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Introduction to the basics
of Heegaard Floer homology

Bijan Sahamie(1)

ABSTRACT. — This paper provides an introduction to the basics of Hee-
gaard Floer homology with some emphasis on the hat theory and to the
contact geometric invariants in the theory. The exposition is designed to
be comprehensible to people without any prior knowledge of the subject.

RÉSUMÉ. — Nous présentons une introduction aux éléments de la théorie
d’Heegaard Floer et aux invariants qui proviennent d’une structure de
contact. La présentation ne présuppose aucune connaissance du sujet.
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1. Introduction

Heegaard Floer homology was introduced by Peter Ozsváth and Zoltan
Szabó at the beginning of the new millennium. Since then it developed very
rapidly due to its various contributions to low-dimensional topology, par-
ticularly knot theory and contact geometry. The present paper is designed
to give an introduction to the basics of Heegaard Floer theory with some
emphasis on the hat theory. We try to provide all details necessary to com-
municate a complete and comprehensible picture. We would like to remark
that there already are introductory articles to this subject (see [21], [22] and
[23]). The difference between the existing articles and the present article is
threefold: First of all we present a lot more details. We hope that these de-
tails will provide a complete picture of the basics of the theory. Our goal is
to focus on those only which are relevant for the understanding of Heegaard
Floer homology. Secondly, our exposition is not designed to present any ap-
plications and, in fact, we do not present any. Explaining applications to
the reader would lead us too far away from the basics and would force us to
make some compromise to the exposition. We felt that going into advanced
elements would be disturbing to the goal of this paper. And thirdly, we have
a slight contact geometric focus.

We think that the reader will profit the most from this paper when
reading it completely rather than selecting a few elements: We start with
a low-paced exposition and gain velocity as we move on. In this way we
circumvent the creation of too many redundancies and it enables us to focus
on the important facts at each stage of the paper. We expect the reader

– 270 –



Introduction to the basics of Heegaard Floer homology

to have some knowledge about algebraic topology and surgery theory. As
standard references we suggest [1] and [7].

In §2 and §3 we start with Heegaard diagrams and introduce everything
necessary to construct the homology theory. We included a complete dis-
cussion of the invariance of Heegaard Floer theory (cf. §4) for two reasons.
Firstly, the isomorphisms defined for showing invariance appear very fre-
quently in the research literature. Secondly, the proof is based on construc-
tions which can be called the standard constructions of the theory. Those
who are impatient may just read §4.4 and skip the rest of §4. However, the
remainder of the article refers to details of §4 several times. The following
section, i.e. §5, is devoted to the knot theoretic variant of Heegaard Floer
theory, called knot Floer homology. In §6 and §7 we outline how to assign
to a 4-dimensional cobordism a map between the Floer homologies of the
boundary components and derive the surgery exact triangle. This triangle
is one of the most important tools, particularly for the contact geometric
applications. Finally, the article focuses on preparing the reader to be able
to understand the contact geometric applications as given – for instance –
by Lisca and Stipsicz.

We are aware of the fact that there is a lot of material missing in this
article. However, the presented theory provides a solid groundwork for un-
derstanding of what we omitted. We would like to outline at least some of
the missing material. First of all the homology groups as well as the cobor-
dism maps refine with respect to Spinc-structures. We indicate this fact in
§2 but do not outline any details. The standard reference is the article [17] of
Ozsváth and Szabó. However, we suggest the reader first to familiarize with
Spinc-structures, especially with their interpretation as homology classes of
vector fields (cf. [28]). Furthermore, there is an absolute Q-grading on these
homology groups (see [19]) and in case of knot Floer homologies for ho-
mologically trivial knots an additional Z-grading (see [14]). Both gradings
carry topological information and may appear as a help in explicit calcula-
tions, especially in combination with the surgery exact triangles. The knot
Floer homologies admit additional exact sequences besides the surgery ex-
act sequence. An example is the skein exact sequence (see [14] and [24]).
For contact geometric applications the adjunction inequalities play a central
role as they give a criterion for the vanishing of cobordism maps (see [18]
or cf. [25]). Going a bit further, there are other flavors of Heegaard Floer
homology: András Juhasz defined the so-called Sutured Floer homology of
sutured manifolds (see [12]) and Ozsváth, Lipshitz and Thurston defined
a variant of Heegaard Floer homology for manifolds with parameterized
boundary (see [9]).
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2. Introduction to the hat-version
of Heegaard Floer homology

2.1. Heegaard Diagrams

One of the major results of Morse theory is the development of surgery
and handle decompositions. Morse theory captures the manifold’s topol-
ogy in terms of a decomposition of it into topologically easy-to-understand
pieces called handles (cf. [7]). In the case of closed 3-manifolds the handle
decomposition can be assumed to be very symmetric. This symmetry al-
lows us to describe the manifold’s diffeomorphism type by a small amount
of data. Heegaard diagrams are omnipresent in low-dimensional topology.
Unfortunately there is no convention what precisely to call a Heegaard di-
agram; the definition of this notion underlies slight variations in different
sources. Since Heegaard Floer Homology intentionally uses a non-efficient
version of Heegaard diagrams, i.e. we fix more information than needed to
describe the manifold’s type, we briefly discuss, what is to be understood
as Heegaard diagram throughout this article.

A brief summary of what we will discuss would be that we fix the data
describing a handle decomposition relative to a splitting surface. Let Y be
a closed oriented 3-manifold and Σ ⊂ Y a splitting surface, i.e. a surface
of genus g such that Y \Σ decomposes into two handlebodies H0 and H1.
We fix a handle decomposition of Y \H1 relative to this splitting surface
Σ, i.e. there are 2-handles h2

1,i, i = 1, . . . , g, and a 3-handle h3
1 such that

(cf. [7])

Y \H1
∼= (Σ× [0, 1]) ∪∂ (h2

1,1 ∪∂ . . . ∪∂ h
2
1,g ∪∂ h

3
1). (2.1)

We can rebuild Y from this by gluing in 2-handles h2
0,i, i = 1, . . . , g, and a

3-handle h3
0. Hence, Y can be written as

Y ∼= (h3
0∪∂h

2
0,1∪∂ . . .∪∂h

2
0,g)∪∂ (Σ×[0, 1])∪∂ (h2

1,1∪∂ . . .∪∂h
2
1,g∪∂h

3
1). (2.2)

Collecting the data from this decomposition we obtain a triple (Σ,α,β)
where Σ is the splitting surface of genus g, α = {α1, . . . , αg} are the
images of the attaching circles of the h2

0,i interpreted as sitting in Σ and

β = {β1, . . . , βg} the images of the attaching circles of the 2-handles h2
1,i

interpreted as sitting in Σ. This will be called a Heegaard diagram of Y .
Observe that these data determine a Heegaard decomposition in the clas-
sical sense by dualizing the h2

0,i. Dualizing a k-handle Dk × D3−k means

to reinterpret this object as D3−k × Dk. Both objects are diffeomorphic
but observe that the former is a k-handle and the latter a (3 − k)-handle.
Observe that the α-curves are the co-cores of the 1-handles in the dualized
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picture, and that sliding h1
0,i over h1

0,j means, in the dual picture, that h2
0,j

is slid over h2
0,i.

2.2. Topology and Analytic Background

Given a closed oriented 3-manifold Y , we fix a Heegaard diagram (Σ,α,β)
of Y as defined in §2.1. We can associate to it the triple (Symg(Σ),Tα,Tβ)
which we will explain now:

By Symg(Σ) we denote the g-fold symmetric product of Σ, defined
by taking the quotient under the canonical action of Sg on Σ×g, i.e.

Symg(Σ) = Σ×g/Sg.

Although the action of Sg has fixed points, the symmetric product is a
manifold. The local model is given by Symg(C) which itself can be identified
with the set of normalized polynomials of degree g. An isomorphism is
given by sending a point [(p1, . . . , pg)] to the normalized polynomial uniquely
determined by the zero set {p1, . . . , pg}. Denote by

π: Σ×g −→ Symg(Σ)

the projection map. The attaching circles α and β define submanifolds

Tα = α1 × . . .× αg and Tβ = β1 × . . .× βg

in Σ×g. Obviously, the projection π embeds these into the symmetric prod-
uct. In the following we will denote by Tα and Tβ the manifolds embedded
into the symmetric product.

2.2.1. The chain complex

Let us start with a definition.

Definition 2.1. — A map φ of the 2-disk D2 (regarded as the unit 2-
disk in C) into the symmetric product Symg(Σ) is said to connect two
points x,y ∈ Tα ∩ Tβ if

φ(i) = x,

φ(−i) = y,

φ(∂D2 ∩ {z ∈ C |Re(z) < 0}) ⊂ Tα,
φ(∂D2 ∩ {z ∈ C |Re(z) > 0}) ⊂ Tβ.

Continuous maps of the 2-disk into the symmetric product Symg(Σ) that
connect two intersection points x,y ∈ Tα ∩ Tβ are called Whitney disks.
The set of homotopy classes of Whitney disks connecting x and y is denoted
by π2(x,y) in case g > 2.
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In case g � 2 we have to define the object π2(x,y) slightly different.
However, we can always assume, without loss of generality, that g > 2 and,
thus, we will omit discussing this case at all. We point the interested reader
to [17, §2.4].

We fix a point z ∈ Σ\(α∪β) and denote by H the quadruple (Σ,α,β, z).
This is called a pointed Heegaard diagram. In the remainder of this article
we will use the letter H both for Heegaard diagrams and pointed Heegaard
diagrams. Given a pointed Heegaard diagram, we define ĈF(H) as the free
Z-module (or Z2-module) generated by the intersection points Tα ∩ Tβ
inside Symg(Σ). In case of Z2-coefficients, think of ĈF(H) as a Z2-vector
space equipped with a canonical basis given by the elements Tα ∩ Tβ. On
this module, we can construct a differential

∂̂H: ĈF(H) −→ ĈF(H)

by defining it on the generators of ĈF(H). Given a point x ∈ Tα ∩ Tβ, we

define ∂̂Hx to be a linear combination

∂̂H(x) =
∑

y∈Tα∩Tβ

∂̂Hx
∣∣∣
y
· y.

The definition of the coefficients will occupy the remainder of this section.
The idea resembles other Floer homology theories. The goal is to define

∂̂Hx
∣∣∣
y

as a signed count of holomorphic Whitney disks connecting x and y

which are rigid up to reparametrization. First we have to introduce almost
complex structures into this picture. A more detailed discussion of these will
be given in §2.3. For the moment it will be sufficient to say that we choose
a generic path (Js)s∈[0,1] of almost complex structures on the symmetric
product. Identifying the unit disk, after taking out the points ±i, in C with
[0, 1]×R we define φ to be holomorphic if it satisfies for all (s, t) ∈ [0, 1]×R
the equation

∂φ

∂s
(s, t) + Js

(∂φ
∂t

(s, t)
)

= 0. (2.3)

Looking into (2.3) it is easy to see that a holomorphic Whitney disk φ can
be reparametrized by a constant shift in R-direction without violating (2.3).

Definition 2.2. — Given two points x,y ∈ Tα ∩ Tβ, we denote by
MJs(x,y) the set of holomorphic Whitney disks connecting x and y. We
call this set moduli space of holomorphic Whitney disks connecting x
and y. Given a homotopy class [φ] ∈ π2(x,y), denote by MJs,[φ] the space
of holomorphic representatives in the homotopy class of φ.
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In the following the generic path of almost complex structures will not be
important and thus we will suppress it from the notation. Since the path is
chosen generically (cf. §2.3 or see [17]) the moduli spaces are manifolds. The
constant shift in R-direction induces a free R-action on the moduli spaces.
Thus, if M[φ] is non-empty its dimension is greater than zero. We take the
quotient of M[φ] under the R-action and denote the resulting spaces by

M̂[φ] = M[φ]/R and M̂(x,y) =M(x,y)/R.

The so-called signed count of 0-dimensional components of M̂(x,y) means
in case of Z2-coefficients simply to count mod 2. In case of Z-coefficients we
have to introduce coherent orientations on the moduli spaces. We will
roughly sketch this process in the following.

Obviously, in case of Z-coefficients we cannot simply count the 0-dimen-
sional components of M̂(x,y). The defined morphism would not be a differ-
ential. To circumvent this problem we have to introduce signs appropriately
attached to each component. The 0-dimensional components of M̂(x,y)
correspond to the 1-dimensional components ofM(x,y). Each of these com-
ponents carries a canonical orientation induced by the free R-action given
by constant shifts. We introduce orientations on these components. Com-
paring the artificial orientations with the canonical shifting orientation we
can associate to each component, i.e. each element in M̂(x,y), a sign. The
signed count will respect the signs attached. There is a technical condition
called coherence (see [17, Definition 3.11] or cf. §2.3) one has to impose on

the orientations. This technical condition ensures that the morphism ∂̂H is
a differential.

The chosen point z ∈ Σ\(α∪β) will be part of the definition. The path
(Js)s∈[0,1] is chosen in such a way that

Vz = {z} × Symg−1(Σ) ↪→ Symg(Σ)

is a complex submanifold. For a Whitney disk (or its homotopy class) φ
define nz(φ) as the intersection number of φ with the submanifold Vz. We
define

∂̂Hx
∣∣∣
y

= #M̂(x,y)0nz=0,

i.e. the signed count of the 0-dimensional components of the unparametrized
moduli spaces of holomorphic Whitney disks connecting x and y with the
property that their intersection number nz is trivial.

Theorem 2.3 (see §4 of [17]). — The assignment ∂̂H is well-defined.
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Theorem 2.4 (see Theorem 4.15 of [17]). — The morphism ∂̂H is a dif-
ferential.

We will give sketches of the proofs of the last two theorems later in
§2.3. At the moment we do not know enough about Whitney disks and the
symmetric product to prove it.

Definition 2.5. — Denote by ĤF(H) the homology theory H∗(ĈF(H), ∂̂H).
If the pointed Heegaard diagram H is the Heegaard diagram of a manifold
Y , then we also write ĤF(Y ) for ĤF(H).

The notation should indicate that the homology theory does not depend
on the chosen data. It is a topological invariant of the manifold Y , although
this is not the whole story. The theory depends on the choice of coherent
system of orientations. For a manifold Y there are 2b1(Y ) numbers of non-
equivalent systems of coherent orientations. The resulting homologies can
differ (see Example 2.3). Nevertheless the orientations are not written down.
We guess there are two reasons: The first is that most of the time it is
not really important which system of coherent orientations is chosen. All
reasonable constructions will work for every coherent orientation system
and in case there is a specific choice needed this will be explicitly stated.
The second reason is that it is possible to give a convention for the choice of
coherent orientation systems. Since we have not developed the mathematics
to state the convention precisely we point the reader to Theorem 2.31.

2.2.2. On Holomorphic disks in the Symmetric Product

In order to be able to discuss a first example we briefly introduce some
properties of the symmetric product.

Definition 2.6. — For a Whitney disk φ we denote by µ(φ) the formal
dimension of Mφ. We also call µ(φ) the Maslov index of φ.

For the readers that have not heard anything about Floer homology at
all, just think of µ(φ) as the dimension of the space Mφ, although even in
caseMφ is not a manifold the number µ(φ) is defined (cf. §2.3). Just to give
some intuition, note that the moduli spaces are the zero-set of a section, S
say, in a Banach bundle one associates to the given setup. The linearization
of this section at the zero set is a Fredholm operator. Those operators carry
a property called Fredholm index (cf. Definition 2.21). The number µ is
the Fredholm index of that operator. Even if the moduli spaces are no
manifolds this number is defined. It is called formal dimension or expected
dimension since in case the section S intersects the zero-section of the
Banach-bundle transversely (and hence the moduli spaces are manifolds) the
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Fredholm index µ equals the dimension of the moduli spaces. So, negative
indices are possible and make sense in some situations. One can think of
negative indices as the number of missing degrees of freedom to give a
manifold.

Lemma 2.7. — In case g(Σ) > 2 the 2nd homotopy group π2(Symg(Σ))
is isomorphic to Z. It is generated by an element S with µ(S) = 2 and
nz(S) = 1, where nz is defined the same way as it was defined for Whitney
disks.

Let η: Σ −→ Σ be an involution such that Σ/η is a sphere. The map

S2 −→ Symg(Σ), y �−→ {(y, η(y), y, . . . , y)}

is a representative of S. Using this representative it is easy to see that
nz(S) = 1. It is a property of µ as an index that it behaves additive under
concatenation. Indeed the intersection number nz behaves additive, too.
To develop some intuition for the holomorphic spheres in the symmetric
product we state the following result from [17].

Lemma 2.8 (see Proposition 2.15 of [17]). — There is an exact sequence

0 −→ π2(Symg(Σ)) −→ π2(x,x) −→ ker(nz) −→ 0.

The map nz provides a splitting for the sequence.

Observe that we can interpret a Withney disk in π2(x,x) as a family of
paths in Symg(Σ) based at the constant path x. We can also interpret an el-
ement in π2(Symg(Σ)) as a family of paths in Symg(Σ) based at the constant
path x. Interpreted in this way there is a natural map from π2(Symg(Σ))
into π2(x,x). The map nz provides a splitting for the sequence as it may
be used to define the map

π2(x,x) −→ π2(Symg(Σ))

sending a Whitney disk φ to nz(φ) ·S. This obviously defines a splitting for
the sequence (cf. Lemma 2.7).

Lemma 2.9 (cf. Proposition 2.15 of [17]). — The kernel of nz interpreted
as a map on π2(x,x) is isomorphic to H1(Y ;Z).

With the help of concatenation we are able to define an action

∗: π2(x,x)× π2(x,y) −→ π2(x,y),
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which is obviously free and transitive. Thus, we have an identification

π2(x,y)
∼=−−−→ π2(x,x)

↘ ↙
{∗}

(2.4)

as principal bundles over a one-point space, which is another way of saying
that the concatenation action endows π2(x,y) with a group structure after

fixing a unit element in π2(x,y). To address the well-definedness of ∂̂H we

have to show that the sum in the definition of ∂̂H is finite. For the moment
let us assume that for a generic choice of path (Js)s∈[0,1] the moduli spaces

M̂φ with µ(φ) = 1 are compact manifolds (cf. Theorem 2.22), hence their
signed count is finite. Assuming this property we are able to show well-
definedness of ∂̂H in case Y is a homology sphere.

Proof of Theorem 2.3 for b1(Y ) = 0. — Observe that

M̂(x,y)0nz=0 =
⊔

φ∈H(x,y,1)
M̂φ, (2.5)

where H(x,y, 1) ⊂ π2(x,y) is the subset of homotopy classes admitting
holomorphic representatives with µ(φ) = 1 and nz = 0. We have to show
that H(x,y, 1) is a finite set. Since b1(Y ) = 0 the cohomology H1(Y ;Z)
vanishes. By our preliminary discussion, given a reference disk φ0 ∈ π2(x,y),
every φxy ∈ π2(x,y) can be written as a concatenation φxy = φ∗φ0, where
φ is an element in π2(x,x). Since we are looking for disks with index one
we have to find all φ ∈ π2(x,x) satisfying the property µ(φ) = 1 − µ(φ0).
Recall that Y is a homology sphere and thus π2(x,x) ∼= Z 〈S〉. Hence, the
disk φ is described by an integer k ∈ Z, i.e. φ = k ·S. The property µ(S) = 2
tells us that

1− µ(φ0) = µ(φ) = µ(k · S) = k · µ(S) = 2k.

There is at most one k ∈ Z satisfying this equation, so there is at most
one homotopy class of Whitney disks satisfying the property µ = 1 and
nz = 0. �

In case Y has non-trivial first cohomology we need an additional con-
dition to make the proof work. The given argument obviously breaks down
in this case. To fix this we impose a topological/algebraic condition on
the Heegaard diagram. Before we can define these admissibility properties
(see Definition 2.17) we have to go into the theory a bit more.

There is an obstruction to finding Whitney disks connecting two given
intersection points x,y. The two points x and y can certainly be connected
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via paths inside Tα and Tβ. Fix two paths a: I −→ Tα and b: I −→ Tβ
such that −∂b = ∂a = y − x. This is the same as saying we fix a closed
curve γxy based at x, going to y along Tα, and moving back to x along Tβ.
Obviously γxy = b+a. Is it possible to extend the curve γxy, after possibly
homotoping it a bit, to a disk? If so, this would be a Whitney disk. Thus,
finding an obstruction can be reformulated as: Is [γxy] = 0 ∈ π1(Symg(Σ))?

Lemma 2.10 (see Lemma 2.6 of [17]). — The group π1(Symg(Σ)) is abe-
lian.

Given a closed curve γ ⊂ Symg(Σ) in general position (i.e. not meeting
the diagonal of Symg(Σ)), we can lift this curve to

(γ1, . . . , γg): S1 −→ Σ×g.

Projection onto each factor Σ defines a 1-cycle. We define

Φ(γ) = γ1 + . . . + γg.

Lemma 2.11 (see Lemma 2.6 of [17]). — The map Φ induces an isomor-
phism

Φ∗: H1(Symg(Σ)) −→ H1(Σ;Z).

By surgery theory (see [7, p. 111]) we know that

H1(Σ;Z)

[α1], . . . , [αg], [β1], . . . , [βg]
∼= H1(Y ;Z) (2.6)

The curve γxy is homotopically trivial in the symmetric product if and only
if Φ∗([γxy]) is trivial. If we pick different curves a and b to define another
curve ηxy, the difference

Φ(γxy)− Φ(ηxy)

is a sum of α-and β-curves. Thus, interpreted as a cycle in H1(Y ;Z), the
class

[Φ(γxy)] ∈ H1(Y ;Z)

does not depend on the choices made in its definition. We get a map

ε: (Tα ∩ Tβ)×2 −→ H1(Y ;Z)
(x,y) �−→ [Φ(γxy)]H1(Y ;Z)

with the following property.

Lemma 2.12. — If ε(x,y) is non-zero the set π2(x,y) is empty.
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Proof. — Suppose there is a connecting disk φ then with γxy = ∂(φ(D2))
we have

ε(x,y) = [Φ(γxy)]H1(Y ;Z) =
Φ∗([γxy]H1(Symg(Σ)))

[α1], . . . , [αg], [β1], . . . , βg]
= 0

since [γxy]π1(Symg(Σ)) = 0. �

As a consequence we can split up the chain complex ĈF(Σ,α,β, z) into
subcomplexes. It is important to notice that there is a map

sz: Tα ∩ Tβ −→ Spinc
3(Y ) ∼= H2(Y ;Z), (2.7)

such that PD(ε(x,y)) = sz(x) − sz(y). For a definition of the map sz we
point the reader to [17, §2.6]. Thus, fixing a Spinc-structure s, the Z-module

(or Z2-module) ĈF(Σ,α,β, z; s) generated by (sz)
−1(s) defines a subcom-

plex of ĈF(Σ,α,β, z). The associated homology is denoted by ĤF(Y, s), and

it is a submodule of ĤF(Y ). Especially note that

ĤF(Y ) =
⊕

s∈Spinc3(Y )

ĤF(Y, s).

Since Tα ∩ Tβ consists of finitely many points, there are just finitely many
groups in this splitting which are non-zero. In general this splitting will
depend on the choice of base-point. If z is chosen in a different component of
Σ\{α∪β} there will be a difference between the Spinc-structure associated
to an intersection point. For details we point to [17, Lemma 2.19].

Example 2.1. — The Heegaard diagram given by the data (T 2, {µ}, {λ})
(cf. §2.1) is the 3-sphere. To make use of Lemma 2.7 we add two stabiliza-
tions to get a Heegaard surface of genus 3, i.e.

D = (T 2#T 2#T 2, {µ1, µ2, µ3}, {λ1, λ2, λ3}),

where µi are meridians of the tori, and λi are longitudes. The complement
of the attaching curves is connected. Thus, we can arbitrarily choose the
base point z. Denote by H the associated pointed Heegaard diagram, The
chain complex ĈF(H) equals one copy of Z since it is generated by one

single intersection point which we denote by x. We claim that ∂̂Hx = 0.
Denote by [φ] a homotopy class of Whitney disks connecting x with itself.
This is a holomorphic sphere which can be seen with Lemma 2.8, Lemma
2.9 and the fact that H1(S3) = 0. By Lemma 2.7 the set π2(Symg(Σ)) is
generated by S with the property nz(S) = 1. The additivity of nz under
concatenation shows that [φ] is a trivial holomorphic sphere and µ([φ]) = 0.
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Thus, the space M(x,x)1nz=0, i.e. the space of holomorphic Whitney disks
connecting x with itself, with µ = 1 and nz = 0, is empty. Hence,

ĤF(S3) ∼= Z.

2.2.3. A Low-Dimensional Model for Whitney disks

The exact sequence in Lemma 2.8 combined with Lemma 2.9 and (2.4)
gives an interpretation of Whitney disks as homology classes. Given a disk
φ, we define its associated homology class by H(φ), i.e.

0 −→ π2(Symg(Σ)) −→ π2(x,x)
H−−−→H2(Y ;Z) −→ 0. (2.8)

In the following we intend to give a description of the map H. Given a
Whitney disk φ, we can lift this disk to a map φ̃ by pulling back the branched
covering π given in Diagram (2.9).

F /S g 1 = D2 Symg 1

g = F g

D2 Symg

* × ×Σ

Σ (Σ) Σ

(Σ)

Σ
∼

φ
φ

φ

φ

π

φ

(2.9)

Let Sg−1 ⊂ Sg be the subgroup of permutations fixing the first component.
Modding out Sg−1 we obtain the map φ pictured in (2.9). Composing it
with the projection onto the surface Σ we define a map

φ̂: D̂2 −→ Σ.

The image of this map φ̂ defines what is called a domain.

Definition 2.13. — Denote by D1, . . . ,Dm the closures of the compo-
nents of the complement of the attaching circles Σ\{α ∪ β}. Fix one point
zi in each component. A domain is a linear combination

A =

m∑

i=1

λi · Di

with λ1, . . . , λm ∈ Z.
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For a Whitney disk φ we define its associated domain by

D(φ) =

m∑

i=1

nzi(φ) · Di.

The map φ̂ and D(φ) are related by the equation

φ̂(D̂2) = D(φ)

as chains in Σ relative to the set α ∪ β. We define H(φ) as the associated

homology class of φ̂∗[D̂2] in H2(Y ;Z). The correspondence is given by clos-
ing up the boundary components by using the core disks of the 2-handles
represented by the α-curves and the β-curves.

Lemma 2.14. — Two Whitney disks φ1, φ2 ∈ π2(x,x) are homotopic if
and only if their domains are equal.

Proof. — Given two disks φ1, φ2 whose domains are equal, by definition
H(φ1) = H(φ2). By (2.8) they can only differ by a holomorphic sphere,
i.e. φ1 = φ2 + k · S. The equality D(φ1) = D(φ2) implies that nz(φ1) =
nz(φ2). The equation

0 = nz(φ2)− nz(φ1) = nz(φ2)− nz(φ2 + k · S) = 2k

forces k to vanish. �

The interpretation of Whitney disks as domains is very useful in compu-
tations, as it provides a low-dimensional model. The symmetric product is
2g-dimensional, thus an investigation of holomorphic disks is very inconve-
nient. However, not all domains are carried by holomorphic disks. Obviously,

the equality [D(φ)] = φ̂∗[D̂2] connects the boundary conditions imposed on
Whitney disks to boundary conditions of the domains. It is not hard to ob-
serve that the definition of φ̂ follows the same lines as the construction of the
isomorphism Φ∗ of homology groups discussed earlier (cf. Lemma 2.11). Sup-
pose we have fixed two intersections x = {x1, . . . ,xg} and y = {y1, . . . ,yg}
connected by a Whitney disk φ. The boundary ∂(φ(D2)) defines a connect-
ing curve γxy. It is easy to see that

im( φ̂
∣∣∣
∂D̂2

) = Φ(γxy) = γ1 + . . . + γg.

Restricting the γi to the α-curves we get a chain connecting the set x1, . . . ,xg

with y1, . . . ,yg, and restricting the γi to the β-curves we get a chain con-
necting the set y1, . . . ,yg with x1, . . . ,xg. This means each boundary com-

ponent of D̂2 consists of a set of arcs alternating through α-curves and
β-curves.
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Definition 2.15. — A domain is called periodic if its boundary is a
sum of α-and β-curves and nz(D) = 0, i.e. the multiplicity of D at the
domain Dz containing z vanishes.

Of course a Whitney disk is called periodic if its associated domain is
a periodic domain. The subgroup of periodic classes in π2(x,x) is denoted
by Πx.

Theorem 2.16 (see Theorem 4.9 of [17]). — For a Spinc-structure s and
a periodic class φ ∈ Πx we have the equality µ(φ) = 〈c1(s),H(φ)〉 .

This is a deep result connecting the expected dimension of a periodic
disk with a topological property. Note that, because of the additivity of the
expected dimension µ, the homology groups ĤF(Y, s) can be endowed with
a relative grading defined by

gr(x,y) = µ(φ)− 2 · nz(φ),

where φ is an arbitrary element of π2(x,y). In the case of homology spheres
this defines a relative Z-grading because by Theorem 2.16 the expected
dimension vanishes for all periodic disks. In case of non-trivial homology
they just vanish modulo δ(s), where

δ(s) = gcd
A∈H2(Y ;Z)

〈c1(s), A〉 ,

i.e. it defines a relative Zδ(s)-grading.

Example 2.2. — Here, we reconsider the situation of Example 2.1. To see
that ∂̂Hx = 0, observe that the differential ∂̂H decreases the grading by 1:
Suppose there is a holomorphic disk φ of index µ(φ) = 1 and nz(φ) = 0
that connectes x with some point y, then

gr(x,x) = µ(φ)− nz(φ) = 1− 0 = 1.

So, in our case ∂̂Hx = 0 since gr(x,x) = 0 and x is the only generator.

Definition 2.17. — A pointed Heegaard diagram (Σ,α,β, z) is called
weakly admissible for the Spinc-structure s if for every non-trivial pe-
riodic domain D such that 〈c1(s),H(D)〉 = 0 the domain has positive and
negative coefficients.

With this technical condition imposed ∂̂H is a well-defined map on
the subcomplex ĈF(Σ,α,β, s). From admissibility it follows that for every
x,y ∈ (sz)

−1(s) and j, k ∈ Z there exists just a finite number of φ ∈ π2(x,y)
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with µ(φ) = j, nz(φ) = k and D(φ) � 0. The last condition means that all
coefficients in the associated domain are greater or equal to zero.

Proof of Theorem 2.3 for b1(Y ) �= 0. — Recall that holomorphic disks
are either contained in a complex submanifold C or they intersect C al-
ways transversely and always positive. The definition of the path (Js)s∈[0,1]

(cf. §2.3) includes that all the {zi}×Symg−1(Σ) are complex submanifolds.
Thus, holomorphic Whitney disks always satisfy D(φ) � 0. �

We close this section with a statement that appears to be useful for devel-
oping intuition for Whitney disks. It helps imagining the strong connection
between the disks and their associated domains.

Theorem 2.18 (see Lemma 2.17 of [17]). — Consider a domain D whose
coefficients are all greater than or equal to zero. There exists an oriented
2-manifold S with boundary and a map φ: S −→ Σ with φ(S) = D with the
property that φ is nowhere orientation-reversing and the restriction of φ to
each boundary component of S is a diffeomorphism onto its image.

2.3. The Structure of the Moduli Spaces

The material in this section is presented without any details. The ex-
position pictures the bird’s eye view of the material. Recall from the last
sections that we have to choose a path of almost complex structures appro-
priately to define Heegaard Floer theory. So, a discussion of these structures
is inevitable. However, a lot of improvements have been made the last years
and we intend to mention some of them.

Let (j, η) be a Kähler structure on the Heegaard surface Σ, i.e. η is
a symplectic form and j an almost-complex structure that tames η. Let
z1, . . . , zm be points, one in each component of Σ\{α∪β}. Denote by V an
open neighborhood in Symg(Σ) of

D ∪
( m⋃

i=1

{zi} × Symg−1(Σ)
)
,

where D is the diagonal in Symg(Σ).

Definition 2.19. — An almost complex structure J on Symg(Σ) is
called (j, η, V )-nearly symmetric if J agrees with symg(j) over V and
if J tames π∗(η×g) over V

c
. The set of (j, η, V )-nearly symmetric almost-

complex structures will be denoted by J (j, η, V ).

The almost complex structure symg(j) on Symg(Σ) is the natural almost
complex structure induced by the structure j. Important for us is that the
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structure J agrees with symg(j) on V . This makes the {zi} × Symg−1(Σ)
complex submanifolds with respect to J . This is necessary to guarantee
positive intersections with Whitney disks. Without this property the proof
of Theorem 2.3 would break down in the case the manifold has non-trivial
topology.

We are interested in holomorphic Whitney disks, i.e. disks in the sym-
metric product which are solutions of (2.3). Denote by ∂Js the Cauchy-
Riemann operator defined by equation (2.3) (see [17, p. 1050]). Define
B(x,y) as the space of Whitney disks connecting x and y such that the
disks converge to x and y exponentially with respect to some Sobolev space
norm in a neighborhood of i and −i (see [17, §3.2], especially [17, p. 1049]).
With these assumptions the solution ∂Jsφ lies in a space of Lp-sections

Lp([0, 1]× R, φ∗(TSymg(Σ))).

These fit together to form a bundle L over the base B(x,y).

Theorem 2.20. — The bundle L −→ B(x,y) is a Banach bundle.

By construction the operator ∂Js is a section of that Banach bundle. Let us
define B0 ↪→ B(x,y) as the zero section, then, obviously,

MJs(x,y) = (∂Js)
−1(B0).

Recall from the Differential Topology of finite-dimensional manifolds that
if a smooth map intersects a submanifold transversely, then its preimage is
a manifold. There is an analogous result in the infinite-dimensional theory.
The generalization to infinite dimensions requires an additional property to
be imposed on the map. We will now define this property.

Definition 2.21. — A map f between Banach manifolds is called
Fredholm if for every point p the differential Tpf is a Fredholm operator,
i.e. has finite-dimensional kernel and cokernel. The difference dim kerTpf−
dim coker Tpf is called the Fredholm index of f at p.

Fortunately the operator ∂Js is an elliptic operator, and hence it is Fred-
holm for a generic choice of path (Js)s∈[0,1] of almost complex structures.

Theorem 2.22 (see Theorem 3.18 of [17]). — For a dense set of paths
(Js)s∈[0,1] of (j, η, V )-nearly symmetric almost complex structures the mod-
uli spaces MJs(x,y) are smooth manifolds for all x,y ∈ Tα ∩ Tβ.

The idea is similar to the standard Floer homological proof. One realizes
these paths as regular values of the Fredholm projection

π: M−→ Ω(J (j, η, V )),
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where Ω(J (j, η, V )) denotes the space of paths in J (j, η, V ) and M is the
unparametrized moduli space consisting of pairs (Js, φ), where Js is a path
of (j, η, V )-nearly symmetric almost complex structures and φ a Whitney
disk. By the Sard-Smale theorem the set of regular values is an open and
dense set of J (j, η, V ).

Besides the smoothness of the moduli spaces we need the number of
1-dimensional components to be finite. This means we require the spaces
M̂(x,y)0nz=0 to be compact. One ingredient of the compactness is the ad-
missibility property introduced in Definition 2.17. In (2.5) we observed that

M̂(x,y)0nz=0 =
⊔

φ∈H(x,y,1)

M̂φ,

where H(x,y, 1) is the set of homotopy classes of Whitney disks with nz = 0
and expected dimension µ = 1. Admissibility guarantees that H(x,y, 1) is a

finite set. Thus, compactness follows from the compactness of the M̂φ. The
compactness proof follows similar lines as the Floer homological approach. It
follows from the existence of an energy bound independent of the homotopy
class of Whitney disks (see [17, §3.4]). The existence of this energy bound

shows that the moduli spaces M̂(x,y) admit a compactification by adding
solutions to the space in a controlled way.

Without giving the precise definition we would like to give some intuition
of what happens at the boundaries. First of all there is an operation called
gluing making it possible to concatenate Whitney disks holomorphically.
Given two Whitney disks φ1 ∈ π2(x,y) and φ2 ∈ π2(y, q), gluing describes
an operation to generate a family of holomorphic solutions φ2#tφ1 in the
homotopy class φ2 ∗ φ1.

Definition 2.23. — We call the pair (φ2, φ1) a broken holomorphic
Whitney disk.1

Moreover, one can think of this solution φ2#tφ1 as sitting in a small
neighborhood of the boundary of the moduli space of the homotopy class
φ2 ∗ φ1, i.e. the family of holomorphic solutions as t→∞ converges to the
broken disk (φ2, φ1). There is a special notion of convergence used here. The
limiting objects can be described intuitively in the following way: Think of
the disk, after removing the points ±i, as a strip R×[0, 1]. Choose a properly
embedded arc or an embedded S1 in R× [0, 1]. Collapse the curve or the S1

to a point. The resulting object is a potential limiting object. The objects at

(1) This might be a sloppy and informal definition but appropriate for our intuitive
approach.
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the limits of sequences can be derived by applying several knot shrinkings
and arc shrinkings simultaneously where we have to keep in mind that the
arcs and knots have to be chosen such that they do not intersect (for a
detailed treatment see [11, §4]).

We see that every broken disk corresponds to a boundary component of
the compactified moduli space, i.e. there is an injection

fglue: Mφ2 ×Mφ1 ↪→ ∂Mφ2∗φ1 .

But are these the only boundary components? If this is the case, by adding
broken disks to the space we would compactify it. This would result in the
finiteness of the 0-dimensional spaces M̂φ. A compactification by adding
broken flow lines means that the 0-dimensional components are compact
in the usual sense. A simple dimension count contradicts the existence of a
family of disks in a 0-dimensional moduli space converging to a broken disk.
But despite that there is a second reason for us to wish broken flow lines to
compactify the moduli spaces. The map ∂̂H should be a boundary operator.
Calculating ∂̂H ◦ ∂̂H we see that the coefficients in the resulting equation
equal the number of boundary components corresponding to broken disks at
the ends of the 1-dimensional moduli spaces. If the gluing map is a bijection
the broken ends generate all boundary components. Hence, the coefficients
vanish mod 2.

There are two further phenomena we have to notice. Besides breaking
there might be spheres bubbling off. This description can be taken lit-
erally to some point. Figure 1 illustrates the geometric picture behind that
phenomenon. Bubbling is some kind of breaking phenomenon but the com-
ponents here are disks and spheres. We do not need to take care of spheres
bubbling off at all. Suppose that the boundary of the moduli space associ-
ated to the homotopy class φ we have breaking into a disk φ1 and a sphere
S1, i.e. φ = φ1 ∗ S1. Recall that the spheres in the symmetric product are
generated by S, described in §2.2. Thus, φ = φ1 ∗ k · S where nz(S) = 1. In
consequence nz(φ) is non-zero, contradicting the assumptions.

Figure 1. — Bubbling of spheres.
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Definition 2.24. — For a point x ∈ Tα∩Tβ an α-degenerate disk is
a holomorphic disk φ: [0,∞)× R −→ Symg(Σ) such that φ({0} × R) ⊂ Tα
and φ(p) → x as x→∞.

Given a degenerate disk ψ, the associated domain D(ψ) equals a sphere
with holes, i.e. D(ψ) equals a surface in Σ with boundary the α-curves.
Since the α-curves do not diskonnect Σ, the domain covers the whole sur-
face. Thus, nz(ψ) is non-zero, showing that degenerations are ruled out by
assuming that nz = 0.

Proof. — [Proof of Theorem 2.4 with Z2-coefficients] Fix an intersection
x ∈ Tα ∩ Tβ. We compute

∂̂2
Hx = ∂̂H

( ∑

y∈Tα∩Tβ

#M̂(x,y)0nz=0 · y
)

=
∑

y,q∈Tα∩Tβ

#M̂(x,y)0nz=0#M̂(y, q)0nz=0 · q.

We have to show that the coefficient in front of q, denoted by c(x, q) van-
ishes. Observe that the coefficient precisely equals the number of compo-
nents (mod 2) in

M̂(x,y)0nz=0 × M̂(y, q)0nz=0.

Gluing gives an injection

M̂(x,y)0nz=0 × M̂(y, q)0nz=0 ↪→ ∂M̂(x, q)1nz=0.

By the compactification theorem the gluing map is a bijection, since bub-
bling and degenerations do not appear due to the condition nz = 0. Thus,
(mod 2) we have

c(x, q) = #(M̂(x,y)0nz=0 × M̂(y, q)0nz=0)

= ∂M̂(x, q)1nz=0

= 0,

which proves the theorem. �

Obviously, the proof breaks down in Z-coefficients. We need the mod 2
count of ends. There is a way to fix the proof. The goal is to make the map

fglue: Mφ2 ×Mφ1 ↪→ ∂Mφ2∗φ1

orientation preserving. For this to make sense we need the moduli spaces to
be oriented. An orientation is given by choosing a section of the determi-
nant line bundle over the moduli spaces. The determinant line bundle is
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defined as the bundle det([φ]) −→Mφ given by putting together the spaces

det(ψ) =
∧

max ker(Dψ∂Js)⊗
∧

max ker((Dψ∂Js)
∗),

where ψ is an element of Mφ. If we achieve transversality for ∂Js , i.e. it has
transverse intersection with the zero section B0 ↪→ L then

det(ψ) =
∧

max ker(Dψ∂Js) ⊗ R∗
=

∧
maxTψMφ ⊗ R∗.

Thus, a section of the determinant line bundle defines an orientation of
Mφ. These have to be chosen in a coherent fashion to make fglue orientation
preserving. The gluing construction gives a natural identification

det(φ1) ∧ det(φ2)
∼=−→det(φ2#tφ1).

Since these are all line bundles, this identification makes it possible to iden-
tify sections of det([φ1])∧det([φ2]) with sections of det([φ2 ∗φ1]). With this
isomorphism at hand we are able to define a coherence condition. Namely,
let o(φ1) and o(φ2) be sections of the determinant line bundles of the associ-
ated moduli spaces, then we need that under the identification given above
we have

o(φ1) ∧ o(φ2) = o(φ2 ∗ φ1). (2.10)

In consequence, a coherent system of orientations is a section o(φ) of
the determinant line bundle det(φ) for each homotopy class of Whitney
disks φ connecting two intersection points such that equation (2.10) holds
for each pair for which concatenation makes sense. It is not clear if these
systems exist in general. By construction with respect to these coherent
systems of orientations the map fglue is orientation preserving.

In the case of Heegaard Floer theory there is an easy way to give
a construction of coherent systems of orientations. Namely, fix a Spinc-
structure s and let {x0, . . . ,xl} be the points representing s, i.e. (sz)

−1(s) =
{x0, . . . ,xl}. Let φ1, . . . , φq be a set of periodic classes in π2(x0,x0) rep-
resenting a basis for H1(Y ;Z) denote by θi an element of π2(x0,xi). A
coherent system of orientations is constructed by choosing sections over all
chosen disks, i.e. o(φi), i = 1, . . . , q and o(θj), j = 1, . . . , l. Namely, for
each homotopy class φ ∈ π2(xi,xj) we have a presentation (cf. Lemma 2.8,
Lemma 2.9 and (2.4))

φ = a1φ1 + . . . + aqφq + θj − θi

inducing an orientation o(φ). This definition defines a coherent system.
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To give a proof of Theorem 2.4 in case of Z-coefficients, we have to
translate orientations on the 0-dimensional components of the moduli spaces
M̂Js(x,y) of connecting Whitney disks into signs. For φ with µ(φ) = 1
the translation action naturally induces an orientation on Mφ. Comparing
this orientation with the coherent orientation induces a sign. We define the
signed count as the count of the elements by taking into account the
signs induced by the comparison of the action orientation with the coherent
orientation.

Proof of Theorem 2.4 for Z-coefficients. — We stay in the notation of
the earlier proof. With the coherent system of orientations introduced we
made the map

fglue: M̂(x,y)0nz=0 × M̂(y, q)0nz=0 ↪→ ∂M̂(x, q)1nz=0

orientation preserving. Hence, we see that c(x, q) equals

#(M̂(x,y)0nz=0 × M̂(y, q)0nz=0)

which in turn equals the oriented count of boundary components of
∂M̂(x, q)1nz=0. Since the space is 1-dimensional, this count vanishes. �

2.3.1. Other Heegaard Floer Theories

There are variants of Heegaard Floer homology which do not require
the condition nz = 0. To make the compactification work in that case we
have to take care of boundary degenerations and bubbling of spheres. Both
can be shown to be controlled in the following way: we get rid of bubbling
by a proper choice of almost complex structure. Namely, by choosing j on
Σ appropriately there is a contractible open neighborhood of symg(j) in
J (j, η, V ) for which all spheres miss the intersections Tα∩Tβ. Moreover, for
a generic choice of path (Js)s∈[0,1] inside this neighborhood the signed count
of degenerate disks is zero (see [17, Theorem 3.15]). With this information
it is easy to modify the given proof for the other theories. We leave this to
the interested reader or point him to [17, p. 1066].

2.4. Choice of Almost Complex Structure

Let Σ be endowed with a complex structure j and let U ⊂ Σ be a subset
diffeomorphic to a disk.

Theorem 2.25 (Riemann mapping theorem). — There is a 3-dimensio-
nal connected family of holomorphic identifications of U with the unit disk
D2 ⊂ C.
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Consequently, suppose that all moduli spaces are compact manifolds for
the path of almost complex structures (Js)s∈[0,1] where Js = symg(j) for
all s ∈ [0, 1]. In this case we conclude from the Riemann mapping theorem
the following corollary.

Corollary 2.26 Let φ: D2 −→ Symg(Σ) be a holomorphic disk with

D(φ) isomorphic to a disk. Then the moduli space M̂φ contains a unique
element.

We call a domain D(φ) α-injective if all its multiplicities are 0 or 1 and
its interior is disjoint from the α-circles. We then say that the homotopy
class φ is α-injective.

Theorem 2.27. — Let φ ∈ π2(x,y) be an α-injective homotopy class
and j a complex structure on Σ. For generic perturbations of the α-curves
the moduli space Msymg(j),φ is a smooth manifold.

In explicit calculations it will be nice to have all homotopy classes carry-
ing holomorphic representatives to be α-injective. In this case we can choose
the path of almost complex structures in such a way that homotopy classes
of Whitney disks with disk-shaped domains just admit a unique element.
This is exactly what can be achieved in general to make the ĤF-theory
combinatorial. For a class of Heegaard diagrams called nice diagrams all
moduli spaces with µ = 1 just admit one single element. In addition, we
have a precise description of how these domains look like. In Z2-coefficients
with nice diagrams this results in a method to calculate the differential ∂̂H
by counting the number of domains that are of a certain shape. For details
we point the reader to [27].

Definition 2.28 (see [27]). — A pointed Heegaard diagram (Σ,α,β, z)
is called nice if every region not containing z is either a bigon or a square.

Definition 2.29 (see [27]). — A homotopy class is called an empty em-
bedded 2n-gon if it is topologically an embedded disk with 2n vertices at its
boundary, it does not contain any xi or yi in its interior, and for each vertex
v, the average of the coefficients of the four regions around v is 1/4.

For a nice Heegaard diagram one can show that elements φ ∈ H(x,y, 1)
with µ(φ) = 1 that admit holomorphic representatives are empty embedded
bigons or empty embedded squares. Furthermore, for a generic choice of
j on Σ the moduli spaces are regular under a generic perturbation of the
α-curves and β-curves. The moduli space M̂φ contains one single element.
Hence, to compute the Heegaard Floer homology in this situation we have
to scan the Heegaard diagram for domains of a certain type. No holomorphic
information is needed to compute the theory. We note the following property.
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Theorem 2.30 (see [27]). — Every 3-manifold admits a nice Heegaard
diagram.

2.5. Dependence on the Choice of Orientation Systems

From their definition it is easy to reorder the orientation systems into
equivalence classes. The elements in these classes give rise to isomorphic
homologies. Let o and o′ be two orientation systems. We measure their
difference

δ: H1(Y ;Z) −→ Z2

by saying that, given a periodic class φ ∈ π2(x,x), we define δ(φ) = 0 if
o(φ) and o′(φ) coincide, i.e. define equivalent sections, and δ(φ) = 1, if o(φ)
and o′(φ) define non-equivalent sections. Thus, two systems are equivalent if
δ = 0. Obviously, there are 2b1(Y ) different equivalence classes of orientation
systems. In general the Heegaard Floer homologies will depend on choices of
equivalence classes of orientation systems. As an illustration we will discuss
an example.

Example 2.3. — The manifold S2 × S1 admits a Heegaard splitting of
genus one, namely (T 2, α, β, z) where α and β are two distinct meridians of
T 2.

Unfortunately this is not an admissible diagram. By the universal coef-
ficient theorem

H2(S2 × S1;Z) ∼= Hom(H2(S2 × S1;Z),Z) ∼= Hom(Z,Z).

Hence we can interpret Spinc-structures as homomorphisms Z −→ Z. For a
number q ∈ Z define sq to be the Spinc-structure whose associated charac-
teristic class, which we also call sq, is given by sq(1) = q. The two curves α
and β cut the torus into two components, where z is placed in one of them.
Denote the other component with D. It is easy to see that the homology
class H(D) is a generator of H2(S2 × S1;Z). Thus, we have

〈c1(sq),H(λ · D)〉 = 〈2 · sq,H(λ · D)〉 = 2 · sq(λ · 1) = 2λq.

This clearly contradicts the weak admissibility condition. We fix this prob-
lem by perturbing the β-curve slightly to give a Heegaard diagram as illus-
trated in Figure 2. By boundary orientations Z 〈(D1 −D2)〉 are all possible
periodic domains.
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x
z

D1

D2

y

β

α

Figure 2. — An admissible Heegaard diagram for S2 × S1.

Figure 2 shows that the chain module is generated by the points x and y.
A straightforward computation gives ε(x,y) = 0 (see §2.2 for a definition)
and, hence, both intersections belong to the same Spinc-structure we will
denote by s0. Thus, the chain complex ĈF(Σ,α,β; s0) equals Z 〈{x,y}〉.
The regions D1 and D2 are both disk-shaped and hence α-injective. Thus,
the Riemann mapping theorem (see §2.4) gives

#M̂φ1
= 1 and #M̂φ2

= 1.

These two disks differ by the periodic domain generating H1(S2 × S1;Z).
Thus, we are free to choose the orientation on this generator (cf. §2.3).
Hence, we may choose the signs on φ1 and φ2 arbitrarily. Thus, there are
two equivalence classes of orientation systems. We define o0 to be the system
of orientations where the signs differ and o1 where they are equal. Thus, we
get two different homology theories

ĤF(S2 × S1, s0; o0) = Z⊕ Z
ĤF(S2 × S1, s0; o1) = Z2.

However, there is a special choice of coherent orientation systems. We
point the reader to §3 for a definition of HF∞. Additionally, instead of using
Z-coefficients, we can use the ring Z[H1(Y )] as coefficients for defining this
Heegaard Floer group. The resulting group is denoted by HF∞. We point
the reader to [17, §11.0.1] for a precise definition or to [18, §8]. As a matter
or completeness we cite:

Theorem 2.31 (see Theorem 10.12 of [18]). — Let Y be a closed ori-
ented 3-manifold. Then there is a unique equivalence class of orientation
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systems such that for each torsion Spinc-structure s0 there is an isomor-
phism

HF∞(Y, s0) ∼= Z[U,U−1]

as Z[U,U−1]⊗Z Z[H1(Y ;Z)]-modules.

3. Other versions of Heegaard Floer homology

Given a pointed Heegaard diagramH = (Σ,α,β, z), we define CF−(H; s)
as the free Z[U−1]-module generated by the points of intersection (sz)

−1(s) ⊂
Tα ∩ Tβ. For an intersection x we define

∂−Hx =
∑

y∈(sz)−1(s)

∑

φ∈µ−1(1)

#M̂φ · U−nz(φ)y,

where µ−1(1) are the homotopy classes in π2(x,y) with expected dimension
equal to one. Note that in this theory we do not restrict to classes with
nz = 0. This means even with weak admissibility imposed on the Heegaard
diagram the proof of well-definedness as it was done in §2 breaks down.

Definition 3.1. — A Heegaard diagram (Σ,α,β, z) is called strongly
admissible for the Spinc-structure s if for every non-trivial periodic domain
D such that 〈c1(s), H(D)〉 = 2n � 0 the domain D has some coefficient
greater than n.

Imposing strong admissibility on the Heegaard diagram we can prove
well-definedness by showing that only finitely many homotopy classes of
Whitney disks contribute to the moduli space MJs(x,y) (cf. §2).

Theorem 3.2 (Theorem 4.15 of [17]). — The map ∂−H is a differential.

As mentioned in §2, in this case we have to take a look at bubbling and
degenerate disks. The proof follows the same lines as the proof of Theorem
2.4. With the remarks made in §2 it is easy to modify the given proof to a
proof of Theorem 3.2 (see [17, p. 1066]). We define

CF∞(H; s) = CF−(H; s)⊗Z[U−1] Z[U,U−1]

and denote by ∂∞ the induced differential. From the definition we get an
inclusion of CF− ↪→ CF∞ whose cokernel is defined as CF+(H; s). Finally

we get back to ĈF by

ĈF(H; s) =
U · CF−(H; s)

CF−(H; s)
.
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The associated homology theories are denoted by HF∞, HF− and ĤF. There
are two long exact sequences which can be derived easily from the definition
of the Heegaard Floer homologies. To give an intuitive picture look at the
following illustration:

CF∞ = . . . U−3 U−2 U−1 U0 U1 U2 U3 . . .
CF− = . . . U−3 U−2 U−1

ĈF = U0

CF+ = U0 U1 U2 U3 . . .

We see why the condition of weak admissibility is not strong enough to give
a well-defined differential on CF∞ or CF−. However, weak admissibility
is enough to make the differential on CF+ well-defined, since the complex
is bounded from below with respect to the obvious filtration given by the
U -variable.

Lemma 3.3. — There are two long exact sequences

. . . −→ HF−(Y ; s) −→ HF∞(Y ; s) −→ HF+(Y ; s) −→ . . .

. . . −→ ĤF(Y ; s) −→ HF+(Y ; s) −→ HF+(Y ; s) −→ . . .

where s is a Spinc-structure of Y .

The explicit description illustrated above can be derived directly from
the definition of the complexes. We leave this to the interested reader (see
also [17, Lemma 4.4 and p. 1066]).

4. Topological Invariance

Let Y be a closed, oriented 3-manifold and suppose we are given two Hee-
gaard diagrams H = (Σ,α,β) and H′ = (Σ′,α′,β′) which both represent
Y . These diagrams are equivalent after a finite sequence of isotopies of the
attaching circles, handle slides of the α-curves and β-curves and stabiliza-
tions/destabilizations. Two Heegaard diagrams are equivalent if there is a
diffeomorphism of the Heegaard surface interchanging the attaching circles.
Obviously, equivalent Heegaard diagrams define isomorphic Heegaard Floer
theories. To show that Heegaard Floer theory is a topological invariant of
the manifold Y we have to see that each of the moves, i.e. isotopies, handle
slides and stabilization/destabilizations yield isomorphic theories. We will
briefly sketch the topological invariance. This has two reasons: First of all
the invariance proof uses ideas that are standard in Floer homology theories
and hence appear frequently. The ideas provided from the invariance proof
happen to be the standard techniques for proving exactness of sequences,

– 295 –



Bijan Sahamie

proving invariance properties, and proving the existence of morphisms be-
tween Floer homologies. Thus, knowing the invariance proof, at least at the
level of ideas, is crucial for an understanding of most of the papers published
in this field. We will deal with the ĤF-case and and point the reader to [17]
for a general treatment.

The invariance proof contains several steps. We start showing invariance
under the choice of path of admissible almost complex structures. Isotopies
of the attaching circles are split up into two separate classes: Isotopies that
generate/cancel intersection points and those which do not change the chain
module. The invariance under the latter Heegaard moves immediately fol-
lows from the independence of the choice of almost complex structures.
Such an isotopy is carried by an ambient isotopy inducing an isotopy of the
symmetric product. We perturb the almost complex structure and thus in-
terpret the isotopy as a perturbation of the almost complex structure. The
former Heegaard moves have to be dealt with separately. We mimic the gen-
eration/cancellation of intersection points with a Hamiltonian isotopy and
with it explicitly construct an isomorphism of the respective homologies by
counting disks with dynamic boundary conditions. Stabilizations/ destabi-
lizations is the easiest part to deal with: it follows from the behavior of the
Heegaard Floer theory under connected sums. Finally, handle slide invari-
ance will require us to define what can be regarded as the Heegaard Floer
homological version of the pair-of-pants product in Floer homologies. This
product has two nice applications. The first is the invariance under handle
slides and the second is the association of maps to cobordisms giving the
theory the structure of a topological field theory.

4.1. Stabilizations/Destabilizations

We determine the groups ĤF(S2 × S1#S2 × S1) as a model calculation
for how the groups behave under connected sums.

Example 4.1. — We fix admissible Heegaard diagrams (T 2
i , αi, βi) i =

1, 2 for S2×S1 as in Example 2.3. To perform the connected sum of S2×S1

with itself we choose 3-balls such that their intersection D with the Heegaard
surface fulfills the property

J i
s

∣∣
D2 = sym(ji).

Figure 3 pictures the Heegaard diagram we get for the connected sum. De-
note by T a small connected sum tube inside Σ = T 2

1 #T 2
2 . By construction

the induced almost complex structure equals

(J 1#J 2)s
∣∣
T×Σ

= sym2(j1#j2).
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z

x1
y 1

x2 y 2

D1D2

D3

D4

Figure 3. — An admissible Heegaard diagram for S2 × S1#S2 × S1.

All intersection points belong to the same Spinc-structure s0. For suitable
Spinc-structures s1, s2 on S2 × S1 we have that s0 = s1#s2 and

ĈF(Σ,α,β, s1#s2) = Z⊗{(xi,yj) | i, j ∈ {1, 2}} ∼= ĈF(T 2
1 , s1)⊗ĈF(T 2

2 , s2).

The condition nz = 0 implies that for every holomorphic disk φ: D2 −→
Symg(Σ) the low-dimensional model (cf. §2) φ̂: D̂2 −→ Σ stays away from

the tube T . Consequently we can split up D̂2 into

D̂2 = D̂2
1 # D̂2

2,

where D̂2
i are the components containing the preimage (φ̂)−1(T 2

i \D). Re-

striction to these components determines maps φ̂i: D̂2
i −→ T 2

i which induce
Whitney disks φi in the symmetric product Sym1(T 2). Thus, the moduli
spaces split:

M(J 1#J 2)s((xi,yk), (xj ,yl))nz=0

∼=−→ MJ 1
s
(xi,xj)nz=0×MJ 2

s
(yk,yl)nz=0

φ �−→ (φ1, φ2).

For moduli spaces with expected dimension µ = 1, a dimension count forces
one of the factors to be constant. So, the differential splits, too, i.e. for
ai ∈ ĈF(T 2

i , si), i = 1, 2, we see that

∂̂(J 1#J 2)s(a1 ⊗ a2) = ∂̂J 1
s
(a1)⊗ a2 + a1 ⊗ ∂̂J 2

s
(a2).

And, consequently,

ĤF(S2×S1#S2×S1, s1#s2; o1∧o2) ∼= ĤF(S2×S1, s1; o1)⊗ĤF(S2×S1, s2; o2).
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The same line of arguments shows the general statement.

Theorem 4.1 (see Theorem 1.5 of [18]). — For closed oriented 3-mani-
folds Yi, i = 1, 2 the Heegaard Floer homology of the connected sum Y1#Y2

equals the tensor product of the Heegaard Floer homologies of the factors,
i.e.

ĤF(Y1#Y2) = H∗(ĈF(Y1)⊗ ĈF(Y2)),

where the chain complex on the right carries the natural induced boundary.

Stabilizing a Heegaard diagram of Y means, on the manifold level, to do
a connected sum with S3. We know that ĤF(S3) = Z. By the classification
of finitely generated abelian groups and the behavior of the tensor product,
invariance follows.

4.2. Independence of the Choice of Almost Complex Structures

Suppose we are given a 1-dimensional family of paths of (j, η, V )-nearly
symmetric almost complex structures (Js,t). Given a Whitney disk φ, we
define MJs,t,φ as the moduli space of Whitney disks in the homotopy class
of φ which satisfy the equation

∂φ

∂s
(s, t) + Js,t

(∂φ
∂t

(s, t)
)

= 0.

Observe that there is no free translation action on the moduli spaces as on
the moduli spaces we focused on while discussing the differential ∂̂H. We
define a map Φ̂MJs,t between the theories (ĈF(H), ∂̂Js,i) for i = 0, 1 by
defining for x ∈ Tα ∩ Tβ

Φ̂Js,t(x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,0)

#MJs,t,φ · y,

where H(x,y, 0) ⊂ π2(x,y) are the homotopy classes with expected dimen-
sion µ = 0 and intersection number nz = 0. There is an energy bound for all
holomorphic Whitney disks which is independent of the particular Whitney
disk or its homotopy class (see [17, p. 1052–1053]). Thus, the moduli spaces
are Gromov-compact manifolds, i.e. can be compactified by adding solutions
coming from broken disks, bubbling of spheres and boundary degenerations
(cf. §2.3). Since we consider the ĤF-theory we impose the condition nz = 0
which circumvents bubbling of spheres and boundary degenerations (see
§2.3).
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To check that Φ̂Js,t is a chain map, we compute

∂̂Js,1 ◦ Φ̂Js,t(x)− Φ̂Js,t ◦ ∂̂Js,0(x) =
∑

y,q
φ∈H(x,y,0),ψ∈H(y,z,1)

#MJs,t(φ)#M̂Js,1(ψ)q

−
∑

y,q
φ∈H(x,y,1),ψ∈H(y,z,0)

#M̂Js,0(φ)#MJs,t(ψ)q

=
∑

z

c(x, q) · q.

The coefficient c(x, q) is given by

∑

y,I

(
#MJs,t,φ ·#M̂Js,1,ψ −#M̂Js,0,ψ̃ ·#MJs,t,φ̃

)
, (4.1)

where I consists of pairs

(φ, φ̃) ∈ H(x,y, 0)×H(y, q, 0) and(ψ, ψ̃) ∈ H(x,y, 1)×H(y, q, 1).

Looking at the ends of the moduli spaces MJs,t(η) for η ∈ H(x, q, 1), the
gluing construction (cf. §2.3) together with the compactification argument
mentioned earlier provides the following ends:

( ⊔

η=ψ∗φ
(MJs,t(φ)× M̂Js,1(ψ))

)
#

( ⊔

η=ψ̃∗φ̃

(M̂Js,0(ψ̃)×MJs,t(φ̃))
)
, (4.2)

where the expected dimensions of φ and φ̃ are 1 and of ψ and ψ̃ they are 0.
A signed count of (4.2) precisely reproduces (4.1) and hence c(x, q) = 0 –
at least in Z2-coefficients. To make this work in general, i.e. with coherent
orientations, observe that we have the following condition imposed on the
sections:

os,t(φ) ∧ o1(ψ) = −o0(ψ̃) ∧ os,t(φ̃).

We get an identification of orientation systems, ξ say, such that Φ̂Js,t is a
chain map between

(ĈF(H), ∂̂ o
Js,0) −→ (ĈF(H), ∂̂

ξ(o)
Js,1 ).

We reverse the direction of the isotopy and define a map Φ̂Js,1−t . The com-
positions

Φ̂Js,1−t ◦ Φ̂Js,t and Φ̂Js,t ◦ Φ̂Js,1−t

are both chain homotopic to the identity. In the following we will discuss
the chain homotopy equivalence for the map Φ̂Js,t ◦ Φ̂Js,1−t .
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Define a path Js,t(τ) such that Js,t(0) = Js,t∗Js,1−t and Js,t(1) = Js,0.
The existence of this path follows from the fact that we choose the paths
inside a contractible set (cf. §2.3 or see [17]). Define the moduli space

MJs,t(τ),φ =
⋃

τ∈[0,1]

MJs,t(τ),φ.

Theorem 4.2. — For a generic choice of Js,t(τ) the moduli space
MJs,t(τ),φ is a compact manifold of dimension µ(φ) + 1.

There are two types of boundary components: the one type of boundary
component coming from variations of the Whitney disk φ which are break-
ing, bubbling or degenerations and the other type of ends coming from
variations of the almost complex structure.

We define a map

ĤJs,t(τ)(x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,−1)

#MJs,t(τ),φ · y,

where H(x,y,−1) ⊂ π2(x,y) are the homotopy classes φ with nz(φ) = 0
and expected dimension µ(φ) = −1. According to Theorem 4.2, the manifold

MJs,t(τ),φ is 0-dimensional. We claim that Ĥ is a chain homotopy between

Φ̂Js,t ◦ Φ̂Js,1−t and the identity. By definition, the equation

Φ̂Js,t ◦ Φ̂Js,1−t − id− (∂̂Js,0 ◦ ĤJs,t(τ) + ĤJs,t(τ) ◦ ∂̂Js,1) = 0 (4.3)

has to hold. Look at the ends of MJs,t,τ (ψ) for µ(ψ) = 0. This is a 1-
dimensional space, and there are the ends

( ⊔

ψ=η∗φ
M̂Js,0,η ×MJs,t(τ),φ

)
#

( ⊔

ψ=η̃∗φ̃

MJs,t(τ),η̃
× M̂Js,1,φ̃

)

coming from variations of the Whitney disk, and the ends

MJs,t(0),ψ #MJs,t(1),ψ

coming from variations of the almost complex structure.

These all together precisely produce the coefficients in equation (4.3).
Thus, the Floer homology is independent of the choice of (j, η, V )-nearly
symmetric path. Variations of η and V just change the contractible neigh-
borhood U around ξgsym(j) containing the admissible almost complex struc-
tures. So, the theory is independent of these choices, too. A j′-nearly sym-
metric path can be approximated by a j-symmetric path given that j′ is
close to j. The set of complex structures on a surface Σ is connected, so step
by step one can move from a j-symmetric path to any j′-symmetric path.
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4.3. Isotopy Invariance

Every isotopy of an arbitrary attaching circle can be divided into two
classes: creation/anhillation of pairs of intersection points and isotopies not
affecting transversality. An isotopy of an α-circle of the latter type induces
an isotopy of Tα in the symmetric product. Compactness of the Tα tells us
that there is an ambient isotopy φt carrying the isotopy. With this isotopy
we perturb the admissible path of almost complex structures as

J̃s = (φ−1
1 )∗ ◦ Js ◦ (φ1)∗

giving rise to a path of admissible almost complex structures. The diffeo-
morphism φ1 induces an identification of the chain modules. The moduli
spaces defined by Js and J̃s are isomorphic. Hence, if we denote by H the
diagram (Σ,α,β, z) and by H′ the diagram (Σ,α′,β, z), we get

H∗(ĈF(H), ∂̂JsH ) = H∗(ĈF(H′), ∂̂J̃sH′ ) = H∗(ĈF(H′), ∂̂JsH′ ), (4.4)

where the last equality follows from the considerations in §4.2. This chain of
equalities shows that the discussed isotopies can be interpreted as variations
of the almost complex structure.

The creation/cancellation of pairs of intersection points is done with an
exact Hamiltonian isotopy supported in a small neighborhood of two attach-
ing circles. We cannot use the methods from §4.2 to create an isomorphism
between the associated Floer homologies. At a certain point the isotopy vio-
lates transversality as the attaching tori do not intersect transversely. Thus,
the arguments of §4.2 for the right equality in (4.4) break down.

Consider an exact Hamiltonian isotopy ψt of an α-curve generating a
canceling pair of intersections with a β-curve. We will just sketch the ap-
proach used in this context, since the ideas are similar to the ideas intro-
duced in §4.2.

Define πΨt
2 (x,y) as the set of Whitney disks φ with dynamic boundary

conditions in the following sense:

φ(i) = x,

φ(−i) = y,

φ(0 + it) ∈ Ψt(Tα)

φ(1 + it) ⊂ Tβ

for all t ∈ R. Spoken geometrically, we follow the isotopy with the α-
boundary of the Whitney disk. Correspondingly, we define the moduli spaces
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of Js-holomorphic Whitney disks with dynamic boundary conditions as
MΨt(x,y). For x ∈ Tα ∩ Tβ define

Γ̂Ψt(x) =
∑

y∈Tα∩Tβ

∑

φ∈Ht(x,y,0)
#MΨt

Js,φ · y,

where Ht(x,y, 0) ⊂ πΨt
2 (x,y) are the homotopy classes with expected di-

mension µ = 0 and nz = 0. Using the low-dimensional model introduced in
§2, Ozsváth and Szabó prove the following property.

Theorem 4.3 (see [17], §7.3). — There exists a t-independent energy
bound for holomorphic Whitney disks independent of its homotopy class.

The existence of this energy bound shows that there are Gromov com-
pactifications of the moduli spaces of Whitney disks with dynamic boundary
conditions.

Theorem 4.4. — The map Γ̂Ψt is a chain map. Using the inverse iso-

topy we define Γ̂Ψ1−t such that the compositions Γ̂Ψt ◦ Γ̂Ψ1−t and Γ̂Ψ1−t ◦ Γ̂Ψt

are chain homotopic to the identity.

The proof follows the same lines as in §4.2. We leave the proof to the
interested reader.

4.4. Handle slide Invariance

4.4.1. The Pair-of-Pants Product

In this section we will introduce the Heegaard Floer incarnation of the
pair-of-pants product and with it associate to cobordisms maps between the
Floer homologies of their boundary components. In case the cobordisms are
induced by handle slides the associated maps are isomorphisms on the level
of homology. The maps we will introduce will count holomorphic triangles
in the symmetric product with appropriate boundary conditions. We have
to discuss well-definedness of the maps and that they are chain maps. To do
that we have to follow similar lines as it was done for the differential. Because
of the strong parallels we will shorten the discussion here. We strongly advise
the reader to first read §2 before continuing.

Definition 4.5. — A set of data (Σ,α,β, γ), where Σ is a surface of
genus g and α, β, γ three sets of attaching circles, is called a Heegaard
triple diagram.

– 302 –



Introduction to the basics of Heegaard Floer homology

We denote the 3-manifolds determined be taking pairs of these attaching
circles as Yαβ, Yβγ and Yαγ. We fix a point z ∈ Σ\{α ∪ β ∪ γ} and define
a product

f̂α,βγ: ĈF(Σ,α,β, z)⊗ ĈF(Σ,β,γ, z) −→ ĈF(Σ,α,γ, z)

by counting holomorphic triangles with suitable boundary conditions: A
Whitney triangle is a map φ: ∆ −→ Symg(Σ) with boundary conditions
as illustrated in Figure 4. We call the respective boundary segments its α-
, β- and γ-boundary. The boundary points, as should be clear from the
picture, are x ∈ Tα∩Tβ, q ∈ Tα∩Tγ and y ∈ Tβ∩Tγ. The set of homotopy
classes of Whitney disks connecting x, q and y is denoted by π2(x,y, q).

q

x

y

T T

T

α β

γ

Figure 4. — A Whitney triangle and its boundary conditions.

Denote by M∆
φ the moduli space of holomorphic triangles in the homo-

topy class of φ. Analogous to the case of disks we denote by µ(φ) its ex-
pected/formal dimension. For x ∈ Tα ∩ Tβ define

f̂α,βγ(x⊗ y) =
∑

w∈Tα∩Tγ

∑

φ∈H(x,y,q,0)

#M∆
φ · q,

where H(x,y, q, 0) ⊂ π2(x,y, q) is the subset with µ = 0 and nz = 0. The
set of homotopy classes of Whitney disks fits into an exact sequence

0 −→ π2(Symg(Σ)) −→ π2(x,y, q) −→ ker(nz) −→ 0, (4.5)

where nz provides a splitting for the sequence. We define

Xαβγ =
(∆× Σ) ∪ eα × Uα ∪ eβ × Uβ ∪ eγ × Uγ

(eα × Σ) ∼ (eα × ∂Uα), (eβ × Σ) ∼ (eβ × ∂Uβ), (eγ × Σ) ∼ (eγ × ∂Uγ)
,

where Uα, Uβ and Uγ are the handlebodies determined by the 2−handles
associated to the attaching circles α, β and γ, and eα, eβ and eγ are the
edges of the triangle ∆. The manifold Xαβγ is 4-dimensional with boundary

∂Xαβγ = Yαβ # Yβγ # −Yαγ.
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Lemma 4.6 (pp. 1094–1095 of [17]). — The kernel of nz equals H2(Xαβγ;Z)

Combining (4.5) with Lemma 4.6 we get an exact sequence

0 −→ π2(Symg(Σ)) −→ π2(x,y, q)
H−→H2(Xαβγ;Z) −→ 0, (4.6)

where H is defined similarly as for disks (cf. §2.2). Of course there is a
low-dimensional model for triangles and the discussion we have done for
disks carries over verbatim for triangles. The condition nz = 0 makes the
product fα;βγ well-defined in case H2(Xαβγ;Z) is trivial. Analogous to
our discussion for Whitney disks and the differential, we have to include
a condition controlling the periodic triangles, i.e. the triangles associated
to elements in H2(Xαβγ;Z). A domain D of a triangle is called triply-
periodic if its boundary consists of a sum of α-,β- and γ-curves such that
nz = 0.

Definition 4.7. — A pointed triple diagram (Σ,α,β,γ, z) is called
weakly admissible if all triply-periodic domains D which can be writ-
ten as a sum of doubly-periodic domains have both positive and negative
coefficients.

This condition is the natural transfer of weak-admissibility from disks
to triangles. One can show that for given j, k ∈ Z there exist just a finite
number of Whitney triangles φ ∈ π2(x,y, q) with µ(φ) = j, nz(φ) = k and
D(φ) � 0.

For a given homotopy class ψ ∈ π2(x,y, q) with µ(ψ) = 1 we compute
the ends by shrinking a properly embedded arc to a point (see the de-
scription of convergence in §2.3). There are three different ways to do this
in a triangle. Each time we get a concatenation of a disk with a triangle.
By boundary orientations we see that each of these boundary components
contributes to one of the terms in the following sum

f̂α,βγ ◦ (∂̂αβ(x)⊗ y) + f̂α,βγ ◦ (x⊗ ∂̂βγ(y))− ∂̂αγ ◦ f̂α,βγ(x⊗ y). (4.7)

Conversely, the coefficient at any of these terms is given by a product of
signed counts of moduli spaces of disks and moduli spaces of triangles and
hence – by gluing – comes from one of these contributions. The sum in (4.7)

vanishes, showing that f̂α,βγ descends to a pairing f̂∗α,βγ between the Floer

homologies.

4.4.2. Holomorphic rectangles

Recall that the set of biholomorphisms of the unit disk is a 3-dimensional
connected family. If we additionally fix a point we decrease the dimension of
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that family by one. A better way to formulate this is to say that the set of
biholomorphishms of the unit disk with one fixed point is a 2-dimensional
family. Fixing two further points reduces to a 0-dimensional set. If we ad-
ditionally fix a fourth point the rectangle together with these four points
uniquely defines a conformal structure. Variation of the fourth point means
a variation of the conformal structure. Indeed one can show that there is a
uniformization of a holomorphic rectangle, i.e. a rectangle with fixed con-
formal structure, which we denote by �,

� −→ [0, l]× [0, h],

where the ratio l/h uniquely determines the conformal structure. With
this uniformization we see that M(�) ∼= R. The uniformization is area-
preserving and converging to one of the ends of M(�) means to stretch the
rectangle infinitely until it breaks at the end into a concatenation of two
triangles.

Theorem 4.8 (see Lemma 9.6 of [17]). — Given another set of attach-

ing circles δ defining a map f̂α,γδ, the following equality holds:

f̂∗α,βγ(f̂
∗
α,γδ( · ⊗ ·)⊗ ·)− f̂∗α,βδ( · ⊗ f̂∗β,γδ( · ⊗ ·)) = 0. (4.8)

This property is called associativity.

Figure 5. — Ends of the moduli space of holomorphic rectangles.

If we count holomorphic Whitney rectangles with boundary conditions
in α, β, γ and δ and with µ = 1 (see Definition 2.6) the ends of the
associated moduli space will look like pictured in Figure 5. Note that we
are talking about holomorphicity with respect to an arbitrary conformal
structure on the rectangle. There will be two types of ends. We will have a
degeneration into a concatenation of triangles by variation of the conformal
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structure on the rectangle and breaking into a concatenation of a rectangle
with a disk by variation of the rectangle. By Figure 5 an appropriate count
of holomorphic rectangles will be a natural candidate for a chain homotopy
proving equation (4.8). Define a pairing

H: ĈF(Σ,α,β, z)⊗ ĈF(Σ,β,γ, z)⊗ ĈF(Σ,γ, δ, z) −→ ĈF(Σ,α, δ, z)

by counting holomorphic Whitney rectangles with boundary components as
indicated in Figure 6 and µ = 0. By counting ends of the moduli space of
holomorphic rectangles with µ = 1 we have six contributing ends. These
ends are pictured in Figure 5. The four ends coming from breaking con-
tribute to

∂̂ ◦H( · ⊗ · ⊗ ·) + H ◦ ∂̂( · ⊗ · ⊗ ·). (4.9)

In addition there are two ends coming from degenerations of the conformal
structure on the rectangle. These give rise to

f̂α,βγ(f̂α,γδ( · ⊗ ·)⊗ ·)− f̂α,βδ( · ⊗ f̂β,γδ( · ⊗ ·)). (4.10)

T

T

T

T

β

α δ

γ

Figure 6. — The boundary conditions of rectangles for the definition of H.

We see that the sum of (4.9) and (4.10) vanishes, showing that H is a
chain homotopy proving associativity.

4.4.3. Special Case – Handle Slides

Handle slides provide special Heegaard triple diagrams. Let (Σ,α,β, z)
be an admissible pointed Heegaard diagram and define (Σ,α,γ, z) by han-
dle sliding β1 over β2. We push the γi off the βi to make them intersect
transversely in two cancelling points. This defines a triple diagram, and
obviously Yβγ equals the connected sum #g(S2 × S1).

A very important observation is that the Heegaard Floer groups of con-
nected sums of S2×S1 admit a top-dimensional generator. By Example 2.3
and Theorem 4.1,

ĤF(#g−1(S2 × S1), o0) ∼= Z2g−2 ∼= H∗(T
g;Z),
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where the last identification is done using the
∧∗(H1/Tor)-module struc-

ture on the Heegaard Floer homology groups (see [17, Lemma 9.1] and [17,
Proposition 4.17]). We claim that the behavior of the Heegaard Floer groups
under connected sums can be carried over to the module structure, and thus
it remains to show the assertion for the case g = 1. But this is not hard to
see.

Each pair (βi, γi) has two intersections x+
i and x−i . Which one is denoted

how is determined by the following criterion: there is a disk-shaped domain
connecting x+

i with x−i with boundary in βi and γi. The point

x+ = {x+
1 , . . . ,x

+
g }

is a cycle whose associated homology class is the top-dimensional generator
we denote by Θ̂βγ . For a detailed treatment of the top-dimensional generator
we point the reader to [17, §9.1].

Plugging in the generator we define a map

F̂α,βγ = f̂∗α,βγ( · ⊗ Θ̂βγ): ĤF(Σ,α,β, z) −→ ĤF(Σ,α,γ, z)

between the associated Heegaard Floer groups. Our intention is to show
that this is an isomorphism.

We can slide the γ1 back over γ2 to give another set of attaching circles
we denote by δ. Of course we make the curves intersecting all other sets of
attaching circles transversely and introduce pairs of intersections points of
the δ-curves with the γ-and β-curves.

Let F̂α,γδ be the associated map. Then the associativity given in (4.8)

translates into

f̂∗α,βγ(f̂
∗
α,γδ( · ⊗ Θ̂γδ)⊗ Θ̂βγ)− f̂∗α,βδ( · ⊗ f̂∗β,γδ(Θ̂βγ ⊗ Θ̂γδ)) = 0.

The proof of the following lemma will be done in detail. It is the first explicit
calculation using the low-dimensional model in a non-trivial manner.

Lemma 4.9 (see Lemma 9.7 of [17]). — Given the map f̂α,γδ, we have

f̂β,γδ(Θ̂βγ ⊗ Θ̂γδ) = Θ̂βδ.

Hence, we have F̂β,γδ(Θ̂βγ) = Θ̂βδ.

Proof. — The complement of the β-circles in Σ is a sphere with holes.
We have a precise description of how the sets γ and δ look like relative
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to β. The Heegaard surface cut open along the β-curves can be identified
with a sphere with holes by using an appropriate diffeomorphism. Doing so,
the diagram (Σ,β,γ, δ) will look like given in Figure 7. In each component
we have to have a close look at the domains D1, D2 and D3. To improve
the illustration in the picture we have separated them. There are exactly
two domains contributing to holomorphic triangles with boundary points
in {Θ̂βγ, Θ̂γδ}, namely D1 and D3. The domain D3 can be written as a
sum of D1 and D2, the former carrying µ = 0, the latter carrying µ =
1. Consequently, every homotopy class of triangles using D3-domains can
be written as a concatenation of a triangle with a disk with the expected
dimensions greater than or equal to those mentioned. Consequently, the
expected dimension of the triangle using a D3-domain is strictly bigger than
zero and thus does not contribute to F̂β,γδ(Θ̂βγ ⊗ Θ̂γδ). All holomorphic
triangles relevant to us have domains which are a sum ofD1-domains. Taking
boundary conditions into account we see that we need a D1-domain in each
component. Thus, there is a unique homotopy class of triangles interesting
to us. By the Riemann mapping theorem there is a unique holomorphic

map φ̂: D̂2 −→ Σ from a surface with boundary whose associated domain
equals the sum of D1-domains. The map φ̂ is a biholomorphism and, thus,

D̂2 is a disjoint union of triangles. The uniqueness of φ̂ tells us that the
number of elements in the associated moduli space equals the number of

non-equivalent g-fold branched coverings D̂2 −→ D2. Since D̂2 is a union
of g disks, this covering is unique, too (up to equivalence) and, thus, the
associated moduli space is a one-point space. �

Lemma 4.9 and (4.4) combine to give the composition law

F̂α,βδ = F̂α,γδ ◦ F̂α,βγ.

We call a holomorphic triangle small if it is supported within the thin strips
of isotopy between β and δ.

Lemma 4.10 (see Lemma 9.10 of [17]). — Let F : A −→ B be a map of
filtered groups such that F can be decomposed into F0 + l, where F0 is a
filtration-preserving isomorphism and l(x) < F0(x). Then, if the filtration
on B is bounded from below, the map F is an isomorphism of groups.

There are two important observations to make. The first is that we can
equip the chain complexes with a filtration, called the energy filtration
(cf. [17, p. 1122]), which is indeed bounded from below. In this situation the

top-dimensional generator Θ̂βδ is generated by a single intersection point

x+ ∈ Tβ ∩ Tδ. The map F̂α,βδ is induced by

f̂α,βδ( · ⊗ x+),
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which in turn can be decomposed into a sum of f0 and l, where f0 counts
small holomorphic triangles and l those triangles whose support is not con-
tained in the thin strips of isotopy between β and δ. The map f0 is filtration
preserving and l, if the δ-curves are close enough to the β-curves, strictly
decreasing. By Lemma 4.10 the map F̂α,βδ is an isomorphism between the
associated Heegaard Floer homologies.

D1

D2
D3

z

θ

θ

θ

γ

δ
β

γδ

βδ

βδ

βγ

θ

Figure 7. — The Heegaard surface cut open along the β-curves.

To conclude topological invariance we have to see that the following
claim is true.

Theorem 4.11. — Two pointed admissible Heegaard diagrams associ-
ated to a 3-manifold are equivalent after a finite sequence of Heegaard moves,
each of them connecting two admissible Heegaard diagrams, which can be
done in the complement of the base-point z.

The only situation where the point z seems to be an obstacle arises
when trying to isotope an attaching circle, α1 say, over the base-point z.
But observe that cutting the α-circles out of Σ we get a sphere with holes.
We can isotope α1 freely and pass the holes by handle slides. Thus, the
requirement not to pass z is not an obstruction at all. Instead of passing z
we can go the other way around the surface by isotopies and handle slides.
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5. Knot Floer Homologies

Knot Floer homology is a variant of the Heegaard Floer homology of a
manifold. Recall that the Heegaard diagrams used in Heegaard Floer the-
ory come from handle decompositions relative to a splitting surface. Given
a knot K ⊂ Y , we can restrict to a subclass of Heegaard diagrams by re-
quiring the handle decomposition to come from a handle decomposition of
Y \νK relative to its boundary. Note that at first in the literature the knot
Floer variants were defined for homologically trivial knots only. However,
the definition can be carried over nearly one-to-one to give a well-defined
topological invariant for arbitrary knot classes. However, in the homologi-
cally trivial case it is possible to subdivide the groups in a special manner
giving rise to a refined invariant, which cannot be defined in the non-trivial
case.

Given a knot K ⊂ Y , we can specify a certain subclass of Heegaard
diagrams.

Definition 5.1. — A Heegaard diagram H = (Σ,α,β) is said to be
subordinate to the knot K if K is isotopic to a knot lying in Σ and K
intersects β1 once, transversely and is disjoint from the other β-circles.

Since K intersects β1 once and is disjoint from the other β-curves we
know that K intersects the core disk of the 2-handle, represented by β1,
once and is disjoint from the others (after possibly isotoping the knot K).

Lemma 5.2. — Every pair (Y,K) admits a Heegaard diagram subordi-
nate to K.

Proof. — By surgery theory (see [7, p. 104]) we know that there is a
handle decomposition of Y \νK, i.e.

Y \νK ∼= (T 2 × [0, 1]) ∪∂ h
1
2 ∪∂ . . . h

1
g ∪∂ h

2
1 ∪∂ . . . ∪∂ h

2
g ∪∂ h

3

We close up the boundary T 2 × {0} with an additional 2-handle h2∗
1 and a

3-handle h3 to obtain

Y ∼= h3 ∪∂ h
2∗
1 ∪∂ (T 2 × I) ∪∂ h

1
2 ∪∂ . . . h

1
g ∪∂ h

2
1 ∪∂ . . . ∪∂ h

2
g ∪∂ h

3. (5.1)

We may interpret h3 ∪∂ h
2∗
1 ∪∂ (T 2× [0, 1]) as a 0-handle h0 and a 1-handle

h1∗
1 . Hence, we obtain the following decomposition of Y :

h0 ∪∂ h
1∗
1 ∪∂ h

1
2 ∪∂ . . . ∪∂ h

1
g ∪∂ h

2
1 ∪∂ . . . ∪∂ h

2
g ∪∂ h

3.

We get a Heegaard diagram (Σ,α,β) where α = α∗1 ∪ {α2, . . . , αg} are the
co-cores of the 1-handles and β = {β1, . . . , βg} are the attaching circles of
the 2-handles. �
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Having fixed such a Heegaard diagram (Σ,α,β) we can encode the knot
K in a pair of points. After isotoping K onto Σ, we fix a small interval I in
K containing the intersection point K ∩ β1. This interval should be chosen
small enough such that I does not contain any other intersections of K with
other attaching curves. The boundary ∂I of I determines two points in Σ
that lie in the complement of the attaching circles, i.e. ∂I = z − w, where
the orientation of I is given by the knot orientation. This leads to a doubly-
pointed Heegaard diagramH = (Σ,α,β, w, z). Conversely, a doubly-pointed
Heegaard diagram uniquely determines a topological knot class: Connect z
with w in the complement of the attaching circles α and β\β1 with an arc δ
that crosses β1 once. Connect w with z in the complement of β using an arc
γ. The union δ∪γ is represents the knot klass K represents. The orientation
on K is given by orienting δ such that ∂δ = z − w. If we use a different
path γ̃ in the complement of β, we observe that γ̃ is isotopic to γ (in Y ):
Since Σ\β is a sphere with holes an isotopy can move γ across the holes by
doing handle slides. Isotope the knot along the core disks of the 2-handles
to cross the holes of the sphere. Indeed, the knot class does not depend on
the specific choice of δ-curve.

The knot chain complex ĈFK(H) is the free Z2-module (or Z-module)

generated by the intersections Tα ∩ Tβ. The boundary operator ∂̂w
H, for

x ∈ Tα ∩ Tβ, is defined by

∂•,•H (x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,1)

#M̂φ · y,

where H(x,y, 1) ⊂ π2(x,y) are the homotopy classes with µ = 1 and

nz = nw = 0. We denote by ĤFK(Y,K) the associated homology theory

H∗(ĈFK(H), ∂•,•H ). The crucial observation for showing invariance is that
two Heegaard diagrams subordinate to a given knot can be connected by
moves that respect the knot complement.

Lemma 5.3 ([14]). — Let (Σ,α,β, z, w) and (Σ′,α′,β′, z′, w′) be two
Heegaard diagrams subordinate to a given knot K ⊂ Y . Let I denote the
interval inside K connecting z with w, interpreted as sitting in Σ. Then
these two diagrams are isomorphic after a sequence of the following moves:

(m1) Handle slides and isotopies among the α-curves. These isotopies may
not cross I.

(m2) Handle slides and isotopies among the β2, . . . , βg. These isotopies
may not cross I.

(m3) Handle slides of β1 over the β2, . . . , βg and isotopies.

(m4) Stabilizations/destabilizations.
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For the convenience of the reader we include a short proof of this lemma.

Proof. — By [7, Theorem 4.2.12] we can transform two relative handle
decompositions into each other by isotopies, handle slides and handle cre-
ation/annihilation of the handles written at the right of T 2 × [0, 1] in (5.1).
Observe that the 1-handles may be isotoped along the boundary T 2 × {1}.
Thus, we can transform two Heegaard diagrams into each other by handle
slides, isotopies, creation/annihilation of the 2-handles h2

i and we may slide
the h1

i over h1
j and over h1∗

1 (the latter corresponds to h1
i sliding over the

boundary T 2 × {1} ⊂ T 2 × I by an isotopy). But we are not allowed to
move h1∗

1 off the 0-handle. In this case we would lose the relative handle
decomposition. In terms of Heegaard diagrams we see that these moves ex-
actly translate into the moves given in (m1) to (m4). Just note that sliding
the h1

i over h1∗
1 , in the dual picture, looks like sliding h2∗

1 over the h2
i . This

corresponds to the move (m3). �

Proposition 5.4. — Let K ⊂ Y be an arbitrary knot. The knot Floer
homology group ĤFK(Y,K) is a topological invariant of the knot type of K
in Y . These homology groups split with respect to Spinc(Y ).

Proof. — Given one of the moves (m1) to (m4), the associated Hee-
gaard Floer homologies are isomorphic, which is shown using one of the
isomorphisms given in §4. Each of these maps is defined by counting holo-
morphic disks with punctures, whose properties are shown by defining maps
by counting holomorphic disks with punctures.

Isotopies/Almost Complex Structure. Denote by J the path of
almost complex structures used in the definition of the Heegaard Floer ho-
mologies. Let M be an isotopy or perturbation of J . Let Φ̂ be the isomor-
phism induced by M . We split the isomorphism up into

Φ̂ = Φ̂w + Φ̂ 
=,

where Φ̂w is defined by counting holomorphic disks with punctures (for
a precise definition look into §4.2 and §4.3) that fulfill nw = 0. Let us

denote with M0 the associated moduli space used to define the map Φ̂.
The index indicates the value of the index µ. The chain map property of
Φ̂ was shown by counting ends of M1 which contains the same objects we
needed to define Φ̂ but now with the index fulfilling µ = 1 (see Definition
2.6). We restrict our attention to Mw

0 and Mw
1 , the superscript w indicates

that we look at the holomorphic elements in M0 (or M1 respectively) with
intersection number nw = 0: The additivity of the intersection number nw

and the positivity of intersections guarantees that the ends ofMw
1 lie within

the space Mw
0 provided that M respects the point w. If M is an isotopy,
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respecting w means that no attaching circle crosses the point w. If M is a
perturbation of J , respecting w means, that we perturb J through nearly
symmetric almost complex structures such that V (cf. Definition 2.19) also
contains {w} × Symg−1(Σ). Hence, we have the equality

(∂M1)
w = ∂Mw

1 .

Thus, Φ̂w has to be a chain map between the respective knot Floer homolo-
gies. To show that Φ̂ is an isomorphism, we invert the move M we have done
and construct the associated morphism Ψ̂. To show that Ψ̂ is the inverse,
we construct a chain homotopy equivalence between Ψ̂ ◦ Φ̂ and the identity
(or between Φ̂ ◦ Ψ̂ and the identity) by counting elements of Mch

0 which
are defined by constructing a family of moduli spaces Mτ

−1, τ ∈ [0, 1], and
combining them to

Mch
0 :=

⊔

τ∈[0,1]

Mτ
−1.

The spaces Mτ
−1 are defined like done in §4.2 and §4.3. We show the chain

homotopy equation by counting ends of Mch
1 . Restricting our attention to

Mch,w, this space consists of the union of spaces Mτ,w
−1 , τ ∈ [0, 1] (cf. §4.2

and §4.3). We obtain the equality

(∂Mch
0 )w = ∂Mch,w

0 .

And hence we see that Φ̂w is an isomorphism.

Handle slides. In case of the knot Floer homology we are able to define
a pairing

f̂α,βγ: ĈFK(Σ,α,β, w, z)⊗ ĈFK(Σ, β, γ, w, z) −→ ĈFK(Σ, α, γ, w, z)

induced by a doubly-pointed Heegaard triple diagram (Σ,α,β,γ, w, z). We
have to see, that in case the triple is induced by a handle slide, the knot
Floer homology ĤFK(Σ,β,γ, w, z) carries a top-dimensional generator Θ̂βγ,
analogous to the discussion for the Heegaard Floer homologies, with similar
properties (recall the composition law). It is easy to observe that, in case of
a handle slide, the points w and z lie in the same component of Σ\{β∪ γ}.
Hence, we have an identification

ĤFK(Σ,β,γ, w, z) = ĤF(#g(S2 × S1)).

Counting triangles with nw = 0, the positivity of intersections and the
additivity of the intersection number nw guarantees that the discussion
carries over verbatim and gives invariance here. �
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Remark 5.1. — If a handle were slid over β1, we would leave the class of
subordinate Heegaard diagrams. Recall that subordinate Heegaard diagrams
come from relative handle decompositions.

5.0.4. Admissibility

The admissibility condition given in Definition 2.17 suffices to give a
well-defined theory. However, since we have an additional point w in the
game, we can relax the admissibility condition.

Definition 5.5. — We call a doubly-pointed Heegaard diagram (Σ,α,β,
w, z) extremely weakly admissible for the Spinc-structure s if for every
non-trivial periodic domain, with nw = 0 and 〈c1(s),H(D)〉 = 0, the domain
has both positive and negative coefficients.

With a straightforward adaptation of the proof of well-definedness in the
case of ∂̂H we get the following result (see [17, Lemma 4.17], cf. Definition
2.17 and cf. proof of Theorem 2.3).

Theorem 5.6. — Let H = (Σ,α,β, w, z) be an extremely weakly admis-

sible Heegaard diagram. Then ∂̂w
H is well-defined and a differential. �

Note that Ozsváth and Szabó impose the weak admissibility condition of
the Heegaard diagram (Σ,α,β, z). The introduction of our relaxed condition
is done since there are setups (see [26]) where it is convenient to relax the
admissibility condition like introduced.

5.0.5 Other knot Floer homologies

By permitting variations of nz in the differential we define the homology
HFK•,−: Let CFK•,−(Y,K) be the Z[U−1]-module (or Z2[U

−1]-module)
generated by the intersection points Tα ∩ Tβ. A differential ∂•,−H is defined
by

∂•,−H (x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,1)

#M̂φ · y,

where H(x,y, 1) ⊂ π2(x,y) are the homotopy classes with nw = 0 (possibly
nz �= 0) and µ = 1. To make this a well-defined map we may impose the
strong admissibility condition on the underlying Heegaard diagram or relax
it like it was done for weak admissibility in Definition 5.5. Using this con-
struction, and continuing like in §3, we define variants we denote by HFK•,∞

and HFK•,+. The groups are naturally connected by exact sequences anal-
ogous to those presented in Lemma 3.3.
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5.1. Refinements

If the knot K is null-homologous, we get, using a Mayer-Vietoris com-
putation, that

Spinc(Y0(K)) = Spinc(Y )× Z. (5.2)

Alternatively, by interpretation of Spinc-structures as homology classes of
vector fields, i.e. homotopy classes over the 2-skeleton of Y , we can prove
this result and see that there is a very geometric realization of the corre-
spondence (5.2). Given a Spinc-structure t on Y0(K), we associate to it the
pair (s, k), where s is the restriction of t on Y and k an integer we will de-
fine in a moment. Beforehand, we would like to say in what way the phrase
restriction of t onto Y makes sense. Pick a vector field v in the homology
class of t and restrict this vector field to Y \νK. Observe that we may re-
gard Y \νK as a submanifold of Y0(K). The restricted vector field may be
interpreted as sitting on Y . We extend v to the tubular neighborhood νK of
K in Y , which determines a Spinc-structure s on Y . However, the induced
Spinc-structure does not depend on the special choice of extension of v on
νK, since K is homologically trivial.

To a Spinc-structure t we can associate a link Lt and its homology class
determines the Spinc-structure. Denote by µ0 a meridian of K in Y , inter-
preted as sitting in Y0(K). Then Lt can be written as a sum

Lt = k · µ0 + . . . ,

and thus we can compute k with

k = lkY (L, λ) = #Y (L,F ) = #Y0(K)(L, F̂ ) =
〈1

2
c1(t), [F̂ ]

〉
,

where λ is a push-off of K in Y and F̂ is obtained by taking a Seifert surface
F of K in Y and capping it off with a disk in Y0(K).

We can try to separate intersection points Tα∩Tβ with respect to Spinc-

structures of Y0(K). This defines a refined invariant ĈFK(Y,K, t), for every
t ∈ Spinc(Y0(K)), and we have

ĈFK(Y,K, s) =
⊕

t∈Hs

ĈFK(Y,K, t),

where Hs ⊂ Spinc(Y0(K)) are the elements extending s ∈ Spinc(Y ). We
have to show that the differential preserves this splitting. We point the
interested reader to [14].
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6. Maps Induced By Cobordisms

The pairing introduced in §4.4 can be used to associate maps to cobor-
disms. In general, every cobordism between two connected 3-manifolds Y
and Y ′ can be decomposed into 1-handles, 2-handles and 3-handles (cf. [7,
Proposition 4.2.13]). All cobordisms appearing through our work will be
induced by surgeries on a 3-manifold. A surgery corresponds to a 2-handle
attachment to the trivial cobordism Y ×I. For this reason we will not discuss
1-handles and 3-handles. We will give the construction for cobordisms ob-
tained by attachments of one single 2-handle. For a definition of the general,
very similar construction, we point the interested reader to [19].

Given a framed knot K ⊂ Y , we fix an admissible Heegaard diagram
subordinate to K. Without loss of generality, we can choose the diagram
such that β1 = µ is a meridian of the first torus component of Σ. The
framing of K is given, by pushing K off itself onto the Heegaard surface.
The resulting knot on Σ is determined by λ + n · µ, for a suitable n ∈ Z.
With this done, we can represent the surgery by the Heegaard triple diagram
(Σ,α,β,γ) where γi, i � 2, are isotopic push-offs of the βi, perturbed, such
that γi intersects βi in a pair of cancelling intersection points. The curve γ1

equals λ + n · µ.

Proposition 6.1. — The cobordism Xαβγ ∪∂ (#g−1D3 × S1) is diffeo-
morphic to the cobordism WK given by the framed surgery along K.

We define
F̂WK

= f̂∗α;βγ

as the map induced by the cobordism WK . Of course, for this to make
sense, we have to show that F̂WK

does not depend on the choices made in
its definition. This is shown by the following recipe: Suppose we are given
maps F̂1 and F̂2, induced by two sets of data that can be connected via a
Heegaard move. Then these maps fit into a commutative box

ĤF
F̂1−−−→ ĤF

∼=

�

�
∼=

ĤF
F̂2−−−→ ĤF

where the associated Heegaard Floer homologies are connected by the iso-
morphism induced by the move done to connect the diagrams. If we did
a handle slide, we use associativity together with a conservation property
analogous to Lemma 4.9 to show a composition law reading

F̂α,γγ′ ◦ F̂α,βγ = F̂α,βγ′ .
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In a similar vein one covers handle slides among the α-circles. Invariance
under isotopies and changes of almost complex structures is shown by prov-
ing that the isomorphisms induced by these moves make the corresponding
diagram commute.

Given a framed link L = K1 # . . . #Km, observe that we can obviously
define a map

F̂L: ĤF(Y ) −→ ĤF(YL),

where YL is the manifold obtained by surgery along L in Y , in the same
way we did for a single attachment. We claim that associativity, together
with a conservation law like given in Lemma 4.9, will suffice to show that
the map F̂L associated to multiple attachments is a composition

F̂L = F̂Km ◦ . . . ◦ F̂K1

of the maps F̂Ki associated to the single attachments along the Ki. The
associativity will prove that the maps in this chain commute. Although we
have to be careful by saying they commute. The maps, as we change the
order of the attachments, are defined differently and, thus, differ depending
on the attachment order.

There is a procedure for defining maps associated to 1-handle attach-
ments and 3-handle attachments. Their construction is not very enlighten-
ing, and the cobordisms appearing in our discussions will mostly be induced
by surgeries.

7. The Surgery Exact Triangle

Denote by K a knot in Y and let n be a framing of that knot. We will
briefly recall the notion of framings to fix the notation. Given a tubular
neighborhood νK ↪→ Y of K, we fix a meridian µ of the boundary ∂νK. A
framing is given by a push-off n of K, sitting on ∂νK, such that #(µ, n) = 1.
The pair µ, λ determines a basis for H1(∂νK;Z). Any other framing λ′ can
be written as λ′ = m · µ + λ for an integer m ∈ Z and, vice versa, any of
these linear combinations determines a framing on K. Thus, when writing
n as a framing for K it makes sense to talk about the framing n + µ. If
the knot is homologically trivial, it bounds a Seifert surface which naturally
induces a framing on the knot called the Seifert framing. This serves as
a canonical framing and having fixed this framing we can think of framings
as integers n ∈ Z. This identification will be done whenever it makes sense.

There is a long exact sequence

. . .
∂∗−−−→ ĤF(Y )

F̂1−−−→ ĤF(Y n
K)

F̂2−−−→ ĤF(Y n+µ
K )

∂∗−−−→ . . . , (7.1)
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where F̂i denote the maps associated to the cobordisms induced by the
surgeries. The map F̂2 is induced by a surgery along a meridian of K with
framing −1. The exactness of the sequence is proved by showing that F̂1 –
on the chain level – can be perturbed within its chain homotopy class to
fit into a short exact sequence of chain complexes and chain maps (see [18,
Proposition 9.7])

0 −−−→ ĈF(Y )
˜̂F1−−−→ ĈF(Y n

K)
F̂2−−−→ ĈF(Y n+µ

K )
∂∗−−−→ 0, (7.2)

The map ∂∗ in (7.1) denotes the induced coboundary. This enables us to
prove the existence of the surgery exact triangle.

Theorem 7.1. — In the situation described above, let ν denote a merid-
ian of µ and F̂3 the map induced by surgery along ν with framing −1. There
is a long exact sequence

HF(Y )
F1

HF(Y n
K)

F2
HF(Y n+θ

K )

F3

which is called surgery exact triangle.

n n+ n n n n n

K K K K K K K

1 0 1 1

1 0

µ

µ µ µ µν ν

Figure 8. — The topological situation in the exact triangle.

Proof. — Observe that the topological situation is very symmetric. The
long exact sequence (7.1) corresponds to the topological situation pictured
in Figure 8. Each arrow in Figure 8 corresponds to an exact sequence of type
(7.1). With the identifications given, we can concatenate the three sequences
to give the surgery exact sequence of Theorem 7.1. �

A second proof, one more appealing to our aesthetic sense, although
only valid for Z2-coefficients, was also developed by Ozsváth and Szabó. We
will discuss the proof in the remainder of this section. It contains a very
interesting algebraic approach for showing exactness of a sequence.

The composition f̂2 ◦ f̂1 in the sequence

ĈF(Y )
f̂1−−−→ ĈF(Y n

K)
f̂2−−−→ ĈF(Y n+µ

K ) (7.3)
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is null-chain homotopic. Let (Σ,α,β, z) be a Heegaard diagram subordinate
to the knot K ⊂ Y . We can choose the data such that β1 is a meridian of
the first torus component of Σ. A Heegaard diagram of Y n

K can be described
by (Σ,α,γ, z) where γi, i � 2, are isotopic push-offs of the βi such that
βi and γi meet transversely in two canceling intersections. The curve γ1

equals n · β1 + λ where λ is the longitude of the first torus component of Σ
determining the framing on K. We define a fourth set of attaching circles
δ where δi, i � 2 are push-offs of the γi which meet the γi and δi in two
cancelling intersections. The curve δ1 equals (n+1)β1 +λ. Thus, (Σ,α, δ) is

a Heegaard diagram of Y n+µ
K . By associativity (4.8), the composition f̂2 ◦ f̂1

is chain homotopic to

f̂α;βδ( · ⊗ f̂β;γδ(Θ̂βγ ⊗ Θ̂γδ)),

where the chain homotopy H is given by counting holomorphic rectangles
with suitable boundary conditions (cf. §4.4). To compute f̂β;γδ(Θ̂βγ⊗ Θ̂γδ)
we use a model calculation. Figure 9 illustrates the Heegaard triple diagram.

z

1

1

1
2 2

2

δ

β
β γ

δγδ

γδ

βγ

θ

θ

θ

γ

Figure 9. — Heegaard triple diagram for the computation of f̂β,γδ(Θ̂βγ ⊗ Θ̂γδ).

There are exactly two homotopy classes of Whitney triangles we have
to count. Each domain associated to the homotopy classes is given by a
disjoint union of triangles. Thus, the moduli spaces associated to these
homotopy classes each carry one single element (cf. Lemma 4.9). Hence,
in Z2-coefficients

f̂β;γδ(Θ̂βγ ⊗ Θ̂γδ) = 2 · Θ̂βδ = 0.

In general we have to see that we can choose the signs of the associated
elements differently. But observe that the domains of both homotopy classes

– 319 –



Bijan Sahamie

contributing in our signed count differ by a triply-periodic domain. We can
choose the signs on these elements differently.

This discussion carries over verbatim for any of the maps in the surgery
exact sequence. The symmetry of the situation, as indicated in Figure 8,
makes it possible to carry over the proof given here.

There is an algebraic trick to show exactness on the homological level.
Let

H: ĈF(Y ) −→ ĈF(Y n+µ
K )

denote the null-homotopy of f̂2 ◦ f̂1 (cf. §4.4). Define the chain complex

A
f̂1,f̂2

to be given by the module A = ĈF(Y )⊕ ĈF(Y n
K)⊕ ĈF(Y n+µ

K ) with

the differential

∂ =



∂̂Y 0 0
f̂1 ∂̂Y n

K
0

H f̂2 ∂̂Y n+µ
K


 .

Lemma 7.2. — The sequence (7.3) is exact on the homological level at

ĈF(Y n
K) if the homology H∗(Af̂1,f̂2

) is trivial.

Proof. — Suppose we are given an element b ∈ ĈF(Y n
K) ∩ ker(f̂2) with

∂̂Y n
K
b = 0. Since H∗(Af̂1,f̂2

, ∂) is trivial there is an element (x, y, q) ∈ A such

that (0, b, 0) = ∂(x, y, q). Thus, we have

b = f̂1(x) + ∂̂Y n
K

(y)

proving, that [b] ∈ im(F̂1). �

Definition 7.3. — For a chain map f : A −→ B between Z2-vector
spaces we define its mapping cone to be the chain complex M(f), given
by the module A⊕B with differential

∂f = ( ∂A 0f ∂B .)

The mapping cone is a chain complex.

From the definition of mapping cones there is a short exact sequence of
chain complexes

0 −−−→ ĈF(Y n+µ
K )

f̂1−−−→ A
f̂1,f̂2

f̂2−−−→ M(f̂1) −−−→ 0

inducing a long exact sequence between the associated homologies. The
connecting morphism of this long exact sequence is induced by

(H, f̂2): M(f̂1) −→ ĈF(Y n+µ
K ).
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The triviality of H∗(Af̂1,f̂2
, ∂) is the same as saying that (H, f̂2)∗ is an

isomorphism.

Lemma 7.4 (Lemma 4.2 of [20],) Let {Ai}i∈Z be a collection of mod-
ules and let

{fi: Ai −→ Ai+1}i∈Z
be a collection of chain maps such that fi+1◦fi, i ∈ Z is chain homotopically
trivial by a chain homotopy Hi: Ai −→ Ai+2. The maps

ψi = fi+2 ◦Hi + Hi+1 ◦ fi: Ai −→ Ai+3

should induce isomorphisms between the associated homologies. Then the
maps

(Hi, fi+1): M(fi) −→ Ai+2

induce isomorphisms on the homological level.

If we can show that the sequence

CF(Y )
f1

CF(Y n
K)

f2
CF(Y n+θ

K )

f3

satisfies the assumptions of Lemma 7.4, then for every pair f̂i and f̂i+1,

the associated map (H, f̂i+1)∗ is an isomorphism. With the arguments from

above, i.e. analogous to Lemma 7.2, we conclude that im(F̂i) = ker(F̂i+1).
Hence, Theorem 7.1 follows.

8. The Contact Element and Legendrian knot Invariant

8.1. Contact Structures

A 3-dimensional contact manifold is a pair (Y, ξ) where Y is a 3-dimensional
manifold and ξ ⊂ TY a hyperplane bundle that can be written as the kernel
of a 1-form α with the property

α ∧ dα �= 0. (8.1)

Differential 1-forms satisfying (8.1) are called contact forms. Given a con-
tact manifold (Y, ξ), the associated contact form is not unique. Suppose α
is a contact form of ξ then, given a non-vanishing function λ: Y −→ R+, we
can change the contact form to λα without affecting the contact condition
(8.1):

λα ∧ d(λα) = λα ∧ dλ ∧ α + λ2α ∧ dα = λ2α ∧ dα �= 0.
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The existence of a contact form implies that the normal direction TY/ξ is
trivial. We define a section Rα by

α(Rα) �= 0 and ιRαdα = 0.

This vector field is called Reeb field of the contact form α. The contact
condition implies that dα is a non-degenerate form on ξ. Thus, ιRαdα = 0
implies that for each point p ∈ Y the vector (Rα)p is an element of TpY \ξp.
Thus, Rα is a section of TY/ξ.

Definition 8.1. — Two contact manifolds (Y, ξ) and (Y ′, ξ′) are called
contactomorphic if there is a diffeomorphism φ: Y −→ Y ′ preserving the
contact structures, i.e. such that Tφ(ξ) = ξ′. The map φ is a contacto-
morphism.

It is a remarkable property of contact manifolds that there is a unique
local model for these objects.

Definition 8.2. — The pair (R3, ξstd), where ξstd is the contact struc-
ture given by the kernel of the 1-form dz−y dx, is called standard contact
space.

Every contact manifold is locally contactomorphic to the standard con-
tact space. This is known as Darboux’s theorem. As a consequence we
will not be able to derive contact invariants by purely local arguments, in
contrast to differential geometry where for instance curvature is a constraint
to the existing local model.

Theorem 8.3 (Gray Stability, cf. Theorem 2.2.2 of [6]). — Each smooth
homotopy (ξt)t∈[0,1] of contact structures is induced by an ambient isotopy
φt, i.e. the condition Tφt(ξ0) = ξt applies for all t ∈ [0, 1].

An isotopy which is induced by a homotopy of contact structures is called
contact isotopy. So, a homotopy of contact structures can be interpreted
as an isotopy and, vice versa, an isotopy induces a homotopy of contact
structures. As in the case of vector fields, we have a natural connection to
isotopies, i.e. objects whose existence and form will be closely related to the
manifold’s topology.

A contact vector field X is a vector field whose local flow preserves
the contact structure. An embedded surface Σ ↪→ Y is called convex if
there is a neighborhood of Σ in Y in which a contact vector field exists
that is transverse to Σ. The existence of a contact vector field immediately
implies that there is a neighborhood Σ×R ↪→ Y of Σ in which the contact
structure is invariant in R-direction. Thus, convex surfaces are the objects
along which we glue contact manifolds together.

– 322 –



Introduction to the basics of Heegaard Floer homology

Definition 8.4. — A knot K ⊂ Y is called Legendrian if it is tangent
to the contact structure.

The contact condition implies that, on a 3-dimensional contact manifold
(Y, ξ), only 1-dimensional submanifolds, i.e. knots and links, can be tangent
to ξ. Every Legendrian knot admits a tubular neighborhood with a convex
surface as boundary. Hence, it is possible to mimic surgical constructions
to define the contact geometric analogue of surgery theory, called contact
surgery. Contact surgery in arbitrary dimensions was introduced by Eliash-
berg in [4]. His construction, in dimension 3, corresponds to (−1)-contact
surgeries. For 3-dimensional contact manifolds Ding and Geiges gave in [2]
a definition of contact-r-surgeries (cf. also [3]) for arbitrary r ∈ Q > 0.
It is nowadays one of the most significant tools for 3-dimensional contact
geometry. Its importance relies in the following theorem.

Theorem 8.5 (see [3]). — Given a contact manifold (Y, ξ), there is a
link L = L+ # L− in S3 such that contact-(+1)-surgery along the link L+

and contact-(−1)-surgery along L− in (S3, ξstd) yields (Y, ξ).

Moreover, if we choose cleverly, we can accomplish L+ to have just one
component. Using (−1)-contact surgeries only, we can transform an arbi-
trary overtwisted contact manifold into an arbitrary (not necessarily over-
twisted) contact manifold. For a definition of overtwistedness we point the
reader to [6, Definition 4.5.1]. Thus, starting with a knot K so that (+1)-
contact surgery along K yields an overtwisted contact manifold (Y ′, ξ′), for
any contact manifold (Y, ξ), we can find a link L−, such that (−1)-contact
surgery along L− in (Y ′, ξ′) yields (Y, ξ). An example for such a knot K
is the Legendrian shark, i.e. the Legendrian realization of the unknot with
tb = −1 and rot = 0.

8.2. Open Books

For a detailed treatment of open books we point the reader to [5].

Definition 8.6. — An open book on a closed, oriented 3-manifold Y
is a pair (B, π) defining a fibration

P ↪→ Y \Bπ−→S1,

where P is an oriented surface with boundary ∂P = B. For every component
Bi of B there is a neighborhood ι: D2 × S1 ↪→ νBi ⊂ Y such that the
core C = {0} × S1 is mapped onto Bi under ι and π commutes with the
projection (D2 × S1)\C −→ S1 given by (r · exp(it), exp(is)) �−→ exp(it).
The submanifold B is called binding and P the page of the open book.
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An abstract open book is a pair (P, φ) consisting of an oriented genus-
g surface P with boundary and a homeomorphism φ: P −→ P that is the
identity near the boundary of P . The surface P is called page and φ the
monodromy. Given an abstract open book (P, φ), we may associate to it
a 3-manifold. Let c1, . . . , ck denote the boundary components of P . Observe
that

(P × [0, 1])/(p, 1) ∼ (φ(p), 0) (8.2)

is a 3-manifold. Its boundary is given by the tori

((ci × [0, 1])/(p, 1) ∼ (p, 0)) ∼= ci × S1.

Fill in each of the holes with a solid torus D2×S1: we glue a meridional disk
D2 × {E} onto {E} × S1 ⊂ ci × S1. In this way we define a closed oriented
3-manifold Y (P, φ). Denote by B the union of the cores of the tori D2×S1.
The set B is called binding. By definition of abstract open books we obtain
an open book structure

P ↪→ Y (P, φ)\B −→ S1

on Y (P, φ). Conversely, given an open book by cutting a small tubular
neighborhood νB out of Y , we obtain a P -bundle over S1. Thus, there is a
homeomorphism φ: P −→ P such that

Y \νB ∼= (P × [0, 1])/(p, 1) ∼ (φ(p), 0).

Inside the standard neighborhood νB, as given in the definition, the home-
omorphism φ is the identity. So, the pair (P, φ) defines an abstract open
book.

Definition 8.7. — Two abstract open books (P, φ) and (P, φ′) are called
equivalent if there is a homeomorphism h: P −→ P which is the identity
near the boundary such that φ ◦ h = φ′ ◦ h. We denote by ABS(Y ) the set
of abstract open books (P, φ) with Y (P, φ) = Y , up to equivalence.

The set of equivalence classes of open books is denoted by OB(Y ). An
abstract open book defines an open book up to diffeomorphism. The dis-
cussion from above provides us with a map

Ψ: ABS(Y ) −→ OB(Y )

and an inverse. Thus, to some point, open books and abstract open books
are the same objects. Sometimes, it is more convenient to deal with abstract
open books rather than open books themselves.
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8.3. Open Books, Contact Structures and Heegaard Diagrams

Given an open book (B, π) or an abstract open book (P, φ), define a
surface Σ by gluing together two pages at their boundary

Σ = P1/2 ∪∂ P1.

The manifold Y equals the union H0 ∪H1 where Hi = π−1([i/2, (i+1)/2]),
i = 0, 1. Any curve γ in Y running from H0 to H1, when projected onto S1,
has to intersect {1/2, 1} at some point. Thus, the curve γ has to intersect
Σ. The submanifolds Hi are handlebodies of genus g(Σ) and

Y = H0 ∪∂ H1

is a Heegaard decomposition of Y .

Definition 8.8. — A system a = {a1, . . . , an} of disjoint properly em-
bedded arcs on P is called cut system if P\{a1, . . . , an} is topologically a
disk.

A system of arcs is a cut system if and only if it defines a basis for the
first homology of (P, ∂P ).

We interpret the curve ai as sitting on P1/2 and ai, i.e. the curve ai
with reversed orientation, as sitting inside P1. These two can be combined
to αi = ai ∪∂ ai, i = 1, . . . , n, which all sit in Σ. Referring to the relation
between open books and abstract open books discussed in §8.2, observe that

H1 = π−1([1/2, 1]) = (P × [1/2, 1])/∼

where ∼ identifies points (p, 0) with (φ(p), 1) for p ∈ P and points (p, t)
with (p, t′) for p ∈ ∂P and t, t′ ∈ [1/2, 1]. Thus ai × [1/2, 1] determines
a disk in H1 whose boundary is αi. This means we can interpret the set
{α1, . . . , αn} as a set of attaching circles for the handlebody H1. The gluing
of the two handlebodies H0 and H1 is given by the pair (id, φ) where id is
the identity on P1/2 and φ the monodromy, interpreted as a map P1 −→ P0.
These two maps combine to a map ∂H1 −→ ∂H0. Define bi, i = 1, . . . , n, as
small push-offs of the ai that intersect these transversely in a single point
(see Figure 10). Then by the gluing of the two handlebodies H0 and H1 the
α-curves define a Heegaard diagram with β-curves given by βi = bi ∪ φ(bi),
i = 1, . . . , n. Thus the following lemma is immediate.

Lemma 8.9. — The triple (Σ,α,β) is a Heegaard diagram of Y . �

Given an abstract open book (P, φ), define P ′ by attaching a 1-handle to
P , i.e. P ′ = P ∪ h1. Choose a knot γ in P ′ that intersects the co-core of h1
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once, transversely. The monodromy φ can be extended as the identity over
h1, and, thus, may be interpreted as a homeomorphism of P ′. We denote
by D±γ the positive/negative Dehn twist along γ.

Definition 8.10. — The abstract open book (P ′, D±γ ◦φ) is called a pos-
itive/negative Giroux stabilization of (P, φ).

We will see that open books, up to positive Giroux stabilizations, corre-
spond one-to-one to isotopy classes of contact structures.

Lemma 8.11. — Stabilizations preserve the underlying 3-manifold, i.e. the
manifolds Y (P ′, φ′) and Y (P, φ) are diffeomorphic.

A priori, it is not clear that stabilizations preserve the associated 3-
manifold. A proof of this lemma can be found in [5]. But in the following
we will discuss an alternative proof. Our proof uses a construction intro-
duced by Lisca, Ozsváth, Stipsicz and Szabó (see the alternative proof of
Theorem 2.11 in [10, p. 1320]).

Lemma 8.12 (see p. 1321 of [10]). — There is a cut system {a1, . . . , an}
on (P, φ) that is disjoint from γ ∩ P .

Proof. — Denote by γ′ the arc γ ∩ P . If P\γ′ is connected, we choose
a1 to be a push-off of γ′ and then extend it to a cut system of P . This is
possible since H1(P, ∂P ) is torsion free and [a1] a primitive element in it. If
P\γ′ diskonnects into the components P1 and P2, then we may choose cut
systems on Pi, i = 1, 2, arbitrarily. The union of these cut systems will be
a cut system of P and disjoint from γ′. �

The given cut system on P can be extended to a cut system on P ′. We
can choose an+1 as the co-core of h1. The set of curves a1, . . . , an+1 is a cut
system of P ′. Choose the bi, i = 1, . . . , n + 1, as small isotopic push-offs of
the ai. Then, for i = 1, . . . , n, we have

φ′(bi) = φ ◦D±γ (bi) = φ(bi)
φ′(bn+1) = D±γ ◦ φ(bn+1) = D±γ (bn+1).

Consequently, φ′(bn+1) looks like γ outside the handle h1. The curve βn+1

has to be disjoint from all αi, i < n + 1.

Proof of Lemma 8.11. — On the level of cobordisms the pair αn+1 and
βn+1 which meet in a single point correspond to a cancelling pair of handles
attached to the boundary Y (P, φ)× {1} of Y (P, φ)× I. Thus, we have

Y (P ′, φ′) = S3#Y (P, φ).

�
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A contact structure ξ is supported by an open book (B, π) of Y if ξ
is contact isotopic to a contact structure ξ′ which admits a contact form α
such that dα is a positive area form on each page Pθ = π−1(θ) and α > 0
on ∂Pθ. We gave the definition as a matter of completeness, but a detailed
understanding of this definition will not be interesting to us. For a detailed
treatment we point the reader to [5]. Every contact structure is supported
by an open book decomposition.

Theorem 8.13 (cf. [5]). — There is a one-to-one correspondence bet-
ween isotopy classes of contact structures and open book decompositions up
to positive Giroux stabilization.

Given a Legendrian knot L ⊂ (Y, ξ), we know by definition that its
tangent vector at every point of L lies in ξ. The tangent bundle of a closed
oriented 3-manifold is orientable, which especially implies the triviality of
TY |L. The coorientability of ξ implies that ξ|L is trivial, too. By definition
of Legendrian knots the tangent vector of L lies in ξ. The 2-dimensionality
implies that ξ, in addition, contains a normal direction. The triviality of
the tangent bundle over L implies that this normal direction determines a
framing of L. This framing which is determined by the contact structure is
called contact framing. In case of contact surgery it plays the role of the
canonical 0-framing, i.e. we measure contact surgery coefficients with respect
to the contact framing. Note that if L is homologically trivial, a Seifert
surface determines a second framing on L. Surgery coefficients in a surgery
presentation of a manifold are usually determined by measuring the surgery
framing with respect to this canonical Seifert framing (cf. §7). Measuring the
contact framing with respect to the Seifert framing determines a number
tb(L) ∈ Z which is called the Thurston-Bennequin invariant. This is
certainly an invariant of L under Legendrian isotopies, i.e. isotopies of L
through Legendrian knots. By definition, the coefficients are related by

smooth surgery coefficient = contact surgery coefficient + tb(L).

It is possible to find an open book decomposition which supports ξ such
that L sits on a page of the open book. Furthermore, we can arrange the
page framing and the contact framing to coincide. This is the most impor-
tant ingredient for applications of Heegaard Floer homology in the contact
geometric world. The proof relies on the fact that it is possible to find
CW-decompositions of contact manifolds which are adapted to the contact
structure. These are called contact cell decompositions. The 1-cells in
such a decomposition are Legendrian arcs. With these decompositions it is
possible to directly construct an open book supporting the contact struc-
ture. Since the 1-cells are Legendrian arcs we can include a fixed Legendrian
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knot into the decomposition and in this way modify the open book such that
the result follows. For details we point the reader to [5].

Lemma 8.14 (cf. Proposition 2.4 of [10]). — Let L ⊂ (Y, ξ) be a Legen-
drian knot and (P, φ) an abstract open book supporting ξ such that L sits
on a page of the underlying open book. Let (Y ±L , ξ±L ) denote the 3-manifold
obtained by (±1)-contact surgery along L. Then (P,D∓γ ◦ φ) is an abstract

open book supporting the contact structure ξ±L .

8.4. The Contact Element

Given a contact manifold (Y, ξ), we fix an open book decomposition
(P, φ) which supports ξ. This open book defines a Heegaard decomposition
and, with the construction stated in the last section, we are able to define
a Heegaard diagram. We now put in an additional datum. The curves bi
are isotopic push-offs of the ai. We choose them like indicated in Figure
10: We push the bi off the ai by following with ∂bi the positive boundary
orientation of ∂P .

z

ai bi

∂P

∂P

Figure 10. — Positioning of the point z and choice of bi.

The point z is placed outside the thin strips of isotopy between the ai
and bi. We denote by xi the unique intersection point between ai and bi.
Define

EH(P, φ, {a1, . . . , an}) = {x1, . . . ,xn}.
By construction of the Heegaard diagram EH is a cycle in the Heegaard
Floer homology associated to the data (−Σ,α,β, z). We choose the negative
surface orientation since with this orientation there can be no holomorphic
Whitney disks emanating from EH (cf. Figure 10).

Lemma 8.15 (see Proposition 2.5 of [18]) The Heegaard Floer co-

homology ĤF∗(Y ) is isomorphic to ĤF(−Y ).

The Heegaard diagram (−Σ,α,β) is a Heegaard diagram for −Y and,
thus, represents the Heegaard Floer cohomology of Y . Instead of switching
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the surface orientation we can swap the boundary conditions of the Whit-
ney disks at their α-boundary and β-coundary, i.e. we will be interested in
Whitney disks in (Σ,β,α). The element EH can be interpreted as sitting
in the Heegaard Floer cohomology of Y . The push-off bi is chosen such that
there is no holomorphic disk emanating from xi.

Theorem 8.16 (see Theorem 3.1 of [8]). — The class EH(P, φ, {a1,
. . . , an}) is independent of the choices made in its definition. Moreover, the
associated cohomology class c(Y, ξ) is an isotopy invariant of the contact
structure ξ, up to sign. We call c(Y, ξ) contact element.

The proof of this theorem relies on several steps we would like to sketch:
An arc slide is a geometric move allowing us to change the cut system. Any
two cut systems can be transformed into each other by a finite sequence of
arc slides. Let a1 and a2 be two adjacent arcs. Adjacent means that in
P\{a1, . . . , an} one of the boundary segments associated to a1 and a2 are
connected via one segment τ of ∂P . An arc slide of a1 over a2 (or vice versa)
is a curve in the isotopy class of a1 ∪ τ ∪ a2. We denote it by a1 + a2.

Lemma 8.17. — Any two cut systems can be transformed into each other
with a finite number of arc slides.

It is easy to observe that an arc slide affects the associated Heegaard
diagram by two handle slides. The change under the α-circles is given by a
handle slide of α1 over α2. But the associated β-curve moves with the α-
curve, i.e. we have to additionally slide β1 over β2. We have to see that these
handle slides preserve the contact element. To be more precise: After the
first handle slide we moved out of the set of Heegaard diagrams induced by
open books. Thus, we cannot see the contact element in that diagram. After
the second handle slide, however, we move back into that set and, hence,
see the contact element again. We have to check that the composition of
the maps between the Heegaard Floer cohomologies induced by the handle
slides preserves the contact element. This is a straightforward computation.

Definition 8.18. — Let a Heegaard diagram (Σ,α,β) and a homologi-
cally essential, simple, closed curve δ on Σ be given. The Heegaard diagram
(Σ,α,β) is called δ-adapted if the following conditions hold.

1. It is induced by an open book and the pair α, β is induced by a cut
system (cf. §8.3) for this open book.

2. The curve δ intersects β1 once and does not intersect any other of
the βi, i � 2.
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We can always find δ-adapted Heegaard diagrams. This is already stated
in [8] and [10] but not proved. For the convenience of the reader we include
a proof, here.

Lemma 8.19. — Let (P, φ) be an open book and δ ⊂ P a homologically
essential closed curve. There is a choice of cut system on P that induces a
δ-adapted Heegaard diagram.

Observe that a1, . . . , an to be a cut system of a page P essentially means
to be a basis of H1(P, ∂P ): Suppose the curves are not linearly independent.
In this case we are able to identify a surface F ⊂ P , F �= P , bounding a
linear combination of some of the curves ai. But this means the cut system
diskonnects the page P in contradiction to the definition. Conversely, sup-
pose the curves in the cut system are homologically linearly independent.
In this case the curves cannot diskonnect the page. If they diskonnected,
we could identify a surface F in P with boundary a linear combination
of some of the ai. But this contradicts their linear independence. The fact
that Σ\{a1, . . . , an} is a disk shows that every element in H1(P, ∂P ) can be
written as a linear combination of the curves a1, . . . , an.

Proof. — Without loss of generality, we assume that P has connected
boundary: Suppose the boundary of P has two components. Choose a prop-
erly embedded arc connecting both components of ∂P . Define this curve to
be the first curve a0 in a cut system. Cutting out this curve a0, we obtain a
surface with connected boundary. The curve a0 determines two segments S1

and S2 in the connected boundary. We can continue using the construction
process for connected binding we state below. We just have to check the
boundary points of the curves to remain outside of the segments S1 and S2.
Given that P has more than two boundary components, we can, with this
algorithm, inductively decrease the number of boundary components.

The map φ is an element of the mapping class group of P . Thus, if
{a1, . . . , an} is a cut system, then {φ(a1), . . . , φ(an)} is a cut system, too. It
suffices to show that there is a cut system {a1, . . . , an} such that δ intersects
ai once if and only if i = 1.

γ

Figure 11. — Possible choice of curve γ.
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We start by taking a band sum of δ with a small arc γ as shown in Figure
11. We are free to choose the arc γ. Denote the result of the band sum by a2.
The arc a2 indeed bounds a compressing disk in the respective handlebody
because its boundary lies on ∂P . Because of our prior observation it suffices
to show that a2 is a primitive class in H1(P, ∂P ). Since H1(P, ∂P ) is torsion
free the primitiveness of a2 implies that we can extend a2 to a basis of
H1(P, ∂P ). The curves defining this basis can easily be chosen to be not
closed, with their boundary lying on ∂P .

Writing down the long exact sequence of the pair (P, ∂P )

H2(P ) H P, ∂P2( ) H1( ) H1(P ) H1( ) 0

= = =

0 Z [P ] Z [ ] H1(P ) H1( ) 0

∼ ∼
• ∂P

∂P

ι•

ι•

P, ∂P

P, ∂P〉〉 〉〉

∂

•∂

we see that ∂∗ is surjective since ∂∗[P ] = [∂P ]. Hence, exactness of the
sequence implies that the inclusion ι: P −→ (P, ∂P ) induces an isomorphism
on homology. Note that the zero at the end of the sequence appears because
∂P is assumed to be connected. Let g denote the genus of P . Of course
H1(P ;Z) is Z2g, which can be seen by a Mayer-Vietoris argument or from
handle decompositions of surfaces (compute the homology using a handle
decomposition). Since δ was embedded it follows from the lemma below that
it is a primitive class in H1(P ;Z). The isomorphism ι∗ obviously sends δ to
a2, i.e. ι∗[δ] = [γ]. Thus, a2 is primitive in H1(P, ∂P ).

Cut open the surface along δ. We obtain two new boundary components,
C1 and C2 say, which we can connect with the boundary of P with two
arcs. These two arcs, in P , determine a properly embedded curve, a1 say,
whose boundary lies on ∂P . Furthermore, a1 intersects δ in one single point,
transversely. The curve a1 is primitve, too. To see, that we can extend to a
cut system such that δ is disjoint from a3, . . . , an, cut open the surface P
along δ and a1. We obtain a surface P ′ with one boundary component. The
curves δ and a1 determine 4 segments, S1, . . . , S4 say, in this boundary. We
extend a2 to a cut system a2, . . . , an of P ′ and arrange the boundary points
of the curves a3, . . . , an to be disjoint from S1, . . . , S4. The set a1, . . . , an is
a cut system of P with the desired properties. �

As a consequence of the proof we may arrange δ to be a push-off of a2

outside a small neighborhood where the band sum is performed. Geometri-
cally spoken, we cut open δ at one point and move the boundaries to ∂P
to get a2. Given a positive Giroux stabilization, we can find a special cut
system which is adapted to the curve γ. It is not hard to see that there
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is only one homotopy class of triangles that connect the old with the new
contact element and that the associated moduli space is a one-point space.

Lemma 8.20. — An embedded circle δ in an orientable, compact surface
Σ which is homologically essential is a primitive class of H1(Σ,Z).

Proof. — Cut open the surface Σ along δ. We obtain a connected surface
S with two boundary components since δ is homologically essential in Σ. We
can recover the surface Σ by connecting both boundary components of S
with a 1-handle and then capping off with a disk. There is a knot K ⊂ S∪h1

intersecting the co-core of h1 only once and intersecting δ only once, too.
To construct this knot take a union of two arcs in S ∪ h1 in the following
way: Namely, define a as the core of h1, i.e. as D1 × {0} ⊂ D1 ×D1 ∼= h1

and let b be a curve in S, connecting the two components of the attaching
sphere h1 in ∂S. We define K to be a ∪ b. Obviously,

±1 = #(K, δ) =
〈
PD[K], [δ]

〉
.

Since H1(Σ;Z) is torsion free, H1(Σ;Z) ∼= Hom(H1(Σ;Z),Z). Thus, [δ] is
primitive. �

Recall that a positive/negative Giroux stabilization of an open book
(P, φ) is defined as the open book (P ′, D±γ ◦ φ) where P ′ is defined by
attaching a 1-handle to P and γ is a embedded, simple closed curve in
P ′ that intersects the co-core of h1 once (see Definition 8.10). Using the
proofs of Lemma 8.11 and Lemma 8.12, we see that there is a cut system
{a1, . . . , an+1} of the stabilized open book such that γ intersects only an+1

which is the co-core of h1. Denote by α = {α1, . . . , αn} the associated
attaching circles. We define a map

Φ: ĈF(Σ,α,β, z) −→ ĈF(Σ#T 2,α ∪ {αn+1},β ∪ {βn+1}, z)
by assigning to x ∈ Tα∩Tβ the element Φ(x) = (x, q) where q is the unique
intersection point γ ∩ an+1. This is an isomorphism by reasons similar to
those given in Example 4.1.

With our preparations done, we can easily prove one of the most signifi-
cant properties of the contact element: Its functoriality under (+1)-contact
surgeries. We will outline the proof since it can be regarded as a model
proof.

Theorem 8.21 (see Theorem 4.2 of [15]). — Let (Y ′, ξ′) be obtained from
(Y, ξ) by (+1)-contact surgery along a Legendrian knot L. Denote by W the
associated cobordism. Then the map

F̂−W : ĤF(−Y ) −→ ĤF(−Y ′)
preserves the contact element, i.e. F̂−W (c(Y, ξ)) = c(Y ′, ξ′).
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Proof. —

x1
z Dz

1

1 1

x1

1

1

2

Domain of a holomorphic triangle

β θ
α

γ

'

Figure 12. — Significant part of the Heegaard triple diagram.

Let an open book (P, φ) adapted to (Y, ξ, L) be given. By Lemma 8.14,
a (+1)-contact surgery acts on the monodromy as a composition with a
negative Dehn twist. Without loss of generality, the knot L just intersects β1

once, transversely and is disjoint from the other β-circles. Moreover, we can
arrange the associated Heegaard triple to look as indicated in Figure 12. The
contact element c(Y, ξ) is represented by the point {x1, . . . ,xn}. Obviously,
there is only one domain which carries a holomorphic triangle. It is the small
holomorphic triangle connecting x1 and x′1 (cf. §4.4). Thus, there is only
one domain with positive coefficients, with nz = 0, connecting the points
{x1, . . . ,xn} with {x′1, . . . ,x′n}. By considerations similar to those given at
the end of the proof of Lemma 4.9, we see that the associated moduli space
is a one-point space. Hence, the result follows. �

8.5. The Legendrian knot invariant

Ideas very similar to those used to define the contact element can be
utilized to define an invariant of Legendrian knots we will briefly call LOSS.
This invariant is due to Lisca, Ozsváth, Stipsicz and Szabó and was defined
in [10]. It is basically the contact element but now it is interpreted as sitting
in a filtered Heegaard Floer complex. The filtration is constructed with
respect to a fixed Legendrian knot.

Let (Y, ξ) be a contact manifold and L ⊂ Y a Legendrian knot. There
is an open book decomposition of Y , subordinate to ξ, such that L sits
on the page P × {1/2} of the open book (cf. §8.3). Choose a cut system
that induces an L-adapted Heegaard diagram (cf. §8.4, Definition 8.18 and
Lemma 8.19). Figure 13 illustrates the positioning of the point w in the
Heegaard diagram induced by the open book. Similar to the case of the
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contact element the intersection points of αi ∩ βi which sit on P × {1/2}
determine a specific generator of ĈF(−Y ). This element can be interpreted

as sitting in ĈFK(−Y, L) and it is a cycle. The induced element in the knot

Floer homology is denoted by L̂(L).

Page P {1 /2} of the open book

w z

w

z

×

Figure 13. — Positioning of the point w depending on the knot orientation.

Remark 8.1. —

(1) Since this is an important issue we would like to recall the relation
between the pair (w, z) and the knot orientation. In homology we con-
nect z with w in the complement of the α-curves and w with z in the
complement of the β-curves (oriented as is obvious from the defini-
tion). In cohomology, we orient in the opposite manner, i.e. we
move from z to w in the complement of the β-curves and from w to
z in the complement of the α-curves.

(2) Observe, that the definition of the invariant L̂ as well as the contact

element always comes with a specific presentation of the groups ĤF
and ĤFK. If we want to compare for instance invariants of two dif-
ferent Legendrian knots, we have to get rid of the presentation in the
background. This can be done by modding out a certain mapping class
group action on the homologies. We point the reader to [13].

Analogous to the properties of the contact element, the invariant L̂ is pre-
served when a (+1)-contact surgery is performed in its complement (see [13,
Corollary 3.4]): Suppose we are given a contact manifold (Y, ξ) with two
Legendrian knots L and S sitting in it. Performing a (+1)-contact surgery
along S, denote by W the associated cobordism. Furthermore, we denote
by (YS , ξS) the result of the contact surgery. The cobordism −W induces a
map

F̂−W : ĤFK(−Y, L) −→ ĤFK(−YS , LS)

such that F̂−W (L̂(L)) = L̂(LS). Here, LS denotes the knot L in the manifold
YS . Observe, that the cobordism maps constructed for the hat-theory can
be defined the same way for knot Floer homologies.
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Finally, the contact element and the invariant L̂ are connected, too.
Performing a (+1)-contact surgery along the knot L, denote by W the as-
sociated cobordism and by (YL, ξL) the result of the contact surgery. The
cobordism −W induces a map

Γ−W : ĤFK(−Y, L) −→ ĤF(−Y +
L )

such that Γ−W (L̂(L)) = c(ξ+
L ) (see [26, Theorem 6.1]). This map is not

defined by counting holomorphic triangles. It needs a specific construction
we do not outline here. We point the interested reader to [26].
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