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On some properties of three-dimensional
minimal sets in R*

TiEN Duc LUUM

ABSTRACT. — We prove in this paper the Hélder regularity of Almgren
minimal sets of dimension 3 in R* around a Y-point and the existence of
a point of particular type of a Mumford-Shah minimal set in R4, which
is very close to a T. This will give a local description of minimal sets of
dimension 3 in R* around a singular point and a property of Mumford-
Shah minimal sets in R%.

RESUME. — On prouve dans cet article la régularité Holdérienne pour les
ensembles minimaux au sens d’Almgren de dimension 3 dans R* autour
d’un point de type Y et dans le cas d’un ensemble Mumford-Shah minimal
dans R% qui est tres proche d’un T, existence d’un point avec une densité
particuliere. Cela donne une description locale des ensembles minimaux
de dimension 3 dans R* autour d’un point singulier et une propriété des
ensembles Mumford-Shah minimaux dans [R%.

1. Introduction

In this paper we will prove two theorems. The first theorem is about
local Hélder regularity of three-dimensional minimal sets in R* and the
second theorem is about the existence of a point of a particular type of a
Mumford-Shah minimal set, which is close enough to a cone of type T.

Let us give the list of notions that we will use in this paper.

(*) Regu le 22/03/2012, accepté le 20/12/2012

(1) Batiment 430, Département de Mathématique, Université Paris Sud XI, 91405
Orsay
luutienduc@gmail.com

Article proposé par Gilles Carron.
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H¢9 the d-dimensional Hausdorff mesure.

Oa(z,r) = w, where A C R” is a set of dimension d and

T € A.
O4(x) =lim, 004 (z,7), called the density of A at x, if the limit exists.

Local Hausdorff distance d, . (E, F'). Let E, F C R™ be closed sets which
meet the ball B(z,r). We define

1[sup{dist(z, F);x € ENB(z,r)}+sup{dist(z, F); z € FNB(x,r)}].

dx77n(E, F) == ;

Let E, FF C R™ be closed sets and H C R™ be a compact set. We define

dy(E,F) =sup{dist(z, F);x € EN H} 4 sup{dist(x, E);z € FN H}.

Convergence of a sequence of sets. Let U C R™ be an open set, {E} C
U,k > 1, be a sequence of closed sets in U and E C U. We say that {E}}
converges to F in U and we write limy_,, Fy = F, if for each compact
H C U, we have

lim dH(Ek,E) =0.

k—o0

Blow-up limit. Let £ C R™ be a closed set and = € E. A blow-up limit
F of E at x is defined as

FE—=zx

F = lim

k—oo Tk ’

where {7y} is any positive sequence such that limy_, o, 7x = 0 and the limit
is taken in R™.

Now we give the definition of Almgren minimal sets of dimension d in

R™.

DEFINITION 1.1.— Let E be a closed set in R™ and d < n—1 be an
integer. An Almgren competitor (Al-competitor) of E is a closed set F C R™
that can be written as F' = o(E), where ¢ : R™ — R™ is a Lipschitz mapping
such that W, = {x € R"; ¢(z) # x} is bounded.

An Al-minimal set of dimension d in R™ is a closed set E C R™ such
that HY(E N B(0, R)) < 400 for every R > 0 and

HYE\F)< HYF\E)
for every Al-competitor F of E.
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Next, we give the definition of Mumford-Shah (MS) minimal sets in R”™.

DEFINITION 1.2. — Let E be a closed set in R™. A Mumford-Shah com-
petitor (also called MS-competitor) of E is a closed set F C R™ such that
we can find R > 0 such that

F\ B(0,R)=FE\ B(0,R) (1.2.1)
and F separates y,z € R™\ B(0, R) when y, z are separated by E.

A Mumford-Shah minimal (MS-minimal) set in R™ is a closed set E C
R™ such that
H" Y E\F)<H"YF\E) (1.2.2)

for any MS-competitor F' of E.

Here, E separates y,z means that y and z lie in different connected
components of R™ \ E.

It is easy to show that any MS-minimal set in R" is also an Al-minimal
set of dimension n — 1 in R™. Next, if E is an MS-minimal set in R™, then
E x R is also an MS-minimal set in R™ x R, by exercice 16, p 537 of [5].

We give now the definition of minimal cones of type P, Y and T, of
dimension 2 and 3 in R™.

DEFINITION 1.3.— A two-dimensional minimal cone of type Y is just
a two-dimensional affine plane in R™. A three-dimensional minimal cone of
type P is a three-dimensional affine plane in R™.

Let S be the union of three half-lines in R? C R™ that start from the
origin 0 and make angles 120° with each other at 0. A two-dimensional
minimal cone of type Y is set of the form Y' = j(S x L), where L is a
line passing through 0 and orthogonal to R? and j is an isometry of R™. A
three-dimensional minimal cone of type Y is a set of the formY = j(S x P),
where P is a plane of dimension 2 passing through 0 and orthogonal to R?
and j is an isometry of R™. We call j(L) the spine of Y’ and j(P) the spine
of Y.

Take a regular tetrahedron R C R® C R"™, centered at the origin 0,
let K be the cone centered at 0 over the union of the 6 edges of R. A two-
dimensional minimal cone of type T is of the form j(K), a three-dimensional
minimal cone of type T is a set of the form T = j(K x L), where L is the
line passing through 0 and orthogonal to R3 and j is an isometry of R™. We
call (L) the spine of T.
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We denote by dp,dy,dr the densities at the origin of the 3-dimensional
minimal cones of type P, Y and T, respectively. It is clear that dp < dy <
dr.

We can now define a Holder ball for a set £ C R™.

DEFINITION 1.4.— Let E be a closed set in R™. Suppose that 0 € E. We
say that B(0,r) is a Hdolder ball of E, of type P, Y or T with exponent 1+ «,
if there exists a homeomorphism f : R™ — R™ and a cone Y of dimension
2 or 8, centered at the origin, of type P, Y or T, respectively, such that

|f(x) — x| < ar forx € B(0,r) (1.4.1)

(1_a)[u](1+a) < 1f (@) = fy)l < (1+a)[|xr;y|](1—a)f0r z,y € B(0,r)

" " (1.4.2)
ENB(0,(1—a)r) C fYNB(O,7) C ENBO,(1+a)r).  (14.3)

For the sake of simplicity, we will say that E is Bi-Holder equivalent to' Y
in B(0,r), with exponent 1 + .

If in addition, our function f is of class C™®, then we say that E is
CY* equivalent to'Y in the ball B(0,7). Here, f is said to be of class Ot if
f s differentiable and its differential is a Hélder continuous function, with
exponent «.

J. Taylor in [11] has obtained the following theorem about local C*-
regularity of two-dimensional minimal sets in R3.

THEOREM 1.5. [11].— Let E be a two-dimensional minimal set in R>
and x € E. Then there exists a radius r > 0 such that in the ball B(x,r),
E is CY% equivalent to a minimal cone Y (z,7) of dimension 2, of type P,
Y or T. Here o is a universal positive constant.

As we know, any two-dimensional minimal cone in R? is automatically
of type P, Y or T. This is a great avantage when we study two-dimensional
minimal sets of dimension 2 in R3, because each blow-up limit at some
point of a two-dimensional minimal set is a minimal cone of the same di-
mension. So we can approximate our minimal set by cones which we know
the structure of.

The problem of two-dimensional minimal sets in R™ with n > 3 is more
difficult. Here we don’t know the list of two-dimensional minimal cones. But
G. David gives in section 14 of [3] a description of two-dimensional minimal
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cones in R™. Thanks to this, he can prove the local Holder regularity of
two-dimensional minimal sets in R”™.

THEOREM 1.6. [3].— Let E be a two-dimensional minimal set in R™
and x € E. Then for each o > 0, there exists a radius r > 0 such that in
the ball B(x,r), E is Hélder equivalent to a two-dimensional minimal cone
Y (x,r), with exponent .

The C! regularity of two-dimensional minimal sets in R™ needs more
efforts. We have to prove that the local distance between F and a two-
dimensional minimal cone in B(z,r) is of order r®, where a is a positive
universal constant when 7 tends to 0. G. David in [4] shows the C! regularity
of E locally around x, but he needs to add an additional condition, called
7full length”’ to some blow-up limit of E in x.

THEOREM 1.7. [4].— Let E be a two-dimensional minimal set in the
open set U C R™ and x € E. We suppose that some blow-up limit of E at x
is a full length minimal cone. Then there is a unique blow-up limit X of E
at x, and x + X is tangent to E at x. In addition, there is a radius rq > 0
such that E is C1® equivalent to x + X in the ball B(x,7q), where o > 0 is
a universal constant.

Let us say more about the “full length” condition for a two dimensional
minimal cone F centered at the origin in R™. As in [3, Sect 14], the set
K = FnNoB(0,1) is a finite union of great circles and arcs of great circles
¢;,j7 € J. The €; can only meet when they are arcs of great circles and only
by sets of 3 and at a common endpoint. Now for each ¢; whose length is

9

more than {5, we cut €; into 3 sub-arcs &; ; with the same length so that

we have a decomposition of K into disjoint arcs of circles €, (5, k) € J
with the same length and for each €, j, we have length(¢; ;) < 97/10. The
full lengh condition says that if we have another net of geodesics K; =
U(i,j)ejq,kv for which the Hausdorff distance d(€; g, @;,k) < 7, where 7 is
a small constant which depends only on n, and if H*(K;) > H'(K), then
we can find a Lipschitz function f : R” — R™ such that f(z) = z out of
the ball B(0,1) and f(B(0,1)) C B(0,1) such that H?(f(F;) N B(0,1)) <
H?(Fy N B(0,1)) — C[HY(K;) — H*(K)]. Here C > 0 is a constant and F}
is the cone over K. See [4, Sect 2] for more details.

It happens that all two-dimensional minimal cones in R? satisfy the full
length condition. So the theorem of G. David is a generalization of the
theorem of J. Taylor.
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For minimal sets of dimension > 3, little is known. Almgren in [1] showed
that if F is a three-dimensional minimal cone in R*, centered at the origin
and over a smooth surface in S, the unit sphere of dimension 3, then E
must be a 3-plane. Then J. Simon in [10] showed that this is true for hyper
minimal cones in R™ with n < 7. That is, if F' is a minimal cone of dimension
n—1in R", centered at the origin and over a smooth surface in S*~!, then
F must be an n — 1 plane. There is no theorem yet about the regularity of
minimal sets of dimension > 3 with singularities.

Our first theorem is to prove a local Holder regularity of three-dimensional
minimal sets in R*. But we don’t know the list of three-dimensional mini-
mal cones in R* and we don’t have a nice description of three-dimensional
minimal cones as we have for two-dimensional minimal cones. So we shall
restrict to some particular type of points, at which we can obtain some
information about the blow-up limits.

Now let E be a three-dimensional minimal set in R* and z € E. We want
to show that F is Bi-Holder equivalent to a three-dimensional minimal cone
of type P or Y in the ball B(z,r), for some radius r > 0. If 0g(z) = dp,
then W. Allard in [2] showed that there exists a radius » > 0 such that in
the ball B(z,7), E is C! equivalent to a 3-dimensional plane. We consider
then the next possible density of E at x, so we suppose that 0g(x) = dy.
Since every blow-up limit of F at x is a 3-dimensional minimal cone of type
Y, then for each € > 0, there exists a radius r > 0 and a 3-dimensional
minimal cone Y (z,r) of type Y such that

dpr(E,Y (z,1)) <e. (%)

By using (*) and the minimality of E, we shall be able to approximate E by
3-dimensional minimal cones of type P or Y at every point in E N B(x,r/2)
and at every scale ¢t < r/2. We shall then use Theorem 1.1 in [6] to conclude
that F is Bi-Hdolder equivalent to a 3-dimensional minimal cone of type Y
in the ball B(z,r/2). Our first theorem is the following.

THEOREM 1.— Let E be a 3-dimensional minimal set in R* and x € E
such that g(x) = dy. Then for each o > 0, we can find a radius r > 0,
which depends also on x, such that B(x,r) is a Holder ball (see Def 1.4) of
type Y of E, with exponent 1 + a.

Our second theorem concerns Mumford-Shah minimal sets in R*. In [3],
G. David showed that there are only 3 types of Mumford-Shah minimal sets
in R3, which are the cones of type P, Y and T. The most difficult part is to
show that if ' is a Mumford-Shah minimal set in R®, which is close enough
in B(0,2) to a T centered at 0, then there must be a T-point of F' in B(0, 1).
To prove this proposition, G. David used very nice techniques which involve
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the list of connected components. We want to obtain a similar result for a
Mumford-Shah minimal set in R* which is close enough to a T of dimension
3. But we cannot obtain a result which is as good as in [3, 18.1]. The reason
is that we don’t know if there exists a minimal cone C of dimension 3 in
R*, centered at 0, which satisfies dy < 0c(0) < dr. Our second theorem is
the following.

THEOREM 2.— There ezists an absolute constant € > 0 such that the
following holds. Let E be an MS-minimal set in R*, r > 0 be a radius, and
T be a 3-dimensional minimal cone of type T centered at the origin such
that

do,r(E,T) <e.

Then in the ball B(0,r), there is a point of E which is neither of type P
nor Y.

See Definition 2.5 for the definition of points of type P and Y. We divide
the paper into two parts. In the first part, we prove Theorem 1. In the
second part, we prove Theorem 2.

I would like to thank Professor Guy David for many helpful discussions
on this paper.

2. Holder regularity near a point of type Y
for a 3-dimensional minimal set in R*

In this section we prove Theorem 1. We start with the following lemma.

LEMMA 2.1.— Let F be a 3-dimensional minimal cone in R*, centered
at the origin, and let x € F N IB(0,1). Then each blow-up limit G of F at
x is a 3-dimensional minimal cone G of type P, Y or T and centered at 0.
The type of G depends only on x and Og(x) = 65(0).

We define the type of x to be the type of G.

Proof.— We denote by 0z the line passing by 0 and x. Suppose that G
is a blow-up limit of F' at x. Then G = limg_, FT—:“’ with limg oo 7 = 0.
Let y € G, we want to show that y + 0z C G. Setting F} = FT—;I, as
{F}} converges to G, we can find a sequence y; € Fj, such that {yx}%2,
converges to y. Setting zr = rryx + x, then z; € F by definition of Fj,
and zj converges to x because r; converges to 0. We fix A € R and we set
vk = (1 4+ Arg)zg. Then v, € F as F is a cone centered at 0. We have next
that wy = r;l(uk —x) € Fj. On the other hand,
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wy = r,;l((l + Arg)zi — x)
= 7 (L Arg) (re + @) — @)
= 7 (reyk + Arye + Argz)
= Yr + AT + Ay,

we see that limg_oo wy = y + Ax. As {F}} converges to G, we see that
y+ Az € G. Call H the tangent plane to B(0, 1) at x. Since for each y € G
and A € R, we have y+ Az € G, we have that G = G’ xOx, with G’ € GNH.
Next, as F' is a minimal set and G is a blow-up limit of F' at z, by [3, 7.31],
G is a minimal cone centered at 0. But G = G’ x 0z, then by [3, 8.3], G’ is a
minimal cone in H, centered at x. Since H is a 3-plane, we must have that
G’ is a 2-dimensional minimal cone of type P,Y or T and then G is also a
3-dimensional minimal cone of type P, Y or T. Next, as G is a blow-up limit
of F at z, by [3, 7.31], we have 0 (z) = 05(0). O

We see from this lemma that for each z € F \ {0}, where F is a 3-
dimensional minimal cone in R* centered at the origin,

Or(z) can take only one of the three values dp,dy,dr. (1)

But we do not know the list of possible values of 7 (0). However, the follow-

ing lemma says that for this cone F, it is not possible that dp < 6z(0) < dy.

LEMMA 2.2.— There does not exist a 3-dimensional minimal cone F in
R4, centered at the origin such that dp < 0r(0) < dy.

Proof.— Suppose that there is a cone F' as in the hypothesis and
dp < 0r(0) < dy. (2.2.1)
We first show that
for each x € FNOB(0,1), we have 0 (0) = 0p(z). (2.2.2)

Indeed, since F' is a minimal cone, for each z € F, the function 0p(z,t)
is nondecreasing. So for r > 0, we have 0p(z,r) > Op(x), which means
that H3(F N B(x,r))/r® > 0p(z). Since B(z,r) C B(0,r + 1), we obtain
H3(FNB(x,r)) < H3(FNB(0,r +1)) and thus H3(F N B(0,r +1))/r3 >
Or(x). We deduce that (H3*(FNB(0,7+1))/(r+1)%)((r+1)3/r3) > 0p(z).
Since F is a cone centered at 0, H3(F N B(0,r +1))/(r + 1)3 = 0¢(0) for
each 7 > 0. We deduce then 0 (0)((r + 1)3/r3) > 0p(z) for each r > 0. We
let » — +o00 and we obtain then 07(0) > 6p(x), which is (2.2.2).
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Now (2.2.1) and (2.2.2) give us that Op(x) < dy for each z € F N
0B(0,1). By (1), we have 0p(z) = dp for x € FN90B(0,1). So by [2, 8.1],
there exists a neighborhood U,, of 2 in R* such that FNU, is a 3-dimensional
smooth manifold. We deduce that F' N 9B(0,1) is a 2-dimensional smooth
sub-manifold of B(0,1). By [1, Lemma 1], F is a 3-plane passing through
0. But this implies that 6z (0) = dp, we obtain then a contradiction, Lemma
2.2 follows. O

LEMMA 2.3.— Let F be a 3-dimensional minimal cone in R*, centered
at the origin 0. If 0p(0) = dy, then F is a 3-dimensional cone of type Y.

Proof.— As in the argument for (2.2.2), we have that for each x € F'n
0B(0,1), 0p(z) < 0p(0) = dy. So Op(x) can only take one of the two values
dp or dy. If all x € FNOB(0,1) are of type P, then by the same argument
as above, F' will be a 3-plane, and then 67(0) = dp, a contradiction. So
there must be a point y € F N 9B(0,1), such that 0p(y) = dy. By the
same argument like above, 05 (0)(r + 1)%/r® > Op(y,r) for each r > 0.
Letting 7 — oo and noting that 6p(y,r) is non-decreasing in r, we have
dy > lim, o 0p(y,r). But 0r(y,r) > 0r(y) = dy for each r > 0, so we
must have g (y,r) = dy for r > 0. By [3, 6.2], F must be a cone centered
at y. But we have also that F' is a cone centered at 0. So F' is of the form
F = F’ x 0y, where F’ is a cone in a 3-plane H passing through 0 and
orthogonal to Oy. Since F' is a minimal cone, by [3, 8.3], F’ is also a 2-
dimensional minimal cone in H and centered at 0. So F’ must be a cone of
type P, Y or T. Since 6r(0) = dy, we must have that F’ is a 2-dimensional
minimal cone of type Y and we deduce that F' is a 3-dimensional minimal
cone of type Y. a

We can now consider 3-dimensional minimal sets in R*. We start with
the following lemma.

LEMMA 2.4.— Let E be a 3-dimensional minimal set in R*. Then
(i) There does not exist a point z € E such that dp < 0g(z) < dy.
(i) If x € E such that 0g(x) = dp, then each blow-up limit of E at x is

a 3-dimenstonal plane.

(iii) If Op(x) = dy, then each blow-up limit of E at x is a 3-dimensional
minimal cone of type Y.

Proof.— The proof uses Lemmas 2.2 and 2.3. Take any point z € F,
let F' be a blow-up limit of E at z. Then by [3, 7.31], F' is a cone and
0r(0) = 0g(z). By Lemma 2.2, it is not possible that dp < 0r(0) < dy,
which means that it is also not possible that dp < 0g(x) < dp, (i) follows.
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If x € F such that 0g(x) = dp, then any blow-up limit F of E at z
satisfies 05 (0) = Og(x) = dp. By the same arguments as in Lemma 2.2, for
each y € FNIB(0,1), 0r(y) < 0p(0) = dp. We deduce that Op(y) = dp
for each y € FNOB(0,1), and then F' will be a 3-dimensional minimal cone
over a smooth sub-manifold of dB(0,1). By [1, Lemma 1], F must be a
3-dimensional plane, (ii) follows.

If x € F such that 6g(z) = dy, then any blow-up limit F of E at z
satisfies 0 (0) = dy. By Lemma 2.3, F' must be a 3-dimensional minimal
cone of type Y, (iii) follows. O

Lemma 2.4 allows us to define the points of type P and Y of a 3-
dimensional minimal set in R*.

DEFINITION 2.5.— Let E be a 3-dimensional minimal set in R* and
x € E. We call x a point of type P if Op(x) = dp. We call x a point of type
Y Zf GE(JZ) =dy.

The following proposition says that if a 3-dimensional minimal set F
is close enough to a 3-dimensional plane P in the ball B(z,2r), then E is
Bi-Holder equivalent to P in B(z, 7).

PROPOSITION 2.6.— For each a > 0, we can find € > 0 such that the
following holds.

Let E be a 3-dimensional minimal set in R* and © € E. Let P be a
3-dimensional plane such that

dy25,(E, P) < e. (2.6.1)

Then E is Bi-Holder equivalent to P in the ball B(x,r), with Hélder expo-
nent 1 4+ a.

Proof .— Take any point y € B(x,r). Since B(y,2*) C B(x,2°r), we
have
dy 01, (E, P) < 2dy 55, (E, P) < 2e. (2.6.2)

By [3, 16.43], for each €; > 0, we can find € > 0 such that if (2.6.2) holds,
then

H3(ENB(y,2%r)) < H3PNB(y,(1+€e)2%)) +err®
< dp(2°r) + Cerr®. (2.6.3)

Now (2.6.3) implies that 0 (y, 23r) < dp + Ce;. If € is small enough, then
0r(y) < 0p(y,23r) < dy. We deduce that 0z (y) = dp and y is a P point.
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Since Og(y,t) is a non-decreasing function in ¢, we have
0 < O0r(y,t) —0g(y) < Ce for 0 <t < 2% (2.6.4)

By [3, 7.24], for each €3 > 0, we can find €; > 0 such that if (2.6.4) holds,
then there exists a 3-dimensional minimal cone F, centered at y, such that

dy/2(E, F) < e for 0 <t < 2%, (2.6.5)

and

05(y,2°r) — 0p(y,2°r)| < €2 (2.6.7)
Since dp < 0p(y,2%r) < dp +Cer, we deduce from (2.6.7) that 0x(y, 2%r) <
dp+Cei+er. Soif €1 and €5 are small enough, then 0 (y, 22r) < dy. Which
implies 0r(y) < dy. Since F is a minimal cone centered at y, we deduce
that F' must be a 3-dimensional plane, by the same arguments as in second
part of Lemma 2.4.

Now we can conclude that for each y € F N B(z,r) and each ¢t < r,
there exists a 3-dimensional plane P(y,t), which is F' in (2.6.5), such that
dy+(E,P(y,t)) < €. By [6,2.2], for each a > 0, we can find e > 0,
and then € > 0, such that F is Bi-Holder equivalent to a P in the ball
B(z,r). O

PROPOSITION 2.7.— For each n > 0, we can find € > 0 with the fol-
lowing properties. Let E be a minimal set of dimension 3 in R* and Y be a
3-dimensional minimal cone of type Y, centered at the origin. Suppose that
do1(E,Y) < e. Then in the ball B(0,n), there must be a pointy € E, which
is not of type P.

Proof . — Suppose that the lemma fails. Then each z € B(0,7) is of type
P. We note F}, F5, F3 the three half-plane of dimension 3 which form Y and
L the spine of Y, which is a plane of dimension 2. Then F;,1 < ¢ < 3 have
common boundary L. Take w; € F; N 0B(0,n/4),1 < ¢ < 3, such that the
distance dist(w;, L) = n/4. We see that the w; lie in a 2-dimensional plane
orthogonal to L. Since do1(E,Y) < €, we have that for each 1 < ¢ < 3,
there exists z; € E such that d(z;,w;) < e. Now d(z;,0) < d(w;,0) +¢€ =
n/4+ e < 3n/8 and dist(z;, L) > dist(w;, L) —e = n/4 — e > 3n/16. So if €
is small enough, we have that for each 1 < ¢ < 3, the ball B(z;,7/8) does
not meet L. As a consequence, Y coincide with F; in the ball B(z;,n/8) for
1 <7 < 3. We have next

dzl-m/8<EaFi) = dZi,n/8<E7Y)
8
< —dpa(E)Y)
n
8¢
< —. 2.7.1
o (2.7.1)
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Take a very small constant o > 0, say, 10~°. Then by Proposition 2.6, we
can find € > 0 such that if (2.7.1) holds, then

E is Bi-Hélder equivalent to F; in the ball B(z;,n/2%) for each 1 <i < 3
with Hoélder exponent 1 + a. (2.7.2)

Next, since we suppose that each z € B(0,7) is of type P, we have that
there exists a radius r, > 0, such that

E is Bi-Holder equivalent to a 3-dimensional plane in the ball B(z,r,),
with exponent 1+ «. (2.7.3)

In the ball B(0,7), we have do,(E,Y) < %do,l(E, Y) < (2.7.4)

E .
7

We can adapt the arguments in [3], section 17 to obtain that there does
not exist a set F, which satisfies the conditions (2.7.2), (2.7.3) and (2.7.4).
The idea is as follows, we construct a sequence of simple and closed curves
Y0571, --- Vi Such that v, N E = & and 7y intersects E transversally at
exactly 3 points in the ball B(z;,1/2%). For each 0 < i < k—1, 7; intersects E
transversally at a finite number of points and |y;NE|—|v;+1NE)| is even, here
|7: N E| denotes the number of intersections of y; with E. This is impossible
since |y N E| = 3 and |y, N E| = 0. We obtain then a contradiction.
Proposition 2.7 follows. O

LEMMA 2.8.— For each § > 0, we can find € > 0 such that the following
holds.

Let F be a 3-dimensional minimal cone in R*, centered at the origin.
Suppose that dy < 0p(0) < dy + €. Then there exists a S-dimensional
minimal cone Yr, of type Y, centered at 0 such that do1(F,Yr) < 0.

Proof . — Suppose that the lemma fails. Then there exists § > 0, such
that we can find 3-dimensional minimal cones Fi, ..., Fy, ... centered at 0,
satisfying dy < 0p, < dy + 1/2%, and for any 3-dimensional minimal cone
Y of type Y, centered at 0, we have dg 1 (Y, F;) > 6.

Now we can find a sub-sequence {F}, }32 ; of {F;}5°, such that this sub-
sequence converges to a closed set G C R*. By [3, 3.3], G is also a minimal
set. Since each Fj, is a cone centered at 0, G is also a cone centered at 0.
So G is a 3-dimensional minimal cone centered at 0. By [3, 3.3], we have

H3(G N B(0,1)) < hkmiani”(ij N B(0,1)), (2.8.1)
e de el
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which implies that
0c(0) < lim inf(dy +1/27%) = dy. (2.8.2)
—00

By [3, 3.12], we have
H*(G N B(0,1)) > limsup H*(F;, N B(0,1)), (2.8.3)

k—o0
which implies that
0c(0) = limsup(dy + 1/27%) = dy. (2.8.4)

k—o0
From (2.8.2) and (2.8.4), we have that 0(0) = dy. Then by Lemma 2.3,
G must be a 3-dimensional minimal cone of type Y, centered at 0. Since
limy_ 00 Fj . = G, there is k > 0 such that do1(Fj,,G) < /2, which is a
contradiction. The lemma follows. O

The following lemma is similar to Lemma 2.8, but we consider minimal
sets in general.

LEMMA 2.9.— For each § > 0, we can find € > 0 such that the following
holds.

Suppose that E is a 3-dimensional minimal set in R* and 0 € E. Suppose
that
dy < QE(O) <dy +e, (2.9.1)
and

Then there exists a 3-dimensional minimal cone Yg, of type Y, centered at
0 such that
do,1(E,YE) < 6.

Proof.— By [3, 7.24], for each €1 > 0, we can find € > 0 such that if
(2.9.2) holds, then there is a 3-dimensional minimal cone F centered at the
origin, such that

do Q(F E) €1, (293)

and
|9F ,2) - GE(O 2)‘ < €1. (294)

0
Since E is minimal, 05(0,4) > 05(0,2) > 6£(0). So from (2.9.1) and (2.9.2),
we have that dy < 0g£(0,2) < dy + 2e¢. With (2.9.4), we have

dy —e1 < 9F(072) <dy 4 2e+ €. (295)
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Now if we choose €; small enough, then 6 (0) = 0£(0,2) > dy — ¢; > dp,
so by Lemma 2.2, we have 6z(0) > dy. Thus

dy < QF(O) <dy + 2¢+ €. (296)

By Lemma 2.8, for each €3 > 0, we can find ¢; > 0, and then ¢ > 0, such
that if (2.9.6) holds, then there is a 3-dimensional minimal cone Yz of type
Y, centered at 0 such that

dO’Q(F, YF) < €3. (297)
From (2.9.3) and (2.9.7) we have
d071(E, YF) g 2(d072(E, F) + d072(F, YF)) g 2(61 —|— 63). (298)

Now for each § > 0, we choose € > 0 such that 2(e; + €3) < J, we set then
Yr = Yr and the lemma follows. O

We are ready to prove Theorem 1.

THEOREM 2.10.— For each a > 0, we can find € > 0 such that the
following holds.

Let E be a 3-dimensional minimal set in R*, which contains the origin
0. Suppose that there exists a radius r > 0 such that

dy < 0g(0) <dy +¢, (2.10.1)

and
0r(0,2"r) —0p(0) < e (2.10.2)

Then E is Bi-Hélder equivalent to a 3-dimensional minimal cone Y of type
Y and centered at 0 in the ball B(0,r), with Hélder exponent 1 + «.

Proof. — By Lemma 2.9, for each ¢; > 0, we can find € > 0 such that if
(2.10.1) and (2.10.2) hold, then there exists a 3-dimensional minimal cone
Y, of type Y, centered at 0 such that

d0729r(E, Y) < €1. (2103)
We consider a point y € EN B(0,r). We set
By ={z € EN B(0,4r)} z is not a P-point. (2.10.4)

We note that Ey is closed. Indeed, if z is an accumulation point of Ey,
then if z is a P-point, then there exists a neighborhood V, of z in F such
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that V, has only points of type P, as in the proof of Proposition 2.6, which
is not possible. So z cannot be a P-point and as a consequence, z € Fy.

Case 1, y € Fy.
Since y is not a P-point, 0g(x) # dp, then by Lemma 2.4, we have
Op(y) = dy; (2.10.5)
Next, B(y,2%r) c B(0,2°r), by (2.10.3), we have
dy o8, (E,Y) < 2dg 29, (E,Y) < 2¢. (2.10.6)

By [3, 16.43], for each e > 0, we can find €; > 0 such that if (2.10.6) holds,
then

H3(EN B(y,27r)) < H3(Y N B(y, (1 + €2)27r)) + er, (2.10.7)
which, together with (2.10.5), imply
dy < 0p(y,27r) < dy + Ces. (2.10.8)

But F is a minimal set, so the function 0g(y,.) is non-decreasing. So we
have
dy < 0r(y,t) <dy + Cey for 0 <t < 277 (2.10.9)

By Lemma 2.8, for each €3 > 0, we can find €9, €; > 0, and then € > 0, such
that if (2.10.5) and (2.10.8) hold, then there exists a 3-dimensional minimal
cone Y (y,t) of type Y, centered at y, such that

dy+(E,Y (y,t)) < €3 for 0 <t < 2°7. (2.10.10)

We note as above, for y € B(0,7) and t < 25, Y(y,t) the cone of type Y
that satisfies (2.10.10).

Case 2, y is a P point.

Let d = dist(y, Ey) > 0. Take a point u € Ey such that d(y,u) = d.
Since z € B(0,r) and 0 € Ey, we have d < d(0,y) < r. We take the cone
Y (u,2d) as in (2.10.10), then

du24(E,Y (u,2d)) < €3. (2.10.11)

Call L the spine of Y (u, 2d), then L is a 2-dimensional plane passing through
u. We want to show that

dist(y, L) > d/2. (2.10.12)
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Indeed, if (2.10.12) fails, then there exists ' € L such that d(y,u') =
dist(y, L) < d/2. So d(v',u) < d(v',y) + d(y,u) < 3d/2. As a consequence,
B(u',d/2) C B(u,2d). We have next

dur aj2(E, Y (u,2d)) < 4dy2a(E,Y (u,2d)) < 4es. (2.10.13)

By Proposition 2.7, we can choose €3 > 0 such that if (2.10.13) holds, then
there is a point w3 € E N B(w/,d/1000), which is not of type P. Next,
d(y,u1) < d(y,u') +d(uw',u1) < d/2+ d/1000 < 3d/4 and since y € B(0,r),
u’ € B(0,r+3d/4) C B(0,4r). As v’ is not a P-point, we have that v’ € Ey.
So we can find a point v’ € Ey for which d(y,v’) < d, a contradiction. We
have then (2.10.12).

Since B(y, d/2) C B(u,2d), we have
dy}d/Q(E, Y(u, Qd)) < 4du,2d(E, Y(U, Qd)) < 463. (21014)

By [3, 16.43], for each ¢4 > 0, we can find e3 > 0 such that if (2.10.14) holds,
then

H3(E N B(y,d/4)) < H*(Y (u,2d) N B(y, (1 + €4)d/4) 4+ e4d®.  (2.10.15)

Now as dist(y, L) > d/2, we see that Y (u, 2d) coincide with a 3-dimensional
plane in the ball B(y, (1 + €4)d/4). So H3(Y (u,2d) N B(y, (1 + €4)d/4) <
dp((1+ €4)d/4)3, together with (2.10.15), we obtain

05 (y,d/4) < dp + Cey. (2.10.16)

By the proof of Proposition 2.6, we have that for each €5 > 0, we can find
€4 > 0 such that for each t < d/8, there exists a plane P(y,t) of dimension
3 passing by y, such that

dy(E, P(y,t)) <es. (2.10.17)

For the case d/8 < t < r, we take the cone Y (u,t + d) as in 2.10.10 which
is possible since ¢t + d < 8r. Since B(y,t) C B(u,t+ d), we have

dy (B, Y (u,t +d)) < #du,ﬁd(E,Y(u,t +d)) <10es.  (2.10.18)

From (2.10.10), (2.10.17) and (2.10.18) we conclude that, for each y € EN
B(0,7) and t < r, there exists a 3-dimensional minimal cone Z(y,t) of type
Por Y, such that dy, +(E, Z(y,t)) < €6, where e = max{es, 10e3}. By [6,2.2],
we conclude that for each oo > 0, we can find € > 0 such that if (2.10.1) and
(2.10.2) hold, then E is Bi-Hdlder equivalent to a 3-dimensional minimal
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cone of type Y, centered at 0 in the ball B(x,r), with Holder exponent
1+ a. O

Now we see that Theorem 1 is a consequence of Theorem 2.10, since
0g(x) = dy which lies between dy and dy + € for any ¢ > 0. Next, for
each € > 0, since lim,_,o 0g(x,r) = 0g(z), so we can find r > 0 such that
0p(z,2Mr) < Op(x)+e = dy +e. We conclude that E is Bi-Holder equivalent
to a cone of type Y in the ball B(z,r).

COROLLARY 2.11.— For each a > 0, we can find € > 0 such that the
following holds. Let E be a 3-dimensional minimal set in R*, x € E, r be a
radius > 0 and Y be a 3-dimensional minimal cone of type Y, centered at
x such that

d$7214,«(E, Y)<e (2.11.1)

Then E is Bi-Holder equivalent to Y in the ball B(x,r), with Holder expo-
nent 1 + «.

Proof.— By Proposition 2.7, we can find € small enough such that there
exists a point y € B(z,r/1000) which is not of type P. So 0g(y) > dy. Since
B(y,2'%r) C B(z,2'3r), we have

dy7213r(E7 Y) <2d; 014, (E,Y) < 2e. (2.11.2)

By [3, 16.43], for each €; > 0, we can find € > 0 such that if (2.11.2) holds,
then

H3(EN B(y,2'%r)) < H3(Y N B(y, (1 + €)2'%7)) + e17%, (2.11.3)

which implies that
05 (y, 2'%r) < dy + Ce. (2.11.4)

Now (2.11.4) together with the fact that 6g(y) > dy are the conditions in
the hypothesis of Theorem 2.10 with the couple (x, 2r). Following the proof
of the theorem, for each €3 > 0, we can find €; > 0 such that for each z €
B(y,2r) and for each ¢ < 2r, there is a 3-dimensional minimal cone Z(z,t)
of type P or Y such that d, .(Z(z,t), E) < €. Since B(z,r) C B(y,2r), the
above holds for any z € B(z,7) and t < 7. Now since d, (E,Y) < 2Me < e,
we can apply [DDT,2.2] to conclude that for each a > 0, we can find € > 0
such that if (2.11.1) holds, then E is Holder equivalent to Y in B(x,r), with
Hoélder exponent 1 + a. O

By construction of the Bi-Holder function in [6], we see that if E is Bi-
Holder equivalent to a Y of type Y in B(z,r) by a function f, then f is a
bijection of the spine of Y in B(x,r/2) to the points of type non-P of E in
a neighborhood of . We have the remark.
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Remark 2.12.— Let E be a 3-dimensional minimal set in R*, € E and
r > 0. Suppose that F is Bi-Holder equivalent to a 3-dimensional minimal
cone Y of type Y and centered at = in the ball B(x,r). Note Ey the set of
the points of type non-Y of E in B(xz,r) and L the spine of Y. Then

Ey N B(x,r/8) C f(LN B(z,r/4)) C By N B(x,r/2). (2.12.1)

3. Existence of a point of type non-P and non-Y
for a Mumford-Shah minimal set in R* which is near a T

Let us restate Theorem 2.

THEOREM 2. — There exists an absolute constant € > 0 such that the
following holds. Let E be an MS-minimal set in R*, r > 0 be a radius and T
be a 3-dimensional minimal cone of type T centered at the origin such that

do, (B, T) < . (2.1)

Then in the ball B(0,r), there is a point which is neither of type P nor Y
of E.

We will prove Theorem 2 by contradiction. By homothety, we may as-
sume that r = 2'°. Suppose that (2.1) fails, that is

there are only points of type P and Y in E N B(0,2'9). (2.2)

We fix a coordinate (x1,2,23,24) of R*. Without loss of generality, we
suppose that T is of the form T = T’ x [, where T” is a 2-dimensional
minimal cone of type T which belong to a 3-dimensional plane P of equation
P = {x1,x9, 23,24} : 4 = 0 and [ the line of equation z; = x2 = z3 = 0.
We call [ the spine of T', which is also the set of T-points of T'. Let 1,15, 13,14
be the four axes of T”; then L; = I; x l,4 = 1, ...,4 are the 2-faces of T'. We
see that U}_; L; \ [ is the set of Y-points of 7. Finally, let F},1 < j < 6 the
faces of T" in P. Then F; x [,1 < j < 6 are the 3-faces of T' and U?Zle
minus the set of Y-points and the set of T-points of T is the set of P-points
of T. The proof of Theorem 2 requires several lemmas. We begin with a
lemma about the connected components of B(0,2) \ E.

LEMMA 3.1.— Let a;, 1 < i < 4 be the four points in 0B(0,2°)NP whose
iistances to TV are mazimal. Set V;,1 < ¢ < 4 the connected component of
B(0,2'%) \ E which contains a;. Then we have V; # V; for 1 <i# j < 4.

Proof. — Suppose that the lemma fails. Then there are i # j such that
Vi = V. Without loss of generality, we may assume that V; = Vo = V. Now
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the point a = (a1 + az2)/2 belongs to a 3-face Pis of T and T coincide with
P12 in B(a,28).

Since dg 210(E,T) < €, we have
doos(E,T) = dg 08 (E, P12) < 4e. (3.1.1)

By Proposition 2.6, for a constant 7 very small, say, 10~2°, we can find € > 0
such that E is Bi-Holder equivalent to Pjo in the ball B(a,2?), with Holder
exponent 1+ 7. We note f this Hoélder function; then f is a homeomorphism
and

EnN B(a,4) C f(P12N B(a,8)) C EN B(a, 16), (3.1.2)

and
|f(z) — 2| < 7 for x € B(a, 16). (3.1.3)

We want to show that
if z€ 0B(a,4) \ E, then z € V. (3.1.4)

Indeed, set 2’ = f~1(z), then 2z’ € B(a,8) and as z ¢ E, we have 2z’ ¢ Pps.
Now the 3-plane Pj5 separate R* into two half-spaces H; and H, which
contain a; and as, respectively. Let z; € Hy and 29 € Hs be two points in
0B(a,4) whose distances to Pj5 are maximal. We see that a is the mid-point
of the segment [z1, 22| and this segment is orthogonal to Pjs. Since z; and
2o lie in two different half-spaces of R* separated by Pja, one of the two
segment [2’,z1] and [2/, z9] doesn’t meet Pj5. We suppose that is the case
of [/, z1]; then the curve v = f([2, z1]) doesn’t meet E.

Next, it is clear that dist(u,T) > 2 for u € [a1, f(#1)] as |f(z1) — 21| < 7.
Since dg210(E,T) < €, the segment [ai, f(21)] doesn’t meet E. Now the
curve 7" which goes first from a; to f(z1) by the segment [aq, f(z1)] and
then from f(21) to f(2’) = z by the curve v is a curve in B(0,2%) which
joint a1 to z and doesn’t meet E. We deduce that z € V; = V, which is
(3.1.4).

Now we want to obtain a contradiction. We will construct an MS-
competitor F for E whose Hausdorff measure in B(0,21°) is smaller than
that of E in the same ball. We set

F = E\ B(a,4). (3.1.5)

It is clear that F'\ B(0,2'%) = E\ B(0,2'%). We want to show that F is an
MS-competitor for E. For this, we suppose that 21, 2o € R*\ (B(0,2°)UE)
such that z;, 2 are separated by E. We want to show that they are also
separated by F'.
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We proceed by contradiction. Suppose that

there is a curve I' C R* connecting x; and x5 which doesn’t meet F.
(3.1.6)

Now if 'NB(a,4) = &, then I' doesn’t meet E. Next, as F' = E\ B(a,4), we
have that x1,zo are not separated by F, a contradiction. So we must have
that T' meets B(a,4). Let 2 be the first point at which I' meets B(a,4)
and x5 be the last point at which I' meets B(a,4). Then it is clear that
x}, 25 € 0B(a,4). We note I'; the sub-curve of I" from z; to x] and I's the
sub-curve of T from % to xq. Since I'y and T's belong to the same connected
component of F and I'y, I’y don’t meet B(a,4) and F = E \ B(a,4), we
deduce that 'y and T'y belong to the same connected component of R*\ E.

In addition, since z}, x5 € 0B(a,4) \ E, so by (3.1.4), they both belong
to V and then we can connect x} and z/, by a curve I's which doesn’t meet
E.

Now the curve I'y which is the union of I';,I's and I's is a curve that
connects 7 and zo and doesn’t meet E. This is a contradiction, as we
suppose that z; and x5 are separated by E.

Now since dist(a, F) < 2!, there is a point a’ € E such that d(a,a’) <
21% and by consequence B(a’,2) C B(a,4). Next

H3(FnB(0,2'%) = H3ENB(0,2')\ B(a,4))
< H*(EnB(0,2'%\ B(d,2))
= H3(ENB(0,2'"%) -~ H3(EN B(d,2))
< H*(EnB(0,2'%) — 02° < H3(E N B(0,2')).

(3.1.7)

Where the last line is obtained from the fact that F is Alhfors-regular (see
[7]). Now (3.1.7) contradicts the hypothesis that E is MS-minimal, we thus
obtain the lemma. ]

If = is a point of type P or Y of F, then by Proposition 2.6 and Theorem
1, for 7 = 1025, for example, we can find a radius » > 0 and a Bi-Hélder
mapping ¥, : B(x,2r) — R, and a 3-dimensional minimal cone Y of type
P or Y, respectively, centered at x, such that

|y (2) — z| < 77 for z € B(x,2r) (2)
EnB(z,r) C (Y NB(x,3r/2)) C EN B(x,2r). (3)

— 484 —



On some properties of three-dimensional minimal sets in [R*
By (2.2), there are only points of type P or Y of £ B(0,2'°). We set then
Ey the set of Y-points of E N B(0,2%°). (4)

It is clear that Fy is closed by the proof of Theorem 2.10. If x € Ey N
B(0,219), then there exists 7, > 0 such that B(x,r,) C B(0,2') and a
minimal cone Y, of type Y, centered at z, and a Holder mapping ¢, :
B(x,2r,) — R* such that (2) and (3) hold for ¢, and Y,. Let L, be the
spine of Y, then L, is a 2-plane passing through z. By Remark 2.12, there
is a neighborhood U, of = such that

Ey NUy = ¢o(B(z,72) N Ly). (5)

Now we take four points d;, 1 < ¢ < 4 such that 0 is the mid-point of the
segments [a;,d;],1 < ¢ < 4, here a; is as in Lemma 3.1. It is clear that
d; € T" C T. In addition, d; € L;,1 < i < 4, where L; are described just
after the second statement of Theorem 2. Next, for 1 < i < 4, we have
dg; 4(E,T) < 28dy 210(E,T) < 2%¢. But in the ball B(d;,4), T coincide with
a cone Y; of type Y whose spine is L;. So dg, 4(F,Y;) < 2%¢. By Corollary
2.11, for 7 = 1072, we can find € > 0 such that E is Bi-Holder equivalent
to Y; in the ball B(d;,2), with Holder exponent 1 + 7. Call ; this Holder
mapping, then by Remark 2.12

EyﬂB(di,l) CQ/JZ(LzﬂB(dZ,3/2)) CEyﬂB(dZ‘,2) (6)
and
[i(z) — 2| < 7 for z € B(d;,2). (7)
Setting
b = ;(d;), 1 <i<4. (8)

By (7), we have d(d;,b;) < 7. We want to prove the following lemma.

LEMMA 3.2.— The point by € Ey can be connected to another point
b; € By, i+# 1 by a curve v C Ey N B(0,3-2%).

Proof.— Recall that 1;,b;,d; are the same as (6),(7),(8) above. In ad-
dition, for each x € Ey N B(0,2'°), there are a radius 7, and a Bi-Héder
mapping ., a minimal cone Y, of type Y, centered at x such that (2),(3),
and (5) hold.

We proceed by contradiction. We denote by Ei the connected compo-
nent of Ey N B(0,21%) which contains b;. Since in each ball B(b;,2), Ey is
Holder equivalent to a 2-plane, by (6), we deduce that each z € EyNB(b;, 1)
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can be connected to b; by a curve in Ey. So if the lemma fails, that is E{-
doesn’t contain any b;,7 # 1, we must have

Ey N B(b;,1) = @ for i # 1. (3.2.1)

Recall next that T = T’ x [, where T is a 2-dimensional minimal cone of
type T in the 3-plane P of equation x4 = 0 and [ is the line of equation
Tr] = Ty = T3 = 0.

Now we construct a family of functions f;,0 < ¢t < 1 from R?* to R? by
the formula
fila) = (x4, |z — tdo]? — (1 = 1)2%)%), (32.2)

where © = (21,9, 23, 74) € R* and 0 <t < 1. If z € Fy, then
[fi(z)] = |z —d2| > 1/2, (3.2.3)

by (3.2.1) and the fact that |da — ba| < 7. We will construct a finite number
of functions to go from fy to fi. First, let K = E{. N B(0,3 - 28). Then for
each z € K, there is a radius r, such that By is Bi-Holder equivalent to a
2-plane P,, with Holder exponent 1 4+ 7. Since K is compact, we can cover
K by a finite number of balls B(z;,7,,),1 < ¢ < N. Finally, we choose n > 0
which is smaller than % min{r,, },1 <i < N.

Next, let {z;},1 < ¢ < ! be a maximal collection of points in K such that
|z; — x;| > n for i # j. Set ¢; a bump function with support in B(z;,2n)
and such that ¢;(x) = 1 for z € B(x;,n) and 0 < $;(z) < 1 everywhere.
We note that >, p;(z) > 1 for z € Ei N B(0,3 - 28) since z must lie in
one of the ball B(z;,n) by the maximality of the family {z;}. Set ¢ a C>
function in R* such that @o(z) = 0 for |z| < 3-2% — 5 and @o(z) = 1 for
|z] > 3-2% and 0 < @p(x) < 1 everywhere. We have then Zé:o Pi(x) =21
on Fi and we set

l

p(x) = @(x){z @j(x)} ! for v € B} and 0 < j < L. (3.2.4)
3=0

The functions ¢;,0 < j <[ have the following properties.

@, has support in B(z;,2n) for j > 1, (3.2.5)
1
Z(pj(m) = 1forzecE}),
§=0
!
Zgoj(x) = lforz e By NB(0,3-2%—n), (3.2.6)
j=1
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since pg(z) = 0 on B(0,3-2% — 7). Our first approximation is a sequence of
functions given by

gk =fot+ Y ¢i(fi— o), (3.2.7)

0<y<k
with 0 < k < [. Then gg = fp and

gi(z) = fi(z) for x € ENB(0,3-2% — 7). (3.2.8)
We note that for k > 1

gk(®) = gi-1(2) = o) (fo(w) — fo(w)) is supported in By, 2n). (3.2.9)

We compute the number of solutions in E{- of the equations gx(z) = 0. We
will modify f and the gj such that they have only a finite number of zeroes.
We modify first fy.

SUB-LEMMA 3.2.1.— There ezists a continuous function hg on EY. such
that
|ho(z) — fo(x)] < 10~ %for z € By, (3.2.9)

ho has ezactly one zero by in E{-, and by is a simple, non-degenerate zero

Of ]'Lo.

Here, we say that £ € E}- is a non-degenerate, simple zero of a continuous
function h on EY if h(€) = 0 and there is a ball B(¢,p) and a Bi-Holder
function v with Holder exponent 1+ 7 which maps Ey N B(&, p) to an open
set V of a 2-plane, such that ho~y~! is of class C! on V and the differential
D(ho~~1) at the point y(£) is of rank 2.

Proof. — We modify fy in a neighborhood of d;. We have already our
Bi-Holder homeomorphism ; which satisfies (6),(7) and (8). Next, since
E3 is the connected component of Fy which contains by, we have

EY mB(dhl) = Eﬂlf mB(dlv l)a
thus
EY N B(dy,1/3) C 41 (B(Ly N B(dy,1/2))) C By N B(dy,1),  (3.2.10)

here L; is the 2-face of T that contains d;, which is Bi-Héder equivalent to
E3 in the ball B(dy,1).

Set ho = fo outside the ball B(di,1/2). In B(di,1/4), we set hg =
fo o1 In the region between the two balls R = B(dy,1/2) \ B(dy,1/4),

we set

ho(@) = () fo(@) + (1 - alw))fo o o~ (2), (3.2.11)
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where a(z) = 4]z — dy| — 1. We have then |ho(z) — fo(z)| < |fo(z) — fo o
Y7 (x)] < O for « € B(dy,1/2) since |11 (z) — 2| < 7 and the differential
of fo is bounded in this ball. We have then (3.2.9).

Since fo(z) = (x4, |z[*—4%), so | fo(z)| > 1/500 for z € E{ \ B(d1,1072).
By consequence, all the zeroes of hy must lie in the ball B(d;,1/4).

We verify next that hg has exactly one zero in B(dy, 1/4), which is simple
and non-degenerate. Set v (z) = ¢y () for € E}. N B(dy,1/4). Then v,
is a homeomorphism from E{. N B(dy,1/4) onto its image, which is an open
set in Lq.

Since hg = footh]t = fooyr on EL.NB(dy,1/4), we have that ho(£) = 0
for ¢ € BN B(dy,1/4) if and only if 71 (€) is a zero of fo(z) = (24, |2]* —4%)
in Ly N B(dy,1/2), which can only be d;. The verification that Dfy is of
maximal rank at d; is clear. The sub-lemma follows.

We need another sub-lemma which allows us to go from hy_1 to hy.

SUB-LEMMA 3.2.2. — We can find continuous functions 0,1 < k < [,
such that

Oy is supported in B(z,37), (3.2.12)
and
116k]]oe < 2771076, (3.2.13)
and if we set
hi = hi—1 + @i (f1 — fo) + Ok, (3.2.14)

for 1 <k <, then
(3.2.15)

each hy has a finite number of zeroes in EY., which are all simple and
non-degenerate.

Proof.— We will construct hy by induction. For & = 0, the function hg
satisfy clearly (3.2.15). Let & > 1, and we suppose that we have already
constructed hy_1 such that (3.2.15) holds.

We note that hx—_1 + @r(f1 — fo) coincide with hg_; outside the ball
B(xg,2n), by (3.2.5). We take a thin annulus

A = B(xy, p2) \ Bz, p1),2n < p1 < pa < 31, (3.2.16)

which doesn’t meet the finite set of zeroes of hi_;. Recall that there is a
Bi-Hoélder function 1y, : B(xy, 20n) — R* and a 2-plane P}, passing through
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2 such that | (z) — x| < 1097 for € B(xy, 20n) and
Fy N B(zk, 199) C Yp(Py N B(xg,20n)) C Ey. (3.2.17)

We choose 6 such that 6 is supported in B(zp,p2) and ||0k]|lec <
min{2*1075 inf,c 4 |hx_1 ()|}, of course inf e 4 |hgx_1(z)| > 0 since A doesn’t
meet the set of zeroes of hy_1. Then hy = hi_1 outside the ball B(xg, p2).

We will control hy in the ball B(zy,p1). Set y(z) = ¢, ' (x) for x €
E3 N B(zg, p1). By (3.2.17) and since vy, is Bi-Holder on B(zy, 20n), v is a
Bi-Holder homeomorphism from Ey N B(xy, p1) onto an open set V of the
2-plane P.

By the density of C' function in the space of bounded continuous func-
tions on V' with the sup norm, we can choose 6 with the above properties
and such that

hy, o 0y, is of class C* on V. (3.2.18)

We can also add a very small constant w € R? to 6, on E;, N B(xg, p1), and
then interpolate continuously on A. We verify that for almost every choice
of w,

hy has a finite number of zeroes in E3- N B(xy, p1). (3.2.19)

For this, we set Z, = {z € V;h o ¢i(2) = y}. By (3.2.18), we can apply
the co-area formula ([9, 3.2.22]) for hy o ¢, on V, and we obtain

/ J(2)dH?(2) = H(Z,)dH?(y), (3.2.20)
\% yeR2

here, J(z) denote the Jacobian of hj o4y at z, which is clearly bounded.
We deduce that Z, is finite for almost-every y € R2. If we choose w such
that Z,, is finite and then add —w to 6y in E- N B(zg, p1), then the new
Zo will be finite, and we have (3.2.19).

We consider now the rank of the differential. By Sard’s theorem, the set
of critical values of hj, o v, has measure 0 in R2. So if we choose w € R?
which is not a critical value, and add —w to ) in EY. N B(zg, p1), then the
differential of the new function hy o ¢ at each zero of hy o 1 is of rank 2.

So we take w very small with the above properties, and add —w to 6
in B(xg, p1); next, we interpolate in the region A, we obtain a function hy
having a finite number of zeroes in E3- N B(xy, p1) which are all simple and
non-degenerate. The sub-lemma follows.

Now let N(k) be the number of zeroes of hy in E{. Then N(0) = 1
since the only zero of hg in E}l, is by. Let us check that for the last index [,
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N(l) = 0. First we have

hi—ho= Y (hx—hi-1)= > ¢rlfi—fo)+ Y Ok

1<k<l 1<k<l 1<kl

If z € By N B(0,3-2% —n), then Y-, ¢r(x) = 1, thus

hi(x) = ho(z) + fi(z + > bi(2)
1<k«
so that
()] = [fi(z)| — |ho(z) z)| - Z |0k (z
1<kl

> 1/4-107°- > 27%107° >0

1<k<l
by (3.2.3), (3.2.6) and (3.2.13).
If x € BEL N B(0,219) \ B(0,3-2% —7), then Zlgkgl vr(z) =1 —@o(z),

() = hoa) + (1~ go(@)) (/1 (x) + Y e

1<k«

SO

which implies

|hi(x) — fo(z) — (1 — po(x ))(fl( ) — fo(z))]
< lho(z) = fol@)| + D |0k(@)] < 2.107°.

1<k<l

But the second coordinate of fo(z) + (1 — @o(z))(f1(z) — fo(z)) is

|z|* — 4% + (1 — @o) (z)(|lz — do|* — |z]* + 47)
= oo(z)(|z* — 4°) + (1 — po(x)) |z — da|* > 1/4,

by (3.2.2) and because |z| > 3-2% — 5. Thus h;(z) # 0 in this case also. We
deduce that h; has no zero in E{., and N(I) = 0.

SUB-LEMMA 3.2.3.— N(k) — N(k — 1) is even for 1 < k <.

Proof. — We observe that hy_1 don’t vanish on A, where A is the annu-
lus defined in (3.2.16), and we took ||0x||oc very small so that hy does not
vanish on A as well. Next, by definition of g, ¢r = 0 on A. Setting

my(z) = hy—1(x) + t[hr(x) — hi—1(z)] = hp—1(x) + O (2), (3.2.21)
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for x € B N B(xk,p2) and 0 < t < 1. Then mg = hg—1 and my = hy on
ELNB(xy, p2). Since my(x) = hj_1(x)+t0(z) forx € ExNAand 0 <t < 1,
so my(z) # 0 if we take 6 small enough. Let 5 > 0 such that [m.(z)| > B
for x € Bl N A. Set S, = R?U {00}, so that S can be stereographically
identified with a sphere of dimension 2, we define 7 : R2 = S, by

m(x) = oo if 2| = Bk and 7(z) = ﬁ otherwise. (3.2.22)
k — |T
Next, we set
pi(x) = T(my(x)) for x € By N B(zg, p2) and 0 < ¢ < 1. (3.2.23)

Then p:(x) is a continuous function of x and ¢, which takes values in So.
By the definition of 5y,

pi(z) =occforz € By NAand 0 <t < 1. (3.2.24)

We want to replace the domain Ei N B(zg, p2) by an open set in a 2-plane
Pr. We keep our Bi-Hélder function ¢ as above, which maps an open set V'
of a 2-plane Py, onto F3-NB(xy, p2) and its inverse v which is also Bi-Holder
and maps Ey N B(z, p2) onto V. For 0 <t < 1, we set

qt(z) = p(¢Y(x)) for x € V and ¢ (z) = oo for x € P, \ V. (3.2.25)

We check that ¢; is continuous in Py x [0, 1]. It is continuous in V' x [0, 1], since
pe is continuous in [EL N B(zy, p2)] % [0, 1]. It is also continuous in [Py \ V] x
[0, 1], because it is co here. Now if z € OV, then ¢ (z) € Fy N OB(zg, pa),
so there is a neighborhood of 9 (x) in B(zy, p2) which is contained in A,
and we have p;(¢r) = oo on this neighborhood, so ¢; = co near z.

We set g(00) = 00, so ¢ is well defined on S" = P, U{oco} and it is clear
that each ¢; is continuous for 0 < ¢ < 1.

Now since g and ¢; are two continuous functions from the 2-sphere S’
to the 2-sphere S, we can compute their degrees. First, as gg and ¢; are
homotopic, they have the same degrees. We compute the degree of qq, for
example. Let

g ' ({0}) = {y1, 92, Y}, (3.2.26)

the set of zeroes of qg. This is a finite set since g; has only finite number
of zeroes for ¢t < 1. Since each zero of g is simple and non-degenerate, for
each 1 < k < m, there exists a neighborhood W, of y; such that

o is a homeomorphism from Wy, to qo(W), (3.2.27)
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and
WeNW, =aif k#1. (3.2.28)

So the degree of gg is computed as follows. We begin by 0, next, for 1 < k <
m, if gy preserve the orientation of Wy, we add 1, if gy doesn’t preserve the
orientation of Wy, we add -1. Then it is clear that

d(qo) is of the same parity as m. (3.2.29)

Here d(g) denote the degree of the function ¢. By the same arguments, we
have

d(q1) is of the same parity as the number of zeroes of ¢;. (3.2.30)

But d(qp) = d(q1) as above, we obtain

the number of zeroes of ¢q is of the same parity as the number of zeroes of
qi- (3.2.31)

We want to prove next that the number of zeroes of hy_1 is of the same
parity as the number of zeroes of hy. Since hyi_1 = hj outside the ball
B(z, p2) and they both don’t vanish on Ei N A, we need only to consider
their number of zeroes in E}- N B(x, p1). We verify that

the number of zeroes of hy_145 in E}l, N B(zk, p1) is equal to the number of
zeroes of g5 in S’ for s =0, 1. (3.2.32)

We verify for s = 0. If go(z) = 0, then € V (otherwise go(z) = 00),
s0 go(%) = po(vr(x)) and then po(y(z)) = 0. Since mo(Yr(z)) = 0, we
have hji_1(¢x(z)) = 0. Because x € V, we have iy (z) € B(xg,p1). So if
qo(xz) = 0, then ¢ (z) € B(xg, p1) and is a zero of hy_1.

Conversely, if y € B(x, p1) is such that hx_1(y) = 0, then po(y) = 0
and then there exists y' € V such that ¥ (y’) = y because ¢ is a homeo-
morphism from V' to B(zg, p1). Now qo(y’) = po(¥x(y')) = 0 and thus 3y’ is
a zero of qq.

So we have (3.2.32) for s = 0. The case s = 1 is the same, and we
have then (3.2.32). By (3.2.31), we obtain that the number of zeroes of
hi_1 is of the same parity as the number of zeroes of hx, which means that
N(k) — N(k — 1) is even. The sub-lemma follows.

Now by sub-lemma 3.2.3, we know that N(0) — N(1) is even, but it is 1,
so we obtain a contradiction, and we finish the proof of Lemma 3.2. g
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3.3. Proof of Theorem 2

Let U(y),y € Ey N B(0,3-2%) be the set of connected components V' of
B(0,219)\ E such that y € V. Since for each y € Ey, there is a neighborhood
W of y on which FE is Bi-Holder equivalent to a Y, we see that U(y) is locally
constant. By Lemma 3.2, we can connect by to another point b;, i # 1, by a
curve in E;u and we can suppose that i = 2. Because b1, by € Ey and U(y)
is locally constant on Ey, we have U(b1) = U(bz). By Lemma 3.1, and the
fact that E is Bi-Holder equivalent to a Y near each point of type Y, we
have

{‘/23 Véa V4} = U(bl)

and
{1, V5, Vy} = U(by),

where V;,1 < i < 4is as in Lemma 3.1. So we see that U(by) # U(ba), which
is a contradiction. We finish the proof of Theorem 2. O
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