

±

± ±

±

±

±

±

±

±
±

±

±
±
±
±
±

±

±
±

±

±±
± ±
±
±
±
±
±
±
±
±
±
± ±

±

±
±

±
±

±
±

±
±

±
± ±

±

±

of ∆

δ δδ
δ δ δ

δ δ
δ

δ δ δ
δ

δ

δ δ
δ

δ
δ

δ
δ

δ
δ

δ δ δ
δ δ

δ δ δ
δ

δ

δ

δ

δ δ δ δ
δ δ

δδδδ

δ δ δ

δ

δ
δ

δ
qδ

δ δ
δ δ δ δ

δ δ

δ

δδ

∆

∆

∆

1)∆

1)∆

1)∆

1)∆ ∆
∆

∆
∆

∆

1)∆
1)∆

∆
∆
∆ ∆

∆ ∆
∆

∆

1)(∆ ∆

∆
∆

∆

∆

[

∆
∆
∆

[

∆
∆

∆

∆
[

) +
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Table 4. — Continued-1.

(i1, i2, i3) NG(A1,A2,A3)/ |AG1 | length proof of

Th. 1.3

(7, 2, 2) (q 1) 111 [ 111 =1] ev.
(7, 3, 2) (q2 1)(1 111) tbl. 5
(7, 3, 3) (q 1)(q2 1) q 1 + 111 ev.
(7, 4, 2) (q 1) 111 [ 111 =1] ev.
(7, 4, 3) (q2 1)(1 111) tbl. 5
(7, 4, 4) (q 1) 111 [ 111 =1] ev.
(7, 5, 2) (q 1) (q q

q
1)(1 111) 121 tbl. 5

(7, 5, 3) (q2 1) q2 q + 1+( q 1) 111 + 121 ev.
(7, 5, 4) (q 1) (q 1)(1 111) 121 tbl. 5
(7, 5, 5) (q 1) (q 1)(q2 2q 1) +(

2 +

1)

q 1)2 111

+q(q 1 + q2 122 ev.
(7, 6, 2) (q 1) q 1

1

q 0 ev.
(7, 6, 3) q(q2 1) q 0 ev.
(7, 6, 4) (q 1) q ◦ 1 q 1 ev.
(7, 6, 5) q(q 1) (q 1)(q 3) +( q 1 + q 0 ev.
(7, 6, 6) (q 1) (q 1)(q2 4q +1)+ q2 0 ev.
(7, 7, 2) (q 1) 1 + q(1 111) 2 ev.
(7, 7, 3) q(q2 1) q

q
+ 111 2 ev.

(7, 7, 4) (q 1) q 1 111 + q2 2 ev.
(7, 7, 5) q(q 1) q2 1 +( q q1) 111 + 112 q 2 ev.
(7, 7, 6) (q 1) (q2 1)(q 1)+ q2 0 ev.
(7, 7, 7) (q4 1)+ q2(q 1) 111 q3 4 ev.
(8, 2, 2) 0 [false] ev.
(8, 3, 2) q2 q +1 ev.
(8, 3, 3) (q2 q +1)( q2 q 1) ev.
(8, 4, 2) 0 [false] ev.
(8, 4, 3) q2 q +1 ev.
(8, 4, 4) 0 [false] ev.
(8, 5, 2) q2 q +1 ev.
(8, 5, 3) (q2 1)(q2 q +1) ev.
(8, 5, 4) q2 q +1 ev.
(8, 5, 5) (q2 q +1)( q2 q 1) ev.
(8, 6, 2) q2 ◦ q +1 ev.
(8, 6, 3) q(q 1)(q2 q +1) ev.
(8, 6, 4) q2 q +1 ev.
(8, 6, 5) q(q 2)(q2 q +1) ev.
(8, 6, 6) (q2 q +1)( q2 3q +1) ev.
(8, 7, 2) q2 q +1 ev.
(8, 7, 3) q(q3 1) ev.
(8, 7, 4) q2 q +1 ev.
(8, 7, 5) q2(q2 q +1) ev.
(8, 7, 6) (q2 q +1) 2 ev.
(8, 7, 7) q4 + q2 +1 ev.

of ∆

±
±

±
±

±
±
±

±
±

±

±
±
±
± ±

±
±
±

±

±

±

±
±

±
±

± ±
±

±
±
±

±

±

±

±

±
±

±
±

±

±

±
±

±

±

±

±
±

±

± ±

±
±

±

±
±

±

±
±

±

±

±
±

±
±

±
± ±

±

± ±

δ δ
δ

δ
δ

δ
δ

δ

δ

δ
δ δ

δ

δ
δ

δ

δ

δ

δ

δ

qδ

∆
∆
∆

∆
∆

∆
∆

∆

∆
∆

∆

∆
∆

δ

δ
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Table 4. — Continued-2.

(i1, i2, i3) NG(A1,A2,A3)/ |AG1 | length proof of

of Th. 1.3

(8,8,2) (q2 q +1)(1 /3) 9 tbl. 5
(8,8,3) q(q2 q +1) q 2 /3) 9 ev.
(8,8,4) q2 q +1 ev.
(8,8,5) q(q3 1) ev.
(8,8,6) (q2 +1)( q2 q +1) ev.
(8,8, 7) (q 1)(q3 1) ev.
(8, 8, 8) (q2 q +1)( q2 3q +1) q3 / 3 27 §2.5

±
± ±

±

±
±

±

±

±

± ±

±

'∆
∆

∆

∆'

In the last column we give a reference to a proof of Theorem 1.3(b) for
G = GU and q � 5 in the corresponding case (“ev.” means “evident”). The
case of G = GU , q = 2, 3, 4, is done in §4 and §2.4.

Table 5 serves to prove Theorem 1.3(b) for the triples (i1, i2, i3) appear-
ing in cases (i), (ii), (iii), (v) of Theorem 1.3(a). In the second column we
write condition (∗) on δ�a. It is a condition which is equivalent to the fact that
the hypothesis of Theorem 1.3(b) is satisfied, i. e., the conditions (i)–(v) are
not satisfied for any permutation of (i1, i2, i3) and for any renumbering of
the eigenvalues under (5). As in Table 4, the rank condition is written in the
brackets. In the third column we write the structure constant for G = GU
under condition (∗). In each case it is obviously nonzero for q � 5.

Table 5

(i1, i2, i3) condition (∗) NG(A1, A2, A3)/|AG1 | under (∗) for G = GU(3, q2)

(5, 3, 2) δ211 = 0 q(q + 1)
(5, 4, 3) δ211 = 0 (q + 1)(q − δ111)
(5, 4, 4) δ112δ121δ211 = 0 (q + 1)δ111 + qδ211 [δ111 + δ211 = 1]
(5, 5, 2) ∆1 = 0 q(q + 1)− 2δ111 − q2δ221
(5, 5, 4) δ211 = δ121 = 0 q(q + 1)− q2δ221 − (2q + 1)δ111
(6, 3, 2) ∆ = 0 (q + 1)2

(6, 4, 3) ∆1 = 0 (q + 1)2

(6, 5, 2) ∆1 = 0 (q + 1)
(
1 + q(1−∆0)

)

(6, 5, 4) ∆2 = 0 (q + 1)
(
1 + q(1 + ∆− δ121 − δ221 − δ321)

)

(6, 6, 2) ∆ = 0 (q + 1)
(
1 + q(1−∆0)

)

(7, 3, 2) δ111 = 0 q2 − 1
(7, 4, 3) δ111 = 0 q2 − 1
(7, 5, 2) δ111 = 0 (q − 1)

(
1 + q(1− δ121)

)

(7, 5, 4) δ111 = 0 (q − 1)
(
1 + q(1− δ121)

)

(8, 8, 2) ∆′ = 0 q2 − q + 1
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2.4. The cases of GL(3, 2) and GU(3, q2) for q = 3, 4

These cases are treated in [10]: p. 64 for GL(3, 2), pp. 69–71 for GU(3, 32)
and pp. 89–93 for GU(3, 42). The correspondence between the notation of
conjugacy classes in [6] (used in this paper) and the notation in [10] is given
in Tables 6.1, 6.2 and 6.3. Note that in all these cases 3 does not divide
q ± 1, hence it is enough to consider the case of SU instead of GU .

Table 6.1. — Notation correspondence for conjugacy classes in SL(3, 2) = GL(3, 2).

in [10] in §1.4 in [10] in §1.4 in [10] in §1.4

1A C
(0)
1 3B C

(1)
7 = C

(2)
7 7A C

(1)
8 = C

(2)
8 = C

(4)
8

2A C
(0)
2 4B C

(0
3 7A C

(3)
8 = C

(5)
8 = C

(6)
8

Table 6.2. — Notation correspondence for conjugacy classes in SU(3, 32).

in [10] in [6] in [10] in [6] in [10] in [6]

1A C
(0)
1 4B C

(3,2)
4 8A C

(1,1)
7 = C

(1,5)
7

2A C
(2,0)
4 4C C

(0,1,3)
6 8B C

(3,3)
7 = C

(3,7)
7

3A C
(0)
2 6A C

(2,0)
5 12A C

(1,2)
5

3B C
(0)
3 7A C

(4)
8 = C

(8)
8 = C

(16)
8 12B C

(3,2)
5

4A C
(1,2)
4 7B C

(12)
8 = C

(20)
8 = C

(24)
8

Table 6.3. — Notation correspondence for conjugacy classes in SU(3, 42).

in [10] in [6] in [10] in [6] in [10] in [6]

1A C
(0)
1 5E C

(0,1,4)
6 13C C

(20)
8 = C

(50)
8 = C

(60)
8

2A C
(0)
2 5F C

(0,2,3)
6 13D C

(35)
8 = C

(40)
8 = C

(55)
8

3A C
(0,5)
7 = C

(0,10)
7 10A C

(1,3)
5 13A C

(5)
8 = C

(15)
8 = C

(45)
8

4A C
(0)
3 10B C

(2,1)
5 13B C

(10)
8 = C

(25)
8 = C

(30)
8

5A C
(1,3)
4 10C C

(4,2)
5 15A C

(3,8)
7 = C

(3,13)
7

5B C
(2,1)
4 10D C

(3,4)
5 15B C

(1,1)
7 = C

(1,11)
7

5C C
(4,2)
4 15C C

(2,2)
7 = C

(2,7)
7

5D C
(3,4)
4 15D C

(4,4)
7 = C

(4,14)
7
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2.5. Proof of Theorem 1.3 for m = 3

Here we complete the proof for triples (i1, i2, i3) not covered by Table 5.
In this section G = GU .

The case (i1, i2, i3) = (6, 5, 5)

We have

∆1 −∆ = δ112(1− δ211δ321) + δ212(1− δ311δ121) + δ312(1− δ111δ221)
+δ121(1− δ211δ312) + δ221(1− δ311δ112) + δ321(1− δ111δ212) � 0.

The case (i1, i2, i3) = (6, 6, 3)

We have

∆0 −∆ = δ111(1− δ221δ331 − δ231δ321) + δ121(1− δ211δ331 − δ231δ311)
+δ131(1− δ211δ321 − δ221δ311) +

∑
�a∈�n;a1>1 δ�a � 0

The case (i1, i2, i3) = (6, 6, 4)

If ∆ > 0, then there exist permutations of the eigenvalues such that the
product of corresponding diagonal matrices is the identity matrix. So, we
consider only the case when ∆ = 0. In this case NG(A1, A2, A3)/|AG1 | =
(q+ 1)

(
1 + q(1−∆1)

)
which cannot be zero for any integers q > 1 and ∆1.

The case (i1, i2, i3) = (6, 6, 5)

Here we write for shortness να instead of α(ν). We have
∆ =

∑
α∈S3

∑
β∈A6,5

δ1,1α,1βδ2,2α,2βδ3,3α,3β =
∑
α∈S3

E(α) where

E(α) = δ1,1α,1δ2,2α,1δ3,3α,2 + δ1,1α,1δ2,2α,2δ3,3α,1 + δ1,1α,2δ2,2α,1δ3,3α,1.

Summating E(α) separately over odd and even permutations α and esti-
mating each triple product of the deltas by one of its factors, we obtain

∑

odd α

E(α) �
∑

odd α

(
δ3,3α,2 + δ2,2α,2 + δ1,1α,2

)
= ∆0,

∑

even α
E(α) �

∑

even α

(
δ1,1α,1 + δ3,3α,1 + δ2,2α,1

)
= ∆1

which implies ∆1 + ∆0 −∆ � 0 and the result follows for q > 5.

Let q = 5. The above considerations show that the structure constant is
positive when ∆1 > 0. So, we suppose that ∆1 = 0. Then ∆ = 0 because
each triple product in ∆ includes some δ�a involved in ∆1. If we have two

– 236 –



Products of conjugacy classes in GU(3, q2) and SU(3, q2)

triples of distinct residues mod 6 (the parameters (k, l,m) of C
(k,l,m)
6 ) not

of the same parity, then their pairwise sums attain all values mod 6 except,
maybe one, thus ∆0 or ∆1 is nonzero. So, it remains to consider the case

A1, A2 ∈ C
(0,2,4)
6 . In this case, (2) implies A3 ∈ C

(k,l)
5 with l even, hence

∆0 > 0 and the result follows.

The case (i1, i2, i3) = (6, 6, 6)

If ∆ > 0, then there exist permutations of the eigenvalues such that the
product of corresponding diagonal matrices is the identity matrix. So, we
consider only the case when ∆ = 0. In this case, the structure constant is
positive for q > 5 and it is equal to 150∆0 − 144 �= 0 for q = 5.

The case (i1, i2, i3) = (8, 8, 8)

Let the eigenvalues of Aν be (λν , λ
q2

ν , λ
q4

ν ), ν = 1, 2, 3. Then we have

∆′ =
∑

0�a,b,c�2

δa,b,c, δa,b,c =

{
1, λq

2a

1 λq
2b

2 λq
2c

3 = 1,
0, otherwise

It is clear that δa,b,c = δa′,b′,c′ if a− a′ ≡ b− b′ ≡ c− c′ mod 3.

We are going to show that there is at most 9 triples (a, b, c) such that
δa,b,c = 1. Suppose that one of δa,b,c is nonzero. Without loss of generality we
may assume that it is δ000 (otherwise we permute cyclically the eigenvalues
of each matrix). So, we have λ1λ2λ3 = 1.

Let us show that if δa,b,c = 1, then either a = b = c or a, b, c are pairwise
distinct (there are only nine such triples). Suppose that this is not so, say,
a �= b = c. Then δ001δ112δ220 = 1 or δ001δ112δ220 = 1 (we consider only the

first case). This means that λ1λ2λ
q2

3 = 1. Combined with λ1λ2λ3 = 1 this

yields λq
2

3 = 1, i.e λ3 ∈ Fq2 . Contradiction.

Thus, we proved that ∆′ � 9, hence

NG(A1, A2, A3)/|AG1 | � (q2−q+1)(q2+3q+1)−3q3 = q4−q3−q2+2q+1 > 0.

2.6. End of proof of Theorem 1.3 (the case m � 4)

Let us prove Theorem 1.3 for m = 4. So, let m = 4 and let A1, . . . , A4

be as in Theorem 1.3.

If G = GL and q � 3, then for any d, λ1, λ2 ∈ Ω there exists B ∈
C3 ∪C5 ∪C6 such that d = detB and λ1, λ2 are eigenvalues. Hence, we can
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choose B in C3 ∪ C5 ∪ C6 such that the rank condition is satisfied for both
triples (A1, A2, B) and (B−1, A3, A4). As we have already shown, there are
no other restrictions for triple products in GL. This completes the proof of
Theorem 1.3 for G = GL.

Lemma 2.1. — Let G = GU and q � 4. Then for any d, µ ∈ Ω there
exists B ∈ C7 such that detB = d and λ1(B) = µ.

Proof. — Obvious. �

Lemma 2.2. — Let G = GU and q � 5. Suppose that one of the following
conditions holds

(i) {i1, i3} �⊂ {2, 4};

(ii) {i1, i2, i3} ⊂ {2, 4} and i4 ∈ {6, 7, 8};

(iii) i1 = 4, {i2, i3} ⊂ {2, 4}, i4 ∈ {3, 5};

(iv) i1 = i2 = i3 = 2, i4 ∈ {3, 5}, and δ1111 = 0;

(v) {i1, i2, i3, i4} ⊂ {2, 4} and δ1111 = 1;

(vi) i1 = i3 = 2, {i2, i4} ⊂ {2, 4} and δ1111 = 0;

(vii) i1 = i2 = i3 = i4 = 4 and δ1111 = 0.

Then I ∈ AG1 . . . AG4 .

Proof. — We set d = det(A1A2) = det(A−1
3 A−1

4 ), µ1 = λ1(A1)λ1(A2),
and µ2 = λ1(A

−1
3 )λ1(A

−1
4 ). We consider the cases (i)–(vii) one by one and

in each case we find B such that B ∈ AG1 AG2 and B−1 ∈ AG3 AG4 . When we
choose B in C7, we use Lemma 2.1.

(i) We choose B ∈ C7 such that detB = d and λ1(B) �∈ {µ1, µ2}.

(ii) We choose B ∈ C7 such that detB = d and λ1(B) = µ1.

(iii) We consider two cases.

Case 1. δ1111 = 1, i. e., µ1 = µ2. We choose B ∈ C3 ∪ C5 such that
detB = d and λ1(B) = µ1 = µ2.

Case 2. δ1111 = 0, i. e., µ1 �= µ2. Then we choose B ∈ C7 such that
detB = d and λ1(B) = µ1.

(iv) The choice of B is the same as for (iii), Case 2.
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(v) Since δ1111 = 1, we have µ1 = µ2. So, we choose B ∈ C7 such that
detB = d and λ1(B) = µ1 = µ2.

(vi) Since δ1111 = 0, we have µ1 �= µ2. We choose B ∈ C5∪C6 such that
detB = d and µ1, µ2 are eigenvalues of B.

(vii) Since δ1111 = 0, we have µ1 �= µ2. We choose B ∈ C4 ∪ C6 such
that detB = d and µ1, µ2 are eigenvalues of B. �

For the cases not covered by Lemma 2.2 we compute the structure con-
stant in G = GU :

(i1, i2, i3, i4) δ1111 NG(A1, A2, A3, A4)/|AG1 |
(3, 2, 2, 2) 1 0
(5, 2, 2, 2) 1 (q + 3)(q2 − 1)
(4, 4, 4, 2) 0 q(q2 − 1)

(
q + 1− q(δ1121 + δ1211 + δ2111)

+(2q − 1)δ1121δ1211δ2111
)

This completes the proof of Theorem 1.3 for m = 4.

Let m = 5, q � 5. Easy to see that there exists B ∈ (AG1 A
G
2 ) ∩ (C3 ∪

C5 ∪ C6 ∪ C7 ∪ C8). Then I ∈ BGAG3 AG4 AG5 . Theorem 1.3 is proven.

3. Products of conjugacy classes in SU(3, q2) and SL(3, q).
Proof of Theorem 1.6

3.1. The character table of SU(3, q2) and SL(3, q)

Let G be GU(3, q2) or GL(3, q) and let S = {A ∈ G | detA = 1}. So, S
is SU(3, q2) or SL(3, q). The character table of S is computed in [15]. It has
some mistakes which are corrected in [7] (it is written in the comments in
[7] that the character table for SU(3, q2) is taken from [8]). Since G = S×Ω
when 3 does not divide q ± 1, we consider only the case when q = 3r ∓ 1.

The conjugacy classes of S are as follows. Each of C
(k)
3 , k = 0, r, 2r,

splits into three classes C
(k,l)
3 , l = 0, 1, 2. The class C

(k,l)
3 in SU(3, q2) (resp.

in SL(3, q)) consists of matrices which are conjugate in SL(3, q2) (resp. in
SL(3, q)) to2



ωk 0 0
zl ωk 0
0 1 ωk


 , z =

{
ρ, S = SU(3, q2),
ω, S = SL(3, q).

(2) there is a misprint here in [15].
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Other conjugacy classes of G contained in S are conjugacy classes of S.

The irreducible characters of S can be described as follows. We consider
the action of the cyclic group of order q ± 1 on Irr(G) such that the action
of the generator is

χ
(t)
dj

→ χ

(t+1)
dj

(j = 1, 2, 3); χ
(t,u)
dj

→ χ

(t+1,u+1)
dj

(j = 4, 5);

χ
(t,u,v)
d6


→ χ
(t+1,u+1,v+1)
d6

; χ
(t,u)
d7

→ χ

(t+1,u∓q+1)
d7

; χ
(t)
d8

→ χ

(t+q2∓q+1)
d8

.

Then the restriction of all characters to S are constant on each orbit of this
action. All orbits but three are of length q ± 1 and their representatives
restricted to S are irreducible. There are three orbits of length r, namely

the orbits of χ
(0,r,2r)
d6

and χ
(u(q2∓q+1)/3)
d8

, u = 1, 2. Being restricted to S,
each of these three characters splits into three irreducible characters. This

yields irreducible characters χ
(t)
d6/3

, χ
(t,u)
d8/3

, t = 0, 1, 2, u = 1, 2, such that

χ
(t)
d6/3

(A) = 1
3χ

(0,r,2r)
d6

(A) and χ
(t,u)
d8/3

(A) = 1
3χ

(u(q2∓q+1)/3)
d8

(A) when A �∈ C3.

For A ∈ C(k,l)
3 , k, lr ∈ {0, r, 2r}, we have

χ
(t)
d6/3

(A) =

{
q − r, l = t,
−r, l �= t,

χ
(t,u)
d8/3

(A) = εukχ
(t)
d6/3

(A).

where ε = f(ω) = exp(2πi/(q ± 1)).

Thus, for any function E on Irr(S), we have

∑

χ∈Irr(S)

E(χ) =
1

q ± 1

( ∑

χ∈Irr(G)

E(χ|S)
)
−1

3

(
E

(
χ

(0,r,2r)
d6

|S
)

+

2∑

u=1

E
(
χ
u(q2∓q+1)/3
d8

|S
))

+

2∑

t=0

(
E

(
χ

(t)
d6/3

)
+

2∑

u=1

E
(
χ

(t,u)
d8/3

))

3.2. Structure constants for SU(3, q2) and SL(3, q)

Let A1, . . . , Am ∈ S, Aν ∈ Ciν , ν = 1, . . . ,m. We suppose that i1 =

. . . = in = 3 and iν �= 3 for ν > n. Let Aν ∈ C(kν ,lν)
3 for ν = 1, . . . , n.

We denote E1(χ) = χ(A1) . . . χ(An), E2(χ) = χ(An+1) . . . χ(Am), and
E(χ) = E1(χ)E2(χ)/χ(I)m−2. Combining the formulas from the previous

section with the fact that χ
(0,r,2r)
d6

(Aν) = ∓1 and χ
u(q2∓q+1)/3)
d8

(Aν) = ∓εkν
for ν � n, we obtain

E1

(
χ

(0,r,2r)
d6

)
= (∓1)n, E1

(
χ

(u(q2∓q+1)/3)
d8

)
= (∓1)nε(k1+...+kn)u,
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E2

(
χ

(t)
d6/3

)
= 3n−mE2

(
χ

(0,r,2r)
d6

)
, E2

(
χ

(t,u)
d8/3

)
= 3n−mE2

(
χ

(u(q2∓q+1)/3)
d8

)
,

E1

(
χ

(t,u)
d8/3

)
= ε(k1+...+kn)uE1

(
χ

(t)
d6/3

)
, χ

(t)
d6/3

(I) = d6/3, χ
(t,u)
d8/3

(I) = d8/3,

and finally,

N̄S(A1, . . . , Am) = N̄G(A1,...,Am)
q±1 +

(
− (∓1)n

3 + 3n−2
∑2
t=0E1

(
χ

(t)
d6/3

)
)

×
(
E2

(
χ

(0,r,2r)
d6

)

dm−2
6

+

2∑

u=1

ε(k1+...+kn)uE2

(
χ

(u(q2∓q+1)/3)
d8

)

dm−2
8

)

In particular, we see from this formula that if n = 0 or n = 1, then N̄G =
(q±1)N̄S , i. e., we have (I ∈ AG1 . . . AGm)⇔ (I ∈ AS1 . . . ASn). Indeed, if n = 0,

then the factor
(
− (∓1)n

3 + . . .
)

is equal to −1/3+1/9 (1+1+1) = 0, and if

n = 1, then it is equal to ±1/3 + 1/3
(
(q− r)− r− r

)
= 0. This equivalence

also follows immediately from the fact that C
(k)
3 are the only classes that

split in S.

3.3. Triple products in SU(3, q2) and SL(3, q). Proof of Theorem
1.6

Let m = 3. It is enough to consider the cases n = 2 and n = 3. We use the
following notation in Table 7. If n = 2, then we set

δ∗ = δ∗(A1, A2) =

{
1, l1 = l2,
0, l1 �= l2.

.

If A3 ∈ C((q±1)k′)
8 (the last line of the table), then we set

δ∗111 =

{
1, k1 + k2 + k′ ≡ 0 mod q ± 1,
0, otherwise.

It is clear that if r > 1, then the structure constants are positive except
the case when i3 ∈ {2, 4} and δ∗ = 0 (note that the case i3 = 6, q = 5,
λ1(A3)

r = λ2(A3)
r is impossible). This completes the proof of Theorem 1.6

for m = 3.

For m = 4, the proof is the same as in 2.6. Moreover, since at least
two of A1, . . . , A4 belong to C3, then only Case (i) of Lemma 2.2 is to be
considered.
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Table 7. — Structure constants: S = SU(3, q2) or SL(3, q), q = 3r ∓ 1, Aν ∈ Ciν .

(i1, i2, i3) NS(A1, A2, A3)/|AS1 |
(3, 3, 3) distinct l1, l2, l3 qr

(
qr + (2qr ∓ q + r)δ111

)

(3, 3, 3) l1 = l2 �= l3 qr
(
q(r ∓ 1)− (qr ∓ q − r + 1)δ111

)

(3, 3, 3) l1 = l2 = l3 q
(
q(r2 − 1) + (2q(r ∓ 1)2 + r2 ∓ 1)δ111

)

(3, 3, 2)
(
q2 − (q2 ∓ q + 1)δ111

)
δ∗ + 2qrδLδ111

(3, 3, 4) q2δ∗

(3, 3, 5) q2r(q ∓ 1∓ 3δ∗ + δ211)

(3, 3, 6) λ1(A3)
r = λ2(A3)

r q2
(
(q − 1)r ∓ 2qδ∗ + r∆0

)

(3, 3, 6) λ1(A3)
r �= λ2(A3)

r q2
(
(q − 1)r ∓ q(1− δ∗) + r∆0

)

(3, 3, 7) q2r(q ∓ 1 + δ111)

(3, 3, 8) q2
(
(q − 1)r ± q(δ∗ + δ∗111 − 3δ∗δ∗111)

)

4. The case q = 2

4.1. Class products in GU(3, q2) for q = 2

Let G = GU(3, 22), S = SU(3, 22). Then |G| = 648, |S| = 216. We have
the following conjugacy classes in G:

det(A) = 1 : C
(k)
1 , C

(k)
2 , C

(k)
3 (k = 0, 1, 2), C

(0,1,2)
6 ,

det(A) = ρ : C
(0,1)
4 , C

(2,0)
4 , C

(1,2)
4 , C

(0,1)
5 , C

(2,0)
5 , C

(1,2)
5 , C

(1)
8 ,

det(A) = ρ2 : C
(0,2)
4 , C

(1,0)
4 , C

(2,1)
4 , C

(0,2)
5 , C

(1,0)
5 , C

(2,1)
5 , C

(2)
8

We see from Table 4 that C6 ·C6 = C1∪C6, hence H = C6∪C1 is a normal
subgroup of G of order 27. We have |G/H| = 24 and S/H = 8. The sizes of
classes and the orders of their representatives in G/H are:

Class: C
(k)
1 C

(k)
2 C

(k)
3 C

(k,l)
4 C

(k,l)
5 C

(0,1,2)
6 C

(k)
8

Size: 1 9 54 12 36 24 72

Order in G/H: 1 2 4 3 6 1 3

The elements of C2 (resp. C3) represent elements of order 2 (resp. 4) in S/H.
Since |H| = |C2| = 27 and |C3| = 162, it follows that S/H has one element
of order 2 and six elements of order 4. Therefore, S/H is isomorphic to the
unit quaternionic group Q = {±1,±i,±j,±k}. Since the exact sequence

1 → S/H → G/H
det−→{1, ρ, ρ2} splits, it follows that G/H is isomorphic

to a semi-direct product of Q and Z3. We denote it by F . Since G/H
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has no element of order 12, this product is not direct, hence F can be
identified with the group whose elements are±am,±iam,±jam,±kam,m =
0, 1, 2, subject to relations ia = aj, ja = ak, ka = ai, a3 = 1. We denote
a2 by b. The conjugacy classes in F are: {1}, {−1}, iF = {±i,±j,±k},
aF = {a, ia, ja, ka}, −aF = {−a,−ia,−ja,−ka}, bF = {b,−ib,−jb,−kb},
−bF = {−b, ib, jb, kb}. Their pairwise products are:

{1} {−1} iF aF −aF bF −bF
{−1} {1} iF −aF aF −bF bF

iF iF Q Qa Qa Qb Qb

aF −aF Qa Qb Qb {1} ∪ iF {−1} ∪ iF
−aF aF Qa Qb Qb {−1} ∪ iF {1} ∪ iF

bF −bF Qb {1} ∪ iF {−1} ∪ iF Qa Qa
−bF bF Qb {−1} ∪ iF {1} ∪ iF Qa Qa

Comparing the class sizes and the orders of their representatives, we easily
see that the correspondence between the classes under the projection G→ F
is

C1 ∪ C6 → {1} C
(1)
48 → aF C

(2)
48 → bF

C2 → {−1} C
(1)
5 → −aF C

(2)
5 → −bF

C3 → iF

where C
(k)
48 = (C4 ∪ C8) ∩ G(k), C

(k)
5 = C5 ∩ G(k), and G(k) = {A ∈

G | detA = ρk}, k = 1, 2. Thus, the multiplication table for the preimages
in G of the conjugacy classes of F is

H C2 C3 C
(1)
48 C

(1)
5 C

(2)
48 C

(2)
5

C2 H C3 C
(1)
5 C

(1)
48 C

(2)
5 C

(2)
48

C3 C3 S G(1) G(1) G(2) G(2)

C
(1)
48 C

(1)
5 G(1) G(2) G(2) H ∪ C3 C2 ∪ C3

C
(1)
5 C

(1)
48 G(1) G(2) G(2) C2 ∪ C3 H ∪ C3

C
(2)
48 C

(2)
5 G(2) H ∪ C3 C2 ∪ C3 G(1) G(1)

C
(2)
5 C

(2)
48 G(2) C2 ∪ C3 H ∪ C3 G(1) G(1)

The above discussion can be summarized as follows

Proposition 4.1. — Let c = (c1, . . . , cm) be an unordered m-tuple of
non-trivial conjugacy classes in F such that dega c1 + . . .+dega cm = 0. We
suppose that c1 = . . . = c2n = {−1} and (c2n+1, . . . , cm) contains at most
one occurrence of {−1}. Then 1 �∈ c1 . . . cm if and only if (c2n+1, . . . , cm)
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is one of ({−1}), (iF ), ({−1}, iF ), (aF ,−bF ), (−aF , bF ), ({−1}, aF , bF ),
({−1},−aF ,−bF ).

Proof. — It is enough to check that the product of any three non-trivial
conjugacy classes different from {−1} is a coset of Q in F . �

Proposition 4.2. — Let A1, . . . , Am ∈ G\C1 be such that det(A1 . . . An)
= 1. Let A1 ∈ Ci1 , . . . , Am ∈ Cim . Suppose that after removing any number
of 6’s and an even number of 2’s from (i1, . . . , im), we obtain one of (2), (3),
(2, 3), (5, 4), (8, 5), (4, 4, 2), (5, 5, 2), (8, 4, 2), (8, 8, 2). Then I �∈ AG1 . . . AGn .

Proposition 4.3. — Let A1, . . . , Am ∈ G \ C1, m � 3, be such that
det(A1 . . . Am) = 1. Let A1 ∈ Ci1 , . . . , Am ∈ Cim . Suppose that the condi-
tions of Proposition 4.2 are not satisfied. Suppose also that the rank condi-
tion (3) holds and the conditions (i)–(vii) of Theorem 1.3(a) are not sat-
isfied for any permutation of A1, . . . , Am and for any renumbering of the
eigenvalues under restrictions (5).

Then I �∈ AG1 . . . AGm if and only if one of the following cases occurs up
to changing the order of Aj’s, multiplication them by scalar or simultaneous
replacing of A1, . . . , Am by A−1

1 , . . . , A−1
m .

(i) m = 4, A1, A2, A3 ∈ C(0,1)
4 and A4 ∈ C(1)

3 ;

(ii) m = 4, A1, A2 ∈ C(0,1)
4 , A3 ∈ C(0,2)

4 , and A4 ∈ C(1,0)
5 .

Proof. — Using the structure constants, we computed the products of
all m-tuples of conjugacy classes for m � 5. So we check that the statement
is true for m � 5. The general case easily follows from the following facts.

• C(0,1,2)
6 C

(0,1,2)
6 = H;

• C(k1)
2 C

(k2)
2 = C

(k1+k2)
1 ∪ C(0,1,2)

6 for any k1, k2;

• C(k)
2 C

(0,1,2)
6 = C2 for any k;

• Letm = 4 or 5. If (i1, . . . , im) is not as in Proposition 4.2 and {i1, . . . , im} �⊂
{2, 6}, then AG1 . . . A

G
m is a coset of S in G for any A1 ∈ Ci1 , . . . , Am ∈ Cim .

�

4.2. Class products in SU(3, q2) for q = 2

There are 16 conjugacy classes in S. These are:

C
(k)
1 , C

(k)
2 , C

(k,l)
3 , C

(0,1,2)
6 , k, l = 0, 1, 2.
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We have S/H = Q and S/(H ∪ C2) = Q/{±1} = Z2 ⊕ Z2. The cosets

of H ∪ C2 in S are: H ∪ C2, C
(∗,0)
3 , C

(∗,1)
3 , C

(∗,2)
3 where C

(∗,l)
3 stands for

C
(0,l)
3 ∪ C(1,l)

3 ∪ C(2,l)
3 .

Proposition 4.4. — Let A1, . . . , Am ∈ S \ C1, m � 3, Aν ∈ Ciν , ν =
1, . . . ,m. If 3 ∈ {i1 . . . , im}, then AS1 . . . A

S
m is a coset of H ∪ C2 in S.

Otherwise AS1 . . . A
S
m is a coset of H in H ∪ C2.

Proof. — It is enough to compute the structure constants for all triples
A1, A2, A3 ∈ S. �

Corollary 4.5. — Let A1, . . . , Am ∈ S \ C1, m � 3, Aν ∈ Ciν , ν =
1, . . . ,m. Then I ∈ A1 . . . Am if and only if none of the following conditions
holds:

(i) for some l ∈ {0, 1, 2}, the number of matrices among A1, . . . , Am
belonging to C

(∗,l)
3 is odd;

(ii) i1, . . . , im ∈ {2, 6} and the number of 2’s in the sequence (i1, . . . , im)
is odd.

5. Products of conjugacy classes in GU(2, q2) and SU(2, q2)

LetG (resp. S; PS) beGU(2, q2) orGL(2, q) (resp. SU(2, q2) or SL(2, q);
PSU(2, q2) or PSL(2, q)). We follow the sign convention from §1.3.

5.1. Class products in GU(2, q2) and GL(2, q)

We use the notation from [6] for conjugacy classes in G. The classes (and
the respective Jordan normal forms) are:

C
(k)
1 :

(
ωk 0
0 ωk

)
, C

(k)
2 :

(
ωk 0
1 ωk

)
,

C
(k,l)
3 :

(
ωk 0
0 ωl

)
, C

(k)
4 :

(
ρk 0
0 ρ∓qk

)
.

In the last two cases we have C
(k,l)
3 = C

(l,k)
3 , C

(k)
4 = C

(∓qk)
4 and we claim

that the matrix is non-scalar, i. e., that k �= l and k �≡ ∓qk mod q2 − 1

respectively. There are four families of irreducible characters: χ
(t)
1 , χ

(t)
q (0 �

t � q), χ
(t,u)
q∓1 (1 � t < u � q ± 1), χ

(t)
q±1 (1 � t � q2, t �≡ 0 mod q ∓ 1,

χ
(t)
q±1 = χ

(∓qt)
t+1 ); see details in [6]. We denote the union of all C

(...)
i by Ci.

We define δa1,...,am in the same way as in §1.6.
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Theorem 5.1 hskip-2mm. — Let A1, . . . , Am ∈ G \ C1, m � 3, be ma-
trices which satisfy (2). Let Aν ∈ Ciν , ν = 1, . . . ,m. Let

i0 =

{
3, G=GU,
4, G=GL,

and C =

{
C

(0,2)
3 ∪ C(1,3)

3 , G=GU(2,q2),

C
(2)
4 , G=GL(2,q).

Then I �∈ AG1 . . . AGm if and only if one of the following conditions holds up
to permutation of A1, . . . , Am:

(i) (i1, . . . , im) = (i0, i0, 2) and δ111 + δ121 = 1;

(ii) q = 3, A1, . . . , Am−1 ∈ C, and Am ∈ C2.

(iii) q = 2, and 2 occurs an odd number of times in (i1, . . . , im).

Proof. — Case m = 3. It is enough to compute the structure constants.
They are listed in Table 8.

Table 8. — Structure constants for G = GU(2, q2) or GL(2, q), Aν ∈ Ciν .

(i1, i2, i3) NG(A1, A2, A3)/|AG1 | (i1, i2, i3) NG(A1, A2, A3)/|AG1 |
(2, 2, 2) q − 2δ111 (4, 3, 2) q ∓ 1
(3, 2, 2) q ± 1 (4, 3, 3) q ∓ 1
(3, 3, 2) (q ± 1)(1∓ (δ111 + δ121)) (4, 4, 2) (q ∓ 1)(1± (δ111 + δ121))
(3, 3, 3) q ± 1∓ q∆ (4, 4, 3) q ∓ 1
(4, 2, 2) q ∓ 1 (4, 4, 4) q ∓ 1± q∆

∆ = δ111 + δ112 + δ121 + δ211

Case m = 4. Suppose that q � 4. Let C ′ = C4 if G = GU and C ′ = C3

if G = GL. Then for any d ∈ Ω there exists B ∈ C ′ such that detB = d.
Hence we can choose B ∈ C ′ such that detB = det(A1A2). Then it follows
from the above computations for m = 3 that B ∈ AG1 AG2 and B−1 ∈ AG3 AG4 .

When q = 3, the result easily follows from the following fact. If (A1, A2, A3)
is a triple of non-scalar matrices which does not satisfy (ii), then AG1 A

G
2 A

G
3

is a coset of S in G, maybe, with one scalar matrix missing. If q = 2, then
G is isomorphic to S3 × Ω. �

5.2. Conjugacy classes in SU(2, q2) ∼= SL(2, q)

In this section we do not apply the convention of §1.3. We use here “SU -
language” but, using Table 9, everything can be easily translated to “SL-
language”. So, we set S = SU(2, q2) and G = GU(3, q2) and the notation
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C
(...)
i is used for conjugacy classes of G and S (except the second column of

Table 9).

It is known that S is isomorphic to SL(2, q). In fact, these groups are
conjugated in GL(2, q2) (but not in SL(2, q2)!). Indeed, let z ∈ Fq2 be such

that z̄ = −z. Then the Hermitian form

(
0 z
z̄ 0

)
is preserved by any element

of SL(2, q). We fix an isomorphism Φ : SU(2, q2)→ SL(2, q).

If q is even, then G = S×Ω, so the class product problem for S is reduced
to that forG (see §5.4 for more details). So, we suppose that q = pm = 2r−1.
We set also r′ = r − 1 (so, q = 2r′ + 1). In this case we can choose z = ρr.

The conjugacy classes of S are as follows. Each of C
(k)
2 , k = 0, r, splits

into two classes C
(k,l)
2 , l = 0, 1 so that Φ

(
C

(k,l)
2

)
is the conjugacy class in

SL(2, q) of (−1)k/r
(

1 0
σl 1

)
where σ = ρq+1 is a generator of F∗q . This

notation of conjugacy classes in S depends on the choice of Φ.

Other conjugacy classes of G contained in S are conjugacy classes of S.
The list of all conjugacy classes of the both groups and the correspondence
between them under the isomorphism Φ is given in Table 9.

Table 9. — Correspondence of classes in SU(2, q2) and SL(2, q), q = 3r − 1 = 3r′ + 1.

Class in SU Class in SL Range of the parameters Order

C
(rk)
1 C

(r′k)
1 k = 0, 1 k + 1

C
(rk,l)
2 C

(r′k,l)
2 k = 0, 1; l = 0, 1 (k + 1)p

C
(k,−k)
3 C

((q−1)k)
4 k = 1, . . . , r − 1 (q + 1)/ gcd(q + 1, k)

C
((q+1)k)
4 C

(k,−k)
3 k = 1, . . . , r′ − 1 (q − 1)/ gcd(q − 1, k)

The class product problem for pairs of matrices (to determine the class
of the inverse matrix) has an evident solution for C1, C3, C4. The answer for
C2 is:

Proposition 5.2. — Let A ∈ SU(2, q2), q = 2r − 1. Let A ∈ C
(k,l)
2 ,

k, rl ∈ {0, r}. Then A−1 ∈ C(k,l)
2 when r is odd and A−1 ∈ C(k,1−l)

2 when r
is even.

Proof. — This follows from the fact that two matrices

(
1 0
a 1

)
and

(
1 0
b 1

)
, ab �= 0 are conjugated in SL(2,K) if and only if ab is a square in

K. �
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Remark 5.3 (cp. Remark in §1.5). — Let C be the conjugacy class of(
1 0
1 1

)
in GL(2, q2). Then C ∩ SL(2, q2) splits into two classes, let us

denote them by C(0) and C(1) However, the splitting of C
(0)
2 in SU does

not follow the splitting of C. We have C(1) ∩ SU = ∅ and C(0) ∩ SU = C2.
This is why there is no any canonical form of these classes in SL(2, q2).

5.3. Class products in SU(2, q2) ∼= SL(2, q)

Theorem 5.4. — Let G = GU(2, q2), S = SU(2, q2), q = 2r − 1.
Let A1, . . . , Am ∈ S \ C1, m � 3, be such that I ∈ AG1 . . . A

G
m. Then

I �∈ AS1 . . . A
S
m if and only if m = 3 and one of the following conditions

holds up to change of the order of A1, . . . , Am:

(i) m = 3, Aν ∈ C
(rkν ,lν)
2 (ν = 1, 2, 3), l1 �= l2, and δ111 = 0 (i. e.,

k1 + k2 + k3 is odd);

(ii) m = 3, Aν ∈ C(rkν ,lν)
2 (ν = 1, 2), A3 ∈ C(k3,−k3)

3 ,
and r(k1 + k2 + 1) + k3 + l1 + l2 is odd (see Table 10);

(iii) m = 3, Aν ∈ C(kν ,lν)
2 (ν = 1, 2), A3 ∈ C((q+1)k3)

4 ,
and (r − 1)(k1 + k2 + 1) + k3 + l1 + l2 is odd (see Table 10);

(iv) q = 3 and ϕ(A1) + . . . + ϕ(Am) �≡ 0 mod 3 where ϕ(A) = l + 1 if

A ∈ C(2k,l)
2 and ϕ(A) = 0 if A �∈ C2 (see Remark 5.5);

(v) q = 5, m = 3, Aν ∈ C(3kν ,lν)
2 (ν = 1, 2, 3), l1 = l2 = l3, and δ111 = 1

(i. e., k1 + k2 + k3 is even);

(vi) q = 5, m = 4, Aν ∈ C
(3kν ,lν)
2 (ν = 1, 2, 3, 4), l1 = . . . = l4, and

δ1111 = 0 (i. e., k1 + . . .+ k4 is odd);

(vii) q = 5, m = 4, Aν ∈ C(3kν ,lν)
2 (ν = 1, 2, 3), A4 ∈ C(k4,−k4)

3 , l1 = l2 =
l3, and k1 + . . .+ k4 is odd.

Remark 5.5. — The mapping a 
→
(

1 0
1 1

)
, i 
→

(
0 −1
1 0

)
defines an

isomorphism F ∼= SL(2, 3) where F is the group discussed in §4.1. The
class products in F are described in Proposition 4.1. The correspondence

of classes between F and SU(2, 32) is: {(−1)k} → C
(2k)
1 , iF → C

(1,−1)
3 ,

(−1)kaF → C
(2k,0)
2 , (−1)kbF → C

(2k,1)
2 .
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Table 10. —
N
SU(2,q2)

(A1,A2,A3)

qr(q−1)
for q = 2r − 1, A1 ∈ C(rk1,l1)

2 , A2 ∈ C(rk2,l2)
2 ,

A3 ∈ C3 ∪ C4.

r r even r odd

l1, l2 l1 = l2 l1 �= l2 l1 = l2 l1 �= l2

k1 + k2 mod 2 0 1 0 1 0 1 0 1

k3 mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A3 ∈ C(k3,−k3)
3 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1

A4 ∈ C((q+1)k3)
4 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1

Proof. — Casem = 3. It is enough to consider only the triples (A1, A2, A3)
containing at least two matrices from C2 (otherwise NS(A1, A2, A3) =
NG(A1, A2, A3)). We compute NS(A1, A2, A3) for all such triples. If Aν ∈
C

(kν ,lν)
2 , ν = 1, 2, 3, then we have

NS(A1, A2, A3) =

{
r(r − 1)(2q − (3r − 3er + 1)δ111), l1 = l2 = l3,
r(r − 1)(r − er − 1)δ111, l1 = l2 �= l3,

where er = 1+(−1)r

2 .

IfA1 ∈ C(rk1,l1)
2 ,A2 ∈ C(rk2,l2)

2 , andA3 ∈ C3∪C4, we haveNS(A1, A2, A3)
= qr(q − 1)δ∗ where the values of δ∗ are given in Table 10.

Case m � 4. The result for m > 4 follows from the result for m = 4.
So we assume that m = 4. If q = 3, then S is isomorphic to the group F
discussed in §4 and the result follows from Proposition 4.1. If q = 5, then S
then it is enough to compute explicitly the structure constants for all triples
and quadruples. So, we assume that q � 7.

If one of Aν does not belong to C2, then we can choose B ∈ C4 such
that B ∈ AS1AS2 and B−1 ∈ AS3AS4 .

If Aν ∈ C
(rkν ,lν)
2 , k = 1, . . . , 4, then without loss of generality we may

assume that l3 = l4 = l. Let B ∈ C(rk,l)
2 where k + k1 + k2 is even. Then

B ∈ AS1AS2 and B−1 ∈ AS3AS4 . �

5.4. Class products in PSU(2, q2) ∼= PSL(2, q)

Let PS = PSU(2, q2) ∼= PSL(2, q), q � 4. Like in Corollary 1.8, we

denote the projection of a class C
(...)
i by C̃

(...)
i . Products of conjugacy classes
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in PS are partially computed in [1; Ch. 4, Th. 4.2]. For reader conenience
we give the correspondence of notation in Tables 11.1 – 11.2.

Table 11. — Conjugacy classes in SU(2, q2) = PSU(2, q2) ∼= SL(2, q) = PSL(2, q) for

even q.

In [1] Class in SU Class in SL Parameters Order

C1 C
(0)
1 C

(0)
1 1

C2 C
(0)
2 C

(0)
2 2

Rk C
(k,−k)
3 C

((q−1)k)
4 k = 1, . . . , q2 (q + 1)/ gcd(q + 1, k)

Kk C
((q+1)k)
4 C

(k,−k)
3 k = 1, . . . , q−2

2 (q − 1)/ gcd(q − 1, k)

Table 12. — Conjugacy classes in PSU(2, q2) ∼= PSL(2, q) for q = pm = 2r − 1 (for a

prime p), r′ = r − 1.

In [1] Class in PSU Class in PSL Parameters Order

C1 C̃
(0)
1 C̃

(0)
1 1

C2 C̃
(0,0)
2 C̃

(0,0)
2 p

C3 C̃
(0,1)
2 C̃

(0,1)
2 p

Rk C̃
(k,−k)
3 C̃

((q−1)k)
4 k = 1, . . . , [ r2 ] r/ gcd(r, k)

Kk C̃
((q+1)k)
4 C̃

(k,−k)
3 k = 1, . . . , [ r

′

2 ] r′/ gcd(r′, k)

As in the previous section, we use here the “SU -notation” for conjugacy
classes in PS (the second column in Tables 11.1 – 11.2).

Corollary 5.6. — Let m � 3, q � 4, and c1, . . . , cm are non-identity
conjugacy classes in PS. Then I �∈ c1 . . . cm if and only if m = 3 and one
of the following cases occurs up to permutation:

(i) q is even and (c1, c2, c3) =
(
C

(k,−k)
3 , C

(k,−k)
3 , C

(0)
2

)
, k = 1, . . . , q/2;

(ii) q = 2r − 1 ≡ 1 mod 4 (so, r is odd) and (c1, c2, c3) is
(
C̃

(0,l1)
2 , C̃

(0,l2)
2 , C̃

((q+1)k)
4

)
, k + l1 + l2 is odd, k = 1, . . . , r−1

2 ;

(iii) q = 2r − 1 ≡ 3 mod 4 (so, r is even) and (c1, c2, c3) is one of:
(
C̃

(0,l1)
2 , C̃

(0,l2)
2 , C̃

(k,−k)
3

)
, k + l1 + l2 is odd, k = 1, . . . , r2 ;

(
C̃

(0,l)
2 , C̃

(r/2,−r/2)
3 , C̃

(r/2,−r/2)
3

)
, l = 0, 1.

In particular, we see that cn(PS) = 3, ecn(PS) = 4 (see §1.8). This fact
was already proved in [1; Ch. 4].
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