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Annales de la Faculté des Sciences de Toulouse Vol. XXII, n◦ 4, 2013
pp. 843–913

A viscosity approach to degenerate
complex Monge-Ampère equations

Ahmed Zeriahi(1)

ABSTRACT. — This is the content of the lectures given by the author at
the winter school KAWA3 held at the University of Barcelona in 2012
from January 30 to February 3. The main goal was to give an account of
viscosity techniques and to apply them to degenerate Complex Monge-
Ampère equations.
We will survey the main techniques used in the viscosity approach and
show how to adapt them to degenerate complex Monge-Ampère equations.
The heart of the matter in this approach is the “Comparison Principle”
which allows us to prove uniqueness of solutions with prescribed boundary
conditions.
We will prove a global viscosity comparison principle for degenerate com-
plex Monge-Ampère equations on compact Kähler manifolds and show
how to combine Viscosity methods and Pluripotential methods to get
“continuous versions” of the Calabi-Yau and Aubin-Yau Theorems in
some degenerate situations. In particular we prove the existence of singu-
lar Kähler-Einstein metrics with continuous potentials on compact normal
Kähler varieties with mild singularities and ample or trivial canonical di-
visor.

RÉSUMÉ. — Ce qui suit reproduit les exposés de l’auteur à l’Ecole d’Hiver
KAWA 3, qui s’est tenue à l’Université de Barcelone du 30 janvier au
3 février 2012. Le but principal était d’expliquer les techniques de viscosité
et de les appliquer aux équations de Monge-Ampère complexes dégénérées.
Nous survolerons les techniques principales de l’approche par la viscosité,
et montrerons comment les adapter aux équations de Monge-Ampère com-
plexes dégénérées. Dans cette méthode, le point crucial est le « Principe
de Comparaison » qui nous permet de prouver l’unicité des solutions sous
des conditions de valeurs au bord.
Nous démontrerons un principe de comparaison de viscosité global pour
les équations de Monge-Ampère complexes dégénérées sur les variétés
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compactes kählériennes et montrerons comment combiner les méthodes
de viscosité et les méthodes de pluripotentiel pour obtenir des « versions
continues » des Théorèmes de Calabi-Yau et Aubin-Yau dans certaines
situations dégénérées. En particulier, nous démontrons l’existence de métri-
ques de Kähler-Einstein singulières avec des potentiels continus sur les
variétés de Kähler compactes normales avec des singularités modérées et
un diviseur canonique ample ou trivial.
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Introduction

In the late seventies, E. Bedford and B. A. Taylor ([12]) started de-
veloping a new method of potential-theoretic nature adapted to the com-
plex structure for solving degenerate complex Monge-Ampère equations in
strictly pseudoconvex domains in Cn. They proved a Comparison Principle
and, using the Perron method, they were able to solve the Dirichlet problem
for degenerate complex Monge-Ampère equation for continuous data. Then,
elaborating on this fundamental work, they succeeded in building a com-
plex potential theory, called nowadays “Pluripotential Theory”, to study
fine properties of plurisubharmonic functions (see [13], [14], [35], [56]).

A quite elaborate theory was developed in the local case, thanks to the
contributions of several authors (see among others [15], [16], [26], [57], [27],
[28], [9], [18]). There are good surveys on these last developments (see [5,
55, 59]). The Dirichlet problem for non degenerate complex Monge-Ampère
equations with smooth data was solved independently by L. Caffarelly, J.J.
Kohn, L. Nirenberg and J. Spruck work using methods from the theory of
elliptic PDE’s ([31])

Pluripotential theory lies at the foundation of the recent approach to de-
generate complex Monge-Ampère equations on compact Kähler manifolds,
as developed by many authors with applications to Kähler Geometry (see
[58], [40], [62], [41], [19], [38], [71], [22], [64], [65]). There is a nice and com-
plete survey on the recent developements in this area (see [65]).

On the other hand, a standard approach to non linear second order
degenerate elliptic equations is the method of viscosity solutions introduced
first by M.G. Crandall and P.-L. Lions ([32]) at the begining of the eighties in
order to prove existence and uniqueness of “solutions” in a generalized sense
for first order non linear equations of Hamilton-Jacobi type. But it appeared
quickly that this method can be used to prove existence and uniqueness
of “generalized weak solutions” to certain fully non linear second order
degenerate elliptic PDE’s ([33]), especially for those equations for which the
notions of “classical” solution (i.e. smooth solution), “generalized” solution
(i.e. a solution in the Sobolev space W 2,∞) or “weak” solution (i.e. a solution
in the sense of distributions) do not make sense. The remarkable fact in this
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approach is that we can define, as in classical (linear) potential theory for the
Laplace operator for example, the notions of subsolution and supersolution
in a generalized sense (viscosity sense) for these equations.

The main tool in the viscosity approach is the Comparison Princi-
ple, which allows comparison of subsolutions and supersolutions with given
boundary conditions. This implies uniqueness of viscosity solutions for the
associated Dirichlet problem. Then Perron’s method can be applied, as in
the classical case, to construct the unique solution as the upper envelope of
all subsolutions, once we know the existence of a subsolution and a super-
solution with the given boundary conditions.

Whereas the viscosity approach has been developed for real Monge-
Ampère equations (see [53]), the complex case has not been studied until
recently. There have been some recent interest in adapting viscosity methods
to solve degenerate elliptic equations on compact or complete Riemannian
manifolds (see [3]). This theory can be applied to complex Monge-Ampère
equations only in very restrictive cases since it requires the Riemannian
curvature tensor to be nonnegative. There is a viscosity approach to the
Dirichlet problem for the complex Monge-Ampère equations on smooth do-
mains in Stein manifolds in [48] and [49]. These articles however do not
contain any new result for degenerate complex Monge-Ampère equations,
since that case is used there as motivation to develop a deep generalization
of plurisubharmonic functions to Riemannian manifolds with some special
geometric structure. In a recent paper [50], the same authors also develop
an interesting application to potential theory in almost complex manifolds
and solve the Dirichlet problem in this general context.

The most advanced results about the complex Monge-Ampère equations
were obtained quite recently in [42], and we will mostly follow the presenta-
tion given there. The main motivation was the problem of continuity of the
potentials of the singular Kähler-Einstein metric in a compact Kähler man-
ifold of general type constructed in [41]. Since this paper appeared, there
have been recent applications of viscosity methods to the Dirichlet problem
for the complex Monge-Ampère equation (see [68]) and more generally for
the complex Hessian equation (see [29]).

It is worth observing that there is no general comparison principle which
can be applied to a large class of degenerate elliptic fully non linear second
order PDE’s, including the degenerate complex Monge-Ampère equations
we are considering here.

Nevertheless, viscosity methods can be adapted to the complex case and
allow us to prove an appropriate Comparison Principle which leads along
the same scheme to uniqueness and existence of viscosity solutions.
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The first aim of these notes is to present the fundamental ideas behind
the viscosity approach. All the material we need can be found in the well
known survey [33] (see also [31]). There are also well written papers avail-
able in the literature (see [4], [39], [24]) but we will collect here the main
ingredients we will need to adapt the viscosity methods to the complex case.
The main result which we will use from the viscosity approach is what we
call the Jensen-Ishii maximum principle which will be stated whithout proof
here, referring to [33].

In order to compare the two approaches, we will start by reviewing the
basic tools from Pluripotential theory we will need, namely the compar-
ison principle for the complex Monge-Ampère operator. We will use the
pluripotential comparison principle and the Perron method to show how
pluripotential theory provides bounded weak solutions to the degenerate
complex Monge-Ampère equations we are considering.

The second aim is to show how to adapt the viscosity methods in the
context of complex Monge-Ampère equations on domains as well as on com-
pact Kähler manifolds following [42]. We will compare viscosity solutions
to pluripotential solutions. The main advantage of the viscosity approach
which we will exploit here is, not only that the notion of subsolution makes
sense, but that we can also define the notion of supersolution; then a vis-
cosity solution, if it exists, is necessarily continuous. Observe that in the
pluripotential theory framework, we can also define the notion of subso-
lution, but it is not always clear whether a notion of supersolution makes
sense and then the continuity of the pluripotential solution, if it exists, is
not obtained for free.

Finally the third aim is to show how to combine pluripotential meth-
ods and viscosity methods to prove existence and uniqueness of continuous
solutions to some degenerate complex Monge-Ampère equations. Moreover
using Kolodziej’s a priori C0−estimates as extended in [41], we can give
a soft proof of the continuous version of Yau’s theorem solving the Calabi
conjecture which applies for singular compact Kähler varieties with mild
singularities (in the sense of the MPP programme [20]) and with ample
canonical divisor. In particular we prove that potentials of singular Kähler-
Einstein metrics obtained previously in [41] are continuous, whereas they
only were known to be bounded. Surprisingly, this allows us to prove con-
tinuity of solutions to complex Monge-Ampère equations in a degenerate
situation where Pluripotential theory yields only boundedness.

Acknowledgements. — The author would like to thank the organiz-
ers Vincent Guedj, Joaquim Ortega-Cerdà and Pascal Thomas for inviting
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him to give this course at the third edition of the winter school KAWA in
Barcelona in January-February 2012. The author would like to also thank
Vincent Guedj for useful discussions on the matter of these notes, Chinh H.
Lu for careful reading of the previous version and the anonymous referee
for his encouraging report.

1. Pluripotential solutions to degenerate complex
Monge-Ampère equations

1.1. Basic facts from Pluripotential Theory

Pluripotential theory deals with plurisubharmonic (psh) functions. These
functions appear naturally in many problems of complex analysis where they
play the role of soft objects compared to holomorphic functions which are
more rigid. This philosophy led P. Lelong to the fundamental notion of
positive current ([63]) which play an important role not only in complex
analysis but also in Kähler geometry (see [36], [34]).

1.1.1. The complex Monge-Ampère operator

Let us recall the construction of Bedford and Taylor and state the
main results which will be needed later on. Let Ω ⊂ Cn be a domain and
PSH(Ω) ⊂ L1

loc(Ω) be the set of plurisubharmonic functions in Ω.

Here we denote by d = ∂ + ∂ and dc := i
2π (∂ − ∂) so that ddc = i

π∂∂.

Following P. Lelong, a current T of bidmension (p, p) on Ω is by definition
a continuous linear form acting on C∞-smooth differential forms of bidegree
(p, p) with compact support in Ω. It is convenient to view a current of
bidmension (p, p) on Ω as a differential form of bidegree (n− p, n− p) with
coefficients given by distributions in Ω (see [63]).

By P. Lelong, if u ∈ PSH(Ω) then ddcu is a closed positive current on
Ω, hence a differential form of bidegree (1, 1) whose coefficients are complex
Borel measure in Ω (see [63], [34]).

Since plurisubharmonic functions are invariant under holomorphic trans-
formations, the notion of plurisubharmonicity makes sense on complex man-
ifolds. Moreover plurisubharmonic functions appear naturally in complex
geometry as local weights for singular metrics on holomorphic line bundles
with positive curvature (see [34]).

We will review some basic facts on Pluripotential theory and refer to the
original papers of Bedford and Taylor [12, 13, 14] (see also [35], [56]).
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Let u1, · · · , uk be C2-smooth psh functions in Ω. Then the following
differential (k, k)-form ddcu1∧· · ·∧ddcuk has continuous coefficients, hence
it can be seen as a closed positive current of bidegree (k, k) in Ω acting by
duality on (smooth) test (n− k, n− k)-forms. Moreover we have

ddc(u1dd
cu2 ∧ · · · ∧ ddcuk) = ddcu1 ∧ · · · ∧ ddcuk

pointwise and weakly in the sense of currents in Ω.

In particular, for any smooth psh function in Ω, we have

(ddcu)n = cndet

(
∂2u

∂zj∂z̄k

)
βn,

pointwise as a smooth form of top degree, where βn is the euclidean volume
form on Cn and cn > 0 is a numerical constant. This formula will be used
here to identify (ddcu)n to a positive Borel measure on Ω, called the Monge-
Ampère measure of u in Ω.

We want to extend this definition to non smooth psh functions. It is
natural to use local approximation. Observe first that by localisation and
integration by parts, one can easily prove that for any compact sets K,L
such that K ⊂ L◦ � Ω, there exists a positive constant C > 0, depending
on (K,L), such that for any smooth psh function u1, · · · , un in Ω, we have

∫

K

ddcu1 ∧ · · · ∧ ddcun � CΠ1�k�n‖uk‖L∞(L). (1.1)

This inequality, called the Chern-Levine-Nirenberg inequality, allows to ex-
tend easily the definition of the Monge-Ampère operator to continuous non
smooth psh functions by regularisation. Indeed let u be a continuous psh
function in Ω and uj := u � χj its regularisation by convolution against
a radial approximation of the Dirac unit mass at the origin. Let us prove
that the sequence of (smooth) measures (ddcuj)

n converges weakly in the
sense of Radon measures in Ω. Since u is continuous, by Dini’s lemma, the
sequence (uj) decreases to u, locally uniformly in Ω. Since the sequence (uj)
is locally uniformly bounded in Ω, it follows from Chern-Levine-Nirenberg
inequality (1.2), that the sequence of measures (ddcuj)

n has locally uni-
formly bounded mass. Therefore it is enough to prove the convergence of
the sequence of measures (ddcuj)

n against any smooth test function. This
will be a consequence of the following observation. The problem of conver-
gence being local, it is enough to consider a test function with compact
support in a small ball B � Ω. Fix such a smooth test function h with
compact support in B. Then for any C2−smooth psh functions ϕ and ψ in
Ω, we have by Stokes formula,
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∫

B

h((ddcϕ)n − (ddcψ)n) =

∫

B

(ϕ− ψ)ddch ∧ T,

where T :=
∑n−1

i=0 (ddcϕ)i ∧ (ddcψ)n−1−i). Since h is smooth of compact
support, it is possible to write it as h = w1−w2, where w1, w2 are smooth psh
functions in Ω. Therefore ifD is a neighbourhood ofB such thatB � D � Ω,
then by Chern-Levine-Nirenberg inequality, there exists a uniform constant
C > 0, depending only on a bound of the second derivatives of h and on a
uniform bound of ϕ and ψ, such that

∣∣∣∣
∫

B

h((ddcϕ)n − (ddcψ)n)

∣∣∣∣ � C‖ϕ− ψ‖L∞(D). (1.2)

Now let u be a continuous psh function on Ω and (uj) its regularizing
sequence by convolution. Then by Dini’s lemma, the convergence is uniform
in each compact set. It follows from Chern-Levine-Nirenberg and (1.2) that
the sequence of measures (ddcuj)

n is a Cauchy sequence of Radon measures.
Then it converges to a positive Radon measure on Ω. Moreover again by
(1.2), the limit does not depend on the approximating sequence (uj) which
converges to u locally uniformly in Ω. This limit is defined to be the Monge-
Ampère measure of u and denoted by (ddcu)n.

It turns out that the hypothesis of continuity on the psh function u is
a strong condition. Indeed it is not preserved by standard constructions as
upper envelopes, regularized limsup of psh functions which arise naturally
when dealing with the Dirichlet problem for the complex Monge-Ampère
operator. Therefore it is desirable to define the complex Monge-Ampère
operator for non continuous psh functions, say e.g. for bounded psh func-
tions. As one may see from the previous reasoning, it is not clear how to
define the complex Monge-Ampère measure of u by approximating u by a
decreasing sequence of smooth psh functions, since the convergence in not
locally uniform anymore. However one of the main results in pluripotential
theory says that plurisubharmonic functions are actually quasi continuous
([13]) and then the convergence is quasi-uniform and the proof above can
be extended to the bounded case.

Actually to pass from continuous to bounded psh functions is one of
the main problem when dealing with the complex Monge-Ampère operator
in contrast to the real Monge-Ampère operator which deals with convex
functions which are continuous.

In their first seminal work [12], E.Bedford and B.A.Taylor were able
to extend the definition of the complex Monge-Ampère operator to the
class of locally bounded psh functions using the notion of closed positive
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current. Their main observation is the following. Let T be a closed positive
current of bidegree (k, k) (1 � k � n − 1) and u a locally bounded psh
function in Ω. It is well known that T can be extended as a differential
form with complex Borel measure coefficients on Ω. Then the current uT
is well defined by duality, since u is a locally bounded Borel function and
hence locally integrable with respect to all the coefficients of T . Therefore
we can define the current ddc(uT ) in the weak sense. Now the following
simple observation is crucial: the current ddc(uT ) is again a closed positive
current on Ω. Indeed, since the problem is local we can assume that the
regularizing sequence uj ↘ u in Ω. Then ujT ⇀ uT in the weak sense of
measures in Ω and by continuity of the operator ddc for the weak topology,
we conclude that ddc(ujT ) ⇀ ddc(uT ) weakly in the sense of currents in
Ω. Now since uj is smooth, we have by Stokes formula for currents that
ddc(ujT ) = ddcuj ∧ T is a positive closed currents. Therefore ddc(uT ) is
also a closed positive current in Ω, which will be denoted by ddcu ∧ T (see
[34]).

It is now clear that we can repeat this construction: if u1, · · · , uk are lo-
cally bounded psh functions, it is possible to define by induction the current
ddcu1 ∧ · · · ∧ ddcuk by the formula

ddcu1 ∧ · · · ∧ ddcuk := ddc(u1dd
cu2 ∧ · · · ∧ ddcuk),

weakly in the sense of currents in Ω, the resulting current being a closed
positive current in Ω.

In particular if u is a locally bounded psh function in Ω, then the current
of bidegree (n, n) given by (ddcu)n = ddcu1 ∧ · · · ∧ ddcun, where u1 = · · · =
un = u can be identified to a positive Borel measure denoted by (ddcu)n

called the Monge-Ampère measure of u.

Likely this definition coincides with the previous one when u is a contin-
uous psh function. More generally, using ingenious integration by parts and
local approximations, Bedford and Taylor proved the following important
convergence theorem ([12]).

Theorem 1.1. — Let (uj) and (vj) be decreasing sequences of locally
bounded psh functions in Ω converging to locally bounded psh functions u
and v respectively in Ω. Then the sequence of measures uj(dd

cvj)
n converges

to the measure u(ddcv)n weakly in the sense of measures in Ω. The same
weak convergence still holds if (uj) or (vj) increases almost everywhere in
Ω to u or v respectively.
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1.1.2. The Pluripotential Comparison Principle

From Theorem 1.1, it is possible to derive the following fundamental
result, which we will call the (local) maximum principle ([14]).

Theorem 1.2 (Maximum Principle). — Let u, v be locally bounded psh
functions in Ω. Then we have

1{u<v}(dd
c max{u, v})n = 1{u<v}(dd

cv)n, (1.3)

weakly in the sense of Borel measures in Ω.

Observe that the identity (1.3) is trivial when v is continuous, since the
two psh functions max{u, v} and v coincide on the open set {u < v}. The
main difficulty in the proof of (1.3) is to pass from continuous to bounded
psh functions and this is the main feature in Bedford and Taylor work build-
ing up a potential theory for plurisubharmonic functions, called Pluripoten-
tial Theory (see [12], [13], [14], [35]). It turns out that the set {u < v} is
actually open for the plurifine topology and it was proved by Bedford and
Taylor that the complex Monge-Ampère operator is local in the plurifine
topology (see [14]).

From the maximum principle, it is easy to deduce its companion, which
will be called the Pluripotential Comparison Principle.

Corollary 1.3 (Comparison Principle). — Let u, v be locally bounded
psh functions in Ω � Cn such that u � v on ∂Ω i.e. {u < v} = {z ∈
Ω;u(z) < v(z)} � Ω. Then

∫

{u<v}
(ddcv)n �

∫

{u<v}
(ddcu)n.

If moreover (ddcu)n � (ddcv)n in the weak sense in Ω then u � v in Ω.

This result implies uniqueness of the solution to the Dirichlet problem
when it exists. Moreover using Perron’s method of envelopes of subsolutions,
Bedford and Taylor were able to solve the Dirichlet problem for the complex
Monge-Ampère operator. Let us state the following consequence of their
result which will be used here ([12, 13]).

Theorem 1.4. — Let B � Cn be an euclidean ball, µ � 0 a continuous
volume form on B and γ a continuous function in ∂B. Then there exists a
unique psh function U in B, which extends as a continuous function in B
solving the following Dirichlet problem:

{
(ddcU)n = µ, weakly in B,
U = γ in ∂B.
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We will also need the following fundamental consequence, known as the
“balayage method”.

Corollary 1.5. — Let Ω ⊂ Cn be an open set, B � Ω is a given
euclidean open ball and µ � 0 a continuous volume form on B.Then for
any psh function u in Ω, bounded in a neighbourhood of B and satisfying
(ddcu)n � µ in the weak sense in B, there exists a psh function U in Ω such
that U = u in Ω \B, U � u in Ω and (ddcU)n = µ,weakly in B.

1.1.3. The complex Monge-Ampère operator on compact Kähler
manifolds

Now let us explain how to extend the previous tools to compact Kähler
manifolds following [45]. The notion of psh function makes sense on any
complex manifold since it is invariant under holomorphic transformations.

Let X be a (connected) compact Kähler manifold of dimension n and
let ω be a closed smooth (1, 1)−form on X. Then it is well known that
locally in each small coordinate chart U ⊂ X, there exist a smooth function
ρU such that ω = ddcρU , the function ρU is psh in U and called a local
potential of ω (see [34]). Such a local potential is unique up to addition of
a pluriharmonic function in U

Recall that a function ϕ : X −→ [−∞,+∞[ is said to be ω-plurisubhar-
monic in X (ω-psh for short) if it is upper semicontinuous in X and locally
in each small coordinate chart U , the function u = ϕ+ρU is psh in U , where
ρU is any local potential of ω in U .

Let us denote by PSH(X,ω) ⊂ L1(X) the convex set of ω-psh functions
in X, where L1(X) the Lebesgue space with respect to a fixed smooth non
degenerate volume form µ0 on X.

Then the (1, 1)-current ωϕ := ω + ddcϕ is a closed positive current in
the sense of Lelong since locally in U it can be written as ωϕ = ddcu, where
u = ϕ+ ρU is psh in U ([63], [34]). It follows from what was said previously
that the complex Monge-Ampère operator is well defined for any bounded
ϕ ∈ PSH(X) ∩ L∞(X) as a positive (n, n)-current on X defined locally in
each coordinate chart U as

ωnϕ := (ddcu)n.

This current can be identified to a positive Borel measure on X, which will
be denoted by MA(ϕ) = MAω(ϕ) (see [45]). Then the maximum principle
still holds in this context (see [46]).
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Theorem 1.6. — Let ϕ,ψ ∈ PSH(X) ∩ L∞(X). Then

1{ϕ<ψ}MA(max{ϕ,ψ}) = 1{ϕ<ψ}MA(ψ),

in the sense of positive Borel measures in X.
(Maximum Principle).

In particular
∫

{ϕ<ψ}
MA(ψ) �

∫

{ϕ<ψ}
MA(ϕ).

(Comparison Principle).

There is another important result which will be used later.

Theorem 1.7. — Let ϕ,ψ ∈ PSH(X) ∩ L∞(X). Assume that ψ � ϕ
almost everywhere in X with respect to the measure MA(ϕ). Then ψ � ϕ
everywhere in X
(Domination Principle).

For more details on these matters we refer to ([44, 45, 57)].

One of the main tools in recent applications of Pluripotential theory to
Kähler Geometry is the a priori uniform estimate du to Kolodziej ([58, 60].
We will use here the following version (see [17, 41, 47]).

Theorem 1.8. — Let f ∈ Lp(X,µ0) with p > 1 and ψ ∈ PSH(X,ω) ∩
L∞(X) with supX ψ=0. Then there exists a constant depending on ‖ψ‖L∞(X))
such that for any ϕ ∈ PSH(X) ∩ L∞(X) satisfying MA(ϕ) � fµ0 with
supX ϕ = 0, we have the following “weak stability” estimates

sup
X

(ψ − ϕ)+ � C‖f‖1/nLp(X)‖(ψ − ϕ)+‖γL1(X),

where γ = 1/(nq + 2) and q = p/(p− 1).

In particular we have the following uniform L∞-estimate

‖ϕ‖L∞ � A‖f‖1/nLp(X),

where A > 0 is a uniform constant independent on ϕ.

1.2. Solving degenerate complex Monge-Ampère equations

We are mainly interested here in complex Monge-Ampère equations on
compact Kähler manifolds related to the Calabi conjecture and the exis-
tence of Kähler-Einstein metrics. Let X be a compact Kähler manifold of
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dimension n and let ω be a smooth closed semi-positive form on X such
that

∫
X
ωn > 0.

We will consider the following global complex Monge-Ampère equation.

(MA)ε,µ (ω + ddcϕ)n = eεϕµ,

where ε � 0 and µ = fµ0 is a degenerate volume form on X with a density
0 � f ∈ Lp(X,µ0) (p > 1) with respect to a fixed smooth non degenerate
volume form µ0 on X.

In the case when ε = 0, ω > 0 is a Kähler from on X and µ = fωn > 0 is
a smooth non degenerate voolume form on X, the corresponding equation is
known as the Calabi-Yau equation and there is a necessary condition for a
solution to exists :

∫
X
µ =

∫
X
ωn. Moreover adding a constant to a solution

gives a new solution. E. Calabi observed that the smooth solution of the
equation (MA)0,µ (if it exists) is unique up to an additive constant ([23]).
These two facts make actually this equation more difficult to handle. It was
proved by Yau ([70]), answering the celebrated Calabi’s conjecture, that this
equation has a smooth solution ϕ on X i.e. there exists ϕ ∈ C∞(X) such
that ωϕ := ω + ddcϕ > 0 is a Kähler metric on X satisfying the equation
(MA)0,µ. In particular he showed that on compact Kähler manifolds for
which the first Chern class is zero i.e. c1(X) = 0, any Kähler class contains
a (smooth) Ricci-flat Kähler-Einstein metric (see also [66]).

When ε > 0, ω > 0 is a Kähler form and µ = fωn > 0 is a smooth
non degenerate volume form on X, the equation (MA)ε,µ was considered
by Aubin and Yau in connection to the problem of existence of Kähler-
Einstein metrics on a compact Kähler manifolds of negative first Chern
class i.e. c1(X) < 0. As we will see this equation is much more simpler than
the Calabi-Yau equation. The uniqueness is an easy consequence of the
Comparison Principle. The existence of a smooth solution for the equation
(MA)ε,µ was proved in 1978 independently by Aubin and Yau ([2, 70]).

The approach used by Aubin and Yau relies on the continuity method
and a priori estimates of high order. It turns out that the a priori C0 estimate
is the main step in their approach.

In 1998, S. Kolodziej ([58]) gave a new proof of the a priori C0-estimate
using methods from Pluripotential Theory. Moreover, using Yau’s theorem
he was able to extend it to a slightly more degenerate situation in the case
when ε = 0 and 0 � f ∈ Lp(X) (p > 1), ω being a Kähler form. This
allows him to obtain continuous weak solution of the equation (MA)0,µ in
the sense of Bedford and Taylor (a pluripotential solution).
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This result was extended in [41] to a more degenerate situation when
ω � 0 is a closed smooth and semi-positive (1, 1)−form on X such that∫
X
ωn > 0. The weak solution obtained there was shown to be a bounded

ω-psh function, but the continuity was proved under an extra assumption
which is satisfied when ω > 0 is Kähler.

We first review the main results obtained in [41]. However we will give a
direct approach using pluripotential techniques as developed recently in [42],
which do not use the continuity method and high order a priori estimates
of Yau and Aubin. Namely we will prove the following result.

Theorem 1.9. — Let X be a compact Kähler manifold of dimension n
and ω � 0 be a smooth closed (1, 1)−form on X such that

∫
X
ωn > 0 and

µ = fµ0 a volume form on X with density 0 � f ∈ Lp(X;µ0) (p > 1)
with respect to a fixed smooth non degenerate volume form µ0 > 0. Then
there is a unique ϕ ∈ PSH(X,ω) ∩ L∞(X) which satisfies the complex
Monge-Ampère equation

(ω + ddcϕ)n = eϕµ,

in the pluripotential sense in X.

Moreover the solution ϕ is the upper envelope of the family of pluripo-
tential subsolutions of the equation in X i.e.

ϕ = supF(X,ω, µ),

where

F(X,ω, µ) := {ψ;ψ ∈ PSH(X,ω) ∩ L∞(X), (ω + ddcψ)n � eψµ}.

This theorem implies that for any ε > 0 the complex Monge-Ampère
equation (MA)ε,µ has a unique bounded ω−plurisubharmonic solution ϕε.
It turns out that the family (ϕε) is uniformly bounded and converges uni-
formly on X by Theorem 1.8. More precisely we obtain the following result.

Theorem 1.10. — Let ω � 0 be a smooth closed semi-positive (1, 1)−
form on X such that

∫
X
ωn > 0 and µ = fµ0 a volume form on X with

density 0 � f ∈ Lp(X) (p > 1) with respect to a smooth non degenerate
volume form µ0 > 0 such that

∫
X
µ =

∫
X
ωn. Then there is a unique ϕ ∈

PSH(X,ω) ∩ L∞(X) which satisfies the complex Monge-Ampère equation

(ω + ddcϕ)n = fµ0,

in the pluripotential sense and normalized by
∫
X
ϕωn = 0.
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These theorems do not say anything about continuity of the solution. It
is possible to prove continuity and even Hölder continuity of the solution
when ω > 0 is a Kähler form using pluripotential methods (see [58], [41],
[61], [37]). But these results do apply in our degenerate situation.

However, in the last section we will show how to combine pluripotential
and viscosity techniques to prove continuity in this more general setting.

Altogether this will provide an alternative and independent approach
to a weak version of Calabi conjecture [70]: we will only use upper enve-
lope constructions (both in the viscosity and pluripotential sense), a global
viscosity and pluripotential comparison principle and Kolodziej’s pluripo-
tential techniques providing uniform a priori estimates ([58], [41]).

This method applies to degenerate equations but yields solutions that
are merely continuous (Yau’s work yields smooth solutions, assuming the
cohomology class {ω} is Kähler and the volume form µ is both positive and
smooth).

The pluripotential approach applies equally well to a slightly more de-
generate situation (see [42], [37]).

1.3. The Perron method of upper envelopes

Before going into the proofs of the results stated in the last section, we
will establish a more general result which shows that the Perron method
of upper envelopes will provide us with a solution whenever we are able
to find a subsolution. This quite general approach might be useful in other
situations.

Here we will consider the following degenerate Monge-Ampère equation

MAω(ϕ) = eϕµ, (1.4)

where ω � 0 is a closed (1, 1)-form in X with continuous psh local potentials,
MAω(ϕ) := (ω + ddcϕ)n is the Monge-Ampère measure of ϕ defined in the
weak sense of Bedford and Taylor and µ � 0 is a degenerate volume form
with L1-density with respect to a fixed smooth volume form.

Our aim here is to show that one can solve this equation in the weak sense
of Bedford and Taylor in a rather elementary way, at least when ω > 0 is a
Kähler form and µ has a continuous density, by observing that the (unique)
solution is the upper envelope of pluripotential subsolutions.
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1.3.1. Uniqueness of the solution

Here we will give an easy consequence of the Comparison Principle which
will show that the upper envelope of subsolutions of the equation (1.4) is
the unique candidate to be a solution.

Proposition 1.11. — Let ϕ ∈ PSH(X,ω) ∩ L∞(X) be a solution to
the Monge-Ampère equation (1.4). Then for any ψ ∈ PSH(X,ω)∩L∞(X)
satisfying the inequality MAω(ψ) � eψµ in the weak sense of Borel measures
on X, we have ψ � ϕ in X. In particular, the solution of the complex
Monge-Ampère equation (1.4) is unique (if it exists).

Proof. — We are going to show that the set {ϕ < ψ} has zero measure
with respect to µ. Indeed by the comparison principle, it follows that

∫

{ϕ<ψ}
eψµ �

∫

{ϕ<ψ}
(ω + ddcψ)n

�
∫

{ϕ<ψ}
(ω + ddcϕ)n

=

∫

{ϕ<ψ}
eϕµ �

∫

{ϕ<ψ}
eψµ.

Therefore we conclude that
∫
{ϕ<ψ}(e

ϕ− eψ)µ = 0 and since eϕ− eψ � 0 on

the set {ϕ < ψ}, it follows that 1{ϕ<ψ}·(eϕ−eψ) = 0 µ-almost everywhere on
X. If we know that µ has a positive density with respect to a fixed smooth
non degenerate volume form on X, we will conclude that ψ � ϕ almost
everywhere in X and then everywhere in X by submean-value inequality
in any local chart. In the general case, since eϕµ = MA(ϕ), it follows that
the set {ϕ < ψ} has measure 0 with respect to the Monge-Ampère measure
MA(ϕ) i.e. ψ � ϕ almost everywhere with respect to MA(ϕ). It follows
from the Domination Principle Theorem 1.7 that ψ � ϕ on X. This shows
that the equation (MA)1,µ has at most one solution. �

1.3.2. Existence of a solution

The previous subsection suggests a natural candidate to be the solution
to the Monge-Ampère equation (1.4): the upper envelope of pluripotential
subsolutions, in the spirit of the classical Perron’s method used in solving
the classical Dirichlet problem.

Therefore it is natural to consider the class F = F(X,ω, µ) of all pluripo-
tential subsolutions of the equation (MA)1,µ) defined by

F :=
{
ϕ ∈ PSH(X,ω) ∩ L∞(X) /MA(ψ) � eψµ in X

}
.
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Now the problem of the existence of a solution remains to prove that F �= ∅
and its upper envelope ϕ := supF is again a subsolution.

Lemma 1.12. — The class F(X,ω, µ) is uniformly bounded from above
on X and stable under the regularized supremum. Moreover it is compact in
PSH(X,ω) (for the L1(X)-topology).

Proof. — We can assume that F �= ∅. We show first that F is uniformly
bounded from above. We can assume without loss of generality that µ is
normalized so that µ(X) = 1. Fix ψ ∈ F . It follows from the convexity of
the exponential that

exp

(∫

X

ψµ

)
�

∫

X

eψµ =

∫

X

MA(ψ) =

∫

X

ωn.

We infer

sup
X

ψ �
∫

X

ψµ+ Cµ � log V olω(X) + Cµ,

where Cµ is a uniform constant that only depends on the fact that all ω-psh
functions are integrable with respect to µ (see [45]). This shows that F is
uniformly bounded from above by a constant that only depends on µ and
since it is not empty, it is also uniformly bounded from below.

Stability under finite suprema is an easy consequence of the Maximum
Principle Thorem 1.6. If ψ1, ψ2 ∈ PSH(X,ω) ∩ L∞(X) we have

MA(sup{ψ1, ψ2}) � 1{ψ1�ψ2}MA(ψ1) + 1{ψ1<ψ2}MA(ψ2).

For an infinite family S of subsolutions, the same reasoning can be ap-
plied since the regularized supremum of S can be approximated almost
everywhere by a increasing sequence of finite suprema of subsolutions, and
the conclusion follows from the continuity of the complex Monge-Ampère
operator for increasing sequences of uniformly bounded ω−psh functions
(Theorem 1.1).

The compactness can be proved as follows. By the previous consider-
ations, the family F is relatively compact in L1(X) (see [45]). It is then
enough to show that it is closed. Let (ψj)j∈N be a sequence of F converg-
ing to ψ ∈ PSH(X,ω). We know that ψ is bounded. We can assume that
ψj converges almost everywhere to ψ in X. Set ψj := (supk�j ψk)

∗. Then
(ψk)k∈N is a decreasing sequence of PSH(X,ω) ∩L∞ wich converges to ψ.

From the previous facts it follows that MA(ψj) � eψjµ for any j and again
by the continuity of the complex Monge-Ampère operator for deacreasing
sequences, we conclude that MA(ψ) � eψµ weakly in X. �
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Now it remains to prove that the upper envelope of F is a solution. This
is the content of the following result.

Theorem 1.13. — If the class F = F(X,ω, µ) �= ∅ is not empty, then
its upper envelope given by

ϕ := sup{ψ /ψ ∈ F},

is the unique solution to the complex Monge-Ampère equation (MA)1,µ in
the weak sense in X (pluripotential solution).

Proof. — Indeed, from the compactness of the class, it follows that its
upper envelope is ω−psh in X (see [51], Proposition 3.4.4), and then it is a
subsolution. Moreover by Choquet’s lemma, we can find a sequence ψj ∈ F
of bounded ω-psh (pluripotential) subsolutions such that

ϕ = (sup
j∈N

ψj)
∗.

Observe that by Lemma 1.12, the family of bounded pluripotential sub-
solutions is stable under taking maximum so that we can that assume the
ψj ’s form a non decreasing sequence of subsolutions. To see that ϕ is a subso-
lution, we use a local balayage procedure to modify each ψj on a given “small

ball” B ⊂ X by constructing a new bounded ω−psh functions ψ̃j on X so

that they satisfy the local Monge-Ampère equation (ω + ddcψ̃j)
n = eψjµ

on B and ψ̃j � ψ on X and ψ̃j = ψj on X \ B: this is done using Theo-

rem 1.5. By the comparison principle Corollary 1.3, it follows that (ψ̃j) is
an non increasing sequence of bounded ω−psh functions which increases al-
most everywhere in X to the function ϕ. Since the Monge-Ampère operator
is continuous under increasing sequences by Theorem 1.1, it follows that ϕ
is a pluripotential solution of (MA)1,µ in B, hence in all of X, as B was
arbitrary. �

Corollary 1.14. — Assume that µ is a Borel volume form satisfying
the following condition: ∃u ∈ PSH(X,ω) ∩ L∞(X),∃A > 0 such that

(†) µ � A(ω + ddcu)n,

in the weak sense of measures in X.

Then the class F(X,ω, µ) is not empty, uniformly upper bounded and
its upper envelope ϕ := supF(X,ω, µ) is the unique bounded pluripotential
solution to (MA)1,µ.
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Proof. — Set M := supX u and choose C > 1 large constant so that
eM−CA � 1. Then by the condition (†), the function ψ0 := u − C ∈
F(X,ω, µ) is a pluripotential subsolution to (MA)1,µ. Therefore we can
apply the previous Theorem. �

1.3.3. Proof of Theorem 1.9

We want to apply Corollary 1.14. The fact that the family F(X,ω, µ) is
uniformly upper bounded follows from Lemma 1.12.
To prove that it is not empty requires several steps.
1. Assume that ω > 0 is Kähler and µ = fµ0 has a bounded density i.e.
f ∈ L∞(X). Then for a large constant A > 0 we clearly have µ � Aωn and
then the condition (†) is satisfied. Therefore the conclusion of the Theorem
follows from Corollary 1.14.
2. Assume that ω > 0 and µ = fµ0 has a density f ∈ Lp(X). Then we
approximate µ by volume forms with bounded densities µj := inf{f, j}µ0

for j ∈ N and apply the previous case to solve the equations

(ω + ddcϕj)
n = eϕjµj , (1.5)

with ϕj ∈ PSH(X,ω)∩L∞(X). Moreover since
∫
X
eejϕεjµ =

∫
X
µ, the last

statement of the theorem follows from the fact that
∫

X

ϕdµ = lim
εj→0

∫

X

eεjϕεj − 1

εj
dµ = 0.

Let us prove that (ϕj) is bounded in L1(X). By [45], it is enough to check
that the sequence (supX ϕj) is bounded. By Lemma 1.12, this sequence is
upper bounded. To see that it is lower bounded, observe that

esupX ϕj �
∫
X
ωn

µ(X)
=

∫

X

ωn

hence the sequence (supX ϕj) is bounded from below.

We now assert that (ϕj) is decreasing as j increases to +∞. Indeed
assume that 1 < j � k and fix δ > 0. It follows from the (pluripotential)
comparison principle that

∫

{ϕk�ϕj+δ}
(ω + ddcϕk)

n �
∫

{ϕk�ϕj+δ}
(ω + ddcϕj)

n.

Then using the equations (1.5) and the fact that µk � µj , we infer

1{ϕk�ϕj+δ}(ω + ddcϕk)
n � eδ1{ϕk�ϕj+δ}(ω + ddcϕj)

n
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in the sense of Borel measures on X. Therefore it follows that the set {ϕk �
ϕj + δ} has zero measure with respect to the Monge-Ampère measure (ω+
ddcϕj)

n i.e. the inequality ϕk−δ � ϕj holds (ω+ddcϕj)
n-almost everywhere

in X. From the domination principle it follows that ϕk− δ � ϕj everywhere
in X. As δ > 0 was arbitrary, we infer ϕk � ϕj in X.

We let ϕ = limj→+∞ ϕj denote the decreasing limit of the functions
ϕj . By construction this is an ω-psh function. It follows from Theorem 1.8
that ϕ is a bounded ω-psh function in X. Passing to the limit in (1.5) as
j → +∞, we conclude using Theorem 1.1 ϕ is a (pluripotential) solution
to the Monge-Ampère equation (ω + ddcϕ)n = eϕ µ. This shows that (†) is
satisfied hence we can use Corollary 1.14 to conclude.
3. Assume that ω � 0 and µ = fµ0 with f ∈ Lp(X). Fix a Kähler form β. By
the above there exists, for each 0 < ε � 1, a unique continuous (ω+εβ)-psh
function uε such that

(ω + εβ + ddcuε)
n = euεµ.

As in the previous case we see that supX uε is bounded, as 0 < ε � 1.

We now claim that (uε) is decreasing as ε decreases to 0+. The proof goes
in the same lines as in the previous case. Indeed assume that 0 < ε′ � ε and
fix δ > 0. Note that uε′ , uε are both (ω + εβ)-plurisubharmonic. It follows
from the (pluripotential) comparison principle Theorem 1.6 that

∫

{uε′�uε+δ}
(ω + εβ + ddcuε′)

n �
∫

{uε′�uε+δ}
(ω + εβ + ddcuε)

n.

Since

(ω + εβ + ddcuε′)
n � (ω + ε′β + ddcuε′)

n � eδ(ω + εβ + ddcuε)
n

on the set {uε′ � uε + δ}, this shows that the latter set has zero measure
with respect to the measure (ω + εβ + ddcuε)

n hence by the domination
principle Theorem 1.7, it follows that uε′ � uε + δ everywhere in X. As
δ > 0 was arbitrary, we infer uε′ � uε in X.

We let u = limε↘0 uε denote the decreasing limit of the functions uε.
By construction this is an ω-psh function in X and by Theorem 1.8, u
is bounded and a (pluripotential) solution of the Monge-Ampère equation
(ω+ ddcu)n = eu µ. This shows that the condition (†) is satisfied hence the
conclusion follow from Corollary 1.14.

1.3.4. Proof of Theorem 1.10

We approximate the equation (MA)0,µ by the perturbed equations
(MA)ε,µ, where ε ↘ 0. By Theorem 1.9, for each ε > 0 we can find
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ϕε ∈ PSH(X,ω) ∩ L∞(X) such that

(ω + ddcϕε)
n = eεϕεµ, (1.6)

in the pluripotential sense in X. By convexity of the exponential function,
we conclude that

∫
X
ϕεµ � 0. Therefore by [45], it follows that there exists

a constant M > 0 independent of ε such supX ϕε � M . On the other
hand from (1.6), if follows that supX ϕe � 0. Therefore (ϕε) in bounded in
L1(X). Then there exists a subsequence (ϕεj ), with εj ↘ 0, which converges
in L1(X) to a ϕ ∈ PSH(X,ω) and such that ϕεj → ϕ almost everywhere in
X. We know that ϕ = (lim supj→+∞ ϕj)

∗. By Theorem 1.8, if follows that
ϕεj is a bounded sequence in L∞(X) and then ϕ ∈ PSH(X,ω) ∩ L∞(X).
Let us define ϕ̃j := (supk�j ϕεk)

∗. Then (ϕ̃j) is a non increasing sequence of
bounded ω-psh functions which converges to ϕ in X. Using the comparison
principle as in above we see that for any j ∈ N, we have

MA(ϕ̃j) � inf
k�j

eεkϕεkµ.

Since εj → 0 and ϕεj is uniformly bounded, it follows that the right hand
side converges weakly to µ in X, while the left hand side converges weakly
to MA(ϕ) by Theorem 1.1. Hence MA(ϕ) � µ weakly in X, which implies
MA(ϕ) = µ, since the two volume forms have the same volume in X.

2. The viscosity approach to degenerate non linear PDE’s

Before we introduce the definitions of viscosity sub(super)solutions, let
us give as a motivation some examples of degenerate elliptic PDE’s to which
viscosity methods can be applied. In particular we will give examples where
the notion of generalized or weak solution does not make sense.

2.1. Classical solutions

Let us start by general considerations. A fully non linear second order
PDE can be written in the following general form

F (x, u,Du,D2u) = 0, (2.1)

where F : Ω×R×RN × SN −→ R is a function satisfying some conditions
to be made precise in a while, Ω ⊂ RN is an open set and SN is the space
of real symmetric matrices of order N .

We will say that u : Ω −→ R is a classical solution of the equation (2.1)
if u is C2-smooth in Ω and satisfies the differential identity

F (x, u(x), Du(x), D2u(x)) = 0,∀x ∈ Ω.
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It is quite natural to split the equation F = 0 into the two different in-
equalities F � 0 and F � 0. Then if u satisfies the differential inequality
F (x, u(x), Du(x), D2u(x)) � 0 (resp. F (x, u(x), Du(x), D2u(x)) � 0) point-
wise in Ω, we will say that u is a classical subsolution (resp. supersolution)
of the equation (2.1). Therefore u is a classical solution of the equation (2.1)
iff u is a classical subsolution and a classical supersolution of the equation
(2.1)

In order to apply the viscosity approach to the equation (2.1), we need
to impose the following FUNDAMENTAL condition on F .

Degenerate ellipticity condition : for any x ∈ Ω, s ∈ R, p ∈ RN , Q1, Q ∈ SN ,
we have

(DEC) Q � 0 =⇒ F (x, s, p,Q1 +Q) � F (x, s, p,Q1).

Here Q � 0 means that the symmetric matrix Q is semi-positive i.e. all its
eigenvalues are non negative.

The reason why this condition is important for viscosity methods to
apply will appear soon.

2.2. Examples

Here we are mainly interested in non linear PDE’s. However to enlighten
the reader about the necessity of this condition to apply viscosity methods,
we will recall some basic facts from the theory of linear elliptic second order
PDE’s.

Example 1 : Hamilton-Jacobi-Bellman equations
These are first order equations of the type

H(x, u,Du) = 0, in Ω, (2.2)

associated to a continuous Hamiltonian function H : Ω × R × RN −→ R,
where Ω ⊂ Rn is an open set.

The simplest example to keep in mind is the Eikonal equation corre-
sponding to the hamiltonian function H(u) := |Du(x)| − 1 defined on
] − 1,+1[×R. This example will help us to understand the viscosity con-
cepts. Let us consider the Dirichlet problem for the Eikonal equation:

|u′(x)| − 1 = 0, u(±1) = 0. (2.3)

It is quite clear that this equation has no classical solution. Indeed, a classical
solution to this equation should be a C1-smooth function satisfying the
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equation |u′(x)| = 1 pointwise in ] − 1, 1[ and the the boundary condition
u(−1) = u(1) = 0. Such a function do not exist, since by Rolle’s theorem it
should have at least a critical point in ]− 1, 1[.

However the differential equation (2.3) has plenty of generalized solu-
tions i.e. functions u ∈ W 1,∞(] − 1, 1[) satisfying the equation |u′(x)| = 1
almost everywhere in ]−1, 1[. Indeed the function u0(x) := 1−|x| is a gener-
alized solution to the Dirichlet problem (2.3). It is easy to cook up piecewise
affine functions that satisfies (2.3) on [−1,+1], except a given finite set. Ob-
serve that if u ∈ W 1,∞(]− 1,+1[) is a generalized solution to the equation
associated to the Hamiltonian function H(u) then −u is a generalized solu-
tion of the equation associated to the Hamiltonian H̃(u) := −H(−u). From
the point of view of generalized solutions, the two corresponding equations
are the same and u and −u are two different solutions to the same Dirichlet
problem. However as we will see, from viscosity point of view they should
be considered as different since they correspond to different Hamiltonian
functions. Namely, we will see that u0 is the unique viscosity solution of the
Dirichlet problem for the Hamiltonian function H with boundary values 0,
while −u0 is the unique viscosity solution of the Dirichlet problem for the
Hamiltonian function H̃ with boundary values 0.

Example 2 : Elliptic second order equations:
An important class of elliptic second order PDE’s are the quasi-linear ones,
given by

−
∑

j,k

aj,k(x)
∂2u

∂xj∂xk
+H(x, u,Du) = 0, in Ω, (2.4)

where a = (aj,k) is an N ×N symmetric matrix valued function with con-
tinuous entries on Ω satisfying the (uniform) ellipticity condition

∑

j,k

aj,k(x)ξjξk � ν|ξ|2, ∀x ∈ Ω, ∀ξ ∈ RN , (2.5)

where ν > 0 is a uniform constant.

These equations are of the type (2.1) associated to the following Hamil-
tonian:

F (x, s, p,Q) := −Tr(A(x)Q) +H(x, s, p),

where (x, s, p,Q) ∈ Ω× R× RN × SN .

Then it is easy to see that the degenerate ellipticity condition for F
i.e. the monotonicity property of F with respect to the partial order on
symmetric matrices is a generalisation of the ellipticity condition (2.5) as
the following exercise shows.
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Exercise 2.1. — Let A ∈ SN be a real symmetric matrix of order N such
that for any Q ∈ SN with Q � 0, we have Tr(A ·Q) � 0. Then A � 0.

When H(x, p) =< b(x), p > +c(x)s + d(x), where b : Ω −→ RN is
continuous vector field and c, d : Ω −→ R are a continuous functions, the
equation is a linear second order PDE.

The simplest and fundamental example is the Laplace equation equation
−∆ = f or more generally the Helmholtz equation given by −∆u+ cu = f ,
where c ∈ R is a constant.

Denote by ∆c =:= −∆ + c the Helmholtz operator. Then it is well
know that the equation ∆cu = f has a weak solution u ∈ W 1,2

0 (Ω) for any
f ∈ L2(Ω) iff −c /∈ Λ, where Λ ⊂ R+ is the spectrum of the operator −∆
(for the Dirichlet problem with zero boundary values) which is known to be
a discrete sequence of positive real numbers λk ↗ +∞ (this follows from
Fredholm’s aternative).

In particular when c � 0, the equation −∆u+cu = f has a weak solution
u ∈ W 1,2

0 (Ω) when f ∈ L2(Ω). Moreover the weak solution is unique since
the elliptic operator ∆c satisfies the maximum principle precisely when c �
0. Recall also that by Schauder’s theory for elliptic operators the solutions
are smooth whenever f is smooth (see [44]).

A typical example of non linear but quasi-linear second order elliptic
equation is the following one

−ε∆u+H(x, u,Du) = 0, (2.6)

where ε > 0 is small. This equation can be considered as a small perturba-
tion of the Hamilton-Jacobi equation H(x, u,Du) = 0. The small perturba-
tion term −ε∆u is called a viscosity term (in Fluid mechanics). In standard
cases, the equation is uniformly elliptic and then it’s possible to find a
unique C2-smooth solution uε of the equation (2.6) with suitable boundary
conditions and get uniform L∞−estimates of uε and ∇uε independent of
ε > 0. This implies by Ascoli’s theorem that some subsequence will converge
uniformly to a continuous function u, but the corresponding subsequence
∇uε will converge only weakly in L∞. This is however not sufficient to pass
to the limit in (2.6) as ε ↘ 0 to get a generalized or weak solution to the
Hamilton-Jacobi equation (2.2). Nevertheless, it is reasonable to consider
that the function u should be a solution of the equation (2.6) in some sense.
Indeed, we can show by using an easy stability argument for viscosity solu-
tions, that it will be possible to pass to the limit in the sense of viscosity and
get a viscosity solution to the Hamilton-Jacobi equation (2.2). This method,
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known as the “vanishing viscosity method”, motivates the introduction of
the viscosity concepts and justifies the terminology of viscosity (see [33]).

This method can be applied to the Eikonal equation and explains why we
should consider the two hamiltonians H(u) = |u′|−1 and H̃(u) = 1−|u′| as
different since the corresponding elliptic perturbations approximating them
are different.

Example 3 : Degenerate Real Monge-Ampère equations
This equation is of the following type

−det(D2u) + f(x, u,Du) = 0, in Ω, (2.7)

where Ω ⊂ RN is a convex domain, the solution being a convex function
u : Ω −→ R and f : Ω × R × RN −→ R+ is a continuous non negative
function on Ω, non decreasing in u.
The above equation in degenerate elliptic if restricted to an appropriate
convex subset of the space of symmetric matrices. Namely if we define the
Hamiltonian function as follows

F (x, s, p,Q) := −det(Q)+f(x, s, p), ifQ � 0 and F (x, s, p,Q) = +∞, if not.

Then F is lower semi-continuous on Ω × R × RN × Sn, continuous on its
domain {F < +∞} and the equation F (x, u,Du,D2u) = 0 is degenerate
elliptic.

Example 4 : Degenerate Complex Monge-Ampère equations
We will consider degenerate complex Monge-Ampère equations on open sets
Ω ⊂ Cn:

−det

(
∂2u

∂zj∂z̄k

)
+ f(z, u,Du) = 0, in Ω, (2.8)

the solution should be a bounded plurisubharmonic function u : Ω −→ R
and f : Ω×R×R2n −→ R+ is a non negative continuous function, monotone
increasing in u. This equation can be written as −(ddcu)n+f(z, u,Du)βn =
0. As in the real case, this equation is degenerate elliptic when restricted to
an appropriate convex subset of the space Hn of hermitian matrices. More
precisely, identifying Cn with R2n, let us define the following Hamiltonian
function:

F (z, s, p,Q) := −det(Q1,1) + f(z, s, p), ifQ1,1 � 0,

and F (z, s, p,Q) = +∞, if not, where (z, s, p,Q) ∈ Ω × R × Cn × S2n

and Q1,1 ∈ Hn is the hermitian (1, 1)-part of Q ∈ S2n considered as a real
quadratic form Q on Cn.
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Then again F is a lower semi-continuous degnerate elliptic hamiltonian
function on Ω × R × Cn × S2n, continuous on its domain {F < +∞} and
the equation can be written as F (x, u,Du, ddcu) = 0 , where ddcu(x) is the
complex hessian of u i.e. precisely the hermitian (1, 1)-part of the quadratic
form D2u(x) ∈ S2n.

We are mainly interested in degenerate complex Monge-Ampère equa-
tions on a compact Kähler manifold X of the following type

−(ω + ddcϕ)n + eεϕµ = 0,

where ω � 0 is a closed real semi-positive (1, 1)−form on X such that∫
X
ωn > 0 and µ � is a continuous volume form on X such that

∫
X
µ =∫

X
ωn.

Locally this equation can be written as a complex Monge-Ampère equa-
tion of the type considered (2.8), so the degenerate ellipticity condition will
be satisfied in an appropriate sense as we will see in the next section.

2.3. Definitions of viscosity concepts

We want to consider fully non linear degenerate elliptic equations. As
we have seen above, we will mainly consider equations for which we cannot
expect in general to find classical solutions (i.e. smooth) or generalized (i.e.
in Sobolev spaces) or even weak solutions (i.e. distributions).

On the other hand, it is well know that the classical Maximum Principle
is a fundamental tool in the study of (uniformly) elliptic and parabolic equa-
tions, when using Schauder theory to get smooth solutions. Indeed the basic
idea for solving these equations with prescribed boundary conditions (e.g.
in the Dirichlet problem) lies in the construction of ad hoc barriers i.e. sub-
solutions and supersolutions satisfying the prescribed boundary conditions
and the possibility to compare them by using the Maximum Principle.

Therefore we need to define a new notions of “weak” subsolution and su-
persolution and find a substitute for the classical maximum principle which
allows to prove uniqueness of the a solution when subsolutions and superso-
lutions with appropriate boundary conditions exist. Once the Comparison
Principle holds, the existence is usually proved using the Perron method of
envelopes of subsolutions.

We will assume in all the rest of this paper that the function F satisfies
the following two important conditions which will play a fundamental role
in establishing the Viscosity Comparison Principle to get uniqueness of the
solution.
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Hypotheses :

1. Degenerate ellipticity condition : ∀x,∈ Ω, s ∈ R, p ∈ RN , Q1, Q ∈ SN ,

(DEC) Q � 0 =⇒ F (x, s, p,Q1 +Q) � F (x, s, p,Q1).

2. Properness condition : ∀x ∈ Ω,∀(s1, s2) ∈ R2,∀p ∈ Rn,∀Q ∈ SN ,

(PRC) s1 � s2 =⇒ F (x, s1, p,Q) � F (x, s2, p,Q).

Observe that this last condition is satisfied when F does not depend on u,
but in this case it is sometimes harder to prove a comparison principle.

A function F satisfying the degenerate ellipticity condition (DEC) and
the properness condition(PRC) will be called a Hamiltonian function and
the equation (2.1) will be called the degenerate elliptic equation associated
to the Hamiltonian function F .

It is important to understand that as in the linear case, when F is a
Hamiltonian function in the above sense, the function −F is not unless it
does not depend neither on u nor on D2u. So this means that the methods
of viscosity can be applied to F but not to −F . And even when the function
F depends only on Du as for the Eikonal example, we should distinguish
between the two equations.

The fundamental idea behind the notion of viscosity solution is provided
by the following elementary result which emphasizes the role of the Maxi-
mum principle and will serve as a motivation for the general definition to
be introduced below.

Proposition 2.2 (Smooth solutions). — Assume that F is degenerate
elliptic and let u ∈ C2(Ω). Then we have the following properties:
1. The function u is a classical subsolution of the equation (2.1)) iff the
following condition holds :
(Sub): For any x0 ∈ Ω and any C2−smooth function ϕ in a neighbourhood
of x0 such u− ϕ takes its local maximum at x0 (we will say that ϕ touches
u from above at x0 and write u �x0 ϕ) we have

F (x0, u(x0), Dϕ(x0), D
2ϕ(x0)) � 0.

2. The function u is a classical supersolution of the equation (2.1)) iff the
following condition holds :
(Super): For any x0 ∈ Ω and any C2−smooth function ψ in a neighbour-
hood of x0 such u − ψ takes its local minimum at x0 (we will say that ψ
touches u from below at x0 and write u �x0

ψ) we have

F (x0, u(x0), Dψ(x0), D
2ψ(x0)) � 0.
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A C2−smooth function ϕ in a neighbourhood of x0 satisfying the condition
u �x0 ϕ is called an upper test function for u at x0 and a C2−smooth
function ψ in a neighbourhood of x0 satisfying the condition u �x0 ψ is
called a lower test function for u at x0.

This result shows that the application of the classical maximum princi-
ple and the use of the degenerate ellipticity condition allows to transfer the
differentiation from u to upper and lower C2-test functions in a neighbour-
hood of each point and ask for the differential inequalities F � 0 and F � 0
to hold for the corresponding test function at the given point.

Proof. — It is enough to prove the first part. It is clear that he condition
(Sub) is sufficient for u to be a classical subsolution. Indeed, since u is C2,
it can be taken as an upper test function at any point and then it satisfies
the corresponding differential inequality.

Let us prove that the condition (Sub) is necessary for u to be a classical
solution. Indeed assume that ϕ be a C2−smooth function in a neighbour-
hood of x0 such that u �x0

ϕ. Then u − ϕ is a C2−smooth function in a
neighbourhood of x0 which attains its local maximum at x0. By the local
maximum principle we have D(u−ϕ)(x0) = 0 and D2(u−ϕ)(x0) � 0 in the
sense of quadratic forms (or symmetric matrices). Since Dϕ(x0) = Du(x0)
and D2u(x0) � D2ϕ(x0) in the sense of symmetric matrices and u is a clas-
sical subsolution, it follows from the degenerate ellipticity condition that

F (x0, u(x0), Dϕ(x0), D
2ϕ(x0)) � F (x0, u(x0), Du(x0), D

2u(x0)) � 0,

which proves the condition (Sub). 2. �

Observe that the main feature of this characterization is to show that
the conditions (Sub) and (Super) use only the values of u but not its first
nor second derivatives. Therefore it can be used as a motivation for the
following general definitions.

Definition 2.3. — 1. Let u : Ω −→ R be an upper semi-continuous
(usc) function in an open set Ω ⊂ RN . We say that u is a viscosity sub-
solution of the equation F (x, u,Du,D2u) = 0 on Ω if it satisfies the con-
dition (Sub). We will also say that u satisfies the differential inequality
F (x, u,Du,D2u) � 0 in the VSC sense on Ω.
2. Let u : Ω −→ R be a lower semi-continuous (lsc) function in an open
set Ω ⊂ RN . We say that u is a viscosity supersolution of the equation
F (x, u,Du,D2u) = 0 on Ω if it satisfies the condition (Super). We will
also say that u satisfies the differential inequality F (x, u,Du,D2u) � 0 in
the VSC sense on Ω.
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To illustrate the importance of the Properness condition (PRC), let us
give a simple case where it helps to prove uniqueness.

Theorem 2.4. — Let Ω � RN be a bounded domain and assume that
the Hamiltonian function F (x, s, p,Q) is strictly increasing in the variable
s. Then the classical comparison principle holds i.e. if u ∈ C2(Ω) ∩ C0(Ω)
is a classical subsolution of the equation (2.1) and v ∈ C2(Ω) ∩ C0(Ω) is
a classical supersolution of the equation (2.1) such that u � v on ∂Ω then
u � v on Ω. In particular the equation (2.1) has at most one classical
solution with prescribed continuous boundary values.

Proof. — Since u− v is continuous on the compact set Ω, it attains its
maximum at some point x0 ∈ Ω i.e. maxΩ(u−v) = u(x0)−v(x0). If x0 ∈ ∂Ω
then u(x0) � v(x0) and then we are done. Now assume that x0 ∈ Ω. Since
u and v are C2 at x0 ∈ Ω, it follows from the classical maximum principle
that Du(x0) = Dv(x0) and D2u(x0) � D2v(x0). Now since u is a classical
subsolution we have

F
(
x0, u(x0), Du(x0), D

2u(x0)
)
� 0 � F

(
x0, v(x0), Dv(x0), D

2v(x0)
)
.

Therefore by the degenerate ellipticity condition (DEC) we have

F (x0, u(x0), Du0(x), D2u(x0)) � F (x0, v(x0), Du0(x), D2u(x0)).

From the Properness condition (PRC) it follows that u(x0) � v(x0). �

Observe that the simple reasoning above uses the fact that F is increas-
ing in a crucial way. In the situation where F does not depend on u for
example, we cannot conclude so easily. However one can show that the con-
clusion is still true but the poof requires a more subtle argument based on
a more refined Maximum Principle known as the Alexandroff-Backelman-
Pucci maximum principle (see [31], [68]).

Remark 2.5. — Observe that in the last result it is enough to assume
that only one of the functions is a classical subsolution or a classical super-
solution. Indeed assume for example that u is a classical subsolution, while
v is a viscosity supersolution with u � v on ∂Ω. Then arguing as above, we
get the inequality u(x) − u(x0) + v(x0) � v(x) in a neighbourhood of x0;
which means that the C2−function q(x) := u(x)− u(x0) + v(x0) is a lower
test function for v at x0. Therefore the VSC inequality for v at x0 implies
that

F (x0, v(x0), Dq(x0), D
2q(x0) � 0.

On the other hand, since u is a classical subsolution, we have

F (x0, u(x0), Du(x0), D
2u(x0) � 0.
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Comparing these two inequalities we get

F (x0, u(x0), Du(x0), D
2u(x0) � F (x0, v(x0), Dq(x0), D

2q(x0).

Since F is strictly increasing, it follows that u(x0) � v(x0).

The main goal of the first part of this lecture is to prove a general com-
parison principle for viscosity solutions. We want to do the same reasoning
as above, but our functions are not smooth. We therefore need to approxi-
mate them keeping the memory of the viscosity differential inequalities they
satisfy. This will be done in the next section.

2.4. Characterization of viscosity concepts by mean of jets

As we have seen in the previous proofs, the only important thing that
matters for the differential inequalities we were proving is the jet of order 2 of
the function u at a given point. Therefore to deal with non smooth functions
it is useful to develop a sub-differential calculus and define sub(super)-jets of
order 2. This will lead to a characterization of viscosity concepts by means
of sub(super)-jets of order 2, which is more flexible.

Definition 2.6. — 1. Let u : Ω −→ R be an usc function and x0 ∈ Ω.
The super-differential jet of order 2 of u at x0 is the set J2,+u(x0) of all
(p,Q) ∈ RN × SN such that for any ξ ∈ RN with |ξ| << 1, the following
inequality holds

u(x0 + ξ) � u(x0) + p · ξ +
1

2
< Q · ξ, ξ > +o(|ξ|2).

2. Let u : Ω −→ R a lsc function and x0 ∈ Ω. The sub-differential jet of
order 2 of u at x0 is the set J2,−u(x0) of all (p,Q) ∈ RN × SN such that
for any ξ ∈ RN with |ξ| << 1, the following inequality holds

u(x0 + ξ) � u(x0) + p · ξ +
1

2
< Q · ξ, ξ > +o(|ξ|2).

3. If u is continuous we can define the differential jet of order 2 of u at x0

as the set J2u(x0) := J2,+u(x0) ∩ J2,−u(x0).

Observe that if u is twice differentiable at x0 then

J2,+u(x0) = {(Du(x0), Q);Q � D2u(x0)},

and
J2,−u(x0) = {(Du(x0), Q);Q � D2u(x0)},

so that J2u(x0) = {(Du(x0), D
2u(x0)}.
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For an arbitrary upper semi-continuous function, it may happen that
the set J2,+u(x0) is empty. However there are many points nearby where
this set is not empty as the following remark shows.

Remark 2.7. — Observe that the function u(x) := |x| is a convex, non
negative function which satisfies the condition J2u(0) = ∅.

Actually the set {x ∈ Ω; J2,+u(x) �= ∅} is dense in Ω. Indeed, fix a point
x0 ∈ Ω. Since u is upper semi-continuous at x0, for any ball B = B(x0, r) �
Ω with r > 0 small enough there exists A > 0 such that u(x)−A|x−x0|2 <
u(x0) for |x− x0| = r. Then defining the function q by q(x) := A|x− x0|2,
we see by upper semi-continuity that the function u− q takes its maximum
M in B̄ at some point x̂ ∈ B̄. Now observe that if |x̂ − x0| = r then
M = u(x̂) − q(x̂) < u(x0) = u(x0) − qA(x0), which contradicts the fact
that M is the maximum of u in the ball B̄. Therefore x̂ ∈ B and then the
function q̂ := q − q(x̂) + u(x̂) is a C2-smooth upper test function for u at
the point x̂ ∈ B which means that (Dq̂(x̂), D2q̂(x̂)) ∈ J2,+u(x̂).

As we will see the fundamental theorem of Alexandrov says that for a
convex function function, the set {x ∈ Ω; J2,+u(x) �= ∅} is not only dense
in Ω but it is of full Lebesgue measure in the sense that its complement in
Ω is of Lebesgue measure 0 (see Theorem 2.15). The same remarks holds
for a lower semi-continuous function which is bounded from below.

Since viscosity sub(super)-solutions are only usc(lsc) functions, it is nec-
essary to extend the previous definitions by introducing the notions of ap-
proximate super(sub)-differential jets.

Definition 2.8. — Let u : Ω −→ R be an usc function and x0 ∈ Ω
and (p,Q) ∈ RN × SN . We say that (p,Q) ∈ J̄2,+u(x0) if there exists a
sequence of points yj → x0 in Ω and a sequence (pj , Qj) ∈ J2,+u(yj) such
that (pj , Qj) → (p,Q). In the same way we define J̄2,−u(x0) for a lower
semi-continuous function u : Ω −→ R.

Then we have the following important characterization of viscosity so-
lutions which will be useful.

Theorem 2.9. — 1. Let u : Ω −→ R be an usc function and x0 ∈
Ω. Then u is a viscosity subsolution of the equation F (x, u,Du,D2u) =
0 if and only if for any x0 ∈ Ω and any (p,Q) ∈ J̄2,+u(x0), we have
F (x0, u(x0), p,Q) � 0.
2. Let u : Ω −→ R be a lsc function and x0 ∈ Ω. Then u is a viscosity
supersolution of the equation F (x, u,Du,D2u) = 0 if and only if for any
x0 ∈ Ω and any (p,Q) ∈ J̄2,−u(x0), we have F (x0, u(x0), p,Q) � 0.
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Proof. — It is enough to prove the first claim. To prove that the condi-
tion is sufficient, it is enough to prove that if φ is an upper test function for
u at some point x0 then (Dφ(x0), D

2φ(x0)) ∈ J2,+u(x0). Indeed by Taylor’s
formula for |ξ| << 1 and x = x0 + ξ ∈ Ω, we have

φ(x) = φ(x0) +Dφ(x0).ξ +
1

2
D2φ(x0) · (ξ, ξ) + o(|ξ|2)

Since u �x0
φ with u(x0) = φ(x0), it follows that for |ξ| << 1,

u(x) � u(x0) +Dφ(x0).ξ +
1

2
D2φ(x0) · (ξ, ξ) + o(|ξ|2)

which proves that (Dφ(x0), D
2φ(x0)) ∈ J2,+u(x0).

To prove the converse it is enough to assume that (p,Q) ∈ J2,+u(x0),
since by approximation the results will follow by lower semi-continuity of F .
This is less trivial and follows from the following elementary but non trivial
lemma (see [39], [33]). �

Lemma 2.10. — For any (p,Q) ∈ J2,+(u) there exists a C2 function
near x0 such that Dφ(x0) = p, D2φ(x0) = Q and u �x0 φ i.e. J2φ(x0) =
{(p,Q)}.

Let us come back to the following simple example to show that viscosity
concepts are the right ones to ensure uniqueness of the solutions.

Example 2.11. — We have already observed the advantage of VSC solu-
tions in exhibiting the solution to the equation F (x, u,Du,D2u) = H(u′) =
|u′| − 1 = 0 on [−1,+1] with the the boundary condition u(±1) = 0. The
piecewise affine function on [−1, 1] defined by u0(x) = 1−|x|, which satisfies
|u′0(x)| = 1 except at the origin where it is not differentiable, it is a gene-
ralized solution. Observe that the equation has infinitely many piecewise
affine generalized solutions with the prescribed boundary condition. How-
ever it is not difficult to see that among these generalized solutions, u0 is
the only one which is a viscosity solution for the equation associated to the
Hamiltonian H(x, u, u′) = |u′| − 1. Indeed observe that the only problem
is at the origin. It’s easy to see that any upper test function q for u at 0
satisfies the condition |q′(0)| � 1, while there is no lower test function for u
at the origin.

On the other hand, it is also clear that u0 is not a subsolution to the
equation 1 − |u′| = 0, since any upper test function q at the origin should
satisfy the inequality 1 � |q′(0)|, while by the previous observation it has
to satisfy the inequality |q′(0)| � 1 hence |q′(0)| = 1, which is obviously
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not the case. The same reasoning as above actually proves that the function
v0(x) = |x|−1 is a VSC solution to the equation 1−|u′| = 0 with boundary
values 0.

2.5. The Jensen-Ishii maximum principle

Let us recall some classical definitions and results used in this approach
(see [39], [24], [33]). As we have seen in the case of Monge-Ampère equa-
tions it is necessary to assume that our Hamiltonian function F : Ω × R ×
RN × SN −→ R ∪ {+∞} will be a lower semi-continuous function which is
continuous on its domain {F < +∞}.

Definition 2.12. — Let ϕ : Ω −→ R be a function defined in an open
set Ω ⊂ RN . The function ϕ is said to be semi-convex on Ω if there exists
a real number k > 0 such that the function x �−→ ϕ(x) + k

2 |x|2 is convex in
(each convex subset of) Ω. In this case we also say that ϕ a k−convex func-
tion in Ω. The function ϕ is said to be k−concave in Ω if −ϕ is k−convex
in Ω.

The following notion is quite useful in the context of the viscosity ap-
proach.

Definition 2.13. — We say that a function ϕ : Ω −→ R is twice differ-
entiable at some point x0 (in the sense of Alexandrov) if there exists p ∈ RN
and Q ∈ SN such that for |ξ| << 1,

(A) w(x0 + ξ) = w(x0)+ < p, ξ > +
1

2
< Q · ξ, ξ > +o(|ξ|2).

Some remarks are in order.

Remark 2.14. — 1. The condition (A) means that J2w(x0) = {(p,Q)}.
This implies that w is differentiable at x0 and Dw(x0) = p, but in general it
does not mean that u is twice differentiable in the usual sense at x0. Actually
w do not need to be differentiable in a neighbourhood of x0. However the
quadratic form Q satisfying the asymptotic expansion (A) at x0 is unique
and given by

Q(ξ) = lim
t→0

w(x0 + tξ) + w(x0 − tξ)− 2w(x0)

t2
,

for ξ ∈ RN . We will denote the quadratic form Q by Q = D2w(x0) and then
J2w(x0) = {(Dw(x0), D

2w(x0))}.
2. It follows from the definitions that if w is a k-convex function in Ω which
is twice differentiable at x0 ∈ Ω then D2w(x0) � −kIN in the sense of
quadratic forms on RN .
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The following fundamental result will be useful in the poof of the gen-
eralized maximum principle.

Theorem 2.15 (Alexandrov [1]). — Let ϕ be a k−convex function in
Ω. Then there exists an exceptional Borel set E ⊂ Ω of Lebesgue measure 0
such that ϕ is twice differentiable at any point x0 ∈ Ω\E, hence D2ϕ(x0) �
−kIN .

Let us now state Jensen’s maximum principle ([54]) which is the main
technical result used in the proof of the comparison principle. It is based on
the Alexandrov fundamental theorem.

Theorem 2.16. — Let w be a semi-convex function in an open set Ω ⊂
RN . Assume that the function w reaches its local maximum at some point
x0 ∈ Ω. Then there exists a sequence aj → x0 in Ω such that w is twice
differentiable at each aj and (Dw(aj), D

2w(aj)) → (0, Q+) in RN ×SN and
Q+ � 0, in particular (0, Q+) ∈ J̄2,+w(x0).

Viscosity sub(super)-solution of our equations need not to be even con-
tinuous in general. So to be able to extract some informations from the
viscosity differential inequalities they satisfy, it is necessary to approximate
them by smooth functions in an appropriate way keeping memory of these
differential inequalities. This can be done using sup(inf)-convolution.

Let u : Ω −→ R be a bounded upper semi-continuous function. For ε > 0
small enough and x ∈ Ωε, we define the sup-convolutions of u as follows:

uε(x) := sup
y∈Ω

{
u(y)− 1

2ε2
|y − x|2

}
= sup
{|y−x|�Aε}

{
u(y)− 1

2ε2
|y − x|2

}
,

where A > 0 is large enough so that A2 > 2oscΩu.

In the same way if v : Ω −→ R is a bounded lower semi-continuous
function. For ε > 0 small enough and x ∈ Ωε, we define the inf-convolutions
of u as follows:

vε(x) := inf
y∈Ωε

{
v(y) +

1

2ε2
|y − x|2

}
= inf
|y−x|�ε

{
v(y) +

1

2ε2
|y − x|2

}
.

Then it easy to show the following result (see [31]).

Proposition 2.17. — 1. Let u : Ω −→ R be a bounded upper semi-
continuous function. Then for 0 < ε < 1 small enough, uε is ε−2-convex
in Ωε and decreases to u in Ω as ε ↘ 0, hence it is twice differentiable
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at almost every point in Ω. Moreover uε is a subsolution of the equation
Fε(x,w,Dw,D

2w) = 0, where

Fε(x, s, p,Q) := inf{F (y, s, p,Q); |y − x| � Aε}.

2. Let v : Ω −→ R be a bounded lower semi-continuous function. Then for
0 < ε < 1 small enough, vε is ε−2-concave in Ωε and increases to v in Ω as
ε↘ 0, hence twice differentiable at almost every point in Ω. Moreover vε is
a supersolution of the equation F ε(x,w,Dw,D2w) = 0, where

F ε(x, s, p,Q) := sup{F (y, s, p,Q); |y − x| � Aε}.

Observe that Fε (resp. F ε) is a continuous Hamiltonian in its domain
which increases (resp. decreases) to F in Ω as ε decreases to 0.

Using the above result, it is possible to derive a more general maximum
principle for upper semi-continuous functions, called Ishii’s lemma in the lit-
erature. We will refer to it as the Jensen-Ishii’s maximum principle, because
it is based on a powerful idea of Jensen [54].

Theorem 2.18. — Let u, v : Ω −→ R be two bounded functions defined
in a domain Ω ⊂ RN such that u an upper semi-continuous function in Ω
and v is a lower semi-continuous function in Ω. Let φ : Ω×Ω −→ R be a C2-
smooth function. Assume that the function w(x, y) := u(x)− v(y)− φ(x, y)
has a local maximum at some point (a, b) ∈ Ω×Ω. Then for any α > 0 there
exists Q+, Q− ∈ SN such that (p+, Q+) ∈ J̄2,+u(a), (p−, Q−) ∈ J̄2,−v(b)
such that p+ = Dxφ(a, b), p− = −Dyφ(a, b) and

−(
1

α
+ ‖A‖)I2N �M(Q+,−Q−) � A+ αA2,

where A = D2φ(a, b), and M(Q+,−Q−) is defined as a quadratic form on
RN × RN as follows: if Z = (X,Y ) ∈ RN × RN , then

< M(Q+,−Q−) · Z,Z >=< Q+ ·X,X > − < Q− · Y, Y > .

In particular we have Q+ � Q− as quadratic forms on RN if we choose φ
so that D2

xφ(x, y) = −D2
yφ(x, y).

A complete proof is given in [33]. It uses the regularization by sup/inf
convolution and the maximum principle of Jensen. We will see in the next
section how it is used to prove the comparison principle.
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2.6. The viscosity comparison principle in the local case

The main tool for proving uniqueness of solutions with boundary values
conditions is the so called (viscosity) Comparison Principle which we will
state now.

Definition 2.19. — We say that the (viscosity) Comparison Principle
holds for the equation F (x, u,Du,D2u) = 0 if for any bounded (viscosity)
subsolution u in Ω and any bounded (viscosity) supersolution v a in Ω such
that u � v on ∂Ω then u � v on Ω.

Under some additional conditions on how the function F depends on the
u variable and its gradient , it is possible to prove the comparison principle
for the equation F = 0 using Jensen-Ishii’s Maximum principle (see [33]).
Unfortunately there no general satisfactory statement which can be applied
in our case. So we will not state any such result here and refer to [53, 33]
for various statements.

However we will use the same ideas in the next section and rely on
Jensen-Ishii’s Maximum principle to prove a comparison principle adapted
to the complex Monge-Ampère equations we are considering.

Let us mention that the Comparison Principle implies uniqueness of the
viscosity solution with prescribed boundary values. Once the comparison
principle is valid, it is quite easy to deduce existence of viscosity solutions
using the Perron method (see [33]).

Theorem 2.20. — Assume that the family U of bounded subsolution of
the equation F (x, u,Du,D2u) = 0 in Ω in non empty and locally upper
bounded in Ω. Then the function defined by

U := sup{u;u ∈ U}

is the maximal subsolution of the equation F (x, u,Du,D2u) = 0 in Ω.

Moreover if the viscosity Comparison Principle holds for the equation
F (x, u,Du,D2u) = 0 in Ω and there exists a subsolution u and a superso-
lution u such that u∗ = u∗ in ∂Ω, then U is the unique viscosity solution
de the equation F (x, u,Du,D2u) = 0 with boundary values U = u∗ = u∗ in
∂Ω.

Proof. — A complete proof is given in [33]. Let us just give an idea of
the proof. The fact that U is a subsolution is a standard fact: on shows
that the upper semi-continuous regularization U∗ is actually a subsolution
of the equation F = 0, which implies that U∗ ∈ U and then U∗ = U is a
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subsolution. Now the powerful idea of Ishii is to consider the lower semi-
continuous regularization ϕ∗ of ϕ and to show that it is a supersolution of the
equation F = 0. This is done by contradiction using a bump construction
argument (see [52], [33]). We will give it in details in the complex case
in the next section (see Theorem 3.15). Then by the comparison principle
u � U � u in Ω, hence u∗ � U∗ � u in Ω. Then at the boundary we will have
u∗ � U∗ and U∗ � u∗ = u∗, which implies that U � U∗ at the boundary
∂Ω. Again by the comparison principle we can conclude that U � U∗ in
Ω, which finally implies that U = U∗ is a viscosity solution of the equation
F (x, u,Du,D2u) = 0 with boundary values U = u∗ = u∗ in ∂Ω. Uniqueness
follows from the comparison principle. �

3. The viscosity approach to degenerate complex
Monge-Ampère equations

The purpose of this section is to make the connection between the
pluripotential theory for the complex Monge-Ampère operators, as founded
by Bedford-Taylor [12, 13], and the viscosity approach developed by P.L. Li-
ons and all (see [53, 33]).

3.1. Viscosity subsolutions in the complex case

Let X be a (connected) complex manifold of dimension n and µ � 0 a
semi-positive volume form with continuous density with respect to a fixed
smooth non degenerate volume form µ0 > 0 form on X. In this section B
will denote the unit ball of Cn or its image under a coordinate chart in X.

We will consider the following general complex Monge-Ampère type
equations

(MAE) −(ddcu)n + eg(z,u)+h(Du)µ = 0,

where Ω � Cn is bounded domain, g is a continuous function on Ω × R
increasing in the u variable, h is continuous function in X and µ is a con-
tinuous positive volume form on X.

To fit in with the viscosity point of view, we identify Cn � R2n and
define the Hamiltonian function for (z, s, p,Q) ∈ Ω × R × Cn × S2n by the
formula

F (z, s, p,Q) =

{
−(ddcQ1,1)n + eg(z,s)+h(p)µ(z) if Q1,1 � 0
+∞ otherwise.

}
,

where Q1,1 is the hermitian (1, 1)−part of the (real) quadratic form Q on
Cn � R2n. Here we identify a hermitian form with the real (1, 1)-form
associated to it.
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With this notation, we see that our Hamiltonian is lower semi-continuous
in (z, s, p,Q) ∈ Ω×R×Cn ×S2n, continuous in its domain and satisfy the
degenerate ellipticity condition as well as the properness condition stated
in the previous section. Therefore we can use the notions of subsolutions
and supersolutions as in the previous section and in particular we can apply
Jensen-Ishii’s maximum principle. Note that if µ � µ′ then (ddcϕ)n � µ in
the viscosity sense implies (ddcϕ)n � µ′. This holds in particular if µ′ = 0.

3.1.1. Subsolutions of the equation (ddcu)n = µ

Here we restrict ourselves to the special case where g ≡ 0 and h ≡ 0 and
first observe that a function ϕ satisfies (ddcϕ)n � 0 in the viscosity sense if
and only if it is plurisubharmonic in X.

Proposition 3.1. — The viscosity subsolutions of the complex Monge-
Ampère equation (ddcϕ)n = 0 are precisely the plurisubharmonic functions
on X.

Proof. — Let ϕ be a subsolution of (ddcϕ)n = 0. Let x0 ∈ X such that
ϕ(x0) �= −∞. The problem is local so we can assume that X is a domain
in Cn. Let q ∈ C2(Vx0) such that ϕ − q has a local maximum at x0. Then
the hermitian matrix Q = ddcqx0

satisfies det(Q) � 0. Moreover for every
hermitian semipositive matrix H, we also have det(Q + H) � 0 since, a
fortiori for qH = q +H(x− x0), ϕ− qH has a local maximum at x0 too.

It follows from Lemma 3.2 below that Q = ddcqx0 is actually semi-
positive. We infer that for every positive definite hermitian matrix (hij̄)

∆Hq(x0) := hij̄ ∂2q
∂zi∂z̄j

(x0) � 0, i.e. ϕ is a viscosity subsolution of the equa-

tion −∆Hϕ = 0. In appropriate complex coordinates this constant coeffi-
cient differential operator is nothing but the Laplace operator. Hence ([51]
Proposition 3.2.10’ p. 147) applies to the effect that ϕ is ∆H -subharmonic
hence is in L1

loc(Vx0
) and satisfies ∆Hϕ � 0 in the sense of distributions. Let

(wi) be any vector in Cn. Consider a positive hermitian matrix (hij̄) degen-

erating to the rank one matrix (wiw̄j). By continuity, we have
∑

wiw̄j ∂2ϕ
∂zi∂z̄j

� 0 in the sense of distributions. Thus ϕ is plurisubharmonic.

Conversely, assume ϕ is plurisubharmonic. Fix x0 ∈ X, q ∈ C2(Vx0) such
that ϕ − q has a local maximum at x0. Then, for every small enough ball
B ⊂ Vx0

centered at x0, we have

ϕ(x0)− q(x0) �
1

V (B)

∫

B

(ϕ− q) dV,
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hence
1

V (B)

∫

B

q dV − q(x0) �
1

V (B)

∫

B

ϕdV − ϕ(x0) � 0.

Letting the radius of B tend to 0 it follows, since q is C2 that ∆qx0
� 0.

Using complex ellipsoids instead of balls1, we conclude that ∆Hq(x0) � 0 for
every positive definite hermitian matrix. Thus ddcqx0 � 0 and (ddcϕ)n � 0
in the viscosity sense. �

The following lemma is easily proven by diagonalizing Q:

Lemma 3.2. — Let Q be an hermitian matrix such that, for every semi-
positive hermitian matrix H, det(Q+H) � 0 then Q is semipositive.

Recall that when ϕ is plurisubharmonic and locally bounded, its Monge-
Ampère measure MA(ϕ) = (ddcϕ)n is well defined [12] (as the unique limit
of the smooth measures MA(ϕj), where ϕj is any sequence of smooth psh
functions decreasing to ϕ). Our next result makes the basic connection be-
tween this pluripotential notion and its viscosity counterpart.

Proposition 3.3. — Let ϕ be a locally bounded upper semi-continuous
function in X. It satisfies (ddcϕ)n � µ in the viscosity sense iff it is
plurisubharmonic and its Monge-Ampère measure satisfies MA(ϕ) � µ in
the pluripotential sense.

Proof. — Assume ϕ ∈ PSH ∩ L∞(B) satisfies MA(ϕ) � µ. Consider q
a C2 function such that ϕ− q achieves a local maximum at x0 and ϕ(x0) =
q(x0). Since ϕ satisfies (ddcϕ)n � 0 in the viscosity sense, (ddcq)nx0

� 0 and
ddcqx0

� 0 by lemma 3.2. Assume (ddcq)nx0
< µx0

. Let qε := q+ ε‖x−x0‖2.
Choosing ε > 0 small enough, we have 0 < (ddcqεx0

)n < µx0 . Since µ has
continuous density, we can chose a small ball B′ containing x0 of radius

r > 0 such that q̄ε = qε − ε r
2

2 � ϕ near ∂B′ and MA(q̄ε) � MA(ϕ). The
comparison principle (Theorem 1.6) yields q̄ε � ϕ on B′. But this fails at
x0. Hence (ddcq)nx0

� µx0 and ϕ is a viscosity subsolution.

Conversely assume ϕ is a viscosity subsolution. Fix x0 ∈ M such that
ϕ(x0) �= −∞ and q ∈ C2 such that ϕ− q has a local maximum at x0. Then
the hermitian matrix Q = ddcqx0

satisfies det(Q) � µx0
.

Recall that the classical trick (due to Krylov) of considering the complex
Monge-Ampère equation as a Bellmann equation relies on the following:

(1) This amounts to a linear change of complex coordinates.
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Lemma 3.4 [43]. — Let Q be a n × n non negative hermitian matrix,
then

det(Q)1/n = inf{tr(HQ) |H ∈ H+
n and det(H) = n−n},

where H+
n denotes the set of positive hermitian n× n matrices.

Applying this to our situation, it follows that for every positive definite
hermitian matrix H = (hij̄) with det(H) = n−n,

∆Hq(x0) :=
∑

hij̄
∂2q

∂zi∂z̄j
(x0) � µ1/n(x0),

i.e. ϕ is a viscosity subsolution of the linear equation ∆Hϕ = µ1/n.

This is a constant coefficient linear partial differential equation. Assume
µ1/n is Cα with α > 0 and choose a C2 solution of ∆Hϕ = µ1/n in a
neighborhood of x0 (see [44]). Then u = ϕ − f satisfies ∆Hu � 0 in the
viscosity sense. Once again, ([51] prop 3.2.10’ p. 147) applies to the effect
that u is ∆H -subharmonic hence ∆Hϕ � µ1/n in the weak sense of positive
Radon measures.

Using convolution to regularize ϕ and setting ϕε = ϕ ∗ ρε we see that
∆Hϕε � (µ1/n)ε. Another application of the above lemma yields

(ddcϕε)
n � ((µ1/n)ε)

n.

Since ϕε is decreasing with ε, continuity of MA(ϕ) with respect to such a
sequence yields MA(ϕ) � µ by Theorem 1.1.

This settles the case when µ > 0 and µ is Hölder continuous. In case
µ > 0 is merely continuous we observe that µ = sup{ν|ν ∈ C∞, µ � ν > 0}.
Taking into account the fact that any subsolution of (ddcϕ)n = µ is a
subsolution of (ddcϕ)n = ν provided µ � ν we conclude MA(ϕ) � µ.

In the general case when µ � 0, we observe that ψε(z) = ϕ(z) + ε‖z‖2
satisfies (ddcψε)

n � µ + εnλ in the viscosity sense with λ the euclidean
volume form. Hence MA(ψε) � µ, from which we conclude that MA(ϕ) �
µ. �

Remark 3.5. — The proof actually works in any class of plurisubhar-
monic functions in which the Monge-Ampère operator is continuous by de-
creasing limits of locally bounded functions and the comparison principle
holds. When n � 2, these are precisely the finite energy classes studied in
[27, 46, 18].
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The basic idea of the proof is closely related to the method in [12] and
is the topic treated in [69]. An alternative proof by using sup-convolutions
will be given in the next section.

We now relax the assumption that ϕ being bounded and connect viscos-
ity subsolutions to pluripotential subsolutions through the following:

Theorem 3.6. — Assume that there exists a bounded psh function ρ
on X such that (ddcρ)n � µ in the weak sense in X. Let ϕ be an upper
semicontinuous function such that ϕ �≡ −∞ on any connected component.
The following are equivalent:

(i) ϕ satisfies (ddcϕ)n � µ in the viscosity sense on X;

(ii) ϕ is plurisubharmonic and for all c > 0, (ddc sup[ϕ, ρ− c])n � µ in
the pluripotential sense on X.

Observe that these properties are local and that it is possible to find a
local strictly psh function such that locally (ddcρ)n � µ.

Proof. — Assume first that ϕ is a viscosity subsolution of−(ddcρ)n+µ =
0. Since ρ−c is also a subsolution, it follows from the maximum principle as
in the proof of Lemma 1.12 that sup(ϕ, ρ−c) is a pluripotential subsolution,
hence Proposition 3.3 yields MA(sup(ϕ, ρ− c)) � µ in the viscosity sense.

Conversely, fix x0 ∈ X and assume i) holds. If ϕ is locally bounded near
x0, Proposition 3.3 implies that ϕ is a pluripotential subsolution near x0.

Assume ϕ(x0) �= −∞ but ϕ is not locally bounded near x0. Fix q ∈ C2

such that q � ϕ near x0 and q(x0) = ϕ(x0). Then for c > 0 big enough we
have q � ϕc = sup(ϕ, ρ − c) and q(x0) = ϕc(x0), hence (ddcq)nx0

� µx0
by

Proposition 3.3 again.

Finally if ϕ(x0) = −∞ there are no q to be tested against the differential
inequality, hence it holds for every test function q. �

Condition (ii) might seem a bit cumbersome. The point is that the
Monge-Ampère operator can not be defined on the whole space of plurisub-
harmonic functions. When ϕ belongs to its domain of definition, condition
(ii) is equivalent to MA(ϕ) � µ in the pluripotential sense. To be more
precise, we have:

Corollary 3.7. — Let Ω � Cn be a hyperconvex domain. Then ϕ ∈
E(Ω), see [28] for the notation, satisfies (ddcϕ)n � µ in the viscosity sense
iff its Monge-Ampère measure MA(ϕ) satisfies MA(ϕ) � µ.
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We do not want to recall the definition of the class E(Ω) (see [28]).
It suffices to say that E(Ω) coincides with the domain of definition of
the complex Monge-Ampère operator (see [9]) and when n = 2, E(Ω) =
PSH(Ω) ∩W 1,2

loc (Ω) [8].

3.1.2. Viscosity subsolutions for (ddcu)n = eεϕµ

We shall consider the complex Monge-Ampère equations

−(ddcϕ)n + eεϕµ = 0,

where µ is continuous volume form on X. Viscosity techniques actually
mainly apply to the case ε > 0 and we are going to treat the previous case
ε = 0 by a limiting process.

When ϕ is continuous, so is the density of µ̃ = eεϕµ: these definitions are
then equivalent to the above ones and the first basic properties can be ap-
plied. When ϕ is not assumed to be continuous, one needs to carefully check
that subsolutions (resp. supersolutions) can still be understood equivalently
in the pluripotential or viscosity sense.

Proposition 3.8. — Let ϕ : X → R be a locally bounded u.s.c. function.
Then ϕ satisfies (ddcϕ)n � eεϕµ in the viscosity sense in X if and only if
it is plurisubharmonic and it does in the pluripotential sense in X.

Proof. — We can assume without loss of generality that ε = 1 and
X = Ω is a domain in Cn. When ϕ is continuous, so is the density µ̃ := eϕv
and Proposition3.3 above implies that ϕ is a viscosity subsolution of the
equation (ddcϕ)n = eϕµ iff it is a pluripotential subsolution of the same
equation.

The general case can be handled by approximation. First assume that
ϕ is a viscosity subsolution and set µ = fβn, where f > 0 is the continuous
density of the volume form µ w.r.t. the euclidean volume form on Cn. We
approximate ϕ by sup-convolutions defined for δ > 0 small enough, by

ϕδ(x) := sup
y

{
ϕ(y)− 1

2δ2
|x− y|2

}
, x ∈ Ω.

Observe that if A > 1 is a large constant so that A2 > 2oscΩϕ, then

ϕδ(x) = sup
|y|�Aδ

{
ϕ(x− y)− 1

2δ2
|y|2

}
, (3.1)

for δ > 0 small enough, x ∈ Ωδ, where Ωδ := {x ∈ Ω; dist(x, ∂Ω) > Aδ}.
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Thus (ϕδ) is a family of psh (and semi-convex) functions on Ωδ, that
decrease towards ϕ as δ decreases to zero. Furthermore, by Proposition 2.17,
ϕδ satisfies the following inequality in the sense of viscosity on Ωδ

(ddcϕδ)n � eϕ
δ

fδβn, with fδ(x) = inf{f(y) /|y − x| � Aδ}.

Since ϕδ is psh and continuous, we can invoke Proposition 3.3 and get that

(ddcϕδ)n � eϕ
δ

fδ βn � eϕfδ βn,

holds in the pluripotential sense. Since fδ increases towards f and the com-
plex Monge-Ampère operator is continuous along decreasing sequences of
bounded psh functions (see Theorem 1.1), we finally obtain the inequality
(ddcϕ)n � eϕµ in the pluripotential sense.

We now treat the other implication. Let ϕ be a psh function satisfying
the inequality

(ddcϕ)n � eϕµ,

in the pluripotential sense on Ω. We want to prove that ϕ satisfies the above
differential inequality in the sense of viscosity on Ω. If ϕ were continuous
then we could use 3.3. But since ϕ is not necessarily continuous we first
approximate ϕ using sup-convolution ϕδ as above. Lemma 3.9 below yields
the following :

(ddcϕδ)n � eϕ
δ

fδβn (3.2)

in the sense of pluripotential theory in Ωδ.

Since ϕδ is continuous we can apply Proposition 3.3 to conclude that ϕδ

is a viscosity subsolution of the equation (ddcu)n = eufδβn on Ωδ.

From this we want to deduce that ϕ is a viscosity subsolution of the
equation (ddcϕ)n = eϕfβn by passing to the limit as δ decreases to 0. This
is certainly a well know fact in viscosity theory, but let us give a proof here
for convenience.

Let x0 ∈ Ω, q be a quadratic polynomial such that ϕ(x0) = q(x0) and
ϕ � q on a neighbourhood of x0 say on a ball 2B, where B := B(x0, r) � Ω.
Since ϕ is psh on Ω, it satisfies (ddcϕ)n � 0 in the viscosity sense on Ω
by Proposition 3.1 and then by lemma 3.2, it follows that ddcq(x0) � 0.
Replacing q by q(x) + ε|x − x0|2 and taking r > 0 small enough, we can
assume that q is psh on the ball 2B. We want to prove that (ddcq(x0))

n �
eϕ(x0)f(x0)βn.

Fix ε > 0 small enough. For x ∈ B, set

qε(x) := q(x) + 2ε(|x− x0|2 − r2) + εr2.
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Observe first that since ϕ � q on 2B, we have the following properties :
- if x ∈ ∂B, ϕδ(x) − qε(x) = ϕδ(x) − q(x) − εr2 < 0 on B, for δ > small
enough.
- If x = x0, we have ϕδ(x0)− qε(x0) = ϕδ(x0)− q(x0) + εr2.
Since ϕδ(x0)− q(x0) → ϕ(x0)− q(x0) + εr2 = εr2 as δ → 0, it follows that
for δ small enough, the function ϕδ(x) − qε(x) takes it maximum on B̄ at
some interior point xδ ∈ B and this maximum satisfies the inequality

lim
δ→0

max
B̄

(ϕδ − qε) = lim
δ→0

(ϕδ(xδ)− qε(xδ)) � εr2. (3.3)

Moreover we claim that xδ → x0 as δ → 0. Indeed we have

ϕδ(xδ)− qε(xδ) = ϕδ(xδ)− q(xδ)− 2ε(|xδ − x0|2 − r2)− εr2

= qδ(xδ)− q(xδ)− 2ε|xδ − x0|2 + εr2.

Since qδ(xδ) − q(xδ) converges to 0, it follows that if x′0 is a limit point of
the family (xδ) in B̄, then maxB̄(ϕδ − qε) will converge to a limit which is
less or equal to −2ε|x′0 − x0|2 + εr2. By the inequality (3.3), this limit is
� εr2. Therefore we obtain the inequality −2ε|x′0 − x0|2 � 0 which implies
that x′0 = x0 and our claim is proved.

Since ϕδ − qε takes it maximum on B̄ at the point xδ ∈ B and ϕδ is a
viscosity subsolution of the equation (ddcu) � eufδβn, it follows that

(ddcqε(xδ))
n � eϕ

δ(xδ)fδ(xδ)βn = eϕ
δ(xδ)−qε(xδ)eqε(xδ)fδ(xδ)βn.

Now observe that

ϕδ − qε = (ϕδ − q) + (q − qε)

and by Dini’s lemma

lim sup
δ→0

max
B̄

(ϕδ − q) = max
B̄

(ϕ− q) = 0.

Therefore

lim sup
δ→0

(ϕδ(xδ)−qε(xδ)) � lim inf
δ→0

min
B̄

(q−qε) = min
B̄

(−2ε|x−x0|2+εr2) = −εr2.

It follows immediately that

(ddcqε(x0))
n � eq(x0)−2εr2f(x0)βn.

In the same way, we obtain the required inequality (ddcq(x0))
n � eϕ(x0)f(x0)βn,

since q(x0) = ϕ(x0). �
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Lemma 3.9. — Let ϕ be a bounded plurisubharmonic function in a do-
main Ω � Cn such that

(ddcϕ)n � eϕfβn,

in the pluripotentiel sense in Ω, where f � 0 is a continuous density. Then
the sup-convolutions (ϕδ) satisfy

(ddcϕδ)n � eϕ
δ

fδβn,

in the pluripotentiel sense in Ωδ, where fδ(x) := inf{f(y); |y − x| � Aδ}.

Proof. — Fix δ > 0 small enough. For y ∈ B(0, Aδ), denote by ψy(x) :=
ϕ(x − y) − 1

2δ2 |y|2, x ∈ Ωδ and observe that ψy is a bounded psh function
on Ωδ which satisfies the following inequality in the pluripotential sense on
Ωδ

(ddcψy)
n � eψyfδβn,

thanks to the invariance of the complex Monge-Ampère operator by trans-
lation.

Since ϕ is the upper envelope of the family {ψy; y ∈ B(0, Aδ)}, it follows
from a well known topological lemma of Choquet that there is a sequence
of points (yj)j∈N in the ball B(0, Aδ) such that ϕδ = (supj ψyj )

∗ on Ωδ. For
j ∈ N, denote by θj := sup0�k�j ψyk . Then (θj) is an increasing sequence

of bounded psh functions on Ωδ which converges a.e. to ϕδ on Ωδ. Itfollows
from the maximum principle Theorem 1.6 as in the proof of Lemma 1.12that
θj is also a pluripotential subsolution of the same equation i.e.

(ddcθj)
n � eθjfδβn, (3.4)

in the pluripotential sense in Ωδ.

Now by continuity of the complex Monge-Ampère operator along in-
creasing sequences of bounded psh functions and the fact that supj θj = ϕδ

quasi everywhere (see [13]), it follows from (3.4) that (ddcϕδ)n � eϕ
δ

fδβn
in the pluripotential sense on Ωδ. �

3.2. Viscosity supersolutions

The definition of supersolutions is more delicate. In the sequel, we use
two references on viscosity solutions [33] and [53] since both articles contain
some technical points not made in the other one. The outline of the real
theory given in [53], sect. V.3, although it suggests a natural definition for
supersolutions in the complex case, seems to rely heavily on the continuity
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of convex functions. Hence, we will introduce a different notion, in the spirit
of Definition 3.10.

We will first consider the complex Monge-Ampère equation

(ddcϕ)n = µ,

where µ � 0 is a continuous volume form on some open set Ω ⊂ Cn and
ε � 0. As we have already seen, to fit in the viscosity formalism, we define
the Hamiltonian function as

F (x, s,Q) := −(ddcQ1,1)n + µ(x) = 0 if ddcQ1,1 � 0,

and F (x, s, p,Q) = +∞ if not, where Q1,1 is the (1, 1)−form associated to
the hermitian (1, 1)−part of the (real) quadratic form Q on Cn.

Let us denote by (ddcQ1,1)+ = ddcQ1,1 if ddcQ1,1 � 0 and (ddcQ1,1)+ =
0 if not. Then observe that for a lower test function q for ϕ at x0 i.e. ϕ �x0

q,
the condition (ddcq(x0))

n
+ � µ(x0) is always satisfied when ddcq(x0) is not

semi-positive as well as the condition F (x0, ϕ(x0), dd
q(x0)) � 0. Hence the

condition F (x, s,Q) � 0 is consistent only when ddcQ1,1 � 0. Therefore
the egneral definition of a supersolution can be formulated in the following
equivalent way:

Definition 3.10. — A supersolution of (ddcϕ)n = eεϕµ is a lower semi-
continuous function ϕ : Ω → R∪{+∞} such that ϕ �≡ +∞ and the following
property is satisfied: if for any x0 ∈ ω and any q ∈ C2, defined in a neighbor-
hood of x0 such that ϕ(x0) = q(x0) and ϕ− q has a local minimum at x0,
then

(ddcq(x0))
n
+ � µ(x0).

As we said before, the viscosity differential inequality (given by the su-
persolution property) for a lower test function q at x0 do not tell anything
about the sign of ddcq(x0) and is certainly satisfied whenever ddcq(x0)
is not semi-positive. However the condition is natural since when u is a
smooth function which is a supersolution, then for any lower test function
q at a given point x0 we have ddcu(x0) � ddcq(x0) by the classical max-
imum principle. No if we assume that ddcq(x0) � 0 we can conclude that
(ddq)nx0

� (ddcu)nx0
� µ(x0). But if do not assume that ddq(x0) is non

negative we cannot conclude.

The only way we will use this definition in the sequel is as follows. If
ϕ is not a supersolution of the equation then there exists a point x0 and a
lower test function q at x0 such that (ddcq(x0))

n
+ > µ(x0) � 0. Therefore

ddcq(x0) � 0 and (ddcq(x0))
n > 0 which implies that ddcq(x0) > 0.
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Supersolutions are less classical objects and are not going to live on
the same footing as subsolutions. Whereas subsolutions are automatically
plurisubharmonic, this is not necessarily the case of supersolutions.

Given a bounded function h, it is natural to consider its plurisubhar-
monic projection

P (h)(x) = PΩ(h)(x) := (sup{ψ(x) /ψ psh on Ω and ψ � h})∗ ,

which is the greatest psh function that lies below h on Ω. Observe that if h
is upper semi-continuous on Ω there is no need of upper regularization and
the upper envelope is psh and � h in Ω.

We will see below that in the previous definition, the lower test function
q satisfies (ddcq)n+ � µ if and only if

(ddcP (q))n � µ.

This can be deduced from the fact that if q is C2 in an euclidean ball
B = B(x0, r) then the Monge-Ampère measure (ddcP (q))n of its projection
P (q) = PB(q) is concentrated on the set where P (q) = q, with

(ddcP (q))n = 1{P (q)=q}(dd
cq)n.

This formula can be easily derived from the (more involved) fact that P (q)
is a C1,1-smooth function (see [12], [11]).

Now we can prove the following statement which gives the relationship
between the two notions of supersolutions.

Proposition 3.11. — Let Ω � Cn be an open set.
1. Let ψ be a bounded plurisubharmonic function in Ω satisfying (ddcψ)n � µ
in the pluripotential sense in Ω. Then its lower semi-continuous regulariza-
tion ψ∗ is a viscosity supersolution of the equation (ddcϕ)n = µ in Ω.
2. Let ϕ be a continuous and bounded viscosity supersolution of the equation
−(ddcu)n + µ = 0 in Ω. Then for any euclidean ball B � Ω, ψ := PB(ϕ)
is a continuous plurisubharmonic viscosity supersolution of the equation
−(ddcu)n + µ = 0 in B.
3. Let ϕ be a C2-smooth and viscosity supersolution of the equation −(ddcu)n

+µ = 0 in Ω. Then for any euclidean ball B � Ω, we have (ddcPB(ϕ))n � µ
in the pluripotential sense in B.

Proof. — 1. We use the same idea as in the proof of Proposition 3.3.
Assume ψ ∈ PSH ∩ L∞(Ω) satisfies MA(ψ) � µ in the pluripotential
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sense on Ω. Consider q a C2-smooth function near x0 such that ψ∗(x0) =
q(x0) and ψ∗ − q achieves a local minimum at x0. We want to prove that
(ddcq(x0))

n
+ � µ(x0). Assume that (ddcq(x0))

n
+ > µx0 . Then ddcq(x0) � 0

and (ddcq(x0))
n > µx0

> 0 which implies that ddcq(x0) > 0. Let qε :=
q− 2ε(‖x− x0‖2− r2)− εr2. Since µ has continuous density, we can choose
ε > 0 small enough and a small ball B(x0, r) containing x0 of radius r > 0
such that ddcqε > 0 in B(x0, r) and (ddcqε)n > µ on the ball B(x0, r).
Thus we have qε = q − εr2 < ψ∗ � ψ near ∂B(x0, r) while MA(qε) � µ �
MA(ψ) in the pluripotential sense on B(x0, r). The comparison principle
Theorem 1.6 yields qε � ψ on B(x0, r) hence qε(x0) = lim infx→x0

qε(x) �
lim infx→x0

ψ(x) = ψ∗(x0) i.e. q(x0) + εr2 � ψ∗(x0) = q(x0), which is a
contradiction. Hence (ddcq)nx0

� µx0 and ψ∗ is a viscosity supersolution.
2. Set ψ := P (ϕ). Then ψ is a continuous psh function by [67]. Fix a point
x0 ∈ Ω and consider a super test function q for ψ at x0 i.e. q is a C2 function
on a small ball B(x0, r) ⊂ Ω such that ψ(x0) = q(x0) and ψ − q attains its
minimum at x0. We want to prove that (ddcq(x0))

n
+ � µ(x0). Since ψ � ϕ,

there are two cases:
- if ψ(x0) = ϕ(x0) then q is also a super test function for ϕ at x0 and then
(ddcq(x0))

n
+ � µ(x0) since ϕ is a supersolution of the same equation,

- if ψ(x0) < ϕ(x0), by continuity of ϕ there exists a ball B(x0, s) 0 < s < r
such that ψ = P (ϕ) < ϕ on the ball B(x0, s) and then (ddcψ)n = 0 on
B(x0, s) since (ddcP (ϕ))n is supported on the contact set {P (ϕ) = ϕ}.
Therefore ψ is a continuous psh function satisfying the inequality (ddcψ)n =
0 � µ in the sense of pluripotential theory on the ball B(x0, s). Assume that
(ddcq(x0))

n
+ > µ(x0). Then by definition, ddcq(x0) > 0 and (ddcq(x0))

n >
µ(x0). Taking s > 0 small enough and ε > 0 small enough we can assume
that qε := q−ε(|x−x0|2−s2) is psh on B(x0, s) and (ddcqε)n > µ � (ddcψ)n

on the ball B(x0, s) while qε = q � ψ on ∂B(x0, s). By the pluripotential
comparison principle for the complex Monge-Ampère operator, it follows
that qε � ψ on B(x0, s), thus q(x0)+ εs2 � ψ(x0), which is a contradiction.
3. This follows from the observation made before using the argument by
Berman and Demailly ([11]). �

3.3. The Comparison Principle in the local case

We will consider the following more general complex Monge-Ampère type
equations

G(uj,k̄) + eg(z,u)+h(Du) = 0, (3.5)

where Ω � Cn is bounded domain, G is a degenerate elliptic continuous
function on the cone H+

n of semi-positive hermitian forms on Cn, g is a con-
tinuous function on Ω×R increasing in the u variable and h is a continuous
function on Cn.
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Then we will prove the following result.

Theorem 3.12. — Let u be a subsolution of (3.5) and v a supersolution
of (3.5). Assume that u � v on ∂Ω then u � v on Ω.

Proof. — The proof is an adaptation of arguments in [33]. The main idea
is to apply the maximum principle to the usc function u− v. But since this
functions are not smooth, we will apply Jensen-Ishii’s maximum principle.
Since the function u− v is usc on Ω, then its maximum in Ω, defined as

M := sup
Ω

(u− v).

is attained at some point in Ω. We want to prove that M � 0. Since u � v
on ∂Ω, we can assume that S := {x ∈ Ω;u(x)− v(x) = M} ⊂ Ω. To apply
Jensen-Ishii’s maximum principle, we need to double the variable and add a
penalty term to make the maximum reached asymptotically on the diagonal.
Indeed for ε > 0, define the function

ψε(x, y) := u(x)− v(y)− 1

2ε2
|x− y|2,

which is upper semi-continuous on Ω × Ω. Then it takes its maximum on
Ω̄× Ω̄ at some point (xε, yε) ∈ Ω̄× Ω̄ i.e.

Mε := max
(x,y)∈Ω

2
ψε(x, y) = u(xε)− v(yε)−

1

2ε2
|xε − yε|2.

It is quite easy to prove that (see [33])

lim
ε→0+

1

2ε2
|xε − yε|2 = 0

and there exists a subsequence (xεj , yεj ) → (x̄, x̄) ∈ Ω
2

such that

lim
ε→0

Mε = M = u(x̄)− v(x̄).

Then x̄ ∈ S. Since S ⊂ Ω from our assumption, it follows that j >> 1,
(xεj , yεj ) ∈ Ω2. Therefore we can apply Jensen-Ishii maximum principle. Fix
j >> 1 and set p = p(εj) := 1

ε2
j

(xεj − yεj ), there exists Q± ∈ S2n such that

(p,Q+) ∈ J̄2,+u(xεj ), (p,Q
−) ∈ J̄2,−v(yεj ) and Q+ � Q−. It follows from

the fact that (p,Q+) ∈ J̄2,+u(xε) and the definition of viscosity subsolution
that the hermitian (1, 1)−part H+ of the quadratic form Q+ is semi-positive
hence so is the hermitian (1, 1)−part H− of Q− since 0 � H+ � H−. Then
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by the degenerate ellipticity condition on G, we get −G(H+) � −G(H−).
Therefore applying the viscosity inequalities we obtain

eg(xεj ,u(xεj ))+h(p) � eg(yεj ,v(yεj ))+h(p),

which implies that for j >> 1,

g(xεj , u(xεj )) � g(yεj , v(yεj )).

Now recall that (xεj , yεj ) → (x̄, x̄) ∈ Ω2 and u(xεj )− v(yεj ) →M . We can
always assume that limj v(xεj ) = K ∈ R exists and then limj u(yεj = K+M .

Passing to the limit, we get g(x̄, K + M) � g(x̄, K), which implies that
M � 0, since g is increasing in the second variable. �

Remark 3.13. — The last result cannot be applied when g does not de-
pend on s i.e; the equation do not involve the function u itself. We do not
know if the result is still true in this case. However if the function does
not depend on p and is only assumed to be non decreasing, it is possible
to prove the comparison principle using instead, the so called Alexandroff-
Backelman-Pucci maximum principle (see [31], [68], [29]).

Let us give the following application of the local comparison principle.

Proposition 3.14. — If µ > 0 is a continuous volume form on a com-
plex manifold X of dimension n, then viscosity solutions of the equation
(ddcϕ)n = eg(x,ϕ)µ in X are precisely the continuous psh functions ϕ so-
lutions of the equation (ddcϕ)n = eg(x,ϕ)µ in the pluripotential sense in
X.

Proof. — We already know by Proposition 3.3 and Proposition 3.11 that
continuous psh (pluripotential) solutions of the equation (ddcϕ)n = eg(x,ϕµ
on X are viscosity solutions of the equation. To prove the converse, assume
that ϕ is a viscosity solution of the equation (ddcϕ)n = eg(x,ϕ)µ. Then
by Proposition 3.3, ϕ is a continuous psh function in X which satisfies
the inequality (ddcϕ)n � eg(x,ϕµ in the pluripotential sense in X. To prove
equality assume that B � X is a small coordinate chart in X biholomorphic
to an euclidean ball in Cn and use the balayage construction to find a
psh function ψ such that (ddcψ)n = eg(x,ϕ)µ, ψ = ϕ on X \ B and ψ �
ϕ using Theorem1.5. Then by the pluripotential comparison principle it
follows that ϕ � ψ on B. On the other hand, by Proposition 3.3, ψ is
a viscosity subsolution of the equation (ddcψ)n = eg(x,ϕ)µ. Since ϕ is a
viscosity (super)-solution of the (ddcϕ)n = eg(x,ϕ)µ on B and ϕ = ψ on
∂B, it follows from the viscosity comparison principle that ψ = f in B.
Hence ϕ = ψ on B and satisfies the equation (ddcϕ)n = µ on B. Since B
is arbitrary, it follows that ϕ is a pluripotential solution of the equation
(ddcϕ)n = eg(x,ϕ)µ on Ω. �
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3.4. Viscosity solution: the Perron’s method

Once the global comparison principle holds, one easily constructs contin-
uous solutions by Perron’s method as we now explain. Consider the following
general equation

F (x, u,Du, ddcu) = 0, (3.6)

on a domain Ω ⊂ Cn, where F : Ω×R×R2n ×H+
n −→ R and extend it as

usual to a real quadratic forms as usual by F (x, s, p,Q) = F (x, s, p,Q1,1) if
the hermitian (1, 1)−part of Q is semi-positive and by +∞ if not.

Theorem 3.15. — Assume the comparison principle holds for the com-
plex Monge-Ampère type equation (3.6) and the family U of bounded subso-
lutions of the equation (3.6) is non empty and locally upper bounded in Ω.
Then the following properties:
1. The upper envelope

ϕ = sup{u |u ∈ U}
is the maximal subsolution of the equation (3.6).

Let γ be a continuous function on ∂Ω and assume that the equation (3.6)
has a subsolution u and a supersolution u such that u∗ = γ = u∗ on ∂Ω.
Then ϕ is the unique viscosity solution of (3.6) such that u = γ on ∂Ω.

Proof. — We argue as in [33] p. 22-24. Then lemma 4.2 there implies
that the upper envelope ϕ of the subsolutions of (3.6) is a subsolution of
(3.6) since F is lsc. Hence ϕ is a subsolution of (3.6).

The Ishii’s trick is now to consider the lsc regularisation ϕ∗ of ϕ. We
are going to show that ϕ∗ is a supersolution of (3.6). We argue by con-
tradiction using a bump construction. Assume the converse is true. Then
we can find x0 ∈ Ω and a lower test function q for ϕ∗ at x0 such that
F+(x0, ϕ∗(x0), dq(x0), dd

cq(x0)) < 0. This implies that Q := ddcq(x0) � 0
and F (x0, ϕ∗(x0), Dq(x0), Q) < 0. Let (z1, .., zn) be a coordinate system
centered at x0 giving a local isomorphism with the complex unit ball. De-
fine for δ > 0, r > 0 small enough and |z| < 2r,

qδ(z) := q(z)− δ(|z − x0|2 − r2).

Then

qδ(x0) = ϕ∗(x0) + δr2,

Dqδ(x0) = Dq(x0),

D2qδ(x0) = Q− 2δIn.
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Then since F (x0, ϕ∗(x0), Dq(x0), Q) < 0, it follows by continuity of F in its
domain that for δ > 0 small enough we can find r > 0 small enough so that
for |z| < 2r,

F (z, uδ(z), qδ(z)) < 0,

which means that qδ is a subsolution of our equation in the ball |z| < 2r.
Now observe that for |z| = 2r, qδ(z) = q(z) − δr2 � ϕ∗ − δr2 � ϕ − δr2.
Therefore the new function ψ(z) := max{ϕ, qδ} on the ball Br : |z| < 2r
and ψ = ϕ in Ω \ Br is a subsolution of the equation in Ω. Since ϕ is
the maximal subsolution of the equation on Ω, we conclude that U � ϕ
in Ω, which implies that qδ � ϕ on the ball Br. On the other hand, since
uδ(x0)− ϕ∗(x0) = δr2, there is a sequence (yj) converging to x0 such that
limj→+∞ qδ(yj)−ϕ(yj) = qδ(x0)−ϕ∗(x0). Then for j >> 1 we have yj ∈ Br

and qδ(yj)−ϕ(yj) > δr2/2 > 0, which contradicts the inequality qδ � ϕ on
the ball Br.

Since u � ϕ � u it follows that u∗ � ϕ∗ � u in Ω. Then ϕ � u∗ = γ
on ∂Ω, while γ = u∗ � ϕ∗ on ∂Ω which implies that ϕ � ϕ∗ in ∂Ω. By
the comparison principle it implies that ϕ � ϕ∗ in Ω, hence ϕ = ϕ∗ is a
viscosity solution of the equation (3.6). �

Corollary 3.16. — Let µ > 0 be is a continuous volume fom Ω � Cn
and g is continuous and increasing in the second variable. Assume that the
family U of bounded viscosity subsolutions of the following complex Monge-
Ampère equation

−(ddcu)n + eg(x,u)µ = 0, (3.7)

is non empty and locally upper bounded in Ω. Then the maximal viscosity
subsolution

ϕ = sup{u |u ∈ U},
is a viscosity solution of (3.7). Moreover it is a continuous ω-plurisubharmonic
function on Ω and is also a solution of (3.7) in the pluripotential sense.

Proof. — It remains to see that ϕ is also a solution of (3.7) in the
pluripotential sense. Since this is a local property, it is enough to prove it
locally. We argue by balayage. Let B � X be a small coordinate neigh-
bourhood which is biholomorphic to an euclidean ball in Cn such that ω
has a local potential on a neighbourhood of B. Since ϕ is continuous on
B, we can solve the complex Monge-Ampère equation (ddcψ)n = eg(x,ϕ)µ
on B with boundary values equal to ϕ on ∂B by Theorem 1.5. Then by
the pluripotential comparison principle we have ψ � ϕ on B. Therefore the
function u := ψ on B and u = ϕ on Ω\B is a continuous ω−psh function on
Ω and by Proposition 3.1, it is a viscosity subsolution of the equation (3.7).
Therefore by the global comparison principle u � ϕ on Ω, which proves
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that ϕ = ψ on B and then ϕ satisfies the complex Monge-Ampère equation
(ω + ddcϕ)n = eg(x,ϕ)µ in the pluripotential sense on B which proves our
statement. �

Remark 3.17. — As we observed in Remark 3.13, the comparison prin-
ciple is valid in a more general situation where µ � 0 and g(x, s) is non
decreasing in s. Therefore the Theorem above is still valid in this general
situation. For a different proof of this last statement see [68].

4. The viscosity approach in the Kähler case

We now set the basic frame for the viscosity approach to the following
degenerate complex Monge-Ampère equation

(DMA)ε,µ (ω + ddcϕ)n = eεϕµ,

where ω is a closed smooth (1, 1)-form on a n-dimensional connected com-
pact complex manifold X, µ is a volume form with nonnegative continuous
density and ε ∈ R+.

As we have seen in the last section, the comparison principle lies at the
heart of the viscosity approach. Once it is established, Perron’s method can
be applied to produce viscosity solutions. Our main goal in this section is to
establish the global comparison principle for the equation (DMA)ε,µ. We
only assume X is compact (and ε > 0): the structural feature of (DMA)ε,µ
allows us to avoid any restrictive curvature assumption on X (unlike e.g. in
[3]).

4.1. Definitions for the compact case

To fit in with the viscosity point of view, we rewrite the Monge-Ampère
equation as

−(ω + ddcϕ)n + eεϕµ = 0.

Let x ∈ X. If κ ∈ Λ1,1TxX we define κn+ to be κn if κ � 0 and 0 otherwise.

We let PSH(X,ω) denote the set of all ω-plurisubharmonic (ω-psh for
short) functions on X: these are integrable functions ϕ : X → R ∪ {−∞}
such that ddcϕ � −ω in the sense of currents.

Lemma 4.1. — Let Ω ⊂ X be an open subset and z : Ω → Cn be a
holomorphic coordinate chart. Let h be a smooth local potential for ω defined
on Ω. Then (MAε,µ) reduces in these z-coordinates to the scalar equation

(MAε,µ|z) eεuW − det(uzz̄) = 0
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where u = (ϕ + h)|Ω ◦ z−1, z∗µ = eεh|Ω◦z
−1

Wdλ and λ is the Lebesgue
measure on z(Ω).

The proof is straightforward.

In order to deal with degenerate elliptic non linear equations and be able
to apply results from [33], we introduce the following Hamiltonian function.

If ϕ
(2)
x is the 2-jet at x ∈ X of a C2 real valued function ϕ we set

F (x, ϕ(x), ϕ(2)
x ) =

{
eεϕ(x)µx − (ωx + ddcϕx)

n if ω + ddcϕx � 0
+∞ otherwise.

Then F satisfies the degenerate ellipticity condition as well as the properness
condition, but it is only lower semi-continuous. However it is continuous on
its domain i.e. where it is finite.

4.1.1. Subsolutions

Recall now the following definition from previous sections:

Definition 4.2. — A subsolution of (DMA)ε,µ is an upper semi-conti-
nuous function ϕ : X → R ∪ {−∞} such that ϕ �≡ −∞ and the following
property is satisfied: if x0 ∈ X and q ∈ C2, defined in a neighborhood of x0,
is such that ϕ(x0) = q(x0) and

ϕ− q has a local maximum at x0,

then F (x0, ϕ(x0), q
(2)
x0 ) � 0.

4.1.2. (Super)solutions

The definition of supersolutions follows the one given in the local setting:

Definition 4.3. — A supersolution of (DMA)ε,µ is a lower semicon-
tinuous function ϕ : X → R ∪ {+∞} such that ϕ �≡ +∞ and the following
property is satisfied: if x0 ∈ X and q ∈ C2, defined in a neighborhood of
x0, is such that ϕ(x0) = q(x0) and ϕ− q has a local minimum at x0, then

F (x0, ϕ(x0), q
(2)
x0 ) � 0.

Definition 4.4. — A viscosity solution of (DMA)ε,µ is a function that
is both a sub-and a supersolution. In particular, viscosity solutions are au-
tomatically continuous.

A pluripotential solution of (DMA)ε,µ is an usc function ϕ ∈ L∞ ∩
PSH(X,ω) such that for every local potential ψ of ω we have MA(ψ+ϕ) =
eεϕµ in the weak sense of currents.

Classical sub/supersolutions are C2 viscosity sub/supersolutions.
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In this setting, the discussion after Theorem 3.6 yields the following:

Corollary 4.5. — Let X be a compact Kähler manifold and ω a smooth
closed (1, 1) form whose cohomology class [ω] is big. Let ϕ be any contin-
uous ω-psh function. Then ϕ satisfies (ω + ddcϕ)n � eεϕµ in the viscosity
sense iff 〈(ω + ddcϕ)n〉 � eεϕµ, where 〈(ω + ddcϕ)n〉 is the non-pluripolar
Monge-Ampère measure [21].

4.2. The global viscosity comparison principle

Since our conditions (X compact, µ � 0, ε > 0) are invariant under
dilation, we can always reduce to the case ε = 1, a normalisation that we
shall often make in the sequel.

We now come to the main result of this section:

Theorem 4.6. — The global viscosity comparison principle for (DMA)1,µ
holds, provided ω is a closed (1, 1)-form on X, µ > 0, and X is compact.

Observe that we do not assume X to be Kähler nor ω to be semi-positive.

Proof. — We choose a constant C > 0 such that ϕ and ψ both are � C/4
in L∞-norm. Since ϕ−ψ is upper semicontinuous on the compact manifold
X, it follows that its maximum is achieved at some point x0 ∈ X. Choose
complex coordinates z = (z1, . . . , zn) near x0 defining a biholomorphism
identifying an open neighborhood of x0 to the complex ball B4 := B(0, 4) ⊂
Cn of radius 4 sending x0 to the origin in Cn.

We define hω ∈ C2(B4,R) to be a local potential smooth up to the
boundary for ω and extend it smoothly to X. We may without lost of
generality assume that ‖hω‖∞ < C/4. In particular ddchω = ω on B4 and
the usc function u := ϕ ◦ z−1 + hω ◦ z−1 is a viscosity subsolution of

(�) (ddcu)n = euf · βn in B4,

with f := z∗(µ)/βn > 0 is a positive and continuous volume form on B4.

On the other hand the lsc function v := ψ ◦ z−1 + hω ◦ z−1 is a viscosity
supersolution of the same equation.

This is a crucial point: the modified equation still has the same form as
the original one.

We want to estimate maxX(ϕ−ψ) = maxB̄4
(u−v) = u(0)−v(0) � 0 by

applying the classical maximum principle as in the local case. Observe that
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if the functions u and v were twice differentiable at x0 the inequality fol-
lows from the maximum principle and the differential sub/super inequalities
satisfied by u and v at x0 respectively.

In the general case we proceed as in [33] using the penalty method
consisting in doubling the variable and adding a penalty function, but we
will be adding two penalty functions. We consider the function x �−→ u(x)−
v(x) as the restriction to the diagonal in the product B3×B3 of the function
(x, y) �−→ u(x) − v(y) − θ(x, y) − (1/2δ)|x − y|2 where θ(x, y) is the first
penality function which vanishes highly on the diagonal near the origin
(0, 0) and is large enough on the boundary of the ball B3 ×B3 to force the
maximum to be attained at an interior point; the second penalty function
forces the maximum to be asymptotically attained along the diagonal. The
fact that the second derivative of the penalty function is a quadratic form
on R2n × R2n which vanishes on the diagonal, will be crucial.

We now proceed to the construction of the first penalty function θ. We
want to construct a smooth function θ ∈ C∞(X2,R) satisfying the following
conditions

• θ � 0,

• θ−1(0) = ∆ ∩ {θ2 � −η},
• θ|X2\B2

2
> 3C,

where η > 0 is small enough (see below for the definition of θ2) and C > 0.

First we construct a Riemannian metric on X which coincides with the
flat Kähler metric

√−1
2 dzk ∧ dz̄k on the ball of center 0 and radius 3. For

(x, y) ∈ X ×X define d(x, y) to be the corresponding Riemannian distance
function. The continuous function d2 is of class C2 near the diagonal and
> 0 outside the diagonal ∆ ⊂ X2.

Next we construct a smooth non negative function θ1 on X ×X by the
following formula:

θ1(x, y) = χ(x, y).

n∑

i=1

|zi(x)− zi(y)|2n+4,

where χ smooth non negative cut off function with 0 � χ � 1, χ ≡ 1 on B2
3

χ = 0 near ∂B2
4 .

Then we construct a second smooth function on X×X with θ2|B2
2
< −1,

θ2|M2\B2
2
> 3C.
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Choose 1 ( η > 0 such that −η is a regular value of both θ2 and θ2|∆.

We perform convolution of (ξ, ξ′) �→ max(ξ, ξ′) by a smooth semipositive
function ρ such that BR2(0, η) = {ρ > 0} and get a smooth function on R2

maxη such that:

• maxη(ξ, ξ
′) = max(ξ, ξ′) if |ξ − ξ′| � η,

• maxη(ξ, ξ
′) > max(ξ, ξ′) if |ξ − ξ′| < η.

Then the function θ defined by θ := maxη(θ1, θ2) satisfies our requirements.

Fix α > 0. We want to apply the Jensen-Ishii’s maximum principle to
the functions u, v and φ = θ − 1

2α |x− y|2.

For α > 0 small enough, consider (xα, yα) ∈ B̄3 × B̄3 such that

mα := sup
(x,y)∈B̄2

3

{
u(x)− v(y)− 1

2α
|x− y|2 − θ(x, y)

}

= u(xα)− v(yα)− θ(xα, yα)− 1

2α
|xα − yα|2.

The supremum is achieved since we are maximizing an usc function on
the compact set B̄2

3 . We also have

mα � u(0)− v(0) = ϕ(x0)− ψ(x0) � −C/2, (4.1)

for α > 0 small enough.

By construction, for (x, y) ∈ B2
3 \B2

2 , we also have

u(x)− v(y)− θ(x, y)− 1

2α
|x− y|2 � −2C < −C, (4.2)

which implies that (xα, yα) ∈ B2
2 .

The following result follows easily from the above properties (see [33,
Proposition 3.7]):

Lemma 4.7. — For α > 0 small enough we have |xα − yα|2 = o(α).
Every limit point (x̂, ŷ) of (xα, yα) satisfies x̂ = ŷ, (x̂, x̂) ∈ ∆ ∩ {θ2 � −η}
and

lim
α→0

(u(xα)− v(yα)) = u(x̂)− v(x̂)

= ϕ(x0)− ψ(x0.
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Next, we use Jensen-Ishii’s maximum principle with φ = 1
2αd

2 + θ. For
0 < α << 1, everything is localized to B(0, 2) hence d reduces to the
euclidean distance function. Using the usual formula for the first and second
derivatives of its square, we get the following:

Lemma 4.8. — ∀ε > 0, we can find (p∗, Q∗), (p∗, Q∗) ∈ Cn×Sym2
R(Cn)

s.t.

1. (p∗, Q∗) ∈ J
2+
u(xα),

2. (p∗, Q∗) ∈ J
2−
v(yα), where p∗ = Dxθ(xα, yα) + 1

2α (xα − yα) and
p∗ = −Dyθ(xα, yα) + 1

2α (xα − yα)

3. The block diagonal matrix with entries (Q∗, Q∗) satisfies:

−(ε−1 + ‖A‖)I �
(

Q∗ 0
0 −Q∗

)
� A+ εA2,

where A = D2φ(xα, yα), i.e.

A = α−1

(
I −I
−I I

)
+D2θ(xα, yα)

and ‖A‖ is the spectral radius of A (maximum of the absolute values
for the eigenvalues of this symmetric matrix).

By construction, the Taylor series of θ at any point in ∆ ∩ {θ2 < −η}
vanishes up to order 2n. By transversality, ∆ ∩ {θ2 < −η} is dense in
∆∩{θ2 � −η}, and this Taylor series vanishes up to order 2n on ∆∩{θ2 �
−η}. In particular,

D2θ(xα, yα) = O(d(xα, yα)2n) = o(αn).

This implies ‖A‖ � 1/α. We choose α = ε and deduce

−(2α−1)I �
(

Q∗ 0
0 −Q∗

)
� 3

α

(
I −I
−I I

)
+ o(αn)

Looking at the upper and lower diagonal terms we deduce that the eigen-
values ofQ∗, Q∗ areO(α−1). Evaluating the inequality on vectors of the form
(Z,Z) we deduce from the � that the eigenvalues of Q∗ −Q∗ are o(αn).

For a fixed Q ∈ Sym2
R(Cn), denote by H = Q1,1 its (1, 1)-part. It is a

hermitian matrix. Obviously the eigenvalues of H∗ := Q1,1
∗ , H∗ := Q∗1,1 are
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O(α−1) but those of H∗ − H∗ are o(αn). Since (p∗, Q∗) ∈ J2+w∗(xα) we
deduce from the definition of viscosity solutions that H∗ is positive definite
and that the product of its n eigenvalues is � c > 0 uniformly in α. In
particular its smallest eigenvalue is � cαn−1. The relation H∗+o(αn) � H∗

forcesH∗ > 0 for α > 0 small enough. Then we have detH∗ � detH∗+o(αn).

By viscosity inequalities, we get

eu(xα) � det(H∗) � det(H∗) + o(αn)

� ev(yα) + o(αn).

Passing to the limit as α→ 0, we obtain the inequality eu(x̂) � ev(x̂), which
implies that u(x̂) � v(x̂). �

Remark 4.9. — The miracle with the complex Monge Ampère equation
we are studying is that the equation does not depend on the gradient in
complex coordinates. In fact, it takes the form F (Q)− f(x) = 0. The local-
isation technique would fail without this structural feature.

4.3. Perron’s method

Once the global comparison principle holds, one easily constructs con-
tinuous (viscosity=pluripotential) solutions by Perron’s method as we ex-
plained in the last section.

Theorem 4.10. — Assume the global comparison principle holds for
(DMA)ε,µ and that (DMA)ε,µ has a bounded subsolution u and a bounded
supersolution u. Then the maximal subsolution,

ϕ = sup{w |u � w � u and w is a viscosity subsolution of (DMA)ε,µ}
is the unique viscosity solution of (DMA)ε,µ.

In particular, it is a continuous ω-plurisubharmonic function in X which
is also a solution of (DMA)ε,µ in the pluripotential sense.

Example 4.11. — Assume X is a complex projective manifold such that
KX is ample. Let ω > 0 be a Kähler representative of [KX ] and µ a
smooth non degenerate volume form on X with Ric(µ) = −ω. Then the
Monge-Ampère equation (ω + ddcϕ)n = eϕµ satisfies all the hypotheses of
Theorem 4.10 and has a unique (viscosity=pluripotential) solution ϕ. On
the other hand, the Aubin-Yau theorem [2],[70] implies that it has a unique
smooth solution ϕKE (and ω + ddcϕKE is the canonical Kähler-Einstein
metric on X). Uniqueness of the pluripotential solution insures ϕ = ϕKE

hence the potential of the canonical KE metric on X is the envelope of the
subsolutions to (ω + ddcϕ)n = eϕµ.
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5. Weak versions of Calabi-Yau and Aubin-Yau theorems

In this section we apply the viscosity approach to show that the canon-
ical singular Kähler-Einstein metrics constructed in [41] have continuous
potentials.

5.1. Manifolds of general type

Assume X is compact Kähler and µ is a continuous volume form with
semi-positive density. Fix β a Kähler form on X.

Corollary 5.1. — Assume that ω � 0 is a closed (1, 1)−form and
µ > 0 is a continuous positive volume form. Then (DMA)ε,µ has a unique
viscosity solution ϕ, which is also the unique solution in the pluripotential
sense. Hence it is a continuous ω−psh function.

Proof. — Indeed the global comparison principle holds in this case and
Theorem 1.13 and Theorem 4.10 enable us to conclude. �

We are now ready to establish that the (pluripotential) solutions of some
Monge-Ampère equations considered in the first section are continuous.

Theorem 5.2. — Assume X is a compact Kähler manifold, ω is a semi-
positive (1, 1)-form with

∫
X
ωn > 0 and µ � 0 is a semi-positive continuous

volume form on X normalized by µ(X) = 1. Then there exists a unique con-
tinuous ω-plurisubharmonic function ϕ which is the viscosity (equivalently
pluripotential) solution to the degenerate complex Monge-Ampère equation

(ω + ddcϕ)n = eϕµ

Proof. — Observe that if moreover µ has positive density, the result is an
immediate consequence of Corollary 5.1 together with the unicity statement
Proposition 1.11.

It remains to relax the positivity assumption made on µ. From now on
ω is semi-positive and big and µ is a probability measure with semi-positive
continuous density. We can solve

(ω + ddcϕε)
n = eϕε [µ+ εβn]

where ϕε are continuous ω-psh functions and 0 < ε � 1. As we already
observed in the firs section this implies that the family Mε := supX ϕε, ε ∈
]0, 1] is bounded.
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We infer that (ϕε) is relatively compact in L1(X). It follows from The-
orem 1.8 that (ϕε) is actually uniformly bounded, as ε decreases to zero.

Using again the stability estimates Theorem 1.8, we get

||ϕε − ϕε′ ||L∞ � C (||ϕε − ϕε′ ||L1)
1

n+2 .

Thus, if (εj) is a sequence decreasing to zero as j goes to +∞ such that
(ϕεj )j converges in L1, (ϕεj ) is actually a Cauchy sequence of continuous
functions, hence it uniformly converges, to the unique continuous pluripo-
tential solution ϕ of (DMA)1,µ. From this, it follows that (ϕε) has a unique
cluster value in L1 when ε decreases to 0 hence converges in L1. The pre-
ceding argument yields uniform convergence.

Theorem 4.10 insures that ϕ is also a viscosity subsolution. Remark 6.3
p. 35 in [33] actually enables one to conclude that ϕ is indeed a viscosity
solution. �

Corollary 5.3. — If Xcan is a canonical model of a general type pro-
jective manifold then the canonical singular Kähler-Einstein metric on Xcan

constructed in [41] has continuous potentials.

Proof. — This is a straightforward consequence of the above theorem,
working in a log resolution of Xcan, where ω = c1(KX , h) is the pull-back of
the Fubini-Study form from Xcan and v = v(h) has continuous semi-positive
density, since Xcan has canonical singularities. �

5.2. Continuous Ricci flat metrics

We now turn to the study of the degenerate equations (DMA)0,µ

(ω + ddcϕ)n = µ

on a given compact Kähler manifoldX. Here µ = fµ0 is a degenerate volume
form with density f ∈ Lp(X) (p > 1) and ω is a smooth semi-positive closed
(1, 1) form on X. We assume that µ is normalized so that

µ(X) =

∫

X

ωn.

This is an obvious necessary condition in order to solve the equation

(DMA)0,µ (ω + ddcϕ)n = µ,

on X. Bounded solutions to such equations have been provided in [41] when
µ has Lp-density, p > 1, by adapting the arguments of [58]. Our aim here is
to show that these are actually continuous.
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Theorem 5.4. — Let µ = fµ0 be a degenerate volume form with density
0 � f ∈ Lp(X) (p > 1) and ω � 0 is a smooth semi-positive closed (1, 1)
form on X. We assume that µ is normalized so that

µ(X) =

∫

X

ωn.

Then the complex Monge-Ampère equation (DMA)0,µ has a unique contin-
uous pluripotential solution ϕ such that

∫
X
ϕµ = 0.

The plan is to combine the viscosity approach for the family of equations
(ω + ddcϕ)n = eεϕµ, together with the pluripotential tools developed in
[58, 27, 45, 41, 42].

Proof. — Assume first that µ is a continuous positive volume form. For
ε > 0 we let ϕε denote the unique viscosity (or equivalently pluripotential)
ω-psh continuous solution of the equation

(ω + ddcϕε)
n = eεϕεµ,

given by Theorem 5.1. As before we see that Mε := supX ϕε is uniformly
bounded. We infer that (ϕε) is bounded in L1 and the Monge-Ampère mea-
sures (ω+ ddcϕε)

n have uniformly bounded densities in L∞. Once again by
Theorem1.8 this family of continuous ω-psh functions is uniformly Cauchy
hence converges to a continuous pluripotential solution of (DMA)0,µ. This
pluripotential solution is also a viscosity solution by ([33], Remark 6.3).

As we already observed in section 1, the solutions of (DMA)0,µ are
unique, up to an additive constant. It is natural to wonder which solution is
reached by the the family ϕε. Observe that

∫
X
eεϕεµ =

∫
X
µ =

∫
X
ωn thus

0 =

∫

X

eεϕε − 1

ε
µ =

∫

X

ϕεµ+ o(1)

hence the limit ϕ of ϕε as ε decreases to zero is the unique solution of
(DMA)0,µ that is normalized by

∫
X
ϕµ = 0.

Now assume that µ = fµ0 has an Lp−density with p > 1. Let fj a sequence
of smooth positive functions on X such fj → f in Lp(X).

By the previous case there for each j ∈ N, there exists a continuous
solution ϕj ∈ PSH(X,ω) to the equation

(ω + ddcϕj)
n = fjµ0,

with
∫
X
ϕjµ = 0. By [45] the sequence ϕj is bounded in L1(X) and again

by Theorem 1.8, the sequence (fj)j∈N is a Cauchy sequence of continuous
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ω−psh functions for the uniform norm onX, hence it converges to a continu-
ous ω−psh function ϕ which is a solution to the equation (DMA)0,µ. �

Note that the way we have produced solutions (by approximation through
the non flat case) is independent of [2, 70].

Now we can prove that the Ricci-flat singular metrics constructed in
([41], Theorem 7.5) have continuous potentials.

Corollary 5.5. — Let X be a compact Q-Calabi-Yau Kähler space.
Then X admits a Ricci-flat singular metric with continuous potentials.

6. Concluding remarks

6.1. The continuous Calabi conjecture

The combination of viscosity methods and pluripotential techniques yields
a soft approach to solving degenerate complex Monge-Ampère equations of
the form

(ω + ddcϕ)n = eεϕµ

when ε � 0.

Recall that here X is a compact Kähler n-dimensional manifold, µ is a
semi-positive volume form with Lp-density p > 1 and ω is smooth closed
(1, 1)-form whose cohomology class is semi-positive and big (i.e. {ω}n > 0).

Altogether this provides an alternative and independent approach to
Yau’s solution of the Calabi conjecture [70]: we have only used upper enve-
lope constructions (both in the viscosity and pluripotential sense), a global
(viscosity) comparison principle and Kolodziej’s pluripotential techniques
([58, 41]).

It applies to degenerate equations but yields solutions that are merely
continuous (Yau’s work yields smooth solutions, assuming the cohomology
class {ω} is Kähler and the measure µ is both positive and smooth). However
it is possible to prove that the solutions are Hölder continuous locally in the
ample locus Ωα of the class {ω} (see [37]).

Note that a third (variational) approach has been studied recently in
[19]. It applies to even more degenerate situations where µmight be singular,
providing solutions with less regularity (that belong to the so called class
of finite energy).
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6.2. The case of a big class

Our approach applies equally well to a slightly more degenerate situation.
We still assume here that (X,ωX) is a compact Kähler manifold of dimension
n, but µ = fµ0 is merely assumed to have density f � 0 in L∞ and moreover
the smooth real closed (1, 1)-form ω is no longer assumed to be semi-positive:
we simply assume that its cohomology class α := [ω] ∈ H1,1(X,R) is big,
i.e. contains a Kähler current.

It follows from the work of Demailly [36] that one can find a Kähler
current in α with analytic singularities: there exists an ω-psh function ψ0

which is smooth in a Zariski open set Ωα and has logarithmic singularities of
analytic type along X\Ωα = {ψ0 = −∞}, such that T0 = ω+ddcψ0 � ε0ωX
dominates the Kähler form ε0ωX , ε0 > 0.

We refer the reader to [21] for more preliminary material on this situ-
ation. Our aim here is to show that one can solve (DMA)1,µ in a rather
elementary way by observing as in the first section that the (unique) solution
is the upper envelope of subsolutions. We let as before

F := {ϕ ∈ PSH(X,ω) ∩ L∞loc(Ωα) / (ω + ddcϕ)n � eϕv in Ωα}

denote the set of all (pluripotential) subsolutions to (DMA)1,µ (which only
makes sense in Ωα).

Observe that F is not empty: since Tn
0 dominates a volume form and µ

has density in L∞(X), the function ψ0−C belongs to F for C large enough.
We assume for simplicity C = 0 (so that ψ0 ∈ F) and set

F0 := {ϕ ∈ F /ϕ � ψ0}.

Proposition 6.1. — The class F0 is uniformly upper bounded on X. It
compact (for the L1-topology).

Proof. — The proof is the same as for Lemma 1.12. We first show that
F0 is uniformly bounded from above (by definition it is bounded rom below
by ψ0). We can assume without loss of generality that µ is normalized so
that µ(X) = 1. Fix ψ ∈ F0. It follows from the convexity of the exponential
that

exp

(∫
ψµ

)
�

∫
eψµ �

∫
(ω + ddcψ)n � V ol(α).

All integrals here are computed on the Zariski open set Ωα. We refer the
reader to [21] for the definition of the volume of a big class.
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We infer

sup
X

ψ �
∫
ψµ+ Cµ � log V ol(α) + Cµ,

where Cµ is a uniform constant that only depends on the fact that all ω-psh
functions are integrable with respect to µ (see [45]). This shows that F0 is
uniformly bounded from above by a constant that only depends on µ and
V ol(α).

We now check that F0 is compact for the L1-topology. Fix ψj ∈ FN0 .
We can extract a subsequence that converges in L1 and almost everywhere
to a function ψ ∈ PSH(X,ω). Since ψ � ψ0, it has a well defined Monge-
Ampère measure in Ωα and we need to check that (ω + ddcψ)n � eψµ. We
proceed in the same way as Lemma 1.12. �

It follows that
ψ := sup{ϕ/ϕ ∈ F0},

the upper envelope of pluripotential subsolutions to (DMA)1,µ, is a well
defined ω-psh function which is locally bounded in Ωα.

Theorem 6.2. — The function ψ is a pluripotential solution to (DMA)1,µ.

Proof. — The proof proceed by balayage locally in Ωα as in the proof
of Theorem 1.13. �

Remark 6.3. — The situation considered above covers in particular the
construction of a Kähler-Einstein current on a variety V with ample canon-
ical bundle KV and canonical singularities, since the canonical volume form
becomes, after passing to a desingularisation X, a volume form µ = fµ0

with density f ∈ L∞.

The more general case of log-terminal singularities yields density f ∈ Lp,
p > 1. One can treat this case by an easy approximation argument: setting
fj = min(f, j) ∈ L∞, one first solves (ω + ddcϕj)

n = eϕjfjµ0 and observe
(by using the comparison principle) that the ϕ′js form a decreasing sequence
which converges to the unique solution of (ω + ddcϕ)n = eϕfµ0.

6.3. More comparison principles

Let again B ⊂ Cn denote the open unit ball and let B′ = (1 + η)B
with η > 0 be a slightly larger open ball. Let u, u′ ∈ PSH(B′) be plurisub-
harmonic functions. By convolution with an adequate non negative kernel
of the form ρε(z) = ε−2nρ1(

z
ε ) we construct (uε)η>ε>0 a family of smooth

plurisubharmonic functions decreasing to u as ε decreases to 0.
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Lemma 6.4. —

∀z ∈ B u(z) + u′(z) = lim sup
n→∞

sup{u′(x) + u1/j(x)|j � n, |x− z| � 1/n}

Proof. — Indeed, we have, if 2/n < η:

u(z) + u′(z) � sup{u′(z) + u1/j(z)|j � n}
� sup{u′(x) + u1/j(x)|j � n, |x− z| � 1/n}
� sup{u′(x) + u(x)| |x− z| � 2/n}.

Since u+ u′ is upper semicontinuous, we have:

u(z) + u′(z) = (u+ u′)∗(z) = lim
n→∞

sup{u+ u′(x)| |x− z| � 2/n}.

�

Lemma 6.5. — Let φ a bounded psh function on B and µ a continuous
non negative volume form such that e−φ(ddcφ)n � µ in the viscosity sense.

Let ψ be a bounded psh function and ν a continuous positive volume
form, both defined on B′ such that (ddcψ)n � ν.

Then ∃C, c > 0 depending only on ‖ψ‖L∞ , ‖φ‖L∞ such that for every
ε ∈ [0, 1] Φ = φ+ εψ satisfies:

e−Φ(ddcΦ)n � (1− ε)ne−Cεµ+ cεnν

in the viscosity sense in B.

Proof. — We may assume ε > 0 and ν to be smooth. Let us begin by the
case when ψ is of class C2. Let x0 ∈ B and q ∈ C2 such that q(x0) = Φ(x0)
and Φ − q has a local maximum at x0. Then, φ − (q − εψ) has a local
maximum at x0.

We deduce:
ddc(q − εψ)x0 � 0

e−q(x0)+εψ(x0)(ddc(q − εψ))x0
)n � µx0

.

Using the inequality (ddcq)nx0
� (ddc(q−εψ))x0)

n+εn(ddcψ)n, we conclude.

We now treat the general case. Since ψ is defined on B′ we can construct
by the above classical mollification a sequence of C2 psh functions (ψ1/k)
converging to ψ as k goes to +∞.
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We know from the proof of Proposition 3.3 that (ddcψk)
n � ((ν1/n)1/k)

n

= νk in both the pluripotential and viscosity sense.

We conclude from the previous case that Φk = φ+ εψk satisfies

cεnνk + (1− ε)ne−Cεµ � e−Φk(ddcΦk)
n

in the viscosity sense. Since µk > 0, we have:

cεnνk + (1− ε)ne−Cεµ− e−Φk(ddcΦk)
n
+ � 0

in the viscosity sense.

By Lemma 6.1 p. 34 and Remark 6.3 p. 35 in [33], we conclude that

Φ̄ = lim sup
n→∞

sup{Φj(x)|j � n, |x− z| � 1/n}

satisfies the limit inequation

e−Φ̄(ddcΦ̄)n+ � (1− ε)ne−Cεµ+ cεnν

in the viscosity sense. Now Lemma 6.4 implies that Φ̄ = Φ. Since ν > 0, the
proof is complete. �

Theorem 6.6. — Let X be a compact Kähler manifold and ω � 0 be a
semi-kähler smooth form.

Then, the global viscosity comparison principle holds for (DMA)1,µ for
any non negative continuous measure µ with µ(X) > 0.

Proof. — This is a variant of the argument sketched in [53] sect. V.3
p. 56.

Let u be a supersolution and u be a subsolution. Perturb the supersolu-
tion u setting uδ = u+ δ. This uδ is a supersolution to (DMA)1,w̃ for every
continuous volume form w̃ such that w̃ � e−δµ.

We can always assume that µ(X) =
∫
X
ωn. Choose ν > 0 a continu-

ous positive volume form such that ν(X) =
∫
X
ωn. We can construct ψ a

continuous quasiplurisubharmonic functions such that, in the viscosity sense

(ω + ddcψ)n = ν.

Perturb the subsolution u setting

uε = (1− ε)u+ εψ.
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By Lemma 6.5, uε satisfies, in the viscosity sense

e−(1+ε)u(ω + ddcu)n �
(

1− ε

1 + ε

)n

e−Cεµ+ c

(
ε

1 + ε

)n

ν

This in turn implies that uε satisfies, in the viscosity sense:

e−u(ω + ddcu)n � e−ε‖u‖∞
[(

1− ε

1 + ε

)n

e−Cεµ+ c

(
ε

1 + ε

)n

ν

]
.

Hence uε satisfies, in the viscosity sense:

e−u(ω + ddcu)n � ν̃

whenever ν̃ � e−ε‖u‖∞(( 1−ε
1+ε )

ne−Cεv + c( ε
1+ε )

nν).

Choosing 1 ( δ ( ε > 0, we find a continuous volume form ν̃ > 0
such that uδ is a supersolution and uε is a viscosity subsolution of e−u(ω+
ddcu)n = ν̃. Using the viscosity comparison principle for ν̃, we conclude
that uδ � uε. Letting δ → 0, we infer u � u. �

This comparison principle has been inserted here for completeness. It
could have been used instead of the pluripotential-theoretic arguments to
establish existence of a viscosity solution in the case µ � 0 of Theorem 5.2.
This could be useful in dealing with similar problems where pluripotential
tools are less efficient.
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[5] Bedford (E.). — Survey of pluri-potential theory. Several complex variables
(Mittag-Leffler, Stockholm, 1987/1988), 4897, Math. Notes, 38, Princeton Univ.
Press, Princeton, NJ, (1993).

[6] Berman (R.). — Bergman kernels and equilibrium measures for line bundles over
projective manifolds, Amer. J. Math. 131, no. 5, p. 1485-1524 (2009).

[7] Blocki (Z.). — Uniqueness and stability for the complex Monge-Ampère equation
on compact Khler manifolds, Indiana Univ. Math. J. 52, no. 6, p. 1697-1701 (2003).

[8] Blocki (Z.). — On the definition of the Monge-Ampère operator in C2, Math.
Ann. 328, no. 3, p. 415-423 (2004).

– 910 –



A viscosity approach to degenerate complex Monge-Ampère equations

[9] Blocki (Z.). — The domain of definition of the complex Monge-Ampère operator,
Amer. J. Math. 128, no. 2, p. 519-530 (2006).

[10] Blocki (Z.). — The Calabi-Yau theorem. Complex Monge-Ampère equations and
geodesics in the space of Kähler metrics, Lecture Notes in Math., 2038, Springer,
Heidelberg (2012).

[11] Berman (R.), Demailly (J.-P.). — Regularity of plurisubharmonic upper en-
velopes in big cohomology classes, Perspectives in analysis, geometry, and topol-
ogy, p. 39-66, Progr. Math., 296, Birkhuser/Springer, New York (2012).

[12] Bedford (E.), Taylor (B.A.). — The Dirichlet problem for a complex Monge-
Ampère equation, Invent. Math. 37, no. 1, p. 1-44 (1976).

[13] Bedford (E.), Taylor (B.A.). — A new capacity for plurisubharmonic functions.
Acta Math. 149, p. 1-40 (1982).

[14] Bedford (E.), Taylor (B.A.). — Fine topology, Šilov boundary, and (ddc)n, J.
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