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K(π, 1) conjecture for Artin groups

Luis Paris(1)

ABSTRACT. — The purpose of this paper is to put together a large amount
of results on the K(π, 1) conjecture for Artin groups, and to make them
accessible to non-experts. Firstly, this is a survey, containing basic defini-
tions, the main results, examples and an historical overview of the subject.
But, it is also a reference text on the topic that contains proofs of a large
part of the results on this question. Some proofs as well as few results
are new. Furthermore, the text, being addressed to non-experts, is as
self-contained as possible.

RÉSUMÉ. — Le but de cet article est de mettre ensemble une grande partie
des résultats connus sur la conjecture du K(π, 1) pour les groupes d’Artin
et de les rendre accessibles aux non-spécialistes. Tout d’abord, ce texte est
un exposé, contenant les définitions de base, les principaux résultats, des
exemples et un aperçu historique. C’est aussi un texte qui devrait servir
de référence dans le sujet et qui contient des démonstrations de la plupart
des résultats énoncés. Certaines démonstrations et quelques résultats sont
nouveaux. En outre, le texte, s’adressant à des non-spécialistes, est aussi
complet que possible.

Introduction

Let X be a CW-complex (or a manifold having the same homotopy type
as a CW-complex), and let G be a discrete group. We say that X is an
Eilenberg MacLane space for G if the universal cover of X is contractible
and its fundamental group is G. From an Eilenberg MacLane space for G
one can easily construct a free resolution of the group algebra ZG of G, thus
one gets a way for calculating different (co)homologies of G (see [6]).

(1) Université de Bourgogne, Institut de Mathématiques de Bourgogne, UMR 5584 du
CNRS, B.P. 47870, 21078 Dijon cedex, France.
lparis@u-bourgogne.fr
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It has been proved in the 60’s that the space of configurations of n points
in the plane is an Eilenberg MacLane space for the braid group on n strands
(see [29]), and this fact has been the starting point for the calculation of the
cohomology of this group [2, 30, 17, 47, 53]. Starting from the observation
that the space of configurations of n points in the plane coincides with the
complement in Cn of a well-known algebraic set, the discriminant, in the
70’s and 80’s the construction of this space has been extended to all Artin
groups as follows.

By [3], it is known that any Coxeter group acts faithfully on an open
nonempty convex cone I so that the union of the regular orbits is the com-
plement in I of a (possibly infinite) family of linear hyperplanes. More gen-
erally, by [54], if W is a reflection group in Vinberg’s sense (see Section 1),
then W is a Coxeter group, and it acts faithfully on an open nonempty con-
vex cone I so that the union of the regular orbits is the complement in I of a
(possibly infinite) family A of linear hyperplanes. By [35], the fundamental
group of the space

N(W ) =

(
(I × I) \

( ⋃

H∈A
(H ×H)

))
/W

is the Artin group A associated to W . The K(π, 1) conjecture, due to
Arnold, Brieskorn, Pham, and Thom, says that N(W ) is an Eilenberg
MacLane space for A.

The purpose of this paper is to put together a large amount of results
on this conjecture and to make them accessible to non-experts. Firstly, this
is a survey, containing basic definitions, the main results, examples and an
historical overview of the subject. But, it is also a reference text on the
topic that contains proofs of a large part of the results on this question.
Some proofs as well as few results are new. Furthermore, the text, being
addressed to non-experts, is as self-contained as possible.

The paper is organized as follows. In Section 1 we give a precise and
detailed presentation of the K(π, 1) conjecture, with basic definitions, pre-
liminaries, and examples. Afterwards, we give an overview of the history
of this question and of the cases for which the conjecture has been proved.
Section 2 contains preliminaries on algebraic topology, Coxeter groups, Vin-
berg’s reflection groups, and Artin monoids.

Section 3 is dedicated to a key tool of the theory: the Salvetti complexes.
In Subsection 3.1 we define the Salvetti complex of a (possibly infinite)
arrangement A of hyperplanes in an nonempty open convex cone I, and we
prove that this complex has the same homotopy type as the complement
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of ∪H∈A(H × H) in I × I. This construction as well as the proof of this
result are new, although they have been more or less known to experts. In
Subsection 3.2 we prove that, when A is determined by a reflection group
W in Vinberg’s sense, then our complex coincides with the Salvetti complex
defined by Charney and Davis in [14]. In Subsection 3.3 we determine some
cellular decompositions of the Salvetti complexes that we use, in particular,
to show that the fundamental group of the above defined space N(W ) is
equal to the Artin group associated to W .

In Section 4 we reprove Deligne’s theorem [26] which says that the
K(π, 1) conjecture holds if W is finite. The proof is made in a general
framework in the sense that we use that W is finite only in the last para-
graph of the proof. However, we do not know how to adapt the proof in
other cases.

In Section 5 we study a series of results related to the K(π, 1) conjecture
and to the so-called parabolic subgroups of Artin groups. In particular, we
reprove a result by Charney and Davis [13] which says that the K(π, 1)
conjecture holds for Artin groups of FC type.

1. Basic definitions, statements, and examples

Let S be a finite set. A Coxeter matrix over S is a square matrix M =
(ms,t)s,t∈S indexed by the elements of S and satisfying (a) ms,s = 1 for all
s ∈ S; (b) ms,t = mt,s ∈ {2, 3, . . .} ∪ {∞} for all s, t ∈ S, s 	= t. A Coxeter
matrix is usually represented by its Coxeter graph, Γ = Γ(M). This is a
labelled graph defined as follows. The set of vertices of Γ is S. Two vertices
s, t ∈ S are joined by an edge if ms,t � 3, and this edge is labelled by ms,t

if ms,t � 4.

Let Γ be a Coxeter graph. The Coxeter system of Γ is defined to be the
pair (W,S) = (WΓ, S), where S is the set of vertices of Γ, and W is the
group presented as follows.

W =

〈
S

∣∣∣∣
s2 = 1 for all s ∈ S

(st)ms,t = 1 for all s, t ∈ S, s 	= t, ms,t 	=∞

〉
.

The group W is called Coxeter group of Γ.

Remark. — It is shown in [3] that, for s, t ∈ S, s 	= t, the element st is
of infinite order if ms,t = ∞, and it is of order precisely ms,t if ms,t 	= ∞.
Hence, the pair (W,S) entirely determines the Coxeter graph Γ.

If a, b are two letters and m is an integer greater or equal to 2, we set

Π(a, b : m) = (ab)
m
2 if m is even, and Π(a, b : m) = (ab)

m−1
2 a if m is odd.
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Let Σ = {σs; s ∈ S} be an abstract set in one-to-one correspondence with
S. The Artin system of Γ is defined to be the pair (A,Σ), where A = AΓ is
the group presented as follows.

A=〈Σ |Π(σs, σt : ms,t)=Π(σt, σs : ms,t) for all s, t∈S, s 	= t and ms,t 	=∞〉.

The group AΓ is called Artin group of Γ.

It is easily shown that the Coxeter group of Γ admits the following
presentation.

WΓ =

〈
S

∣∣∣∣
s2 = 1 for all s ∈ S

Π(s, t : ms,t) = Π(t, s : ms,t) for all s, t ∈ S, s 	= t,ms,t 	=∞

〉
.

Hence, the map Σ → S, σs �→ s, induces an epimorphism θ : AΓ → WΓ.
The kernel of θ is called colored Artin group of Γ and it is denoted by CAΓ.

Example. — Consider the Coxeter graph An drawn in Figure 1.1. The
Coxeter group of An has the following presentation.

〈
s1, . . . , sn

∣∣∣∣∣∣

s2
i = 1 for 1 � i � n

(sisi+1)
3 = 1 for 1 � i � n− 1

(sisj)
2 = 1 for |i− j| � 2

〉
.

This is the symmetric group Sn+1 (of permutations of {1, . . . , n+ 1}). The
Artin group of An has the following presentation.

〈
σ1, . . . , σn

∣∣∣∣
σiσi+1σi = σi+1σiσi+1 for 1 � i � n− 1

σiσj = σjσi for |i− j| � 2

〉
.

This is the braid group Bn+1 on n + 1 strands. The colored Artin group of
An is the pure braid group PBn+1.

Figure 1.1. — The Coxeter graph An

Take a nonempty open convex cone I in a finite dimensional real vector
space V . We define a hyperplane arrangement in I to be a (possibly infinite)
family A of linear hyperplanes of V satisfying (a) H ∩ I 	= ∅ for all H ∈ A;
(b)A is locally finite in I, that is, for all x ∈ I, there is an open neighborhood
Ux of x in I such that the set {H ∈ A | H ∩ Ux 	= ∅} is finite. Note that
the “classical” definition of hyperplane arrangement imposes I = V and A
finite (see [39]).
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Example. — Set V = R3 and I = {(x, y, z) ∈ V | z > 0}. For k ∈ Z,
we denote by Hk the plane of V of equation x = kz, and we denote by H ′k
the plane of equation y = kz. We set A = {Hk, H ′k | k ∈ Z}. This is a
hyperplane arrangement in I. The trace of A on the affine plane of equation
z = 1 is represented in Figure 1.2.

Figure 1.2. — A hyperplane arrangement

Let V be a finite dimensional real vector space. A reflection on V is de-
fined to be a linear transformation on V of order 2 which fixes a hyperplane.
Attention: there is no hypothesis on the orthogonality of the reflection, hence
the fixed hyperplane does not necessarily determine the reflection. Let C̄0 be
a closed convex polyhedral cone in V with nonempty interior, and let C0 be
the interior of C̄0. A wall of C̄0 is the support of a (codimensional 1) face of
C̄0, that is, a hyperplane of V generated by that face. Let H1, . . . , Hn be the
walls of C̄0. For each i ∈ {1, . . . , n} we take a reflection si which fixes Hi, and
we denote by W the subgroup of GL(V ) generated by S = {s1, . . . , sn}. The
pair (W,S) is called a Vinberg system if wC0∩C0 = ∅ for all w ∈W \{1}. In
that case, the group W is called linear reflection group in Vinberg’s sense,
S is called canonical generating system for W , and C0 is called fundamental
chamber of (W,S).

Linear reflection groups, Coxeter groups and hyperplane arrangements
are linked by the following theorem.

Theorem 1.1 (Vinberg [54]). — Let (W,S) be a Vinberg system. We
keep the above notations, and we set

Ī =
⋃

w∈W
w C̄0 .

Then the following statements hold.
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(1) (W,S) is a Coxeter system.

(2) Ī is a convex cone with nonempty interior.

(3) The interior I of Ī is stable under the action of W , and W acts
properly discontinuously on I.

(4) Let x ∈ I be such that Wx = {w ∈ W | w(x) = x} is different from
{1}. Then there exists a reflection r in W such that r(x) = x.

The above cone I is called Tits cone of the Vinberg system (W,S).

Remark. — The reader must pay attention to the fact that there is a
difference in Theorem 1.1.(1) between the pair (W,S), viewed as a Vinberg
system, and the pair (W,S), viewed a Coxeter system. Indeed, in the first
case, W is some specific subgroup of a linear group, while, in the second case,
W is just an abstract group. Note also that any Coxeter system appears as
a Vinberg system (see Theorem 2.5), but this representation is not unique
in general.

Let (W,S) be a Vinberg system. Denote by R the set of reflections
belonging to W . For r ∈ R we denote by Hr the fixed hyperplane of r,
and we set A = {Hr | r ∈ R}. Then, by Theorem 1.1, A is a hyperplane
arrangement in the Tits cone I. It is called Coxeter arrangement of (W,S).

Example. — Consider the symmetric group Sn+1 acting on the space
V = Rn+1 by permutations of the coordinates. Let

C̄0 = {x ∈ V | x1 � x2 � · · · � xn+1} .

For i, j ∈ {1, . . . , n + 1}, i 	= j, we denote by Hi,j the hyperplane of
equation xi = xj . Then C̄0 is a convex polyhedral cone whose walls are
H1,2, H2,3, . . . , Hn,n+1. For i ∈ {1, . . . , n}, si = (i, i + 1) is a reflection
whose fixed hyperplane is Hi,i+1. Then (Sn+1, {s1, . . . , sn}) is a Vinberg
system. In this case we have

Ī =
⋃

w∈Sn+1

wC̄0 = V .

So, I = V , too. The set R of reflections coincides with the set of trans-
positions, thus A = {Hi,j | 1 � i < j � n + 1} is the so-called braid
arrangement.

Example. — Consider the affine Euclidean plane E2. For k ∈ Z, we de-
note by Dk the affine line of equation x = k, and we denote by D′k the
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affine line of equation y = k (see Figure 1.3). We denote by sk the orthog-
onal affine reflection of E2 with respect to the line Dk, and we denote by
s′k the orthogonal affine reflection with respect to D′k. We denote by W the
subgroup of the orthogonal affine group of E2 generated by {sk, s′k | k ∈ Z}.
We leave to the reader to determine all the elements of W . Say, however,
that, among these elements, in addition to the reflections, there are U-turns,
translations, and glide reflections. It is easily shown that W is generated by
s0, s1, s

′
0, s
′
1 and admits the following presentation.

W = 〈s0, s1, s
′
0, s
′
1 | s2

0 = s2
1 = s′0

2
= s′1

2
= 1 ,

(s0s
′
0)

2 = (s0s
′
1)

2 = (s1s
′
0)

2 = (s1s
′
1)

2 = 1〉 .
This is the Coxeter group of the Coxeter graph drawn in Figure 1.4.

Figure 1.3. — Grid lines in the affine plane

Figure 1.4. — A Coxeter graph

We embed E2 in R3 via the map (x, y) �→ (x, y, 1), and we denote by
Aff(E2) the affine group of E2. Recall that, for all f ∈ Aff(E2), there are a
unique linear transformation f0 ∈ GL(R2) and a unique vector u ∈ R2 such
that f = Tu ◦ f0, where Tu denotes the translation relative to u. Recall also
that there is an embedding Aff(E2) ↪→ GL(R3) defined by

f �→
(
f0 u
0 1

)
.

Note that the elements of Aff(E2), embedded in GL(R3) via the above map,
leave invariant E2 embedded into R3 as above. So, in this way, the group W
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can be regarded as a subgroup of GL(R3). For k ∈ Z, we denote by Hk the
linear plane of R3 spanned by Dk, and we denote by H ′k the linear plane
spanned by D′k. Then sk is a linear reflection whose fixed hyperplane is Hk,
and s′k is a linear reflection whose fixed hyperplane is H ′k.

Consider the square

C̄ ′0 = {(x, y) ∈ E2 | 0 � x, y � 1} .

Let C̄0 denote the cone over C̄ ′0. This is a closed convex polyhedral cone
whose walls are H0, H1, H

′
0, H

′
1. Observe that wC0 ∩ C0 = ∅ for all w ∈

W \ {1}, thus (W,S) is a Vinberg system, where S = {s0, s1, s
′
0, s
′
1}. It is

easily checked that

Ī =
⋃

w∈W
wC̄0 = {(x, y, z) ∈ R3 | z > 0} ∪ {(0, 0, 0)} ,

thus
I = {(x, y, z) ∈ R3 | z > 0} .

On the other hand,
A = {Hk, H ′k | k ∈ Z} .

We turn now to show the link between Artin groups and Coxeter ar-
rangements. Besides, the K(π, 1) conjecture for Artin groups is the master
peace of this link.

For a nonempty open convex cone I in a real vector space V of finite
dimension ), and a hyperplane arrangement A in I, we set

M(A) = (I × I) \
( ⋃

H∈A
H ×H

)
.

This is a connected manifold of dimension 2). Note that, if I = V , then A
is finite and

M(A) = (C⊗ V ) \
( ⋃

H∈A
C⊗H

)
.

If (W,S) is a Vinberg system and A is the Coxeter arrangement of (W,S),
then we set M(W,S) = M(A). By Theorem 1.1, W acts freely and properly
discontinuously on M(W,S). Then, we set

N(W,S) = M(W,S)/W .

The following result will be proved in Subsection 3.3.
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Theorem 1.2 (Van der Lek [35]). — Let (W,S) be a Vinberg system,
and let Γ be the Coxeter graph of the pair (W,S), viewed as a Coxeter
system. Then the fundamental group of N(W,S) is isomorphic to AΓ, the
fundamental group of M(W,S) is isomorphic to CAΓ, and the short exact
sequence associated with the regular covering M(W,S) → N(W,S) is

1 −→ CAΓ −→ AΓ
θ−→W −→ 1 .

Recall that a space X is an Eilenberg MacLane space for a discrete
group G if the fundamental group of X is G and the universal cover of X is
contractible. We also say that X is aspherical or that it is a K(G, 1) space.
Eilenberg MacLane spaces play a prominent role in cohomology of groups.
We refer to [6] for more details on the subject.

Conjecture 1.3 (K(π, 1) conjecture). — Let (W,S) be a Vinberg sys-
tem, and let Γ be the Coxeter graph of the pair (W,S), viewed as a Coxeter
system. Then N(W,S) is an Eilenberg MacLane space for AΓ.

Let A be a finite hyperplane arrangement in a finite dimensional real
vector space V . In [43] Salvetti associates to A a regular CW-complex,
called Salvetti complex and denoted by Sal(A), and shows that Sal(A) has
the same homotopy type as M(A). (The definitions of regular CW-complex
and homotopy equivalence are given in Subsection 2.1.) In Subsection 3.1
we extend the definition of Sal(A) to any (infinite) hyperplane arrangement
A in a nonempty open convex cone I, and we prove that Sal(A) has the
same homotopy type as M(A) (see Theorem 3.1). This result is more or less
known to experts, but, as far as I know, its proof does not exist anywhere
in the literature. Our proof is inspired by [41]. Note that, in this paper,
the complex Sal(A) will be defined as a simplicial complex, and, when A
is finite and I = V , it coincides with the barycentric subdivision of the
complex originally defined by Salvetti.

In Subsection 3.2, with a Coxeter graph Γ we associate a simplicial com-
plex Sal(Γ). This complex will be naturally endowed with a free and properly
discontinuous action of the Coxeter group W of Γ. Let (W,S) be a Vinberg
system, and let Γ be the Coxeter graph of the pair (W,S), viewed as a
Coxeter system. We show that Sal(Γ) coincides with Sal(A), where A is the
Coxeter arrangement of (W,S) (see Theorem 3.3). Moreover, we prove that
the homotopy equivalence Sal(Γ) → M(W,S) is equivariant under the ac-
tion of W and induces a homotopy equivalence Sal(Γ)/W →M(W,S)/W =
N(W,S). In particular, this shows the following intermediate result concern-
ing the K(π, 1) conjecture.
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Theorem 1.4 (Charney, Davis [13]). — Let (W,S) be a Vinberg system.
Then the homotopy type of M(W,S) (resp. N(W,S)) depends only on the
Coxeter graph Γ of the pair (W,S), viewed as a Coxeter system.

In their proof of Theorem 1.4, Charney and Davis [13] use another space
which is homotopy equivalent to M(W,S) and which depends only on the
Coxeter graph Γ. The complex Sal(Γ) itself is also introduced by Chaney and
Davis, but in another paper [14], and the homotopy equivalence Sal(Γ) →
M(W,S) is also proved in [14]. Our proof is slightly different from the one
by Charney and Davis.

From now on, we say that a Coxeter graph Γ is of type K(π, 1) if Sal(Γ)
is an Eilenberg MacLane space. By the above, this means that M(W,S) is
an Eilenberg MacLane space for any representation of (W,S) as a Vinberg
system, where (W,S) is the Coxeter system of Γ.

Let Γ be a Coxeter graph, and let (W,S) be the Coxeter system of
Γ. In Subsection 3.3 we determine cellular decompositions for Sal(Γ) and
for Sal(Γ)/W . The definition of Sal(Γ) given in Subsection 3.2 coincides
with the barycentric subdivision of this cellular decomposition. This cellular
decomposition of Sal(Γ)/W is already defined in [14] for all Coxeter graphs,
and, independently, in [45] when the Coxeter group W is finite. A first
straightforward consequence of this description of Sal(Γ)/W will be that
the fundamental group of Sal(Γ)/W (resp. Sal(Γ)) is the Artin group AΓ

(resp. the colored Artin group CAΓ) (see Theorem 3.10). This new proof
of Theorem 1.2 is well-known to experts, but, as far as I know, nobody
went to the bother of writing down it before. Note also that this cellular
decomposition is a useful tool for calculating different cohomologies of AΓ

(of course, under the condition that Γ is of type K(π, 1)) (see [7, 8, 9, 10,
11, 12, 20, 21, 22, 23, 24, 45, 46, 48, 49]).

The fact that the Coxeter graph An (that is, the Coxeter graph of
the braid group Bn+1) is of type K(π, 1) was proved in 1962 by Fox and
Neuwirth [29]. This was the first example of a Coxeter graph of type K(π, 1).
The K(π, 1) conjecture itself was firstly stated by Brieskorn in 1971 in [4],
but only for Artin groups of spherical type. (We say that a Coxeter graph
Γ is of spherical type if the Coxeter group WΓ is finite.) In the same paper,
[4], Brieskorn proved the conjecture for the Artin groups associated to the
Coxeter graphs An, Bn, Dn, F4 and I2(p) (p � 5) (see Subsection 2.2 for the
pictures of these graphs). Immediately after, in 1972, Deligne [26] proved
the conjecture for all spherical type Artin groups.

The K(π, 1) conjecture, as is stated in the present paper, was stated for
the first time in [35]. According to Van der Lek, it is due to Arnold, Pham et
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Thom. Besides the Artin groups of spherical type, it was previously proved
in [38] for two families of so-called “affine type” Artin groups: the groups
of type Ãn, and those of type C̃n (see also [16]).

Let Γ be a Coxeter graph. For X ⊂ S, we set MX = (ms,t)s,t∈X , we
denote by ΓX the Coxeter graph of MX , and we denote by WX the subgroup
of W = WΓ generated by X. By [3], the pair (WX , X) is the Coxeter system
of ΓX . The subgroup WX is called standard parabolic subgroup of W .

Two families of subsets of S play an important role in the theory. The
first family, denoted by Sf , consists of subsets X ⊂ S such that WX is finite.
For X ⊂ S, we say that ΓX is free of infinity if ms,t 	= ∞ for all s, t ∈ X.
The second family, denoted by S<∞, consists of subsets X ⊂ S such that
ΓX is free of infinity. Note that Sf ⊂ S<∞.

After [35], the K(π, 1) conjecture has been proved in the following cases.

(1) When ms,t � 3 for all s, t ∈ S, s 	= t (see [33]). (Such a Coxeter graph
is called of large type.)

(2) When |X| � 2 for all X ∈ Sf (see [13]). (Such a Coxeter graph is
called of dimension 2.)

(3) When Sf = S<∞ (see [13]). (Such a Coxeter graph is called of FC
type.)

(4) For the “affine type” Artin groups of type B̃n (see [11]).

Note that large type Artin groups are both, of dimension 2, and of FC type.
On the other hand, it is proved in [28] that, if ΓX is of type K(π, 1) for all
X ∈ S<∞, then Γ is also of type K(π, 1) (see also [31]).

Maybe the next advances in the subject will be due to Jon McCammond
and Robert Sulway (see [36]). Indeed, they announce that they can embed
any affine type Artin group into a Garside group. Eilenberg MacLane spaces
for Garside groups are known [25, 15], thus such an embedding determines
an Eilenberg MacLane space for the considered Artin group AΓ. It remains
to show that this Eilenberg MacLane space has the same homotopy type as
Sal(Γ)/W . By the way, I thank Jon McCammond for pointing out to me
this remark.

In Section 4 we give a new proof of Deligne’s theorem [26]: “spherical
type Artin groups are of type K(π, 1)”. Almost the whole proof is made for
any Artin group and the hypothesis “Γ is of spherical type” is used only
in the last paragraph. Nevertheless, I am not sure that this is a substantial
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progress toward a global proof of the K(π, 1) conjecture, as I do not know
how to complete the proof for other kind of Artin groups, and Van der Lek
had a similar problem (but with another complex) in [35] (see also [27, 40]).
Our proof of Theorem 4.10 (Deligne’s theorem) is inspired by the proof
given in [41] (see also [44]).

For X ⊂ S, we set ΣX = {σs | s ∈ X}, and we denote by AX the
subgroup of A = AΓ generated by ΣX . Such a subgroup is called standard
parabolic subgroup of A. In Section 5 we use ideas from [31] to prove some
results that involve standard parabolic subgroups. In particular, we prove
the following statements.

(1) “The pair (AX ,ΣX) is the Artin system of ΓX”. This result is origi-
nally due to Van der Lek [35].

(2) “If Γ is of type K(π, 1), then ΓX is also of type K(π, 1)”. This result,
although well-known to experts, was curiously proved very recently
for the first time (see [31]).

(3) “If ΓX is of type K(π, 1) for all X ∈ S<∞, then Γ is also of type
K(π, 1)”. This is the previously cited result due to Ellis and Skldberg
[28], and our proof is essentially the same as the one in [28]. Note
that, thanks to Deligne’s theorem [26], this proves that FC type Artin
groups are of type K(π, 1).

So, as pointed out before, many of the known results on the K(π, 1)
conjecture will be proved in the present paper. In fact, only the Artin groups
of dimension 2 will not be treated, as well as some examples of Artin groups
of affine type.

2. Preliminaries

2.1. Preliminaries on algebraic topology

In this subsection we present some definitions and results on algebraic
topology that we will need in the sequel. No proof (except one) will be given,
and we refer to [32] for details and proofs.

Let X,Y be two topological spaces, and let f, g : X → Y be two con-
tinuous maps. We say that f, g are homotopic if there exists a continuous
map H : X × [0, 1] → Y such that f(x) = H(x, 0) and g(x) = H(x, 1)
for all x ∈ X. “To be homotopic” is an equivalence relation on the set of
continuous maps from X to Y , that we denote by ∼. A map f : X → Y is a
homotopy equivalence if there exists a map g : Y → X such that g ◦f ∼ IdX
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and f ◦ g ∼ IdY . In that case we say that X has the same homotopy type as
Y . A space X is contractible if it has the same homotopy type as a point.

We say that a subspace Y of a topological space X is a deformation
retract of X if there exists a continuous map H : X × [0, 1] → X such
that H(x, 0) = x and H(x, 1) ∈ Y for all x ∈ X, and H(y, t) = y for all
(y, t) ∈ Y × [0, 1]. Clearly, if Y is a deformation retract of X, then the
inclusion Y → X is a homotopy equivalence. The reverse is true when X is
a CW-complex and Y is a subcomplex of X (see [32, Thm. 4.5]).

A CW-complex is defined to be a topological space X endowed with a
filtration by closed subspaces,

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · ·

satisfying the following properties.

(a) X0 is a discrete set.

(b) For all n ∈ N, there exists a collection Bn of n-dimensional closed
disks, called n-cells, and, for each B ∈ Bn, there exists a map ϕB :
∂B→ Xn−1, such that the image of each ϕB is a finite union of cells
of Xn−1, and Xn is obtained from Xn−1 gluing each B ∈ Bn to Xn−1

via the map ϕB.

(c) X = ∪∞n=0Xn, and X is endowed with the weak topology (that is,
A ⊂ X is closed if and only if A ∩Xn is closed for all n ∈ N).

We say, moreover, that X is regular if, for all n ∈ N and all B ∈ Bn, the
gluing map ϕB : ∂B→ Xn−1 is a homeomorphism onto its image. For n ∈ N,
the subspace Xn is called n-skeleton of X.

Let X ′ be another CW-complex. We denote by B′n the set of n-cells of
X ′ and, for B ∈ B′n, we denote by ϕ′B : ∂B→ X ′n−1 the gluing map. We say
that X ′ is a subcomplex of X if, for all n ∈ N, B′n is included in Bn, and, for
all B ∈ B′n, the map ϕ′B : ∂B→ X ′n−1 coincides with ϕB : ∂B→ Xn−1.

An (abstract) simplicial complex is defined to be a pair Υ = (S,A),
where S is a set, called set of vertices, and A is a set of subsets of S, called
set of simplices, satisfying the following properties. (a) ∅ is not a simplex,
and all the simplices are finite. (b) All the singletons are simplices. (c) Any
nonempty subset of a simplex is a simplex.

Let Υ = (S,A) be a simplicial complex. Take an abstract set B = {es |
s ∈ S} in one-to-one correspondence with S, and denote by V the real
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vector space having B as a basis. For ∆ = {s0, s1, . . . , sp} in A, we set

|∆| = {t0es0 + t1es1 + · · ·+ tpesp | 0 � t0, t1, . . . , tp � 1 and

p∑

i=0

ti = 1} .

Note that |∆| is a (geometric) simplex of dimension p. In particular, |∆| is
topologically a p-dimensional disk. The geometric realization of Υ is defined
to be the following subset of V .

|Υ| =
⋃

∆∈A
|∆| .

We endow |Υ| with the weak topology (see [50, Chap. III, Sec. 1]), so that
|Υ| is naturally endowed with a structure of regular CW-complex. For p ∈ N,
if ∆ is a simplex of cardinality p+ 1, then |∆| is a cell of dimension p. The
geometric realization of an abstract simplicial complex is called geometric
simplicial complex.

If (E,�) is a partially ordered set, then the nonempty finite chains of E
form a simplicial complex, called derived complex of (E,�) and denoted by
E′ = (E,�)′. This observation is of importance in the paper as our different
versions of the Salvetti complex will be defined as geometric realizations of
derived complexes of ordered sets.

Let X be a regular a CW-complex. Denote by B the set of all cells of
X. If B and B′ are two cells of X of dimension n and m, respectively, such
that n < m and B ⊂ ϕB′(∂B′), then we set B < B′. It is easily checked that
the relation � on B, defined by B � B′ if either B < B′ or B = B′, is a
partial order relation. The derived complex of (B,�) is called barycentric
subdivision of X. It is easily shown that |(B,�)′| is homeomorphic to X.

Let X be a topological space, and let U be a cover of X by open subsets.
The nerve of U , denoted by N(U), is the simplicial complex defined as
follows. (a) The vertices of N(U) are the elements of U . (b) A nonempty
finite set of vertices {U0, U1, . . . , Up} is a simplex in N(U) if U0 ∩U1 ∩ · · · ∩
Up 	= ∅.

We leave to the reader to look in the literature for the definition of a
paracompact space. However, we point out that all the spaces that we will
consider are paracompact. The following result is one of the main tools in
the paper. Its proof can be found for instance in [32, Sec. 4G].

Theorem 2.1. —

(1) Let X be a paracompact space, and let U be a cover by open subspaces
such that any finite nonempty intersection of elements of U is con-
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tractible. Then the geometric realization |N(U)| of the nerve of U is
homotopy equivalent to X.

(2) Let X be a CW-complex. Suppose there exists an infinite chain

Y0 ⊂ Y1 ⊂ Y2 ⊂ · · ·Yn ⊂ Yn+1 ⊂ · · ·

of subcomplexes of X such that Yn is contractible for all n ∈ N, and
∪n∈NYn = X. Then X is contractible, too.

At some point, we will need an equivariant version of Theorem 2.1.(1),
and, for this, we will need an explicit description of the homotopy equiva-
lence |N(U)| → X.

We take a connected paracompact space X and a cover U of X by open
subsets such that every nonempty finite intersection of elements of U is
contractible. We denote by NU the set of all finite nonempty intersections
of elements of U ordered by the inclusion. One can show (with some effort)
that |NU ′| = |N(U)|, where N(U) denotes the nerve of U . We describe
the homotopy equivalence f : |NU ′| → X on the n-skeleton of |NU ′| by
induction on n.

Let U ∈ NU . Denote by δ(U) the vertex of |NU ′| corresponding to U .
Choose a point x ∈ U , and set f(δ(U)) = x. This defines f : |NU ′|0 → X.
Let U0 ⊂ U1 be a chain of length 2 in NU , and let ∆ = ∆(U0, U1) be the
1-simplex of |NU ′| corresponding to this chain. By construction, U0 ⊂ U1,
and, by hypothesis, U1 is connected, thus there exists a path γ : [0, 1] → U1

such that γ(0) = f(δ(U0)) and γ(1) = f(δ(U1)). We define f : ∆ → U1 ⊂ X
by

f((1− t)δ(U0) + tδ(U1)) = γ(t) , t ∈ [0, 1] .

This defines the map f : |NU ′|1 → X.

We assume that n � 1 and that the map f : |NU ′|n → X is constructed.
Furthermore, we assume that, if U0 ⊂ U1 ⊂ . . . ⊂ Un is a chain of length
n + 1 and ∆ = ∆(U0, U1, . . . , Un) is the corresponding n-simplex of |NU ′|,
then f(∆) ⊂ Un. Let U0 ⊂ U1 ⊂ . . . ⊂ Un+1 be a chain of length n + 2 in
NU , and let ∆ = ∆(U0, U1, . . . , Un+1) be the corresponding (n+1)-simplex
in |NU ′|. By the above, we have f(∂∆) ⊂ Un+1 and, by hypothesis, Un+1

is contractible, thus f |∂∆ extends to a continuous map f : ∆ → Un+1 ⊂ X.
This defines f : |NU ′|n+1 → X.

The following result is probably known, but I have not found it in the
literature, thus I include a proof. It is of importance to prove that the
homotopy equivalence Sal(Γ) → M(W,S) induces a homotopy equivalence
Sal(Γ)/W →M(W,S)/W = N(W,S) (see Corollary 3.4).
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Proposition 2.2. — Let X be a paracompact space, and let U be a cover
by open subsets such that every finite nonempty intersection of elements of
U is contractible. Let G be a group acting freely and properly discontinuously
on X, and such that, for all g ∈ G\{1} and all U ∈ U , we have g(U) ∈ U and
U ∩ g(U) = ∅. Then G acts freely and properly discontinuously on |N(U)|,
there exists a G-equivariant homotopy equivalence f : |N(U)| → X, and
this homotopy equivalence induces a homotopy equivalence f̄ : |N(U)|/G→
X/G.

Proof. — By construction, the group G acts on U , and sends every sim-
plex of |NU ′| to a simplex, thus this action induces an action of G on
|N(U)| = |NU ′|. It is easily checked that the latter action is free and prop-
erly discontinuous. On the other hand, it is easily seen that the homotopy
equivalence f : |NU ′| → X described above can be made to be equivariant
under the actions of G. In particular, such a f induces a continuous map
f̄ : |NU ′|/G→ X/G. It remains to show that f̄ is a homotopy equivalence.

In order to prove that f̄ is a homotopy equivalence, we will use the
following results. These are classical and well-known. We refer to [32, Chap.
4] for their proofs. Let ϕ : X → Y be a continuous map between two
connected spaces having the homotopy type of CW-complexes. Let x0 ∈ X
be a base point for X, and set y0 = ϕ(x0).

(1) If ϕ is a covering map, then ϕ induces an isomorphism ϕ∗ : πn(X,x0) →
πn(Y, y0) for all n � 2.

(2) If ϕ is a regular covering map, and G is its Galois group, then we
have a short exact sequence

1 −→ π1(X,x0)
ϕ∗−→π1(Y, y0) −→ G −→ 1 .

(3) The map ϕ : X → Y is a homotopy equivalence if and only if the
homomorphism ϕ∗ : πn(X,x0) → πn(Y, y0) is an isomorphism for all
n � 1.

The group πn(X,x0) is the n-th homotopy group of X. The reader do not
need its definition to understand the proof of Proposition 2.2. The above
properties suffice.

We denote by p : |NU ′| → |NU ′|/G and by p′ : X → X/G the natural
projections. For n � 2 we have the following commutative diagram.
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πn(|NU ′|) f∗−→ πn(X)� p∗

� p′∗

πn(|NU ′|/G)
f̄∗−→ πn(X/G)

By (1), p∗ and p′∗ are isomorphisms, and, by (3), f∗ is an isomorphism, thus
f̄∗ is an isomorphism, too. For n = 1 we have the following commutative
diagram, where the rows are exact sequences.

1 −→ π1(|NU ′|) p∗−→π1(|NU ′|/G) −→ G −→ 1� f∗

� f̄∗

� Id

1 −→ π1(X)
p′∗−→ π1(X/G) −→ G −→ 1

Since f∗ is an isomorphism, by the five lemma, f̄∗ is an isomorphism, too.
By (3) we conclude that f̄ is a homotopy equivalence. �

In order to show that the fundamental group of Sal(Γ)/W is the Artin
group AΓ (see Theorem 3.10), we will need the following method for com-
puting fundamental groups of CW-complexes.

Take a connected CW-complex X. As in the definition, for n ∈ N, we
denote by Bn the set of n-dimensional cells of X, and, for B ∈ Bn, we denote
by ϕB : ∂B→ Xn−1 the gluing map of B. Let a ∈ B1 be a 1-cell. We set an
orientation on a. This means that we choose some identification of a with
the interval [0, 1]. In that way, a determines a path ã : [0, 1] → X1 by setting
ã(0) = ϕa(0), ã(1) = ϕa(1), and ã(t) = t for all t ∈ (0, 1). Let B ∈ B2 be a
2-cell. Then B is homeomorphic to the disk D = {z ∈ C | |z| � 1}. Without
loss of generality, we can assume that ϕB(1) is a vertex x0 ∈ X0. Then the
map ϕ̃B : [0, 1] → X1 defined by

ϕ̃B(t) = ϕB(e2iπt)

is a loop based at x0 homotopic in X1 to a loop at x0 of the form ãε11 · · · ãε�� ,
with a1, . . . , a� ∈ B1, and ε1, . . . , ε� ∈ {±1}. Recall finally that a maximal
tree of the 1-skeleton X1 is a subcomplex T of X1 such that T0 = X0, and
T is simply connected.

Fix a maximal tree T of X1 and a base-point x0 ∈ X0. For all x ∈ X0,
choose a path γx in T from x0 to x. Note that γx is unique up to homotopy,
since T is simply connected. For a loop α : [0, 1] → X based at x0 we denote
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by [α] the element of π1(X,x0) represented by α. For a ∈ B1 we set

sa = [γ−1
ã(1) ã γã(0)] .

Note that, if a is a 1-cell of T , then sa = 1 in π1(X,x0). On the other
hand, for B ∈ B2, we take a loop of the form ãε11 · · · ãε�� based at ϕB(1) and
homotopic in X1 to ϕ̃B, and we set

w(B) = sε1a1 · · · sε�a� .

Note that we have w(B) = 1 in π1(X,x0) for all B ∈ B2. The following result
is classical in the study of CW-complexes.

Theorem 2.3. — Take a connected CW-complex X, and keep the above
notations. Then π1(X,x0) has a presentation with generators sa, a ∈ B1,
and relations

sa = 1 for all edges a of T ,

w(B) = 1 for all B ∈ B2 .

The proof of the following is contained in the proof of [6, II, Thm. 7.3].
It will be the key tool in the proof of Theorem 5.6.

Theorem 2.4. — Let X be a CW-complex which is the union of two sub-
complexes, X1 and X2, whose intersection, Y , is nonempty and connected.
We take a basepoint x0 ∈ Y , and we denote by ιi : π1(Y, x0) → π1(Xi, x0)
the homomorphism induced by the inclusion Y ↪→ Xi, for i = 1, 2. We
assume that

(a) ι1 and ι2 are injective,

(b) X1, X2, and Y are Eilenberg MacLane spaces.

Then X is also an Eilenberg MacLane space.

2.2. Preliminaries on Coxeter groups

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. Take
an abstract set {es | s ∈ S} in one-to-one correspondence with S, and
denote by V the real vector space having {es | s ∈ S} as a basis. Define the
symmetric bilinear form B : V × V → R by

B(es, et) =

{ − cos( π
ms,t

) if ms,t 	= ∞
−1 if ms,t = ∞
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For s ∈ S define ρs ∈ GL(V ) by

ρs(x) = x− 2B(x, es)es , x ∈ V .

Then ρs is a linear reflection for all s ∈ S, and the map S → GL(V ),
s �→ ρs, induces a linear representation ρ : W → GL(V ) (see [3]). This
linear representation is called canonical representation of (W,S).

Denote by V ∗ the dual space of V . Recall that any linear map f ∈ GL(V )
determines a linear map f t ∈ GL(V ∗) defined by

〈f t(α), x〉 = 〈α, f(x)〉 ,

for all α ∈ V ∗ and all x ∈ V . The dual representation ρ∗ : W → GL(V ∗) of
ρ is defined by

ρ∗(w) = (ρ(w)t)−1 ,

for all w ∈W . For s ∈ S, we set Hs = {α ∈ V ∗ | 〈α, es〉 = 0}. Let

C̄0 = {α ∈ V ∗ | 〈α, es〉 � 0 for all s ∈ S} .

Theorem 2.5 (Tits [52], Bourbaki [3]). — Let Γ be a Coxeter graph,
and let (W,S) be its Coxeter system.

(1) The canonical representation ρ : W → GL(V ) and the dual represen-
tation ρ∗ : W ∗ → GL(V ∗) are faithful.

(2) The set C̄0 is a simplicial cone whose walls are Hs, s ∈ S. The
transformation ρ∗(s) is a linear reflection whose fixed hyperplane is
Hs, for all s ∈ S. Moreover, we have ρ∗(w)C0 ∩ C0 = ∅ for all
w ∈W \ {1}.

In particular, (ρ∗(W ), ρ∗(S)) is a Vinberg system whose associated Coxeter
graph is Γ.

Recall that Γ (resp. AΓ) is said to be of spherical type if WΓ is finite.
Note that, if Γ1, . . . ,Γ� are the connected components of Γ, then WΓ =
WΓ1

× · · · ×WΓ� . In particular, Γ is of spherical type if and only if all its
connected components are of spherical type.

Theorem 2.6 (Coxeter [18, 19]). —

(1) The Coxeter graph Γ is of spherical type if and only if the bilinear
form B : V × V → R is positive definite.

(2) The spherical type connected Coxeter graphs are precisely those listed
in Figure 2.1.
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Figure 2.1. — Connected spherical type Coxeter graphs

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. Denote
by S∗ the free monoid on S. Let w ∈ W . A word µ = s1 · · · s� ∈ S∗ is an
expression of w if the equality w = s1 · · · s� holds in W . The length of w,
denoted by lg(w), is defined to be the minimal length of an expression of w.
An expression µ = s1 · · · s� of w is said to be reduced if ) = lg(w).

Let µ, µ′ ∈ S∗. We say that there is an elementary M-transformation
joining µ to µ′ if there exist ν1, ν2 ∈ S∗ and s, t ∈ S such that ms,t 	= ∞,

µ = ν1 Π(s, t : ms,t) ν2 , and µ′ = ν1 Π(t, s : ms,t) ν2 .
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Theorem 2.7 (Tits [51]). — Let w ∈W , and let µ, µ′ be two reduced ex-
pressions of w. Then there is a finite sequence of elementary M-transforma-
tions joining µ to µ′.

Let (A,Σ) be the Artin system of Γ. Recall the epimorphism θ : A→W
which sends σs to s for all s ∈ S. We define a set-section τ : W → A of θ as
follows. Let w ∈ W . We choose a reduced expression µ = s1 · · · s� of w and
we set

τ(w) = σs1 · · ·σs� .
By Theorem 2.7 the definition of τ(w) does not depend on the choice of the
reduced expression. Attention: τ is a set-section. It is not a homomorphism.
However, it is an important tool in the study of Artin groups.

The following theorem is fundamental in the combinatorial study of Cox-
eter groups.

Theorem 2.8 (Bourbaki [3]). — Let (W,S) be a Coxeter system.

(1) Let w ∈ W , let s ∈ S, and let µ = s1 · · · s� be a reduced expression
of w. Then, either lg(ws) = lg(w) + 1, or there exists an index i ∈
{1, . . . , )} such that w = s1 · · · ŝi · · · s�s.

(2) Let w ∈W and s, t ∈ S. If lg(ws) = lg(tw) = lg(w)+1 and lg(tws) <
lg(ws), then ws = tw.

Recall that, for X ⊂ S, we set MX = (ms,t)s,t∈X , where M = (ms,t)s,t∈S
is the Coxeter matrix of Γ, we denote by ΓX the Coxeter graph of MX , and
we denote by WX the subgroup of W = WΓ generated by X. Recall also
that, by [3], the pair (WX , X) is the Coxeter system of ΓX , and WX is
called standard parabolic subgroup of W . Let X,Y be two subsets of S. We
say that an element w ∈ W is (X,Y )-minimal if it is of minimal length in
the double-coset WXwWY .

Proposition 2.9 (Bourbaki [3]). — Let (W,S) be a Coxeter system.

(1) Let X,Y be two subsets of S, and let w ∈ W . Then there exists a
unique (X,Y )-minimal element lying in WXwWY .

(2) Let X ⊂ S, and let w ∈ W . Then w is (∅, X)-minimal if and only
if lg(ws) > lg(w) for all s ∈ X, and lg(ws) > lg(w) for all s ∈ X if
and only if lg(wu) = lg(w) + lg(u) for all u ∈WX .

(3) Let X ⊂ S, and let w ∈ W . Then w is (X, ∅)-minimal if and only if
lg(sw) > lg(w) for all s ∈ X, and lg(sw) > lg(w) for all s ∈ X if
and only if lg(uw) = lg(u) + lg(w) for all u ∈WX .
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(4) Let X ⊂ S, and let w ∈ WX . If µ = s1 · · · s� is a reduced expression
of w, then s1, . . . , s� ∈ X.

2.3. Preliminaries on Vinberg systems

In this subsection we present the main tool that we will use to pass from
the Salvetti complex of a Coxeter arrangement, denoted by Sal(A), to the
Salvetti complex of the associated Coxeter graph, denoted by Sal(Γ) (see
Subsection 3.2). This tool basically says that two posets are isomorphic (see
Theorem 2.10 below). The first poset is the poset of facets of the Coxeter
arrangement, while the second poset, denoted by Pf , is made of the cosets of
finite parabolic subgroups in W . Theorem 2.10 is essentially due to Vinberg
[54], but the proofs of [3, Chap. V] can be easily adapted to prove the
theorem.

Let A be a hyperplane arrangement in an nonempty open convex cone
I in V = R�. A chamber of A is defined to be a connected component of
I\(∪H∈AH). We denote by C(A) the set of chambers ofA. For H ∈ A, we set
IH = I∩H and AH = {H ′∩H | H ′ ∈ A\{H} and H ′∩H∩I 	= ∅}. Observe
that IH is a nonempty open convex cone in H, and AH is a hyperplane
arrangement in IH . For H ∈ A, a chamber of AH is called a face of A
(or 1-codimensional facet of A). For d ∈ N, we define a d-codimensional
facet of A by induction on d as follows. The chambers of A are the 0-
codimensional facets. The faces of A are the 1-codimensional facets. For
d � 2, a d-codimensional facet of A is a (d− 1)-codimensional facet of some
AH , where H ∈ A. We denote by F(A) the set of all facets of A. Observe
that F(A) is a partition of I. For F ∈ F(A), we denote by F̄ the closure of
F in I. Then F(A) is endowed with the partial order relation  defined by
F1  F2 if F1 ⊆ F̄2.

Let F be a d-codimensional facet. Define the support of F , denoted
by |F |, to be the linear subspace of V spanned by F . Set IF = |F | ∩ I,
AF = {H ∈ A | H ⊃ F}, andAF = {H∩|F | | H ∈ A\AF and H∩IF 	= ∅}.
Observe that |F | is a d-codimensional linear subspace of V , IF is a nonempty
open convex cone in |F |, AF is a hyperplane arrangement in IF , and F is a
chamber of AF . On the other hand, AF is a finite hyperplane arrangement
in I. Moreover, if d � 1, we have ∩H∈AFH = |F |. For d = 0, we set
|F | = ∩H∈AFH = ∩H∈∅H = V .

Example. — Set V = R3 and I = {(x, y, z) ∈ V | z > 0}. For k ∈ Z,
denote by Hk the plane of V of equation x = kz, and denote by H ′k the
plane of equation y = kz. Set A = {Hk, H ′k | k ∈ Z}. This is a hyperplane
arrangement in I. The trace of A in the affine plane of equation z = 1
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is pictured in Figure 2.2. Let F = {(0, 0, z) | z > 0}. Then F is a 2-
codimensional facet of A whose support is the line |F | of equations x = y =
0. Here we have IF = F , AF = ∅, and AF = {H0, H

′
0}. Observe that the

set of facets F ′ ∈ F(A) satisfying F  F ′ is made of 4 chambers, 4 faces,
and F itself.

Figure 2.2. — A facet

For a given Coxeter graph Γ and its Coxeter system (W,S), we set Sf =

SfΓ = {X ⊂ S | WX is finite} and Pf = PfΓ = {wWX | w ∈ W and X ∈
Sf}. The set Pf is assumed to be ordered by the inclusion.

Theorem 2.10 (Vinberg [54]). — Let (W,S) be a Vinberg system, let C0

be its fundamental chamber, let I be its Tits cone, and let A be its Coxeter
arrangement. Denote by Γ the Coxeter graph of (W,S), viewed as a Coxeter
system.

I. Let F(C0) = {F ∈ F(A) | F  C0}. Then there is a bijection ι :

SfΓ → F(C0) such that ⋂

s∈X
Hs = |ι(X)|

for all X ∈ SfΓ . Moreover, the following properties hold.

(1) Let X,Y ∈ SfΓ . We have X ⊂ Y if and only if ι(Y )  ι(X).

(2) For X ∈ SfΓ , the stabilizer {w ∈ W | w(ι(X)) = ι(X)} of ι(X) is
equal to WX , and every element of WX pointwise fixes ι(X).

II. There is a bijection ι̃ : PfΓ → F(A) defined by

ι̃(wWX) = w(ι(X)) .

Moreover, the following properties hold.
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(1) Let u, v ∈ W and X,Y ∈ SfΓ . We have uWX ⊂ vWY if and only if
ι̃(vWY )  ι̃(uWX).

(2) Let u, v ∈ W and X,Y ∈ SfΓ . We have uWX ⊂ vWY if and only if
X ⊂ Y and u ∈ vWY .

(3) The restriction of ι̃ to W is the bijection

W → C(A)
w �→ w(C0)

III. Let X be a subset of S, and let w be an element of W . Then w
is (∅, X)-minimal if and only if Hr does not separate C0 and w−1(C0) for
every reflection r lying in WX .

2.4. Preliminaries on Artin monoids

In this subsection we present some results on Artin monoids, that we
will need to prove Theorem 4.10 (K(π, 1) conjecture for spherical type Artin
groups). Most of the results of the subsection come from [5] (see also [37]),
and their proofs are independent from the techniques presented here.

The Artin monoid of a Coxeter graph Γ is the monoid A+
Γ defined by

the following monoid presentation.

A+
Γ =〈Σ | Π(σs, σt : ms,t)=Π(σt, σs : ms,t) for all s, t ∈ S, s 	= t,ms,t 	=∞〉+.

By [42], the natural homomorphism A+
Γ → AΓ is injective.

Since the relations that define A+
Γ are homogeneous, A+

Γ is endowed with
a length function lg : A+

Γ → N that associates to each element α ∈ A+
Γ the

length of any expression of α on the elements of Σ. Note that lg(αβ) =
lg(α) + lg(β) for all α, β ∈ A+

Γ . For α, β ∈ A+
Γ , we set α  L β if there exists

γ ∈ A+
Γ such that αγ = β. Similarly, we set α  R β if there exists γ ∈ A+

Γ

such that γα = β. Note that the existence of the length function implies
that  L and  R are partial order relations on A+

Γ .

Theorem 2.11 (Brieskorn, Saito [5]). — Let Γ be a Coxeter graph, and
let E be a nonempty finite subset of A+

Γ .

(1) E has a greater lower bound for the relation  L (resp.  R), denoted
by ∧LE (resp. ∧RE).

(2) If E has an upper bound for the relation  L (resp.  R), then E has
a least upper bound for the relation  L (resp.  R), denoted by ∨LE
(resp. ∨RE).
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Recall the natural homomorphism θ : AΓ → WΓ and its set-section
τ : WΓ → AΓ. Notice that the image of τ is contained in A+

Γ . We complete
the above theorem with the following.

Proposition 2.12 (Brieskorn, Saito [5]). — Let Γ be a Coxeter graph.

(1) Let E be a nonempty finite subset of τ(WΓ). If ∨LE (resp. ∨RE)
exists, then ∨LE ∈ τ(WΓ) (resp. ∨RE ∈ τ(WΓ)).

(2) Let X be a subset of S. Recall that ΣX denotes the set ΣX = {σs |
s ∈ X}. Then ∨LΣX (resp. ∨RΣX) exists if and only if WX is finite
(that is, X ∈ Sf ).

The last preliminary result on Artin monoids that we will need concerns
only the spherical type ones.

Theorem 2.13 (Brieskorn, Saito [5], Deligne [26]). — Let Γ be a spher-
ical type Coxeter graph. Set ∆ = ∨LΣ (this element exists by Proposition
2.12). Then ∆ = ∨RΣ, and every element β ∈ AΓ can be written in the
form β = ∆−kα with α ∈ A+

Γ and k ∈ N.

3. Salvetti complexes

3.1. Salvetti complex of a hyperplane arrangement

In this subsection I denotes an nonempty open convex cone in a real
vector space V of dimension ), and A denotes a hyperplane arrangement
in I. Our aim is to define a (geometric) simplicial complex Sal(A) and to
prove that Sal(A) has the same homotopy type as M(A). We start recalling
some definitions from the previous section.

The arrangement A determines a partition of I into facets. We denote
by F(A) the set of facets, and by C(A) the set of chambers (0-codimensional
facets) of A. We order F(A) by F1  F2 if F1 ⊆ F̄2, where, for F ∈ F(A),
F̄ denotes the closure of F in I. The support of a facet F , denoted by |F |,
is the linear subspace of V spanned by F . We set IF = I ∩ |F |, AF = {H ∈
A | F ⊂ H}, and AF = {H∩|F | | H ∈ A\AF and H∩IF 	= ∅}. Finally, for
F ∈ F(A) and C ∈ C(A), we denote by CF the chamber of AF containing
C.

Example. — We go back to the example of the previous section. We set
V = R3 and I = {(x, y, z) ∈ V | z > 0}. For k ∈ Z, we denote by Hk the
plane of V of equation x = kz, and by H ′k the plane of equation y = kz, and
we set A = {Hk, H ′k | k ∈ Z}. Consider the facet F = {(0, 0, z) | z > 0}.
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Let C be the cone over a square bounded by H0, H1, H
′
0, H

′
1. Then C is a

chamber of A, we have F  C, and CF is the cone {(x, y, z) ∈ V | x >
0, y > 0, z > 0} (see Figure 3.1).

Figure 3.1. — CF : an example

We set
Sal0(A) = {(F,C) ∈ F(A)× C(A) | F  C} .

We define a relation  on Sal0(A) as follows.

(F,C)  (F ′, C ′) if F  F ′ and CF ⊂ C ′F ′ .

It is easily checked that  is an order relation on Sal0(A). We define the
Salvetti complex of A, denoted by Sal(A), as the geometric realization of
the derived complex of (Sal0(A), ).

Remark. — If A is the Coxeter arrangement of a Vinberg system (W,S),
then W acts on Sal0(A) as follows.

w (F,C) = (wF,wC) ,

for w ∈ W and (F,C) ∈ Sal0(A). The ordering  is invariant under the
action of W , thus this action induces an action of W on Sal(A).

Theorem 3.1. — There exists a homotopy equivalence f : Sal(A) →
M(A). Moreover, if A is the Coxeter arrangement of a Vinberg system
(W,S), then f is equivariant under the actions of W and induces a homotopy
equivalence f̄ : Sal(A)/W →M(A)/W .

Proof. — We shall define a family {U(F,C) | (F,C) ∈ Sal0(A)} of open
subsets of M(A), and we shall prove the following.
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(1) Let (F,C), (G,D) ∈ Sal0(A). If U(F,C) = U(G,D), then (F,C) =
(G,D).

(2) We have

M(A) =
⋃

(F,C)∈Sal0(A)

U(F,C) .

(3) Let (F0, C0), (F1, C1), . . . , (Fp, Cp) ∈ Sal0(A). We have

U(F0, C0) ∩ U(F1, C1) ∩ · · · ∩ U(Fp, Cp) 	= ∅

if and only if, up to permutation, we have a chain

(F0, C0) ≺ (F1, C1) ≺ · · · ≺ (Fp, Cp) .

(4) Let (F0, C0) ≺ · · · ≺ (Fp, Cp) be a chain in Sal0(A). Then U(F0, C0)∩
U(F1, C1) ∩ · · · ∩ U(Fp, Cp) is contractible.

Moreover, if A is the Coxeter arrangement of a Vinberg system (W,S), we
shall prove the following.

(5) Let (F,C) ∈ Sal0(A) and w ∈W\{1}. Then wU(F,C) = U(wF,wC)
and U(F,C) ∩ U(wF,wC) = ∅.

By Theorem 2.1 and Proposition 2.2, Theorem 3.1 will be a straightforward
consequence of (1)–(5).

For (F,C) ∈ Sal0(A), the open subset U(F,C) will be of the form
U(F,C) = ω(F )× CF , where ω(F ) is an open subset of I. We turn now to
construct ω(F ) and study its properties.

Throughout the proof we adopt the following definitions and notations.
A chain of length p + 1 in F(A) is a sequence (F0, F1, . . . , Fp) in F(A)
such that F0 ≺ F1 ≺ · · · ≺ Fp. We set γ � γ′ if γ = (F0, F1, . . . , Fp)
and γ′ = (F ′0, F

′
1, . . . , F

′
q) are two chains in F(A) such that F0 = F ′0 and

{F1, . . . , Fp} ⊆ {F ′1, . . . , F ′q}. For F ∈ F(A), we denote by Chain(F ) the set
of chains γ = (F0, F1, . . . , Fp) such that F0 = F . More generally, if γ is a
chain, we denote by Chain(γ) the set of chains γ′ such that γ � γ′.

For all F ∈ F(A), we fix a point x(F ) ∈ F . If A is the Coxeter ar-
rangement of a Vinberg system (W,S), we choose the points x(F ) so that
w x(F ) = x(wF ) for all F ∈ F(A) and all w ∈ W . For a given chain
γ = (F0, F1, . . . , Fp) in F(A) we set

∆(γ) = {y + t1x(F1) + · · ·+ tpx(Fp) | y ∈ F0 and t1, . . . , tp > 0} .
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Note that ∆(F0, F1, . . . , Fp) ⊂ Fp. Note also that, if A is the Coxeter ar-
rangement of a Vinberg system (W,S), then

w∆(F0, F1, . . . , Fp) = ∆(wF0, w F1, . . . , w Fp)

for every chain (F0, F1, . . . , Fp) and every w ∈W .

For a given F ∈ F(A) we set

ω(F ) =
⋃

γ∈Chain(F )

∆(γ)

(see Figure 3.2). More generally, for a given chain γ in F(A), we set

ω(γ) =
⋃

γ′∈Chain(γ)

∆(γ′) .

Figure 3.2. — The set ω(F )

Claim 1. — Let F ∈ F(A). Then ω(F ) is an open subset of I.

Proof of Claim 1. — Let d be the codimension of F . For k � 0, we
denote by Id−k the union of facets of F(A) of codimension � d− k, and we
prove by induction on k that Id−k ∩ω(F ) is an open subset of Id−k. The set
Id ∩ω(F ) = F is obviously open in Id, thus we may assume that k � 1 plus
the induction hypothesis. If X is a subset of the cone I and x is a point in
I, the following set

{y + tx | y ∈ X and t > 0}
is called the open cone over X with direction x. Let G be a facet of codimen-
sion d − k. We denote by ∂G the union of the facets K such that K ≺ G.
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If F 	≺ G, then G ∩ ω(F ) = ∅. If F ≺ G, then ∂G ∩ ω(F ) is an open subset
of ∂G (by induction) and G ∩ ω(F ) is the open cone over ∂G ∩ ω(F ) with
direction x(G). This implies that Id−k ∩ ω(F ) is an open subset of Id−k.

Claim 2. — Let γ = (F0, F1, . . . , Fp) and γ′ = (F ′0, F
′
1, . . . , F

′
q) be two

chains in F(A). If q � p and ∆(γ) ∩ ∆(γ′) 	= ∅, then (F ′0, . . . , F
′
q) =

(Fp−q, . . . , Fp).

Proof of Claim 2. — We argue by induction on q. Suppose q = 0. Let
z ∈ ∆(F0, F1, . . . , Fp)∩∆(F ′0). Then z ∈ Fp∩F ′0, thus Fp∩F ′0 	= ∅, therefore
Fp = F ′0.

Suppose q > 0 plus the induction hypothesis. Let z ∈ ∆(F0, . . . , Fp) ∩
∆(F ′0, . . . , F

′
q). Notice that z ∈ Fp ∩ F ′q, thus Fp ∩ F ′q 	= ∅, hence Fp = F ′q.

We write z in the form z = y + t1 x(F1) + · · ·+ tp x(Fp), where y ∈ F0 and
t1, . . . , tp > 0. Similarly, we write z = y′ + t′1 x(F ′1) + · · · + t′q x(F ′q), where
y′ ∈ F ′0 and t′1, . . . , t

′
q > 0. Let z1 = y+ t1 x(F1)+ · · ·+ tp−1 x(Fp−1), and let

z′1 = y′+t′1 x(F ′1)+ · · ·+t′q−1 x(F ′q−1). Notice that z1 ∈ Fp−1 and z′1 ∈ F ′q−1.
If tp > t′q, then

z′1 = y + t1 x(F1) + · · ·+ tp−1 x(Fp−1) + (tp − t′q)x(Fp) ∈ Fp = F ′q .

This is a contradiction since z′1 ∈ F ′q−1. We prove in the same way that the
inequality tp < t′q cannot hold. It follows that tp = t′q, thus z1 = z′1. By
induction, we conclude that (F ′0, . . . , F

′
q−1) = (Fp−q, . . . , Fp−1).

Claim 3. — Let F ∈ F(A), and let z ∈ ω(F ). There exists a unique
chain γ ∈ Chain(F ) such that z ∈ ∆(γ).

Proof of Claim 3. — Let γ = (F0, . . . , Fp) and γ′ = (F ′0, . . . , F
′
q) be ele-

ments of Chain(F ) such that z ∈ ∆(γ)∩∆(γ′). We can assume without loss
of generality that q � p. By Claim 2, we have (F ′0, . . . , F

′
q) = (Fp−q, . . . , Fp).

Since, moreover, F0 = F ′0 = F , it follows that p = q and γ = γ′.

Claim 4. — Let F,G ∈ F(A). If ω(F ) ∩ ω(G) 	= ∅, then either F  G,
or G  F .

Proof of Claim 4. — Let F,G ∈ F(A) such that ω(F ) ∩ ω(G) 	= ∅.
There exist a chain γ = (F0, F1, . . . , Fp) lying in Chain(F ) and a chain γ′ =
(F ′0, . . . , F

′
q) lying in Chain(G) such that ∆(γ)∩∆(γ′) 	= ∅. We can assume

without loss of generality that q � p. By Claim 2, we have (F ′0, . . . , F
′
q) =

(Fp−q, . . . , Fp). Hence, F = F0  Fp−q = F ′0 = G.

A straightforward consequence of Claim 4 is the following.
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Claim 5. — Let F0, F1, . . . , Fp ∈ F(A). If ω(F0)∩· · ·∩ω(Fp) 	= ∅, then,
up to a permutation of the indices, we have a chain F0 ≺ F1 ≺ · · · ≺ Fp.

Claim 6. — Let γ = (F0, . . . , Fp) be a chain in F(A). Then

ω(F0) ∩ · · · ∩ ω(Fp) = ω(γ) .

Proof of Claim 6. — Since the inclusion ω(γ) ⊂ ω(F0) ∩ · · · ∩ ω(Fp)
is obvious, we only need to prove ω(F0) ∩ · · · ∩ ω(Fp) ⊂ ω(γ). Let z ∈
ω(F0) ∩ · · · ∩ ω(Fp). Since z ∈ ω(F0), there exists a chain δ = (G0, . . . , Gq)
lying in Chain(F0) such that z ∈ ∆(G0, . . . , Gq). Let i ∈ {1, . . . , p}. There
is also a chain δ′ = (G′0, . . . , G

′
r) lying in Chain(Fi) such that z ∈ ∆(δ′).

If q < r, then, by Claim 2, F0 = G0 = G′r−q. But, this is not possible
because, otherwise, we would have Fi = G′0  G′r−q = F0 and F0 ≺ Fi. So,
r � q and, again by Claim 2, Fi = G′0 = Gq−r. This shows that γ � δ, thus
z ∈ ∆(δ) ⊂ ω(γ).

Claim 7. — Let γ = (F0, . . . , Fp) be a chain in F(A). Then ω(γ) is
contractible.

Proof of Claim 7. — We choose y0 ∈ F0 and we set

z0 = y0 + x(F1) + · · ·+ x(Fp) .

For t ∈ [0, 1], we define the map ht : ω(γ) → ω(γ) as follows. Let z ∈ ω(γ).
Let δ = (G0, . . . , Gq) ∈ Chain(γ) such that z ∈ ∆(δ). There exist y ∈ F0 =
G0 and t1, . . . , tq > 0 such that z = y + t1 x(G1) + · · ·+ tq x(Gq). We set

ht(z) = t y + (1− t)y0 + u1(t)x(G1) + · · ·+ uq(t)x(Gq) ,

where

uj(t) =

{
t tj if Gj 	∈ {F1, . . . , Fp}
t tj + (1− t) if Gj ∈ {F1, . . . , Fp}

It is easily seen that the map

ω(γ)× [0, 1] → ω(γ)
(z, t) �→ ht(z)

is well-defined and continuous. Moreover, we have ht(z0) = z0 for all t ∈
[0, 1], h1 = Id, and h0(z) = z0 for all z ∈ ω(γ). This shows that {z0} is a
deformation retract of ω(γ).

Claim 8. — Suppose that A is the Coxeter arrangement of a Vinberg
system (W,S). For F ∈ F(A), we denote by WF = {w ∈W | wF = F} the
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stabilizer of F . Let F ∈ F(A), and let w ∈ W . If ω(F ) ∩ wω(F ) 	= ∅, then
w ∈WF .

Proof of Claim 8. — Suppose that ω(F ) ∩ wω(F ) 	= ∅. Let z ∈ ω(F ) ∩
wω(F ). There are chains γ = (F0, . . . , Fp) and γ′ = (F ′0, . . . , F

′
q) lying in

Chain(F ) such that

z ∈ ∆(γ) ∩ w∆(γ′) = ∆(F0, . . . , Fp) ∩∆(wF ′0, . . . w F ′q) .

Assume q � p. The case p � q is proved in the same way. By Claim 2,
(wF ′0, . . . , w F ′q) = (Fp−q, . . . , Fp). Since codimF0 = codimwF ′0 = codimF ,
it follows that p = q and w γ′ = γ. In particular, F = F0 = wF ′0 = wF ,
thus w ∈WF .

For (F,C) ∈ Sal0(A), we set

U(F,C) = ω(F )× CF .

We turn now to prove in the following claims that the set {U(F,C) | (F,C) ∈
Sal0(A)} satisfies (1)–(5).

Claim 9. — Let (F,C) ∈ Sal0(A). Then U(F,C) ⊂M(A).

Proof of Claim 9. — Let (x, y) ∈ U(F,C). Let G ∈ F(A) such that
x ∈ G. Since x ∈ ω(F ), we have F  G. Let H ∈ A. If H ∈ AF , then
y 	∈ H, since y ∈ CF , thus (x, y) 	∈ H × H. If H 	∈ AF , then H 	∈ AG,
since AG ⊂ AF . But, AG = {H ′ ∈ A | x ∈ H ′}, thus x 	∈ H, therefore
(x, y) 	∈ H ×H. This shows that (x, y) ∈M(A).

Claim 10. — Let (F,C), (G,D) ∈ Sal0(A). If U(F,C) = U(G,D), then
(F,C) = (G,D).

Proof of Claim 10. — We have F ⊂ ω(F ) and, if F ′ ∈ F(A) intersects
ω(F ), then F  F ′, thus ω(F ) determines F . This implies that F = G.
We have ω(F ) ∩ CF ⊂ C, thus U(F,C) = ω(F ) × CF determines C. This
implies that C = D.

Claim 11. — We have

M(A) ⊂
⋃

(F,C)∈Sal0(A)

U(F,C) .

Proof of Claim 11. — Let (x, y) ∈M(A). Let F ∈ F(A) such that x ∈ F .
Let H ∈ AF . Since x ∈ H, we have y 	∈ H. Hence, there exists a chamber C̃
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of AF such that y ∈ C̃. Let C ∈ C(A) such that F  C and CF = C̃. Then

(x, y) ∈ F × CF ⊂ ω(F )× CF = U(F,C) .

Claim 12. — Let (F,C), (G,D) ∈ Sal0(A). If U(F,C) ∩ U(G,D) 	= ∅,
then either (F,C)  (G,D), or (G,D)  (F,C).

Proof of Claim 12. — Suppose that U(F,C) ∩ U(G,D) 	= ∅. We have
ω(F )∩ω(G) 	= ∅, thus, by Claim 4, either F  G, or G  F . We can assume
without loss of generality that F  G. Then ∅ 	= CF ∩DG ⊂ CG ∩DG, thus
CG = DG, therefore CF ⊂ DG.

A straightforward consequence of Claim 12 is the following.

Claim 13. — Let (F0, C0), (F1, C1), . . . , (Fp, Cp) ∈ Sal0(A). If U(F0, C0)
∩ · · · ∩ U(Fp, Cp) 	= ∅, then, up to a permutation of the indices, we have a
chain

(F0, C0)  (F1, C1)  · · ·  (Fp, Cp) .

Claim 14. — Let ((F0, C0), . . . , (Fp, Cp)) be a chain in Sal0(A). Then

U(F0, C0) ∩ U(F1, C1) ∩ · · · ∩ U(Fp, Cp) = ω(F0, . . . , Fp)× (C0)F0 .

Proof of Claim 14. — Since (C0)F0 ⊂ (Ci)Fi for all i ∈ {1, . . . , p}, by
Claim 6 we have

U(F0, C0) ∩ · · · ∩ U(Fp, Cp) = (ω(F0) ∩ · · · ∩ ω(Fp))× (C0)F0

= ω(F0, . . . , Fp)× (C0)F0 .

Claim 15. — Let ((F0, C0), . . . , (Fp, Cp)) be a chain in Sal0(A). Then
U(F0, C0) ∩ · · · ∩ U(Fp, Cp) is nonempty and contractible.

Proof of Claim 15. — ω(F0, . . . , Fp) is contractible by Claim 7, and CF
is contractible since it is convex. Both spaces are obviously nonempty.

Claim 16. — Suppose A is the Coxeter arrangement of a Vinberg system
(W,S). Let (F,C) ∈ Sal0(A), and let w ∈ W \ {1}. Then wU(F,C) ∈
Sal0(A) and U(F,C) ∩ wU(F,C) = ∅.

Proof of Claim 16. — We have wU(F,C) = U(wF,wC) ∈ Sal0(A).
Recall that WF = {w ∈ W | wF = F}. Since W acts freely on C(A),
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the group WF acts freely on {C ∈ C(A) | F  C}. If w 	∈ WF , then,
by Claim 8, ω(F ) ∩ wω(F ) = ∅. If w ∈ WF , then F  wC and C 	=
wC, thus CF 	= wCF , therefore CF ∩ wCF = ∅. In both cases we have
U(F,C) ∩ U(wF,wC) = ∅. �

3.2. Salvetti complex of a Coxeter system

Recall that, for a given Coxeter system (W,S), we denote by Sf the
set of subsets X of S such that WX is finite. The following lemma is a
preliminary to the definition of the Salvetti complex of a Coxeter graph.

Lemma 3.2. — Let Γ be a Coxeter graph, and let (W,S) be its Coxeter
system. Let  be the relation on W × Sf defined as follows.

(u,X)  (v, Y )

if
X ⊂ Y , v−1u ∈WY , and v−1u is (∅, X)-minimal.

Then  is a partial order relation.

Proof. — Let (u,X) ∈ W × Sf . We have X ⊂ X, u−1u = 1 ∈ WX , and
u−1u = 1 is (∅, X)-minimal, thus (u,X)  (u,X).

Let (u,X), (v, Y ) ∈ W × Sf such that (u,X)  (v, Y ) and (v, Y )  
(u,X). We have X ⊂ Y ⊂ X, thus X = Y . We have v−1u ∈WX and v−1u
is (∅, X)-minimal. But, the only (∅, X)-minimal element lying in WX is 1,
thus v−1u = 1, therefore v = u.

Let (u,X), (v, Y ), (w,Z) ∈ W × Sf such that (u,X)  (v, Y )  (w,Z).
We have X ⊂ Y and Y ⊂ Z, thus X ⊂ Z. We also have w−1v ∈ WZ and
v−1u ∈ WY ⊂ WZ , thus w−1u = w−1v v−1u ∈ WZ . Now, because w−1v
is (∅, Y )-minimal and v−1u is (∅, X)-minimal, by Proposition 2.9, for all
u0 ∈WX we have the following equalities.

lg(w−1uu0) = lg(w−1v v−1uu0) = lg(w−1v) + lg(v−1uu0)

= lg(w−1v) + lg(v−1u) + lg(u0)

= lg(w−1v v−1u) + lg(u0) = lg(w−1u) + lg(u0) .

By Proposition 2.9 it follows that w−1u is (∅, X)-minimal. So, (u,X)  
(w,Z). �

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. The
Salvetti complex of Γ, denoted by Sal(Γ), is defined to be the geometric
realization of the derived complex of (W × Sf , ). Note that the action of
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W on W×Sf defined by w ·(u,X) = (wu,X), w ∈W and (u,X) ∈W×Sf ,
preserves the ordering. Hence, it induces an action of W on Sal(Γ).

Now, we take a Vinberg system (W,S) and we denote by Γ the Coxeter
graph of (W,S), viewed as a Coxeter system. We go back to the notations
and definitions of Subsection 2.3. So, A denotes the Coxeter arrangement
of (W,S), C0 denotes the fundamental chamber of (W,S), F(C0) denotes
the set of facets F of A such that F  C0, and Pf = {wWX | w ∈
W and X ∈ Sf}. Recall also that we have bijective maps ι : Sf → P(C0)
and ι̃ : Pf → F(A) whose properties are stated in Theorem 2.10. We define
the map ϕ : W × Sf → Sal0(A) as follows

ϕ(w,X) = (ι̃(wWX), ι̃(w)) = (w(ι(X)), w(C0)) .

The main result of this subsection is the following.

Theorem 3.3. — The map ϕ is a bijective map which satisfies the fol-
lowing property.

(∗) Let (u,X), (v, Y ) ∈ W × Sf . We have (u,X)  (v, Y ) if and only if
ϕ(v, Y )  ϕ(u,X).

Before proving Theorem 3.3, we first give two important consequences.
By construction, the map ϕ induces a homeomorphism h : Sal(Γ)→ Sal(A).
Moreover, ϕ being equivariant, the homeomorphism h is also equivariant.
Combining this with Theorem 3.1 we obtain the following.

Corollary 3.4. — There exists a homotopy equivalence f : Sal(Γ) →
M(W,S) equivariant under the actions of W and that induces a homotopy
equivalence f̄ : Sal(Γ)/W →M(W,S)/W = N(W,S).

The following result is a direct consequence of Corollary 3.4. It was
previously proved by Charney and Davis [13].

Corollary 3.5. — The homotopy type of N(W,S) (resp. M(W,S)) de-
pends only on the Coxeter graph Γ.

Proof of Theorem 3.3. — Let (F,C) ∈ Sal0(A). There exists w ∈W such
that C = w(C0). We have w−1(F )  w−1(C) = C0, thus w−1(F ) ∈ F(C0),
therefore there exists X ∈ Sf such that w−1(F ) = ι(X). Hence, (F,C) =
ϕ(w,X). This shows that ϕ is a surjective map.
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Let (u,X), (v, Y ) ∈ W × Sf such that ϕ(u,X) = ϕ(v, Y ) = (F,C). We
have u(C0) = v(C0) = C, thus u = v. Moreover, ι(X) = ι(Y ) = u−1(F ),
thus X = Y . This shows that ϕ is injective.

Let (u,X), (v, Y ) ∈ W × Sf such that (u,X)  (v, Y ). Set (F,C) =
ϕ(u,X) and (G,D) = ϕ(v, Y ). We have X ⊂ Y and u can be written
in the form u = vw, where w ∈ WY and w is (∅, X)-minimal. We have
ι(Y )  ι(X) by Theorem 2.10.I, thus ι(Y ) = w−1(ι(Y ))  w−1(ι(X)),
therefore v(ι(Y )) = G  u(ι(X)) = F . Let H ∈ AF . We have u−1(H) ∈
Aι(X). By Theorem 2.10.I, there exists a reflection r lying in WX such
that u−1(H) = Hr. By Theorem 2.10.III, u−1(H) does not separate C0 and
w−1(C0), thus H does not separate u(C0) = C and uw−1(C0) = v(C0) = D.
It follows that CF = DF , thus DG ⊂ CF . Hence, (G,D)  (F,C).

Let (u,X), (v, Y ) ∈ W × Sf . We set (F,C) = ϕ(u,X) and (G,D) =
ϕ(v, Y ), and we assume that (G,D)  (F,C). Let w = v−1u (thus u = vw).
Since G = ι̃(vWY )  F = ι̃(uWX), by Theorem 2.10.II, uWX ⊂ vWY , thus,
again by Theorem 2.10.II, X ⊂ Y and u ∈ vWY . The later inclusion implies
that w ∈ WY . Let r be a reflection lying in WX . We have Hr ∈ Aι(X) by
Theorem 2.10.I, thus u(Hr) ∈ AF . Since CF = DF , u(Hr) does not separate
C and D, thus Hr does not separate u−1(C) = C0 and u−1(D) = w−1(C0).
By Theorem 2.10.III, it follows that w is (∅, X)-minimal. We conclude that
(u,X)  (v, Y ). �

3.3. Cellular decompositions and fundamental groups

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. For
all s ∈ S we set W s = WS\{s}. The Coxeter complex of Γ, denoted by
Cox = Cox(Γ), is the simplicial complex defined as follows.

(a) The set of vertices of Cox is the set of cosets {wW s | w ∈W and s ∈
S}.

(b) A family {w0W
s0 , w1W

s1 , . . . , wpW
sp} is a simplex of Cox if the in-

tersection w0W
s0 ∩ · · · ∩ wpW

sp is nonempty.

For X ⊂ S, X 	= ∅, we set WX = WS\X . Let X ⊂ S, X 	= ∅, and let w ∈
W . With the coset wWX we associate the simplex ∆(wWX) = {wW s | s ∈
X} of Cox. Every simplex has this form, and we have ∆(uWX) = ∆(vWY )
if and only if uWX = vWY . The Coxeter complexes play a prominent role in
the definition and the study of Tits buildings. We refer to [1] for a detailed
study of these complexes and their applications to Tits buildings. In this
paper we will use the following result. This is well-known and can be found
for instance in [1].
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Proposition 3.6. — Let Γ be a Coxeter graph of spherical type. Then
|Cox(Γ)| is (homeomorphic to) a sphere of dimension |S| − 1.

Set P0 = P0(Γ) = {wWX | w ∈ W, X ⊂ S and X 	= S} = {wWY | w ∈
W, Y ⊂ S and Y 	= ∅}, and P = P(Γ) = {wWX | w ∈ W and X ⊂ S}
that we order by the inclusion. Note that, if Γ is of spherical type, then P
coincides with the set Pf defined in Subsection 2.3. Observe also that |P ′| is
the cone over |P ′0|. On the other hand, by the above, P0 is (isomorphic to)
the barycentric subdivision of |Cox(Γ)|. Then the following result follows
from Proposition 3.6.

Corollary 3.7. — Let Γ be a Coxeter graph of spherical type. Then
the geometric realization |P ′| of the derived complex of P is homeomorphic
to a disk of dimension |S|, whose boundary is the geometric realization |P ′0|
of the derived complex of P0.

There is a “geometric” way to describe the Coxeter complex and see
Proposition 3.6. Recall the construction of the canonical representation (see
Subsection 2.2). We take an abstract set {es | s ∈ S} in one-to-one cor-
respondence with S, and we denote by V the real vector space with basis
{es | s ∈ S}. There is a symmetric bilinear form B : V × V → R, and a
faithful linear representation ρ : W → GL(V ) that leaves invariant the form
B and which is called canonical representation.

Assume that Γ is of spherical type. Then B is positive definite (see
Theorem 2.6), thus we can identify V ∗ with V via the form B. For all s ∈ S,
we set Hs = {x ∈ V | B(x, es) = 0}. This is the hyperplane orthogonal to
es. Then ρ(s) = ρ∗(s) is the orthogonal reflection with respect to Hs for all
s ∈ S, and W , identified with ρ(W ), is a (finite) linear group generated by
reflections. In this case the Tits cone is I = V . Recall that A denotes the
set of reflection hyperplanes of W . This is a finite hyperplane arrangement
in V . We observe that the arrangement A defines a cellular decomposition
of the sphere S|S|−1 = {x ∈ V | B(x, x) = 1}. The proof of the following
can be found in [1].

Proposition 3.8. — The cellular decomposition of S|S|−1 determined
by A is a simplicial decomposition which is isomorphic to Cox(Γ).

Example. — Let m ∈ N, m � 2. We identify R2 with C, we denote by
H0 the (real) line spanned by 1, by H1 the line spanned by eiπ/m, by s the
orthogonal reflection with respect to H0, and by t the orthogonal reflection
with respect to H1. Let W be the group generated by s and t. Then W is
the dihedral group of order 2m and has the presentation

W = 〈s, t | s2 = t2 = (st)m = 1〉 .
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For k ∈ {0, 1, . . . ,m − 1}, we denote by Hk the line spanned by eikπ/m.
Then A = {Hk | 0 � k � m− 1}. The cellular decomposition of S1 defined
by A is composed by 2m vertices and 2m edges (see Figure 3.3). Let C̄0 be
the closed cone spanned by 1 and eiπ/m. Then a0 = C̄0 ∩ S1 is an edge of
the decomposition, and W acts freely and transitively on the set of edges.
For w ∈ W , the 1-simplex of Cox corresponding to w a0 is ∆(wW {s,t}) =
∆(w ·{1}). The vertices adjacent to the edge w a0 correspond to the vertices
wW s = w · {1, t} and wW t = w · {1, s} of Cox.

Figure 3.3. — Coxeter complex

We turn back to the assumption that Γ is any Coxeter graph. Let
(u,X) ∈W × Sf . Set

C(u,X) = {(v, Y ) ∈W × Sf | (v, Y )  (u,X)} .

Furthermore, let wWY ∈ P(ΓX), and let w0 be the (∅, Y )-minimal element
lying in wWY . With the coset wWY we associate the element (uw0, Y ) of
W × Sf , that we denote by f(wWY ). The key point in the construction of
the cellular decomposition of Sal(Γ) is the following.

Lemma 3.9. — Let (u,X) ∈ W × Sf . Then f(wWY ) ∈ C(u,X) for all
wWY ∈ P(ΓX), and the map f : P(ΓX) → C(u,X) is a poset isomorphism.

Proof. — Let wWY ∈ P(ΓX). We can assume without loss of generality
that w is (∅, Y )-minimal. Since Y ⊂ X, w ∈ WX , and w is (∅, Y )-minimal,
we have f(wWY ) = (uw, Y )  (u,X). So, f(wWY ) ∈ C(u,X).

If (v, Y ) ∈ C(u,X), then (v, Y ) = f(u−1vWY ). So, f is surjective. On
the other hand, if f(wWY ) = (v′, Y ′), then Y = Y ′ and wWY = u−1v′WY ,
thus wWY is entirely determined by its image. So, f is injective.
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Let w1WY1
, w2WY2

∈ P(ΓX). We can assume without loss of general-
ity that w1 is (∅, Y1)-minimal and w2 is (∅, Y2)-minimal. Suppose w1WY1 ⊂
w2WY2 . Then Y1 ⊂ Y2 and w1 ∈ w2WY2 (see Theorem 2.10.II). By Proposi-
tion 2.9, w1 is of the form w1 = w2w

′
1, where lg(w1) = lg(w2) + lg(w′1), and

w′1 ∈WY2
. Moreover, w′1 is (∅, Y1)-minimal because w1 is. Since f(w1WY1

) =
(uw1, Y1) = (uw2w

′
1, Y1) and f(w2WY2

) = (uw2, Y2), it follows that f(w1WY1
)

 f(w2WY2
). Suppose that f(w1WY1

)  f(w2WY2
). Then Y1 ⊂ Y2 and

w−1
2 w1 ∈WY2 , thus w1WY1 ⊂ w2WY2 . �

We describe the cellular decomposition of Sal(Γ) as follows. For all w ∈
W we have a vertex x(w) corresponding to the poset w {1}. The 0-skeleton
of Sal(Γ) is {x(w) | w ∈ W}. For p ∈ N, the set of p-cells of Sal(Γ) is
{|C(u,X)′| | (u,X) ∈ W × Sf and |X| = p}, and the p-skeleton Sal(Γ)p is
the union of these cells. Lemma 3.9 and Corollary 3.7 imply that this defines
a regular cellular decomposition of Sal(Γ).

For (u,X) ∈ W × Sf with |X| = p, we denote by B(u,X) = |C(u,X)′|
the cell of Sal(Γ)p associated to (u,X), and we denote by ϕu,X : ∂B(u,X) →
Sal(Γ)p−1 the gluing map.

We denote by Sal(Γ) the quotient of Sal(Γ) under the action of W . Then
the cellular decomposition of Sal(Γ) determines a cellular decomposition of
Sal(Γ) that is described as follows. Let X ∈ Sf . The orbit of the cell B(1, X)
under the action of W is {B(u,X) | u ∈ W}. With this orbit we associate
a cell B̄(X) of Sal(Γ) of dimension |X| and homeomorphic to B(1, X) via
a homeomorphism hX : B̄(X) → B(1, X). The set of cells of Sal(Γ) of
dimension p is {B̄(X) | X ∈ Sf and |X| = p}. For X ∈ Sf such that
|X| = p, the gluing map ϕ̄X : ∂B̄(X) → Sal(Γ)p−1 is defined as follows.

ϕ̄X = π ◦ ϕ1,X ◦ hX : ∂B̄(X) → Sal(Γ)p−1 ,

where π : Sal(Γ) → Sal(Γ) denotes the natural projection. Note that ϕ̄X
is not in general a homeomorphism onto its image, thus Sal(Γ) is not a
regular CW-complex. Note also that B(1, X) can be viewed as embedded
into Sal(Γ), but B̄(X) cannot be viewed as embedded into Sal(Γ).

For practical reasons (in particular, for calculating fundamental groups),
and in order to better understand these complexes, we turn now to describe
the p-skeletons of Sal(Γ) and Sal(Γ) for p = 0, 1, 2.

0-skeleton. As mentioned before, the 0-skeleton of Sal(Γ) is a set {x(w) |
w ∈ W} in one-to-one correspondence with W . The 0-skeleton of Sal(Γ) is
reduced to a point that we denote by x0.
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1-skeleton. With every (u, s) ∈ W × S is associated an edge B(u, {s}) of
Sal(Γ) whose extremities are x(u) and x(us). We denote this edge by a(u, s),
and we assume it to be oriented from x(u) to x(us). So, for u, v ∈ W , if
v is of the form v = us with s ∈ S, there is an edge a(u, s) going from
x(u) to x(v), and there is another edge a(v, s) going from x(v) to x(u) (see
Figure 3.4). On the other hand, there is no edge joining x(u) and x(v) if
v is not of the form v = us with s ∈ S. With every s ∈ S is associated
an edge ās = B̄({s}) of Sal(Γ) whose extremities are both equal to x0. Let
s ∈ S. It is easily seen that the action of W on {a(u, s) | u ∈ W} preserves
the orientations of the a(u, s), thus it induces an orientation on ās. So, we
assume ās to be endowed with this orientation.

Figure 3.4. — Edges in Sal(Γ) and in Sal(Γ)

2-skeleton. Let s, t ∈ S, s 	= t. Note that we have {s, t} ∈ Sf if and only if
ms,t 	= ∞. Assume m = ms,t 	=∞. With every u ∈W is associated a 2-cell
of Sal(Γ), B(u, {s, t}), whose boundary is

a(u, s) a(us, t) · · · a(uΠ(s, t : m− 1), t)
a(uΠ(t, s : m− 1), s)−1 · · · a(ut, s)−1 a(u, t)−1

if m is even, and

a(u, s) a(us, t) · · · a(uΠ(s, t : m− 1), s)
a(uΠ(t, s : m− 1), t)−1 · · · a(ut, s)−1 a(u, t)−1

if m is odd (see Figure 3.5). The W -orbit of 2-cells {B(u, {s, t}) | u ∈ W}
determines the 2-cell B̄({s, t}) of Sal(Γ). By the above, the boundary curve
of B̄({s, t}) is

ās āt · · · āt ā−1
s · · · ā−1

s ā−1
t = Π(ās, āt : m) Π(āt, ās : m)−1

if m is even, and

ās āt · · · ās ā−1
t · · · ā−1

s ā−1
t = Π(ās, āt : m) Π(āt, ās : m)−1

if m is odd (see Figure 3.5).
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Figure 3.5. — 2-cells in Sal(Γ) and in Sal(Γ)

A straightforward consequence of these descriptions and of Theorem 2.3
is the following.

Theorem 3.10. — We have π1(Sal(Γ), x0) = AΓ, π1(Sal(Γ), x(1)) =
CAΓ, and the exact sequence associated with the regular covering Sal(Γ)→
Sal(Γ) is the following.

1 −→ CAΓ −→ AΓ
θ−→W −→ 1 .

Corollary 3.11 (Van der Lek [35]). — Let (W,S) be a Vinberg system.
Let Γ be the Coxeter graph of (W,S), viewed as a Coxeter system. Then
π1(N(W,S)) = AΓ, π1(M(W,S)) = CAΓ, and the exact sequence associated
with the regular covering M(W,S) → N(W,S) is the following.

1 −→ CAΓ −→ AΓ
θ−→W −→ 1 .

4. K(π, 1) problem for spherical type Artin groups

In this section we first describe the universal cover S̃al(Γ) of the Savetti
complex of any Coxeter graph Γ (see Subsection 4.1). Afterwards we prove

that a certain subcomplex S̃al
+
(Γ) of S̃al(Γ) is contractible (see Subsection

4.2). At the end, we prove that S̃al(Γ) is contractible if Γ is of spherical type
(see Subsection 4.3).
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4.1. Universal cover of the Salvetti complex

We take a Coxeter graph Γ, and we denote by (A,Σ) the Artin system
of Γ. Recall the homomorphism θ : A → W which sends σs to s for all
s ∈ S. Recall also that θ has a natural set-section τ : W → A defined as
follows (see Subsection 2.2). Let w ∈ W . We choose a reduced expression
µ = s1 · · · s� of w and we set τ(w) = σs1 · · ·σs� .

Lemma 4.1. — Let  be the relation on A× Sf defined by

(α,X)  (β, Y )

if X ⊂ Y and α can be written in the form α = β τ(w), where w ∈WY and
w is (∅, X)-minimal. Then  is a partial order relation.

Proof. — We cleary have (α,X)  (α,X) for all (α,X) ∈ A × Sf . Let
(α,X), (β, Y ) ∈ A× Sf such that (α,X)  (β, Y ) and (β, Y )  (α,X). We
have X ⊂ Y and Y ⊂ X, thus X = Y . By definition, α can be written in
the form α = β τ(u), where u ∈WX and u is (∅, X)-minimal. But, the only
(∅, X)-minimal element lying in WX is 1, thus u = 1 and α = β.

Let (α,X), (β, Y ), (γ, Z) ∈ A × Sf such that (α,X)  (β, Y ) and
(β, Y )  (γ, Z). We have X ⊂ Y ⊂ Z. Moreover, α can be written in
the form α = β τ(u), where u ∈WY and u is (∅, X)-minimal, and β can be
written in the form β = γ τ(v), where v ∈WZ , and v is (∅, Y )-minimal. Set
w = vu. Since u ∈WY and v is (∅, Y )-minimal, by Proposition 2.9, we have
lg(w) = lg(v) + lg(u), thus τ(w) = τ(v) τ(u). Hence, α = γ τ(w). We have
w ∈WZ , since v, u ∈WZ . On the other hand, one can easily prove following
the same arguments as in the proof of Lemma 3.2 that w is (∅, X)-minimal.
So, (α,X)  (γ, Z). �

We denote by S̃al(Γ) the geometric realization of the derived complex of
(A× Sf , ). The action of A on A× Sf defined by

β (α,X) = (βα,X)

induces a free and properly discontinuous action of A on S̃al(Γ). It is easily

shown that S̃al(Γ)/CA = Sal(Γ) and S̃al(Γ)/A = Sal(Γ). Hence, since the
fundamental group of Sal(Γ) is A, we have the following.

Proposition 4.2. — S̃al(Γ) is the universal cover of Sal(Γ) and of Sal(Γ).
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4.2. The subcomplex S̃al
+
(Γ)

Recall that the Artin monoid of a Coxeter graph Γ is the monoid A+
Γ

that admits the following monoid presentation:

A+
Γ = 〈Σ | Π(σs, σt : ms,t) = Π(σt, σs : ms,t) for all s, t ∈ S, s 	= t, ms,t 	= ∞〉+ .

By [42], the natural homomorphism A+
Γ → AΓ is injective.

We define S̃al
+
(Γ) to be the geometric realization of the derived complex

of (A+
Γ×Sf , ), where  is the restriction to A+

Γ×Sf of the ordering defined
in Lemma 4.1. The main result of this subsection is the following.

Theorem 4.3. — The subcomplex S̃al
+
(Γ) is contractible.

The remainder of the subsection is dedicated to the proof of Theorem
4.3.

Let V = R�, and let H1, . . . , Hk be hyperplanes of V . For each i ∈
{1, . . . , k} we take a linear form αi : V → R such that Kerαi = Hi. We
say that H1, . . . , Hk are independent if α1, . . . , αk are linearly independent
in V ∗.

Lemma 4.4. — Let I be a nonempty open convex cone in V = R�, and
let H1, . . . , Hk be independent hyperplanes. Set L = H1 ∩ · · · ∩ Hk, and
assume that L ∩ I 	= ∅. So, we have Hi ∩ I 	= ∅ for all i ∈ {1, . . . , k}. For
each i ∈ {1, . . . , k} we take an open half-space bounded by Hi that we denote
by H+

i . Then (∪ki=1H
+
i ) ∩ I is contractible.

Proof. — We choose a basis {e1, . . . , e�} for V so that Hi is defined by
the equality xi = 0 with respect to this basis, and H+

i is defined by the
inequality xi > 0, for all i ∈ {1, . . . , k}. Choose a point p0 ∈ L ∩ I. Since
p0 ∈ L, it can be written in the form p0 = λk+1ek+1 + · · · + λ�e�, where
λk+1, . . . , λ� ∈ R. Since I is open, there is ε > 0 such that

q0 = εe1 + · · ·+ εek + p0 = εe1 + · · ·+ εek + λk+1ek+1 + · · ·+ λ�e� ∈ I .

For all t ∈ [0, 1] we define ht : V → V by

ht(p) = (1− t)p + t q0 , p ∈ V .

It is easily checked that ht(p) ∈ (∪ki=1H
+
i ) ∩ I if p ∈ (∪ki=1H

+
i ) ∩ I, that

h0(p) = p for all p ∈ V , that h1(p) = q0 for all p ∈ V , and that ht(q0) = q0
for all t ∈ [0, 1]. �

Recall that Pf denotes the set {wWX | w ∈ W and X ∈ Sf} (see
Subsection 2.3). Note that every coset wWX ∈ Pf is uniquely represented by
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the pair (u,X), where u is the unique (∅, X)-minimal element lying in wWX .
For s ∈ S, we say that the coset wWX is s-minimal if lg(su) = lg(u) + 1
and su is (∅, X)-minimal. We denote by Pfs the set of cosets wWX lying
in Pf that are s-minimal, and we assume Pfs ordered by the inclusion. For
X0 ∈ Sf , X0 	= ∅, we set

PfX0
=

⋃

s∈X0

Pfs .

Lemma 4.5. — Let s ∈ S, and let uWX , vWY ∈ Pf . If uWX ∈ Pfs and
vWY ⊂ uWX , then vWY ∈ Pfs .

Proof. — We can assume without loss of generality that u is (∅, X)-
minimal and that v is (∅, Y )-minimal. We observe that, by Proposition 2.9,
we have uWX ∈ Pfs if and only if lg(suw) = lg(u)+lg(w)+1 for all w ∈WX .
Since vWY ⊂ uWX , we have Y ⊂ X and v ∈ uWX . We write v = uv′, where
v′ ∈WX . Since u is (∅, X)-minimal, we have lg(v) = lg(u)+lg(v′). Moreover,
since v is (∅, Y )-minimal, v′ is also (∅, Y )-minimal. Let w ∈WY . Then

lg(svw) = lg(suv′w) = lg(u) + lg(v′w) + 1

= lg(u) + lg(v′) + lg(w) + 1 = lg(v) + lg(w) + 1 .

This shows that vWY ∈ Pfs . �

Lemma 4.6. —

(1) The geometric realization |(Pf )′| of the derived complex of Pf is con-
tractible.

(2) Let X0 ∈ Sf , X0 	= ∅. Then the geometric realization |(PfX0
)′| of the

derived complex of PfX0
is contractible.

Proof. — Let ρ∗ : W → GL(V ∗) be the dual representation of the canon-
ical representation. Recall that, by Theorem 2.5, this representation is faith-
ful and, (W,S), identified with (ρ∗(W ), ρ∗(S)), is a Vinberg system. We de-
note by I the Tits cone, and by A the Coxeter arrangement in I associated
to (W,S). For a reflection r lying in W we denote by Hr the fix hyperplane
of r. Note that, by construction, the set {Hs | s ∈ S} is independent.

We denote by C0 the fundamental chamber, and by F(C0) the set of
facets F of A such that F  C0. Recall that we have a bijection ι : Sf →
F(C0), and this bijection extends to a bijection ι̃ : Pf → F(A), uWX �→
u ι(X). Moreover, we have uWX ⊂ vWY if and only if v ι(Y )  u ι(X) (see
Theorem 2.10).
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For all s ∈ S, we denote by H+
s the open half-space bounded by Hs and

containing C0. For X0 ∈ Sf , X0 	= ∅, we set

Ω(X0) =

( ⋃

s∈X0

H+
s

)
∩ I .

Note that ι(X0) is contained in ∩s∈X0Hs, thus (∩s∈X0Hs)∩I 	= ∅, therefore,
by Lemma 4.4, Ω(X0) is contractible.

Claim 1. — Let s ∈ S, and let uWX ∈ Pf . We have uWX ∈ Pfs if and
only if u ι(X) is contained in H+

s .

Proof of Claim 1. — We can assume without loss of generality that u is
(∅, X)-minimal. Set F = u ι(X). Observe that F is contained in H+

s if and
only if C is contained in H+

s for every chamber C ∈ C(A) satisfying F  C.

Suppose that uWX ∈ Pfs . Let C ∈ C(A) such that F  C. By Theorem
2.10.I, there exists w ∈WX such that C = uw(C0). Then

lg(suw) = lg(uw) + 1 (since uWX ∈ Pfs )
⇒ lg(w−1u−1s) = lg(w−1u−1) + 1
⇒ C = uw(C0) ⊂ H+

s (by Theorem 2.10.III)

This shows that F is included in H+
s .

Suppose now that F is included in H+
s . Let w ∈ WX . Set C = uw(C0).

Since F  C, we have C ⊂ H+
s . By Theorem 2.10.III, it follows that

lg(w−1u−1s) = lg(w−1u−1)+1 ⇒ lg(suw) = lg(uw)+1 = lg(u)+lg(w)+1 .

This shows that uWX ∈ Pfs .

For every facet F of A, we denote by ω(F ) the set defined in the proof of
Theorem 3.1 (see Figure 3.2). For uWX ∈ Pf , we set ω(uWX) = ω(u ι(X)).
Let s ∈ S, and let uWX ∈ Pfs . Set F = u ι(X). By Claim 1, we have F ⊂
H+
s . Moreover, if G is a facet of A such that F  G, then G ⊂ H+

s . Since
ω(uWX) = ω(F ) is contained in the union of the facets G of A satisfying
F  G, it follows that ω(uWX) ⊂ H+

s . This proves the following.

Claim 2. —

(1) The set {ω(uWX) | uWX ∈ Pf} is a cover of I by open subsets.

(2) Let X0 ∈ Sf , X0 	= ∅. Then the set {ω(uWX) | uWX ∈ PfX0
} is a

cover of Ω(X0) by open subsets.
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By Claims 5, 6, and 7 in the proof of Theorem 3.1, we have

ω(u0WX0) ∩ ω(u1WX1) ∩ · · · ∩ ω(upWXp) 	= ∅

if and only if, up to permutation, we have

upWXp ⊂ · · · ⊂ u1WX1
⊂ u0WX0

.

Moreover, in that case, this intersection is contractible. By Theorem 2.1,
it follows that |(Pf )′| has the same homotopy type as I, thus |(Pf )′| is

contractible. Similarly, if X0 ∈ Sf , X0 	= ∅, then |(PfX0
)′| has the same

homotopy type as Ω(X0), thus |(PfX0
)′| is contractible by Lemma 4.4. �

We turn back to the universal cover S̃al(Γ) of the Salvetti complex.
For α ∈ AΓ, we set C̃(α) = {(ατ(u), X) | X ∈ Sf , u ∈ W and u is
(∅, X)-minimal}. We restrict the ordering of AΓ×Sf to C̃(α), and we denote

by Φ(α) ⊂ S̃al(Γ) the geometric realization of the derived complex of C̃(α).

Let α ∈ AΓ, and let uWX ∈ Pf . We can assume without loss of generality
that u is (∅, X)-minimal. Then we set fα(uWX) = (ατ(u), X) ∈ C̃(α).

Lemma 4.7. — Let α ∈ AΓ. Then the map fα : Pf → C̃(α) is a poset
isomorphism. In particular, it induces a homeomorphism fα : |(Pf )′| →
Φ(α). Hence, by Lemma 4.6, Φ(α) is contractible.

Proof. — It is easily seen that fα is bijective. Let uWX , vWY ∈ Pf . We
assume without loss of generality that u is (∅, X)-minimal and v is (∅, Y )-
minimal. Suppose that uWX ⊂ vWY . Then X ⊂ Y and u ∈ vWY . Let
u′ ∈ WY such that u = vu′. Since v is (∅, Y )-minimal, we have lg(u) =
lg(v) + lg(u′), thus τ(u) = τ(v) τ(u′). Moreover, u′ is (∅, X)-minimal, since
u is. This implies that (α τ(u), X) = (α τ(v) τ(u′), X)  (α τ(v), Y ).

Suppose that (α τ(u), X)  (α τ(v), Y ). Then X ⊂ Y and α τ(u) can be
written in the form α τ(u) = α τ(v) τ(u′), where u′ ∈ WY and u′ is (∅, X)-
minimal. The latter equality implies that u = vu′ ∈ vWY , thus uWX ⊂
vWY . �

For n ∈ N, we set

S̃al
(n)

(Γ) =
⋃

α∈A+
Γ
, lg(α)�n

Φ(α) .

Note that

S̃al
+
(Γ) =

⋃

α∈A+
Γ

Φ(α) =

∞⋃

n=0

S̃al
(n)

(Γ) .
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Lemma 4.8. — Let n ∈ N, and let α, β ∈ A+
Γ such that α 	= β and

lg(α) = lg(β) = n + 1. Then Φ(α) ∩ Φ(β) ⊂ S̃al
(n)

(Γ).

Proof. — For n ∈ N, we set

S̃al
(n)

0 (Γ) =
⋃

α∈A+
Γ
, lg(α)�n

C̃(α) .

Since Φ(α) = |C̃(α)′| and Φ(β) = |C̃(β)′|, we have

Φ(α) ∩ Φ(β) = |(C̃(α) ∩ C̃(β))′| .

Hence, in order to prove Lemma 4.8, it suffices to show that C̃(α)∩ C̃(β) ⊂
S̃al

(n)

0 (Γ).

Let (γ, Z) ∈ C̃(α) ∩ C̃(β). There exist u, v ∈ W , both (∅, Z)-minimal,
such that γ = α τ(u) = β τ(v). Since τ(u)  R γ and τ(v)  R γ, the element
τ(u)∨R τ(v) exists, and, by Proposition 2.12, there exists w ∈W such that
τ(u) ∨R τ(v) = τ(w).

Let µ ∈ A+
Γ such that τ(w) = µ τ(u). Set u′ = θ(µ). Note that w =

θ(τ(w)) = u′ u. We have

lg(w) � lg(u′) + lg(u) � lg(µ) + lg(τ(u)) = lg(τ(w)) = lg(w) ,

thus µ = τ(u′) and lg(w) = lg(u′) + lg(u). Similarly, there exists v′ ∈ W
such that w = v′ v and lg(w) = lg(v′) + lg(v). Note that this implies that
τ(w) = τ(u′) τ(u) = τ(v′) τ(v).

Let γ0 ∈ A+
Γ such that γ = γ0 τ(w). By left cancellation, we have α =

γ0τ(u′) and β = γ0τ(v′). These two equalities imply that lg(γ0) � n + 1.
Moreover, if we had lg(γ0) = n + 1 = lg(α) = lg(β), then we would have
γ0 = α = β, which is not true. Hence, lg(γ0) � n. So, in order to prove that

(γ, Z) ∈ S̃al
(n)

0 (Γ), it suffices to show that w is (∅, Z)-minimal.

Suppose that w is not (∅, Z)-minimal. Then, by Proposition 2.9, there
exists s ∈ Z such that lg(ws) < lg(w). Let u = s1 · · · s� be a reduced ex-
pression of u, and let u′ = t1 · · · tk be a reduced expression of u′. Note
that t1 · · · tks1 · · · s� is a reduced expression of w = u′u. By Theorem 2.8,
either there exists i ∈ {1, . . . , )} such that ws = t1 · · · tks1 · · · ŝi · · · s�, or
there exists j ∈ {1, . . . , k} such that ws = t1 · · · t̂j · · · tks1 · · · s�. But, we
cannot have ws = t1 · · · tks1 · · · ŝi · · · s�, because lg(us) = lg(u) + 1 (since
u is (∅, Z)-minimal), thus we have ws = t1 · · · t̂j · · · tks1 · · · s� for some
j ∈ {1, . . . , k}. Set u′′ = t1 · · · t̂j · · · tk. Then ws = u′′u and lg(ws) =
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lg(u′′) + lg(u) = lg(w) − 1. In particular, τ(ws) = τ(u′′) τ(u). Similarly,
there exists v′′ ∈W such that ws = v′′v and lg(ws) = lg(v′′)+ lg(v) (hence,
τ(ws) = τ(v′′) τ(v)). This contradicts the fact that τ(w) = τ(u) ∨R τ(v),
since lg(τ(ws)) < lg(τ(w)), and, by the above, τ(u), τ(v)  R τ(ws). �

For α ∈ A+
Γ , we set

End(α) = {s ∈ S | σs  R α} .

Note that α is an upper bound of ΣEnd(α) for the relation  R, thus, by

Proposition 2.12, we have End(α) ∈ Sf .

Lemma 4.9. — Let α ∈ A+
Γ such that lg(α) = n + 1. Set X0 = End(α).

Then

Φ(α) ∩ S̃al
(n)

(Γ) = fα(|(PfX0
)′|) .

So, by Lemma 4.6, Φ(α) ∩ S̃al
(n)

(Γ) is contractible.

Proof. — Since Φ(α) = |C̃(α)′| and S̃al
(n)

(Γ) = |(S̃al
(n)

0 (Γ))′|, we have

Φ(α) ∩ S̃al
(n)

(Γ) = |(C̃(α) ∩ S̃al
(n)

0 (Γ))′| .

Hence, it suffices to show the following.

C̃(α) ∩ S̃al
(n)

0 (Γ) = fα(PfX0
) .

Let uWX ∈ PfX0
. As ever, we assume that u is (∅, X)-minimal. By

definition, there exists s ∈ X0 such that lg(su) = lg(u) + 1 and su is
(∅, X)-minimal. Since X0 = End(α), we have σs  R α, thus α can be
written in the form α = βσs, where β ∈ A+

Γ . Since lg(su) = lg(u) + 1,
we have τ(su) = σs τ(u), thus α τ(u) = β τ(su), therefore fα(uWX) =
(α τ(u), X) = (β τ(su), X) ∈ C̃(β). On the other hand, lg(β) = n, thus

fα(uWX) ∈ C̃(α) ∩ S̃al
(n)

0 (Γ).

Let (γ, Z) ∈ C̃(α) ∩ S̃al
(n)

0 (Γ). There exists β ∈ A+
Γ such that lg(β) � n

and (γ, Z) ∈ C̃(β). There exist u, v ∈ W such that u and v are (∅, Z)-
minimal and γ = α τ(u) = β τ(v). It is easily shown in the same way as in
the proof of Lemma 4.8 that τ(u)∨R τ(v) exists, that this element is of the
form τ(w) with w ∈W , that w is (∅, Z)-minimal, and that w can be written
in the form w = u′u = v′v with lg(w) = lg(u′)+ lg(u) = lg(v′)+ lg(v). Note
that, since lg(β) < lg(α) and α τ(u) = β τ(v), we have lg(u) < lg(v), thus
u′ 	= 1. We choose s ∈ S such that lg(u′s) = lg(u′) − 1. Set u′′ = u′s. By
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the above, τ(u′) = τ(u′′)σs. Let γ0 ∈ A+
Γ such that γ = γ0 τ(w). We have

α = γ0 τ(u′) = γ0 τ(u′′)σs, thus s ∈ X0. Finally, lg(su) = lg(u) + 1 (since
lg(w) = lg(u′)+ lg(u)) and su is (∅, Z)-minimal (since w is (∅, Z)-minimal),

thus uWZ ∈ PfX0
. This shows that (γ, Z) = fα(uWZ) ∈ fα(PfX0

). �

Proof of Theorem 4.3. — We start by proving by induction on n that

S̃al
(n)

(Γ) is contractible. If n = 0, then S̃al
(0)

(Γ) = Φ(1), thus, by Lemma

4.7, S̃al
(0)

(Γ) is contractible.

Now, we assume that n � 0 and S̃al
(n)

(Γ) is contractible. Let α ∈ A+
Γ

such that lg(α) = n+ 1. By Lemma 4.7, Φ(α) is contractible. Moreover, by

Lemma 4.9, Φ(α)∩S̃al
(n)

(Γ) is contractible. It follows that the embedding of

Φ(α)∩ S̃al
(n)

(Γ) into Φ(α) is a homotopy equivalence, thus Φ(α)∩ S̃al
(n)

(Γ)
is a deformation retract of Φ(α) (see [32, Thm. 4.5]). We fix a deformation

retraction hα : Φ(α)× [0, 1] → Φ(α) of Φ(α) onto Φ(α) ∩ S̃al
(n)

(Γ).

We define a map

h : S̃al
(n+1)

(Γ)× [0, 1]→ S̃al
(n+1)

(Γ)

as follows. Let α ∈ A+
Γ such that lg(α) � n+1. If lg(α) � n, we set h(x, t) =

x for all (x, t) ∈ Φ(α) × [0, 1]. If lg(α) = n + 1, we set h(x, t) = hα(x, t)
for all (x, t) ∈ Φ(α) × [0, 1]. Lemma 4.8 implies that h is well-defined. It is

clear from the above that h is a deformation retraction of S̃al
(n+1)

(Γ) onto

S̃al
(n)

(Γ), thus S̃al
(n+1)

(Γ) is contractible as S̃al
(n)

(Γ) is.

Since

S̃al
+
(Γ) =

∞⋃

n=0

S̃al
(n)

(Γ) ,

we conclude by Theorem 2.1 that S̃al
+
(Γ) is contractible. �

4.3. K(π, 1) problem for Artin groups of spherical type

Theorem 4.10 (Deligne [26]). — If Γ is a spherical type Coxeter graph,
then Sal(Γ) is an Eilenberg MacLane space.

Proof. — According to the statement of Theorem 2.13, we set ∆ = ∨LΣ.
We have the following chain of subcomplexes.

S̃al
+
(Γ) ⊂ ∆−1 S̃al

+
(Γ) ⊂ · · · ⊂ ∆−n S̃al

+
(Γ) ⊂ ∆−n−1 S̃al

+
(Γ) ⊂ · · · .
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The subcomplex ∆−n S̃al
+
(Γ) is contractible by Theorem 4.3, and

∪∞n=0∆
−n S̃al

+
(Γ) = S̃al(Γ) by Theorem 2.13. We conclude by Theorem

2.1 that S̃al(Γ) is contractible. �

5. Parabolic subgroups, FC type Artin groups, and
generalizations

Let Γ be a Coxeter graph, and let (AΓ,Σ) = (A,Σ) be its Artin system.
For X ⊂ S, we set ΣX = {σs | s ∈ X}, and we denote by AX the subgroup of
A generated by ΣX . Such a subgroup is called standard parabolic subgroup of
A. Recall that, for X ⊂ S, we set MX = (ms,t)s,t∈X , where M = (ms,t)s,t∈S
is the Coxeter matrix of the Coxeter graph Γ, we denote by ΓX the Coxeter
graph of MX , and we denote by WX the subgroup of W = WΓ generated
by X. By [3], the pair (WX , X) is the Coxeter system of ΓX . The subgroup
WX is called standard parabolic subgroup of W .

Let T be a subset of S. Set SfT = {X ∈ Sf | X ⊂ T}. Observe that the

inclusion (WT × SfT ) ↪→ (W × Sf ) induces an embedding ιT : Sal(ΓT ) ↪→
Sal(Γ) which is equivariant under the action of WT . The starting point of
the present section is the following theorem proved in [31]. It will be the
key in the proofs of several results on standard parabolic subgroups and on
some families of Artin groups.

Theorem 5.1 (Godelle, Paris [31]). — Let T be a subset of S. Then the
embedding ιT : Sal(ΓT ) ↪→ Sal(Γ) admits a retraction πT : Sal(Γ)→ Sal(ΓT )
which is equivariant under the action of WT .

Proof. — It suffices to determine a function πT : (W ×Sf ) → (WT ×SfT )
that satisfies the following properties.

• πT (u,X) = (u,X) for all (u,X) ∈WT × SfT ,

• πT is equivariant under (left) action of WT ,

• if (u,X)  (v, Y ), then πT (u,X)  πT (v, Y ).

Let (u,X) ∈ W × Sf . We write u = u0u1, where u0 ∈ WT and u1 is
(T, ∅)-minimal. Let X0 = T ∩ u1Xu−1

1 . Then we set

πT (u,X) = (u0, X0) .

Note that, since WX0 ⊂ u1WXu
−1
1 , the group WX0 is finite, thus X0 ∈ SfT .

It is easily seen that πT (u,X) = (u,X) for all (u,X) ∈ WT × SfT , and
that πT is equivariant under the action of WT . So, it remains to show that,
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if (u,X), (v, Y ) ∈ W × Sf are such that (u,X)  (v, Y ), then πT (u,X)  
πT (v, Y ).

Let (u,X), (v, Y ) ∈ W × Sf such that (u,X)  (v, Y ). Set u = u0u1

and v = v0v1, where u0, v0 ∈ WT , and u1, v1 are (T, ∅)-minimal. Let X0 =
T ∩ u1WXu

−1
1 and Y0 = T ∩ v1WY v

−1
1 . Then πT (u,X) = (u0, X0) and

πT (v, Y ) = (v0, Y0). Let w = v−1u, and let w0 = v−1
0 u0. Since (u,X)  

(v, Y ), we have X ⊂ Y , w ∈WY , and w is (∅, X)-minimal. We should show
that X0 ⊂ Y0, w0 ∈WY0 , and w0 is (∅, X0)-minimal. We argue by induction
on the length of w. It is easily checked that, if w = 1, then u0 = v0 (thus
w0 = 1), u1 = v1, and X0 ⊂ Y0, thus πT (u,X)  πT (v, Y ). So, we may
assume that lg(w) � 1 plus the induction hypothesis.

We write w = sw′, where s ∈ Y , w′ ∈ WY , and lg(w′) = lg(w)− 1. Let
v′ = vs. The element (v′)−1u = w′ lies in WY and is (∅, X)-minimal (since
w is), thus (u,X)  (v′, Y ). Set v′ = v′0v

′
1, where v′0 ∈WT and v′1 is (T, ∅)-

minimal, and set Y ′0 = T ∩ (v′1)WY (v′1)
−1. By the induction hypothesis, we

have (u0, X0) = πT (u,X)  πT (v′, Y ) = (v′0, Y
′
0). Set w′0 = (v′0)

−1u0. Then
X0 ⊂ Y ′0 , w′0 ∈WY ′0

, and w′0 is (∅, X0)-minimal.

Suppose that v1s is (T, ∅)-minimal. Then v′0 = v0 and v′1 = v1s. More-
over, it is easily seen that, in that case, Y0 = Y ′0 (thus X0 ⊂ Y0) and w0 = w′0
(thus w0 ∈WY0

and w0 is (∅, X0)-minimal). Hence, πT (u,X)  πT (v, Y ).

Suppose now that v1s is not (T, ∅)-minimal. We have lg(v1s) > lg(v1),
otherwise v1s would be (T, ∅)-minimal since v1 is. Furthermore, by Propo-
sition 2.9, there exists t ∈ T such that lg(tv1s) < lg(v1s). We also have
lg(tv1) > lg(v1), since v1 is (T, ∅)-minimal. By Theorem 2.8, these in-
equalities imply that tv1 = v1s. Then v′0 = v0t, v

′
1 = v1, thus Y0 = Y ′0

and w0 = tw′0. A first consequence of this is that X0 ⊂ Y0 = Y ′0 and
w0 ∈ WY0 (since w′0 ∈ WY0 and t = v1sv

−1
1 ∈ T ∩ v1WY v

−1
1 = Y0). It

remains to prove that w0 is (∅, X0)-minimal. Suppose not. Then we have
lg(w0) = lg(tw′0) > lg(w′0), otherwise w0 would be (∅, X0)-minimal since w′0
is. By Proposition 2.9, there exists x ∈ X0 such that lg(tw′0x) < lg(tw′0). We
also have lg(w′0x) > lg(w′0) since w′0 is (∅, X0)-minimal. By Theorem 2.8, it
follows that tw′0 = w′0x = w0. Hence,

x = (w′0)
−1t(w′0) = u−1

0 (v′0)t(v
′
0)
−1u0 ∈WX0 = WT ∩ u1WXu

−1
1

⇒ u−1v0tv
−1
0 u = u−1vsv−1u = w−1sw ∈WX

⇒ swWX = w′WX = wWX .

This contradicts the fact that w is (∅, X)-minimal (recall that lg(w′) <
lg(w)). So, w0 is (∅, X0)-minimal. We conclude that πT (u,X)  πT (v, Y ).
�
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Let ῑT : Sal(ΓX) = Sal(ΓX)/WX → Sal(Γ) = Sal(Γ)/W denote the map
induced by ιT : Sal(ΓT ) → Sal(Γ).

Lemma 5.2. — Let T ⊂ S. Then ῑT : Sal(ΓT ) → Sal(Γ) is an embedding.

Proof. — Let x, y be two points in Sal(ΓT ) ⊂ Sal(Γ) that belong to the
same W -orbit. Let w ∈ W such that y = w x. The point x (resp. y) lies in
the interior of some cell B(u,X) (resp. B(v, Y )) of Sal(ΓT ). Since w sends
cells to cells, we shall have wB(u,X) = B(w u,X) = B(v, Y ), thus X = Y
and v = wu. Hence, w = vu−1 ∈WT (since u, v ∈WT ). �

Consider the cellular decomposition of Sal(Γ) described in Subsection

3.3. Let T be a subset of S. Observe that, for all X ∈ SfT , the map ῑT sends
the cell B̄(X) of Sal(ΓT ) homeomorphically to the cell B̄(X) of Sal(Γ).
Observe also that, for all s ∈ T , the map ῑT preserves the orientation of
ās = B̄({s}). Hence,

Lemma 5.3. — Let T be a subset of S. Then the homomorphism (ῑT )∗ :
π1(Sal(ΓT ), x0) = AΓT → π1(Sal(Γ), x0) = AΓ coincides with the natural
homomorphism AΓT → AΓ which sends σs to σs for all s ∈ T .

Theorem 5.4 (Van der Lek [35]). — Let T be a subset of S. Then the
natural homomorphism AΓT → AΓ which sends σs to σs for all s ∈ T is
injective. In other words, the pair (AT ,ΣT ) is an Artin system of ΓT .

Proof. — We have the following commutative diagram, where the lines
are exact sequences.

1 → CAΓT −→ AΓT −→ WΓT → 1
↓ ↓ ↓

1 → CAΓ −→ AΓ −→ WΓ → 1

By Theorem 5.1, the homomorphism CAΓT → CAΓ has a retraction, thus it
is injective. The homomorphism WΓT →WΓ is injective by [3]. We conclude
by the five lemma that the homomorphism AΓT → AΓ is injective. �

Theorem 5.5 (Godelle, Paris [31]). — Let T be a subset of S. If Sal(Γ)
is an Eilenberg MacLane space, then Sal(ΓT ) is also an Eilenberg MacLane
space.

Proof. — By Theorem 5.1, for all n � 1, the homomorphism (ιT )∗ :
πn(Sal(ΓT ), x(1)) → πn(Sal(Γ), x(1)) has a retraction πn(Sal(Γ), x(1)) →
πn(Sal(ΓT ), x(1)), hence it is injective. Assume that Sal(Γ) is an Eilenberg
MacLane space. Then πn(Sal(Γ), x(1)) = {1} for all n � 2, thus, by the
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above, πn(Sal(ΓT ), x(1)) = {1} for all n � 2, therefore Sal(ΓT ) is an Eilen-
berg MacLane space. �

Theorem 5.6 (Ellis, Skldberg [28]). — Let s, t ∈ S such that ms,t =∞.
Set T = S \ {s} and R = S \ {t}. If Sal(ΓT ) and Sal(ΓR) are both Eilenberg
MacLane spaces, then Sal(Γ) is an Eilenberg MacLane space.

Proof. — Let X ∈ Sf . If s ∈ X, then t 	∈ X, thus X ∈ SfR. Simi-

larly, if t ∈ X, then s 	∈ X, thus X ∈ SfT . Note that, if s 	∈ X and

t 	∈ X, then X ∈ SfT∩R. By Lemma 5.2, Sal(ΓT ) and Sal(ΓR) are sub-
complexes of Sal(Γ). By the above, we have Sal(ΓT ) ∪ Sal(ΓR) = Sal(Γ)
and Sal(ΓT ) ∩ Sal(ΓR) = Sal(ΓT∩R). By Lemma 5.3, the homomorphisms
π1(Sal(ΓT∩R), x0) → π1(Sal(ΓT ), x0) and π1(Sal(ΓT∩R), x0) →
π1(Sal(ΓR), x0) are injective. The complexe Sal(ΓT ) is an Eilenberg Maclane
space, since Sal(ΓT ) is a covering of Sal(ΓT ) and, by hypothesis, Sal(ΓT ) is
an Eilenberg MacLane space. Similarly, Sal(ΓR) is an Eilenberg MacLane
space. Furthermore, by applying Theorem 5.5 to ΓT∩R and ΓT we get that
Sal(ΓT∩R) is an Eilenberg MacLane space, thus Sal(ΓT∩R) is an Eilenberg
MacLane space. By Theorem 2.4, it follows that Sal(Γ) is an Eilenberg
MacLane space, thus Sal(Γ) is an Eilenberg MacLane space. �

Recall that a subset T of S is said to be free of infinity if ms,t 	= ∞
for all s, t ∈ T . We denote by S<∞ the set of subsets of S that are free of
infinity. Note that Sf ⊂ S<∞. Recall also that Γ is said to be of FC type if
Sf = S<∞.

Corollary 5.7 (Ellis, Sköldberg [28]). — If Sal(ΓT ) is an Eilenberg
MacLane space for all T ∈ S<∞, then Sal(Γ) is an Eilenberg MacLane
space.

Proof. — We argue by induction on |S|. If |S| = 1, then S is free of infin-
ity, thus Sal(Γ) = Sal(ΓS) is an Eilenberg MacLane space. More generally,
if S itself is free of infinity, then Sal(Γ) = Sal(ΓS) is an Eilenberg MacLane
space. Assume that |S| � 2 and S is not free of infinity, plus the induction
hypothesis. Let s, t ∈ S such that ms,t =∞. Set T = S\{s} and R = S\{t}.
By the induction hypothesis, Sal(ΓT ) and Sal(ΓR) are Eilenberg MacLane
spaces. By Theorem 5.6, it follows that Sal(Γ) is an Eilenberg MacLane
space. �

Corollary 5.8. — (Charney, Davis [13]). The complex Sal(Γ) is an
Eilenberg MacLane space if Γ is a Coxeter graph of FC type.

Proof. — By Theorem 4.10, Sal(ΓT ) is an Eilenberg MacLane space for
all T ∈ Sf . By definition, Sf = S<∞, thus, by Corollary 5.7, Sal(Γ) is an
Eilenberg MacLane space. �

– 412 –



K(π, 1) conjecture for Artin groups

Bibliography

[1] Abramenko (P.), Brown (K. S.). — Buildings. Theory and applications. Gradu-
ate Texts in Mathematics, 248. Springer, New York (2008).

[2] Arnol’d (V. I.). — Certain topological invariants of algebraic functions. Trudy
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