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A proof of Reidemeister-Singer’s theorem
by Cerf’s methods

François Laudenbach(1)

ABSTRACT. — Heegaard splittings and Heegaard diagrams of a closed
3-manifold M are translated into the language of Morse functions with
Morse-Smale pseudo-gradients defined on M . We make use in a very sim-
ple setting of techniques which Jean Cerf developed for solving a famous
pseudo-isotopy problem. In passing, we show how to cancel the supernu-
merary local extrema in a generic path of functions when dimM > 2. The
main tool that we introduce is an elementary swallow tail lemma which
could be useful elsewhere.

RÉSUMÉ. — Les concepts de scindement de Heegaard et de diagramme
de Heegaard d’une variété fermée M de dimension 3 sont expliqués dans
le langage des fonctions de Morse et des pseudo-gradients de type Morse-
Smale. Nous utilisons, dans un cadre très simple, des techniques qui ont
été développées par Jean Cerf pour la résolution d’un problème célèbre
de pseudo-isotopie. Entre autres, nous montrons comment éliminer les
maxima locaux surnuméraires dans un chemin générique de fonctions
lorsque dimM > 2. L’outil principal que nous introduisons est un lemme
élémentaire de la queue d’aronde.
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1. Introduction

When speaking of Cerf’s methods we refer to Cerf’s work in [3] for the
so-called pseudo-isotopy problem. In a few words, the method consists of
reducing some isotopy problem to a problem about real functions. It was
created in the setting of high dimensional manifolds. However, some parts
apply in dimension three as we are going to show. The purpose of this note is
to present a proof of Reidemeister-Singer’s theorem (as stated below) in this
way. I should say that Francis Bonahon, who like me was educated in the
Orsay Topology group of the seventies-eighties, wrote such a proof; but, his
notes are lost. The recent developments in Heegaard-Floer homology drove
me to make this proof available. The concepts used in the next statement
will be explained in the course of this introduction. We always work in
the C∞ category (also called the smooth category), for objects, maps and
families of maps.

Theorem 1.1 (Reidemeister [16], Singer [18]). — Let M be a closed
connected 3-manifold.

1) Two Heegaard splittings become isotopic after suitable stabilizations.
2) More precisely, let D0, D1 be two Heegaard diagrams. Then there are

stabilizations D′0, D
′
1 by adding pairs of cancelling handles of index 1 and 2,

such that one can pass from D′0 to D′1 by an ambient isotopy and a finite
sequence of handle slides.

Strictly speaking, only the first item is the statement of the Reidemeister-
Singer theorem. A Heegaard splitting consists of a closed surface Σ of genus
g, called Heegaard surface, dividing M into two handlebodies H−, H+. A
Heegaard diagram is defined by more precise data, namely, a handle decom-
position of M with:

– one 0-handle B− and g handles of index 1 attached on the boundary
∂B−, whose union forms H−;

– g handles of index 2 attached on ∂H− and one 3-cell B+, whose union
forms H+.

On the common boundary Σ of H+ and H−, the Heegaard diagram specifies
g simple curves β1, ..., βg in Σ, mutually disjoint, which are the cores of the
attaching domains of the 2-handles; their complement in Σ is a 2-sphere with
2g holes. It also specifies g simple curves α1, ..., αg which are the boundaries
of the so-called transverse 2-cells1 of each 1-handle; the complement in Σ of
∪jαj is also a 2-sphere with 2g holes. The other notions involved in Theorem
1.1 will be only defined in the functional setting considered below.

(1) They are also called compression discs.
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The statement of Theorem 1.1 can be translated into the language of
Morse functions as follows. Recall that a Morse function f is a smooth
function whose critical points are non-degenerate; the famous Morse lemma
states that each critical point p of f belongs to a chart equipped with so-
called Morse coordinates, meaning that f−f(p) reduces to a quadratic form.
Some non-classical facts concerning the choice of these coordinates will be
detailed in Section 3.

A Morse function is said to be ordered if the order of the critical values
is finer than the order of their indices, namely f(p) < f(p′) whenever the
index of the critical point p is less than the index of p′. In dimension 3,
an ordered Morse function gives rise to a Heegaard splitting by considering
a level set whose level separates the index 1 and index 2 critical values.
Moreover, every Heegaard splitting is obtained this way. Along a path of
ordered Morse functions the Heegaard surface moves by isotopy.

Stabilizing a Heegaard splitting consists of creating a pair of critical
points of index 1 and 2 at a level keeping the ordering. Thus, item 1 of
Theorem 1.1 is a consequence of Theorem 1.3, for which it is necessary to
speak of genericity.

1.2. Genericity I

Given two Morse functions f0, f1 : M → R, the following property is
generic (in Baire’s sense) for the paths of functions (ft)t∈[0,1] joining them:

– for all t ∈ [0, 1] apart from finitely many exceptional values tj , the
function ft is Morse;

– for δ > 0 small enough, ftj+δ has one more or one less pair of critical
points than ftj−δ; in the first (resp. second) case, tj is called a birth
time (resp. a cancellation time);

– the critical points of ftj are all non-degenerate except one whose
Hessian has corank 1; this point will be said a cubic critical point.

For short, when speaking of a generic path of functions, it will be understood
a path as above.

In this note, all genericity argument follow from Thom’s transversality
theorem in jet spaces as it is in his article on singularities [20] (see also [7],
or [9] where the generic paths of real functions are explicitly considered).
In Section 2, we shall specify which transversality is involved in the above
genericity of paths.
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The next theorem is mainly due to Jean Cerf ([3], chap. V §I)2.

Theorem 1.3. — Let M be a closed connected manifold of any dimen-
sion n. by a generic path of functions (ft)t∈[0,1] such that, for every t ∈ [0, 1]

outside of a finite set J = {t1, . . . , tq, tq+1, . . . , tq+q′}, ft is an ordered
Morse function. Moreover, t1, . . . , tq are birth times and lie in

(
0, 1

3

)
; and

tq+1, . . . , tq+q′ are cancellation (or death) times and lie in
(

2
3 , 1

)
.

In particular in dimension 3, a level set of f1/2 whose level separates the
index 1 and index 2 critical values is a Heegaard splitting that is a common
stabilization, up to isotopy, of those associated with f0 and f1.

We now turn to the second part of Theorem 1.1. In order to speak of
handle decomposition and handle sliding, it is useful to consider a Morse
function f equipped with a pseudo-gradient.

Definition 1.4. — Given a Morse function f , a smooth vector field X
on M is said to be a (descending) pseudo-gradient for f if the two following
conditions hold:

– the Lyapunov inequality3 X · f < 0 away from the critical locus;

– at each critical point p the Hessian of X ·f is negative definite (notice
that X · f � 0 everywhere).

Local data of pseudo-gradients generate a global pseudo-gradient by us-
ing a partition of unity. It is easily checked that the zeroes of X coincide
with the critical points of f and are hyperbolic4. Thus, according to the
stable/unstable manifold theorem (see [2]), with each zero p of X there are
associated stable and unstable manifolds, also called invariant manifolds
and denoted respectively by W s(p,X) and Wu(p,X). A point x ∈ M be-
longs to W s(p,X) if Xt(x) tends to p as t tends to +∞; here, Xt denotes
the flow of X.

The unstable manifold is diffeomorphic to Ri, where i is the index of f
at p, and the stable manifold is diffeomorphic to Rn−i; moreover, p is a non-
degenerate maximum (resp. minimum) of the restriction of f to Wu(p,X)
(resp. W s(p,X)).

(2) Strictly speaking, only the first sentence is stated in Cerf’s article. The complement
follows from his lemma about the uniqueness of births (valid in dimension greater than
1 only).

(3) This sign convention is used for instance by R. Bott p. 341 in [1].
(4) That is, if p is a zero of X the eigenvalues of the linearized vector field at p have a

non-zero real part.
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Given the Morse function f , Smale [19] proved that, generically, all in-
variant manifolds of a pseudo-gradient of f are mutually transverse5. Today,
such a pseudo-gradient is said to be Morse-Smale.

According to Whitney [21], if p is a cubic critical point of f , there are
coordinates (x, y) ∈ R×Rn−1, which we call Whitney coordinates, where f
reads:

f(x, y) = f(p) + x3 + q(y).

Here, q is a non-degenerate quadratic form on Rn−1. For a reason which
will be explained in 3.4, we require a pseudo-gradient X for f to coincide
with −∇gf near the cubic critical point p, where g is the Euclidean metric
of one system of Whitney coordinates.

Given a generic path of functions (ft) , t ∈ [0, 1], it can be enriched with
a smooth path of vector fields (Xt), such that Xt is a pseudo-gradient of ft
for all t ∈ [0, 1].

1.5. Genericity II

The following property is generic for the paths of pairs (ft, Xt)t∈[0,1]:

– the path of functions is generic in the sense of 1.2;

– for every t, there is no Xt-orbit from a critical point index j of ft to
a critical point index i if j < i (briefly said: no j/i connecting orbit
if j < i);

– for every t outside of a finite set K = {t1, . . . , tr} ⊂ (0, 1) of Morse
times6, there is no i/i connecting orbit of Xt;

– for each tk ∈ K, exactly one orbit �k of Xtk connects two critical
points p and p′ having the same index; moreover, for each x ∈ �k, we
have:

Tx�k = TxW
u(p,Xtk) ∩ TxW s(p′, Xtk) ,

and t �→ Xt crosses transversely at time tk the codimension-one stra-
tum of the space of pseudo-gradients having a connecting orbit be-
tween two critical points with the same index.

For short, such a path (ft, Xt)t∈[0,1] is said to be generic. For tk ∈ K, one
says that a handle sliding happens at time tk. The effect of a handle sliding

(5) An ordered Morse function f with a Morse-Smale pseudo-gradient X gives rise
easily to a handle decomposition.

(6) A cubic point of index i could be connected to a Morse point of index i at a lower
level.
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on the so-called Morse complex is described by J. Milnor (see Theorem 7.6
in [12]).

The argument for genericity in 1.5 is elementary once the first item is
assumed. It relies on the classical transversality theorem applied to a (j−1)-
sphere moving with t with respect to a fixed (n− i− 1)-sphere, j � i, in an
(n− 1)-dimensional manifold.

Now, the statement of item 2) in Theorem 1.1 can be translated into the
next one. Following M. Morse [14], a function with only two local extrema
is be said to be polar.

Theorem 1.6. — Let M be a closed connected manifold of dimension7

n > 2. Given two ordered polar Morse functions f0, f1 equipped with re-
spective Morse-Smale pseudo-gradients X0, X1, there exists a generic path
of pairs (ft, Xt)t∈[0,1], where the vector field Xt is a pseudo-gradient for the
function ft, so that the following holds: for every t ∈ [0, 1] outside of a fi-
nite set, ft is an ordered polar Morse function and Xt has no i/i connecting
orbit. The excluded values of t are the times of birth first, then the times
handle sliding and finally the times of cancellation.

A direct proof of Theorem 1.3 is given in Section 2 without any reference
to Cerf’s work. It mainly follows from Lemma 2.1 which offers an efficient
process for crossing critical values. The proof of Theorem 1.6 will be given in
Section 4 and uses a few technical lemmas, including the elementary swallow
tail lemma and the elementary lips lemma. Since they could be useful in a
more general setting, they are written with index assumptions which are
more general than necessary here. These lemmas are proved in Section 3.

2. Proof of Theorem 1.3

The main tool will be the next lemma.

Lemma 2.1 (Decrease of a critical value). — Let f : M → R be a Morse
function, let X be a pseudo-gradient for f and let p be a critical point of
index k. Assume that the unstable manifold Wu(p,X) contains a closed
smooth k-disc D whose boundary lies in a level set f−1(a), a < f(p). Then,
for every ε > 0 with a + ε < f(p), there exists a path (ft)t∈[0,1] of Morse
functions such that f0 = f , f1(p) = a + ε and X is a pseudo-gradient of
ft for every t ∈ [0, 1]. Moreover, the support of the deformation may be
contained in an arbitrarily small neighborhood W of D in M .

(7) The statement also holds in dimension 2 with a different proof (see [8], §8). It is
obvious in dimension 1.
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Note that, when k = 0, Wu(p,X) has an empty intersection with the
open sub-level set f−1

(
(−∞, f(p))

)
. So, the condition of the lemma is ful-

filled and the conclusion allows us to decrease arbitrarily the value of a local
minimum.

The lemma above holds true, with the same proof, in a family whose
data (f, p,D, a) depend smoothly on a parameter s ∈ Rm and fulfill the
same assumptions for every s. Moreover, f only has to be a Morse function
in a neighborhood of D. In particular, it applies to non-generic functions or
pseudo-gradients.

Proof. — The case where p has index 0 is left to the reader. Hereafter,
assume k > 0. Set n = dimM and c = f(p). For η small enough, there exists
a closed (n − k)-disc D′ in the stable manifold W s(p,X), with D′ ⊂ W ,
whose boundary lies in f−1(c+η). Let U be a tubular neighborhood of radius
δ of ∂D in f−1(a). For δ small enough with respect to η, every half-orbit of
X ending in U is contained in D or crosses f−1(c+η). DefineM as the union
of D, D′ and all segments of X-orbits starting from points in f−1(c + η)
and ending in U ; for a small δ, we have M ⊂ W . Its boundary is made
of three parts, two horizontal parts M∩ f−1(a) and M∩ f−1(c + η), and
the lateral boundary ∂�M which is tangent to X. There are two corners
in the boundary of M, each being diffeomorphic to a product of spheres
Sk−1 × Sn−k−1 (where k = index(p)); one is the boundary of U , trivialized
as the sphere normal bundle ∂U → ∂D; the other corner is ∂�M∩f−1(c+η)
and is diffeomorphic to the first one by the flow of X.

Let N be a small collar neighborhood of ∂�M inM; it is diffeomorphic
to a product

N ∼= Sk−1 × Sn−k−1 × [0, 1]× [a, c + η].

If (x, y) are the coordinates of R := [0, 1]× [a, c+ η], the product structure
of N is chosen so that the level sets of f in N are {y = const.} and the
vertical lines directed by ∂y are tangent to the orbits of X.

For constructing f1 we keep f1 = f outside of M and change the level
set foliation as said below. The level set foliation of f1 coincides with the
one of f in the complement of N inM. Inside N , it is obtained by replacing
the horizontal foliation of N with a new one which is still transverse to the
vertical lines, is still horizontal near the boundary, and puts f−1(a+ε)∩{x =
0} on the same leaf as f−1(c) ∩ {x = 1}. The new foliation in N is the
pullback of a foliation of R by the standard projection (see figure 1). The
value of f1 is now well-defined.
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Figure 1A Figure 1B

Moreover, it is easy to interpolate this construction for t varying in [0, 1].�

Corollary 2.2. — Let (f0, X) be a Morse function with a pseudo-
gradient having no j/i connecting orbit, j < i. Then there exists a path
(ft)t∈[0,1] of Morse functions issued from f0 such that f1 is ordered and the
same vector field X is a pseudo-gradient of ft for every t ∈ [0, 1].

Proof. — If the function is not ordered, there is a pair of critical points
(p, q) with index(p) < index(q) and f(p) � f(q). Choose such a pair so
that f(p) is minimal among all similar unordered pairs. By this choice every
orbit of Wu(p,X) crosses a level set below f(q); if not, one of them ends
at a critical point p′. By assumption on X we have index(p′) � index(p) <
index(q) and f(p) > f(p′) � f(q), contradicting the assumption on the pair
(p, q). Then, lemma 2.1 applies and yields a new Morse function which has
the same pseudo-gradient X and at least one unordered pair less than f .
Arguing this way recursively, the corollary is proved. �

Before proving Theorem 1.3, it is useful to specify which transversality is
involved in a generic path in the sense of 1.2 and what a birth path is. A path
of functions (ft) may be thought of as a smooth function F : [0, 1]×M →
R, (t, x) �→ ft(x). We now consider the r-jet spaces Jr([0, 1] ×M,R) for
r = 1, 2 and their submanifolds Σ1 and Σ1,1 defined as follows (here, we are
using the so-called Thom-Boardman notation). The first one, Σ1, is made
of the 1-jets (a, j1g) where a ∈ [0, 1] ×M and g is a germ at a of function
(t, x) �→ g(t, x) such that ∂xg(a) = 0. The second one, Σ1,1, is made of the
2-jets (a, j2g) such that:

– dgxg(a) = 0 and j1g meets Σ1 transversely;

– the (germ of) curve
(
j1g

)−1
(Σ1) passes through a and is tangent to

the kernel of ∂xg(a) and which is the factor {t = t(a)}.

According to Thom [20], generically j1F is transverse to Σ1 and j2F is
transverse to Σ1,1. Thus, the critical locus of ft when t runs in [0, 1], which

is
(
j1F

)−1
(Σ1), is a smooth curve; and the isolated points

(
j2F

)−1
(Σ1,1)
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are the cubic critical points. By making a diffeomorphism C∞-close to Id
act on [0, 1] ×M , it is possible to move the cubic critical points so that
their t-coordinates are distinct. In particular, the properties in 1.2 hold true
generically.

Moreover, if (t0, x0) is a cubic critical point, thanks to the information
on the 3-jet8 of F at (t0, x0), it is possible to write a normal form of F
on a neighborhood of (t0, x0). This follows easily from the normal form
of cusps established by H. Whitney in [21] for generic maps from plane
to plane. Precisely, there are adapted coordinates (t, x) = (t, y, z), with
y ∈ Rn−1, z ∈ R, which we call Whitney coordinates, where F reads:

F (t, x) = F (t0, x0) + z3 ± (t− t0)z + q(y)

Here, q is a non-degenerate quadratic form on Rn−1, ± = − if t0 is a
birth time and ± = + if t0 is a cancellation time. If t0 is a birth time, we
immediately derive from the model that, for δ > 0 small enough, the given
generic path of functions, restricted to [t0 − δ, t0 + δ], is a birth path in the
following sense.

Definition 2.3. — A birth path is a generic path of functions
(ft)t∈[t0−δ,t0+δ] such that there exists a path of cylinders Bt ∼= Dn−1 ×
[−1,+1] embedded in M with the following properties for every t ∈ [t0 −
δ, t0 + δ]:

– Dn−1 × {±1} (the top and bottom of Bt) lie in two level sets of ft;

– the restriction of ft to ∂Dn−1 × [−1,+1] has no critical points;

– ft|Bt is semi-conjugate to the function ctt0(y, z) := z3−(t−t0)z+q(y).
Here, a semi-conjugation stands for an embedding ϕt : Bt → Rn, depending
smoothly on t, covering the origin of Rn and such that ctt0 ◦ ϕt = ft|Bt up
to a rescaling of the values. The index of q is called the index of the birth.

The function ft has no critical points in Bt when t0−δ � t < t0 whereas,
for t0 < t � t0 − δ, ft has a pair of critical points in Bt of respective index
i, i + 1 if i is the index of the birth.

Remarks 2.4. — 1) If f0 is a Morse function given with a cylinder B0 on
which f0 induces the height function, then f0 is the beginning of a birth
path with t ∈ [0, 2δ] which is supported in B0 in the sense that the path
is stationary outside of B0. Indeed, f0|B0 is semi-conjugate to any function
without critical point, for instance (y, z) �→ z3 +δz+q(y); thus, it is allowed
to plug the functions ctδ, t ∈ [0, 2δ], by taking a suitable semi-conjugation

(8) The transversality of j2F to Σ1,1 at (t0, x0) is an open condition on the 3-jet.
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ϕt : B0 → Rn. This birth path is said to be elementary (compare with a
similar definition in Cerf [3] chap. III).

2) Any birth path issued from f0 associated with a path of cylinders
(Bt)t∈[0,2δ] is homotopic to an elementary birth path among the birth paths
starting from f0. This is done by using an extension of the isotopy B0 → Bt.

Lemma 2.5 (Shift of birth). —
1) Every generic path of functions on M is homotopic relative to its end

points to a generic path where the birth times appear before the cancellation
times. More precisely, the following holds.

2) Let (hs)s∈[0,1] be a generic path of functions which are Morse for

all time except one cancellation time. Let
(
β1
t

)
t∈[0,2δ]

be a birth path start-

ing from the Morse function h1 with associated cylinders
(
B1
t

)
t∈[0,2δ]

. Then

there is a smooth family, parametrized by s ∈ [0, 1], of birth paths (βst )t∈[0,2δ],

starting from hs with associated cylinders (Bs
t )t∈[0,2δ] which coincide with

the given cylinders when s = 1.
Moreover, if dimM > 1, the same holds true for any generic path

(hs)s∈[0,1]. Moreover, it is possible to choose the cylinders B0
t as neigh-

borhoods of any given regular point of h0.

Proof of 2)⇒1). — The composed path (hs)s∈[0,1] ∗
(
β1
t

)
t∈[0,2δ]

is ho-

motopic, relative to its end points, to the composed path
(
β0
t

)
t∈[0,2δ]

∗
(βs2δ)s∈[0,1]. In general, this composition is only piecewise smooth at the

gluing point.But we are free to modify the parametrization of the composed
path; if the two paths entering the composition are stationary near their
common end point, then the composed path is smooth.

The new path from h0 to β1
2δ has one birth time appearing before one

cancellation time. By arguing this way recursively one proves 1).

Proof of 2). — Given the cylinder B1
0 , one chooses a smooth family of

cylinders (Bs
0)s∈[0,1] in M ending to B1

0 and so that hs induces the standard

horizontal foliation Dn−1 × {pt} of Bs
0 for every s ∈ [0, 1]. This is possible

in any positive dimension since we are free to move Bs
0 away from the

critical set of hs, even at the cancellation time. Thanks to an extension of
isotopies, we get a 2-parameter family of diffeomorphisms ψst : Bs

0 → B1
t ,

s ∈ [0, 1], t ∈ [0, 2δ], preserving the horizontal foliation near the boundary
and such that ψ1

0 = Id. Then, define

βst =

{
hs outside of Bs

0

β1
t ◦ ψst in Bs

0, up to some rescaling.
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The rescaling is needed for making the two definitions match along the
boundary of Bs

0. When t = 1, this is an elementary birth path issued from
h1. According to Remark 2.4 2), it is homotopic to

(
β1
t

)
relative to h1.

This proves the first part of 2). In case dimM > 1, the critical locus is
non-separating and the last statement of 2) follows. �

2.6. — Proof of Theorem 1.3

The case dimM = 1 is left to the reader. Hereafter, dimM is assumed to
be greater than 1. Given two ordered Morse functions f0, f1, there exists a
generic path (ft)t∈[0,1] where ft is Morse for every t ∈ [0, 1] outside of a finite
set J . Decompose J = J+∪J− where J± is the set of birth/cancellation times
and apply Lemma 2.5. The birth times J+ can be shifted to the left, say in
[0, t0], and the cylinders of birth can be located at the right level according
to the index of the birth so that all Morse functions in [0, t0] are ordered.
Similarly, the cancellation times can be shifted to the right, say in [t1, 1],
and the cancellation cylinders can be chosen so that all Morse functions in
[t1, 1] are ordered. Thus, ft is a Morse function for every t ∈ [t0, t1] and is
ordered for t = t0, t1.

Choose pseudo-gradients Xt for ft. We may assume (Xt)t∈[t0,t1] in the
sense of 1.5. Thus, the pseudo-gradient Xt has no j/i connecting orbit with
j � i for all t ∈ [t0, t1] outside of a finite set K ⊂ (t0, t1) (times of i/i
connecting orbits).

Apply corollary 2.2 to the functions ftk , tk ∈ K, and deform the path of
functions accordingly, that is: keep the same path (Xt) as path of pseudo-
gradients and ask the deformation to be stationary on the complement
of small neighborhoods of the tk’s. After that deformation, the functions
ftk , tk ∈ K, are ordered and, for every t ∈ (tk, tk+1), the vector fields Xt is
has no j/i connecting orbit with j � i. This also holds true on the intervals
(t0, inf K) and (supK, t1) on the left and right of K. So, we are reduced
to reorder a path of Morse functions equipped with pseudo-gradients which
have no j/i connecting orbits, j � i, for every time. The reordering is then
obtained by applying the one-parameter version of Lemma 2.1. This finishes
the proof of item 1) in Theorem 1.1. �
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3. The elementary swallow tail lemma and similar results

Before proving Theorem 1.6 and, hence, item 2) in Theorem 1.1, we
need to state some lemmas: first, a very particular case of the swallow tail
lemma ; next, a very particular case of the lips lemma (or uniqueness of
death according to [3]); finally, the cancellation theorem9 of Morse [14] (see
also J. Milnor [12], Section 5).

We state them by means of Cerf graphics. Recall that the Cerf graphic
of a path of functions (ft)t is the part of R2 whose intersection with {t}×R
is the set of critical values of ft.

The three proofs are very similar, by reduction to the one-dimensional
case where they become easy. Only the proof of the elementary swallow tail
lemma is detailed here since the three proofs can be performed in the same
way10.

We begin with useful conjugation lemmas. The first one is likely well-
known, the next ones could be less classical.

Lemma 3.1. — Let V be a manifold and V ′ be a compact submanifold.
Two germs of smooth functions f and g along V ′ whose restrictions to V ′

coincide and have no critical points are isotopic relative to V ′. Moreover, if
f = g near a compact set K ⊂ V ′, the isotopy may be stationary near K in
V . This statement holds true with parameters in a compact set.

Proof. — The path method of J. Moser [15] is available; it is explained
below in our setting. conjugation prob. Look at the path of germs t ∈
[0, 1] �→ ft := (1 − t)f + tg and search for an isotopy (ϕt)t∈[0,1] of V , with

ϕ0 = Id, satisfying the conjugation equation of germs along V ′:

(1)
ft ◦ ϕt = f,
ϕt(x) = x for every x ∈ V ′.

The infinitesimal generator Zt has to satisfy the derived equation:

(2)
dft(x) · Zt(x) + g(x)− f(x) = 0,
Zt(x) = 0 for every x ∈ V ′.

Conversely, if Zt is a time depending vector field which is a solution of (2)
near V ′, its “flow” is defined until t = 1 on a small neighborhood of V ′ and
solves the conjugation problem.

(9) Also referred simply as the cancellation lemma.
(10) Such a proof of Morse’s cancellation theorem is now available in [11].
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Here is a solution of Equation (2) by using an auxiliary Riemannian
metric:

Zt = (f − g)
∇ft
|∇ft|2

.

The same proof holds for the relative statement and with parameters. �

Lemma 3.2. — (The MJ2 lemma.)11 Let F be the ring of germs of smooth
functions at 0 ∈ Rn and let M be its unique maximal ideal of germs van-
ishing at 0. Given f ∈M, its Jacobian ideal is the ideal J = J(f) generated
by the first partial derivatives of f . Consider a germ h in the product ideal
MJ2. Then there is a C∞ diffeomorphism ϕ such that (f + h) ◦ ϕ = f .

For instance, take a germ f of Morse function with f(0) = 0; it reads
f = q + r where q is a non-degenerate quadratic form and r belongs to
M3. Since J(q) = M, the lemma implies that f is conjugate to q, which is
exactly the statement of Morse’s lemma.

Sketch of proof. — 12 As in Lemma 3.1, we use the path method. Setting
ft = f + th, one searches for a family of local diffeomorphisms ϕt, t ∈ [0, 1],
such that ft ◦ ϕt = f . This amounts to find local vector fields Zt vanishing
at the origin such that dft(x) ·Zt(x)+h(x) = 0; this consists of decomposing
h in the Jacobian ideal Jt of ft with coefficients in M. The main point is

that Jt = J0 for all t. Indeed,
(
∂ft
∂xi

)
= At

(
∂f0
∂xj

)
where the matrix At equals

the Identity matrix modulo M. Thus, At is invertible, and a decomposition
of h in J0 with coefficients in M yields the wanted decomposition. �

The same proof works with parameters s ∈ Rm and in a relative form:
Let (fs)s∈Dm be a family, parametrized by the m-ball, of germs of Morse
functions (Rn, 0) → R whose Hessians at 0 are denoted by qs. Assume
fs = qs for every s ∈ ∂Dm. Then there is a family of local diffeomorphisms
ϕs such that fs ◦ ϕs = qs and ϕs = Id when s ∈ ∂Dm.

In the same setting, if f is given a local unstable manifold W := Wu(0, X),
a system of Morse coordinates x = (y, z) are said to be adapted to (f,W ) if
f(x) = −|y|2 + |z|2 and W = {z = 0}.

Corollary 3.3. — Given such data f and W the following holds.
1) There exist Morse coordinates adapted to (f,W ). (This claim also

holds with parameters.)

(11) We learnt this proof of Morse’s lemma from J. Mather on the occasion of a lecture

in Thom’s seminar at IHÉS (Bures-sur-Yvette), Dec. 1969.
(12) A detailed proof may be found in [10].
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2) Two such systems of Morse coordinates can be joined, up to a per-
mutation of the coordinates by a one-parameter family of adapted Morse
coordinates13.

Proof. — 1) The restriction of f to W has a non-degenerate maximum.
By Morse’s lemma we have Morse coordinates y of W so that f(x) = −|y|2
if x ∈W . Complete the coordinates y to local coordinates (y, z′) of (Rn, 0)
so that W = {z′ = 0} and the z′-space is the orthogonal of the y-space
with respect to d2f(0). Let (fy) be the family of the restrictions of f to
the slice {y = cst}. For y = 0, the function f0 is Morse and its critical
point is z′ = 0. By the implicit function theorem, there is a smooth map
y �→ z′ = k(y) such that fy is Morse with critical point at k(y) (for every y
close to 0). Apply the change of variables (y, z) = (y, z′ − k(y)) so that the
critical point of fy becomes z = 0 for every y. By a linear transformation in
each slice, we may assume the Hessian of fy to be constantly equal to |z|2.
The wanted Morse coordinates are now given by applying Morse’s lemma
with parameters to the family (fy).

2) We first connect the two given Morse coordinates by a path of coordi-
nates which are only adapted to W . Then, this path is modified by applying
Morse’s lemma with parameters in the relative form.

3.4. Pseudo-gradients for birth path.

To avoid raising some problems in bifurcation theory of vector fields we
adopt a still more restrictive definition of pseudo-gradients14 than in 1.4.
This is allowed since we are free to choose our pseudo-gradients.

Recall from 2.3 (with slightly different notation) that a birth path at time
t0 consists of a generic path of functions (ft)t∈(t0−δ,t0+δ), a cubic critical

point p of index i of ft0 and cylinders (Bt) which are neighborhoods of p.
They are endowed with Whitney coordinates (x, y, z) ∈ R×Ri×Rn−i−1 so
that ft|Bt reads:

ft|Bt = x3 − (t− t0)x− |y|2 + |z|2 + cst.

If (Xt)t∈(t0−δ,t0+δ) is a path of pseudo-gradients in the sense of 1.4, Xt|Bt is
required to be the descending gradient of ft with respect to the Euclidean
metric of the Whitney coordinates for every t ∈ (t0− δ, t0 + δ) (not only for
t = t0).

(13) We are hiding some acyclicity here (compare [4]); but, the space of Morse coordi-
nates is not acyclic, due to the isometry group O(i, n− i).
(14) We could ask the path (Xt) to present a bifurcation of type saddle-node along a

birth/cancellation path.
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The stable/unstable manifold Wu/s(p,Xt0) is described now. One checks
that the x-axis is the kernel of the Hessian of ft0 . The half space {(x, y, z) |
x � 0, z = 0} is the (local) unstable manifold Wu(p); its boundary is the
so-called strong-unstable manifold. Similarly, the half space {(x, y, z) | x �
0, y = 0} is the (local) stable manifold and its boundary is the strong-stable
manifold.

Generically, Xt0 has no j/i connections where j � i, except for possible
i/i connections from p to a critical point of index i at a lower level and these
connections do not belong to the strong-unstable manifold of p. Moreover,
the i + 1/i connections are transverse; so, this will be the case for every
t ∈ (t0 − δ, t0 + δ) if δ is small enough.

Moreover, if δ is small with respect to the “horizontal” size of the cylin-
ders, the cubic critical point p gives rise to a pair of Morse critical points
(pt, qt) ∈ Bt for every t ∈ (0, δ): the point pt has index i+1 and coordinates(
−

√
t−t0

3 , 0, 0
)
; the point qt has index i and coordinates

(√
t−t0

3 , 0, 0
)
.

The closure of Wu(pt, Xt) ∩ Bt reads {x � x(qt), z = 0}. The closure of
W s(qt, Xt) ∩Bt reads {x � x(pt), y = 0}. One sees a unique connecting or-
bit from pt to qt and all other orbits in Wu(pt) (resp. W s(qt)) intersect the
bottom (resp. the top) of Bt, which lies in a level set of ft according to
Definition 2.3.

Wu(pt) ∩ {f � f(qt)− ε}

Ws(qt) ∩ {f � f(pt) + ε}

Figure 2. — After a birth

– 211 –



François Laudenbach

Lemma 3.5 (Elementary swallow tail lemma15). — Let γ := (ft)t∈[0,1]

be a generic path of functions on M . Assume that its restriction to t ∈ [t0, t1]
has a Cerf graphic showing a swallow tail as in figure 3A: there are three
critical points, pt, p

′
t of index i + 1 and qt of index i, such that the pair

(pt, qt) is created at time t0 and the pair (p′t, qt) is cancelled at time t1; at
some τ ∈ (t0, t1) the critical values are equal: fτ (pτ ) = fτ (p

′
τ ). Moreover,

it is given a generic family of pseudo-gradients Xt for ft satisfying the next
conditions for every t ∈ [t0, t1]:

– Wu(pt) (resp. Wu(p′t)) intersects W s(qt) transversely along a single
orbit �t (resp. �′t);

– every other orbit in Wu(pt) and Wu(p′t) crosses the level set at :=
ft(qt)− ε, for some ε > 0.

Then, given δ > 0, the path γ can be deformed to a path γ′ whose Cerf
graphic is trivial over [t0, t1] as in figure 3B, the deformation being station-
ary on [0, t0 − δ] ∪ [t1 + δ, 1].

Figure 3A Figure 3B

Proof. — There are three parts.

A) General setup. First, we choose birth cylinders Bt, t ∈ (t0 −
δ′, t0 + δ′) as in 3.4, the δ′ being provisional. Without loss of generality, we
may assume ft|Bt = x3− (t− t0)x− |y|2 + |z|2 (no additive constant). And
similarly for the cancellation time t1. Take ε as in the above statement and
truncate the birth cylinders at level ±2ε; from now on, Bt will denote the
truncated cylinder.

Set δ = δ(ε), so that, for t = t0 + δ, the two critical points of ft in Bt
have value ±ε. Decreasing ε if necessary, we get δ < δ′. Moreover, except
the connecting orbit, every Xt-orbit in the invariant manifolds of pt and qt
exits Bt through the top or the bottom of Bt. And similarly for the pair
(p′t, qt) when t ∈ [t1 − δ, t1].

(15) In Cerf [3] the swallow tail lemma requires no assumption about pseudo-gradient
lines but there are some topological assumptions.
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Since ft(pt)− ft(qt) is increasing when t is close to t0, by taking ε small
enough we have ft(pt) − ft(qt) > 2ε for every t ∈ (t0 + δ, t1]. Similarly,
ft(p

′
t)− ft(qt) > 2ε for every t ∈ [t0, t1 − δ).

For t ∈ [t0+δ, t1−δ], we are going to choose Morse modelsM(qt),M(pt),
M(p′t) with coordinates (x, y, z) ∈ R× Ri × Rn−1−i so that:

ft|M(qt) = +x2 − |y|2 + |z|2 + ft(qt), M(qt) ⊂ f−1
t ([ft(qt)− ε, ft(qt) + ε])

ft|M(pt) = −x2 − |y|2 + |z|2 + ft(pt), M(pt) ⊂ f−1
t ([ft(pt)− ε, ft(pt) + ε])

ft|M(p′t) = −x2 − |y|2 + |z|2 + ft(p
′
t), M(qt) ⊂ f−1

t ([ft(p
′
t)− ε, ft(p

′
t) + ε]) .

The pseudo-gradient Xt will be tangent to the lateral boundary of these
models without specifying more. Observe that M(qt) and M(pt) are disjoint
for every t > t0 + δ; and similarly for M(qt) and M(p′t) when t < t1 − δ.

We begin by fixing M(pt) and M(qt) when t = t0 + δ. We choose their
(y, z)-coordinates to be those of Bt; only the x coordinate has to be changed
to have Morse coordinates. And similarly for M(p′t) and M(qt) when t =
t1 − δ.

Then, we refer to Corollary 3.3 for extending the choice of Morse coor-
dinates about pt to t > t0 + δ so that they are adapted to (ft,W

u(pt)) for
every t. The same is done for M(p′t), t < t1−δ. For M(qt), t ∈ [t0 +δ, t1−δ],
we do almost the same except for two differences:

1. The Morse coordinates are chosen to be adapted to the stable mani-
fold W s(qt).

2. Since the coordinates are already fixed for t = t0 + δ and t = t1 − δ,
item 2 of Corollary 3.3 has to be used.

Once this choice is made, nothing prevents us from modifying Xt in each
considered Morse model, so that it becomes tangent to the x-axis, the y-
space and the z-space respectively, as it is the case in Bt when t ∈ [t0, t0 +δ]
and t ∈ [t1 − δ, t1]. The unstable manifolds of pt and p′t are kept unchanged
and also the stable manifold of qt; but the unstable manifold of qt now
satisfies

(A1) Wu(qt) ∩M(qt) = {x = 0, z = 0}.

We now recall the cut-and-paste construction for vector fields, which is
abundantly used in [12] without using this name. Given a Morse function f
and a pseudo-gradient X, the change of X by cut-and-paste along a regular
level set {f = c} consists of the following: cut M at this level, make an
isotopy of the upper part (ψs) so that (ψ1)∗X has the same germ as X along
the cut, and finally glue (ψ1)∗X in the upper part to X in the lower part.

– 213 –



François Laudenbach

The assumption for the germs guaranties the smoothness of the resulting
vector field. The same construction works in a family.

By hypothesis of Lemma 3.5, the trace of Wu(p′t) in the top of Bt, t ∈
[t0, t0 + δ], intersects transversely the trace of W s(qt) in a single point mt.
The latter trace is a closed disc bounded by the trace of W s(pt). Moreover,
by the genericity assumption in 3.4 the point mt lies in the interior of that
disc. So, we may apply cut-and-paste in the top of Bt to make the part of
Wu(p′t)∩Bt lying close to {y = 0} to be contained in {z = 0, x > x(qt)} for
every t ∈ [t0, t0 + δ]; this construction extends easily to t ∈ (t0 − δ, t0 + δ].
And similarly for Wu(pt) in Bt for t ∈ [t1 − δ, t1 + δ).

In the same way, when t ∈ [t0+δ, t1−δ], cut-and-paste applied in the top
ofM(qt) makes the part of (Wu(pt) ∪Wu(p′t))∩M(qt) lying near {y = 0} to
be contained in {z = 0}. So, the connecting orbits cover the x-axis ofM(qt).
As the support of the isotopy is located near the stable manifold of qt, the
orbits in the unstable manifolds of pt and p′t, apart from the connecting
orbits, descend to the level at = ft(qt)− ε.

Claim 1. — There exists an arc At in M passing through (pt, qt, p
′
t) (or

only one of them when a pair of critical points has disappeared), depending
smoothly on t ∈ (t0−δ, t1 +δ) such that the Cerf graphic of t �→ ft|At shows
a one-variable swallow tail.

Proof. — Starting from the above situation of invariant manifolds, a new
cut-and-paste makes �t (resp. �′t) coincide with the x-axis near the bottom
of M(pt) (resp. M(p′t)) when t ∈ [t0 + δ, t1 − δ].

When t ∈ (t0 − δ, t0 + δ], At is made of the x-axis of Bt, a piece of �′t
from Bt to M(p′t), the x-axis of M(p′t) and a path descending transversely
to the level sets from the latter to the level ft(qt)−ε. A similar construction
is performed on the other intervals of t. �

B) Proof of the swallow tail lemma in case i = 0. This is the only case
needed for proving Theorem 1.6.

Claim 2. — Set ht := ft|At. There are coordinates (x, z) ∈ R × Rn−1

on a neighborhood Nt of At, depending smoothly on t ∈ (t0− δ, t1 + δ), such
that

(i) At = {z = 0}
(ii) ft(x, z) = ht(x) + |z|2.

Proof. — Indeed, it is true on a neighborhood Ut of the set of critical
points {pt, p′t, qt} by the choice we made of the Morse models in A). First,
extend this coordinates arbitrarily so that (i) holds. As ht restricted to
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At � Ut has no critical points, Lemma 3.1 applies with one parameter t ∈
(t0 − δ, t1 + δ) and the following correspondence of notation: V = M , V ′ =
At � Ut, K = ∂V ′, f = ft, g = ht + | · |2. �

Now, choose a function h1
t coinciding with ht near the boundary of At

with a single critical point, indeed a maximum, and satisfying h1
t (x) � ht(x)

for every x ∈ At. For s ∈ [0, 1], set kst (x) = s
(
h1
t (x)− ht(x)

)
and consider

the deformation of path of functions s �→ (hst )t given by

(∗) hst (x) = ht(x) + kst (x).

Note that the path
(
h1
t

)
has a “trivial” Cerf graphic. So, the formula (∗)

solves the one-dimensional elementary swallow tail lemma.

Using the coordinates given by Claim 2, the deformation extends to the
neighborhoods Nt thanks to the formula

s �→ ht(x) + ω(|z|)kst (x) + |z|2,

where ω is a bump function with a small support, centered at 0. The z-
derivative vanishes at z = 0 only and the critical points are those of the one-
dimensional case. Moreover, the deformation is stationary on the boundary
of Nt and, hence, extends to M as a family s �→ (fst )t∈(t0−δ,t1+δ). When

s = 1, the Cerf graphic of (fst )t∈[t0−δ,t1+δ] is trivial and the swallow tail
lemma is proved when i = 0. �

C) Proof of Lemma of the swallow tail lemma when i > 0. We continue
with the birth cylinders and the Morse models we introduced in part A).

Claim 3. — There exists a smooth one-parameter family (Wt)t∈(t0−δ,t1+δ)
of smooth compact (i + 1)-submanifolds, such that:

– At ⊂Wt,

– ∂Wt lies at level at of the end points of At,

– the only critical points of ft|Wt are pt, qt, p
′
t and are non-degenerate

except for the cubic points when t equals t0 or t1.

Proof. — As a consequence of the cut-and-paste we have made, the clo-
sure of Wu(pt) in the upper level set {ft � at} and the one of Wu(p′t)
intersect precisely the part of Wu(qt) lying in that upper level set. More-
over, both match smoothly along this common part of their boundary. This
is given for free by the last choice of pseudo-gradients (see Formula (A1)).
So, we set

Wt = [Wu(pt) ∪Wu(qt) ∪Wu(p′t)] ∩ {ft � at}.
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�

Claim 4. — There are coordinates (x, y, z) ∈ R × Ri × Rn−i−1 on a
neighborhood Nt of At, depending smoothly on t ∈ (t0− δ, t1 + δ), such that

(i) At = {y = 0, z = 0} and Wt = {z = 0},
(ii) ft(x, y, z) = ht(x)− |y|2 + |z|2.

Proof. — This is similar to Claim 2, except that here Lemma 3.1 has to
be applied twice: firstly in a neighborhood Vt of At in Wt and secondly in
a neighborhood of Vt in M . �

The radial vector field Yt :=
∑i

1 yj∂yj in Nt is transverse to the level
sets of ft in (Nt �At) ∩ {z = 0}. Keeping its notation, it extends to Wt as
a Lyapunov vector field (meaning that the Lyapunov inequality holds) for
ft|(Wt � At) since ft has no critical points on Wt � At . So, by following
the trajectories of −Yt we get a fibration of Wt over At in i-discs, pinched
at the end points of At (the diameter of the fibre vanishes there). The fibre
Dx over x ∈ At is equipped with a Morse function, namely gt,x := ft|Dx,
which has one critical point, a maximum indeed, at x ∈ At.

Extend Yt to some neighborhood Ñt of Wt in M as a Lyapunov vector
field Ỹt of ft|(Ñt � At). Choosing Ñt to be invariant by the positive semi-

flow of Ỹt gives Ñt a structure of bundle over At whose fibre D̃x, x ∈ At,
is diffeomorphic to Dx ×Dn−i−1. The restriction g̃t,x of ft to the fibre D̃x,
x ∈ At, is a Morse function with the single critical point x ∈ At. It is
equipped with the pseudo-gradient Ỹt, whose unstable manifold is Dx.

We apply Lemma 2.1 to the function g̃t,x, where (t, x) is a parameter.
This lemma allows us to decrease the critical value ft(x) as we want, without
introducing new critical points, as long as this value remains greater than
ft(∂Wt) = at. This process yields a deformation of (ft) which extends the
solution (∗) of the one-dimensional swallow tail lemma without introducing
new critical points, and solves the general case. �

Lemma 3.6 (Elementary lips lemma). — Let γ := (ft)t∈[0,1] be a generic
path of functions on the manifold M . Assume that its restriction to t ∈
[t0, t1] has a Cerf graphic as in figure 4 (lips): for t ∈ (t0, t1), there are two
critical points pt, qt of respective indices i+1 and i such that the pair (pt, qt)
is created at time t0 and is cancelled at time t1. Moreover, a smooth family
of pseudo-gradients Xt for ft is given satisfying the next conditions for all
t ∈ [t0, t1]:

– Wu(pt) intersects W s(qt) transversely along a single orbit �t;
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– all the other orbits in Wu(pt) cross the level set f(qt) − ε, for some
ε > 0.

Then γ can be deformed to a path γ′ so that the corresponding lips are
removed from the Cerf graphic, the deformation being stationary on [0, t0−
δ] ∪ [t1 + δ, 1] for any δ > 0.

Figure 4A Figure 4B

Lemma 3.7 (Morse’s cancellation theorem). — Let f : M → R be a
Morse function equipped with a pseudo-gradient X. Let (p, q) be a pair of
critical points of consecutive indices whose invariant manifolds satisfy the
next conditions:

– Wu(p) intersects W s(q) transversely and along a single orbit ;

– all the other orbits in Wu(p) cross the level set f(q) − ε for some
ε > 0.

Then, for every small neighborhood U of the closure of the intersection
Wu(p) ∩ {f � f(q)− ε} , there is a Morse function which has no critical
points in U and coincides with f away from U .

4. Path of polar functions

4.1. Proof of Theorem 1.6

According to Theorem 1.3, there is a path γ := (ft) fulfilling all require-
ments of Theorem 1.6 (birth times before cancellation times and order of
critical values) except the one min/one max condition. So, the matter is to
kill the appearance of extra local minima or maxima. We are looking at the
local minima only.

First, we make the assumption (H) that one can follow continuously a
minimum mt of ft from t = 0 to t = 1. By permuting the birth times
if necessary (since dimM > 1, the last claim of Lemma 2.5 applies) and
cancelling by pairs the crossings of index 0 critical values (Lemma 2.1), we
may assume that the index 0 part of the Cerf graphic shows no crossings
(see figure 5A).
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Let µ be the maximal number of extra minima along γ; we are going to
decrease µ by 1. Denote (t′0, t

′
1) the interval where ft has µ extra minima.

For t ∈ (t′0, t
′
1), denote the upper local minimum of ft by m′t.

Without loss of generality we may assume that 3/2 separates the index
1 critical values from those of index 2; the same is true for the value 3/2−η,
if η > 0 is small. Set Lt := f−1

t (3/2− η). Since M is connected and Lt lies
above all the critical points of index 1, Lt is connected.

If Xt is a pseudo-gradient of ft, we see in Lt the trace St of the stable
manifold W s(mt, Xt) and, when t ∈ (t′0, t

′
1), the trace S′t of the stable man-

ifold W s(m′t, Xt). Both are changing when handle slides of index 1 happen.
But, due to n � 3, they remain connected; indeed, each one is always an
(n− 1)-sphere with holes.

Figure 5A Figure 5B

So, choose smoothly points xt ∈ St and x′t ∈ S′t linked by a simple arc αt
in Lt. We introduce a cancelling pair of critical points (st, rt) of respective
index (2, 1) in a collar neigborhood above Lt; the birth time is chosen less
than t′0, the cancellation time greater than t′1 (compare figure 5B), and the
base of the birth cylinder is a (n − 1)-disc in Lt centered at xt. Denote by
γ′ := (f ′t) this new path from f0 to f1. After choosing a suitable pseudo-
gradient X ′t, we have for every t ∈ [t′0 + ε, t′1 − ε]:

Wu(rt, X
′
t) ∩ Lt = {xt, x′t}, Wu(st, X

′
t) ∩ Lt = αt .

In particular, there are no X ′t-connecting orbits form rt to another critical
point of index 1. Therefore, Lemma 2.1 applies and a new deformation of
the path γ′ puts the critical value of rt below the other critical values of
index 1 when t ∈ [t′0 + 2ε, t′1 − 2ε] (compare the Cerf graphic in figure 6A).
By the choice of x′t, there is exactly one connecting orbit from rt to m′t for
every t ∈ [t′0 + 2ε, t′1 − 2ε]. One makes cancellations at times t′0 + 2ε and
t′1 − 2ε. These cancellations may be viewed as a new deformation of the
path γ′; the final Cerf graphic looks like figure 6B, with two swallow tails
separated by lips. Lemma 3.5 and 3.6 apply and yield some deformation
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of the path of functions so that the swallow tails and lips vanish. The final
path of this last deformation has µ−1 extra minima. This finishes the proof
in case of (H).

Figure 6A Figure 6B

I am indebted to the anonymous referee who made me observe that the
general case easily reduces to assumption (H). Indeed, a suitable isotopy of
M makes the minima (resp. maxima) of f0 and f1 coincide. Since the germ
of smooth function is unique at a non-degenerate extremum, up to isotopy
and rescaling, we may assume that f0 and f1 coincide on small discs d and
d′ about these extrema. Then, by connecting f0 to f1 in the space of smooth
functions having a given restriction to d and d′, (H) is fulfilled. �

4.2. Final comments

1) The Reidemeister-Singer theorem, that is, item 1 in Theorem 1.1, is
also proved by R. Craggs in the piecewise linear category (see [6]). His proof
relies of previous results on collapsings, due to Chillingworth [5]. But the
original proof was revisited and explained by L. Siebenmann in [17].

2) It is worth noticing that both parts of Theorem 1.1 are consequence of
two statements (Theorems 1.3 and 1.6) about functions which hold true in
any dimension. These two theorems should be known to specialists. Maybe,
the proof of Theorem 1.3 that is given here is almost the simplest one. I did
not find any written proof of Theorem 1.6.

3) The proof of the latter theorem is not very elementary, due to the use
of the swallow tail lemma. So, the classical 3-dimensional proof of item 2 in
Theorem 1.1 remains competitive. The statement reads as this: Let H be a
3-dimensional handlebody of genus g, and let D,D′ be two minimal systems
of g compression discs of H whose complement is a 3- ball. Then, one can
pass from D to D′ by finitely many handle slides. This can be proved by a
very standard cut-and-past technique.

I am grateful to Francis Bonahon, Jean Cerf, Alexis Marin and Patrick
Massot for comments on first versions of this note. I am indebted to the ref-
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eree who suggested me several improvements. Carlos Moraga Ferrándiz [13]
is the first who used of the techniques introduced in this note; I thank him
for valuable suggestions. I am also grateful to Marc Chaperon for discussions
about the saddle-node bifurcation.

Bibliography

[1] Bott (R.). — Lectures on Morse theory, old and new, Bulletin Amer. Math. Soc.
7, Number 2, p. 331-358 (Sept. 1982).

[2] Brin (M.), Stuck (G.). — Introduction to dynamical systems, Cambridge Uni-
versity Press (2002).

[3] Cerf (J.). — La stratification naturelle des espaces de fonctions différentiables
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(Grenoble) 6, p. 43-87 (1955-1956).

[21] Whitney (H.). — On singularities of mappings of Euclidean spaces. I. Mappings
of the plane into the plane, Annals of Math. 62, p. 374-410 (1955).

– 221 –


