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The arithmetic Grothendieck-Riemann-Roch theorem
for general projective morphisms

José Ignacio Burgos Gil(1), Gerard Freixas i Montplet(2),
Răzvan Liţcanu(3)

ABSTRACT. — In this paper we extend the arithmetic Grothendieck-
Riemann-Roch Theorem to projective morphisms between arithmetic va-
rieties that are not necessarily smooth over the complex numbers. The
main ingredient of this extension is the theory of generalized holomorphic
analytic torsion classes previously developed by the authors.

RÉSUMÉ. — Dans cet article on étend le théorème de Grothendieck-
Riemann-Roch arithmétique aux morphismes projectifs entre variétés ari-
thmétiques qui ne sont pas nécessairement lisses sur les nombres com-
plexes. L’outil principal pour établir cette extension est la théorie des
classes généralisées de torsion analytique holomorphe, développée dans
les travaux précédents des auteurs.
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1. Introduction

The Grothendieck-Riemann-Roch theorem is a fundamental statement
in algebraic geometry. It describes the behavior of the Chern character
from algebraic K-theory to suitable cohomology theories (for instance Chow
groups) with respect to the push-forward operation by proper maps. It
provides a vast generalization of the classical Riemann-Roch theorem on
Riemann surfaces and the Hirzebruch-Riemann-Roch theorem on compact
complex manifolds.

In [14] Faltings proved a Riemann-Roch formula for arithmetic surfaces.
Later, in their development of a higher dimensional arithmetic intersection
theory, Gillet and Soulé were lead to extend the Grothendieck-Riemann-
Roch theorem to the context of arithmetic varieties. In this setting, vector
bundles are equipped with additional smooth hermitian metrics, for which
an extension of algebraic K-theory can be defined. There is a theory of
characteristic classes for hermitian vector bundles, with values in the so-
called arithmetic Chow groups [18]. In analogy to the classical algebraic
geometric setting, it is natural to ask about the behavior of the arithmetic
Chern character with respect to proper push-forward. This is the question
addressed by Faltings [15], Gillet-Soulé [20] and later by Gillet-Rössler-Soulé
[16]. These works had to restrict to push-forward by morphisms which are
smooth over the complex points of the arithmetic varieties. This assumption
was necessary in defining both push-forwards, on arithmetic K-theory and
on the arithmetic Chow groups. While on arithmetic Chow groups push-
forward relies on elementary operations (direct images of cycles and fiber
integrals of differential forms), they used holomorphic analytic torsion on
the arithmetic K-theory level [5].

The aim of this article is to extend the work of Gillet-Soulé and Gillet-
Rössler-Soulé to arbitrary projective morphisms of regular arithmetic vari-
eties. Hence we face the difficulty of non-smoothness of morphisms at the
level of complex points. To accomplish our program, we have to introduce
generalized arithmetic Chow groups and arithmetic K-theory groups which
afford proper push-forward functorialities for possibly non-smooth projec-
tive morphisms. Loosely speaking, this is achieved by replacing smooth dif-
ferential forms in the theory of Gillet and Soulé by currents with possibly
non-empty wave front sets. To motivate the introduction of these currents,
we remark that they naturally appear as push-forwards of smooth differen-
tial forms by morphisms whose critical set is non-empty. In this concrete
example, the wave front set of the currents is controlled by the normal di-
rections of the morphism. The definition of our generalized arithmetic Chow
groups is a variant of the constructions of Burgos-Kramer-Kühn [12], spe-
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cially their covariant arithmetic Chow groups. As an advantage with respect
to loc. cit., the presentation we give simplifies the definition of proper push-
forward, which is the main operation we have to deal with in the present
article. At the level of Chow groups, this operation relies on push-forward
of currents and keeps track of the wave front sets. For arithmetic K-groups,
we replace the analytic torsion forms of Bismut-Köhler by a choice of a
generalized analytic torsion theory as developed in our previous work [9].
While a generalized analytic torsion theory is not unique, we proved it is
uniquely determined by the choice of a real genus. We establish an arithmetic
Grothendieck-Riemann-Roch theorem for arbitrary projective morphisms,
where this real genus replaces the R-genus of Gillet and Soulé. We therefore
obtain the most general possible formulation of the theorem. In particular,
the natural choice of the 0 genus (corresponding to the homogenous the-
ory of analytic torsion) provides an exact Grothendieck-Riemann-Roch type
formula, which is the formal translation of the classical algebraic geometric
theorem to the setting of Arakelov geometry. The present work is thus the
abutment of the article [13] (by the first and third named authors) and the
articles [10] and [9].

Let us briefly review the contents of this article. In section 2 we develop
our new generalization of arithmetic Chow groups, and consider as partic-
ular instances the arithmetic Chow groups with currents with fixed wave
front set. We study the main operations, such as pull-back, push-forward
and products. In section 3 we carry a similar program to arithmetic K-
theory. We also consider an arithmetic version of our hermitian derived
categories [10], that is specially useful to deal with complexes of coherent
sheaves with hermitian structures. The essentials on arithmetic character-
istic classes are treated in section 4. With the help of our theory of gen-
eralized analytic torsion, section 5 builds push-forward maps on the level
of arithmetic derived categories and arithmetic K-theory. The last section,
namely section 6, is devoted to the statement and proof of the arithmetic
Grothendieck-Riemann-Roch theorem for arbitrary projective morphisms of
regular arithmetic varieties. As an application, we compute the main char-
acteristic numbers of the homogenous theory, a question that was left open
in [9].

Acknowledgements. — We would like to thank the following institu-
tions where part of the research conducting to this paper was done: the
University of Barcelona and the IMUB, the ICMAT in Madrid, the CRM
in Bellaterra, the CIRM in Luminy, the Alexandru Ioan Cuza University of
Iasi, the Institut de Mathématiques de Jussieu and the IHES.
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We would also like to thank J.-M. Bismut, J.-B. Bost, J. Kramer, U.
Kühn, K. Künnemann, X. Ma, V. Maillot, D. Rössler, C. Soulé for several
discussions on the subject of this paper. We would also like to thank the
referee for her/his careful reading.

2. Generalized arithmetic Chow groups

Let (A,Σ, F∞) be an arithmetic ring [17]: that is, A is an excellent
regular Noetherian integral domain, together with a finite non-empty set
of embeddings Σ of A into C and a linear conjugate involution F∞ of the
product CΣ which commutes with the diagonal embedding of A. Let F be
the field of fractions of A. An arithmetic variety X is a flat and quasi-
projective scheme over A such that XF = X × SpecF is smooth. Then
XC :=

∐
σ∈Σ Xσ(C) is a complex algebraic manifold, which is endowed with

an anti-holomorphic automorphism F∞. One also associates to X the real
variety X = (XC, F∞). Whenever we have arithmetic varieties X , Y, . . .
we will denote by XC, YC, . . . the associated complex manifolds and by
X, Y, . . . the associated real manifolds.

To every regular arithmetic variety Gillet and Soulé have associated

arithmetic Chow groups, denoted ĈH
∗
(X ), and developed an arithmetic

intersection theory [17].

The arithmetic Chow groups defined by Gillet and Soulé are only co-
variant for morphisms that are smooth on the generic fiber. Moreover they
are not suitable to study the kind of singular metrics that appear naturally
when dealing with non proper modular varieties. In order to have arithmetic
Chow groups that are covariant with respect to arbitrary proper morphism,
or that are suitable to treat certain kind of singular metrics, in [12] different
kinds of arithmetic Chow groups are constructed, depending on the choice

of a Gillet sheaf of algebras G and a G-complex C. We denote by ĈH
∗
(X , C)

the arithmetic Chow groups defined in op. cit. Section 4.

The basic example of a Gillet algebra is the Deligne complex of sheaves of
differential forms with logarithmic singularities Dlog, defined in [12, Defini-
tion 5.67]; we refer to op. cit. for the precise definition and properties. There-
fore, to any Dlog-complex we can associate arithmetic Chow groups. In par-

ticular, considering Dlog itself as a Dlog-complex, we obtain ĈH
∗
(X ,Dlog),

the arithmetic Chow groups defined in [12, Section 6.1]. When XF is pro-
jective, these groups agree, up to a normalization factor, with the groups
defined by Gillet and Soulé.
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The groups ĈH
∗
(X , C) introduced in [12, Section 6.1] have several tech-

nical issues: they depend on the sheaf structure of C and not only on the
complex of global sections C(X); moreover, they are not completely satis-
factory if the cohomology determined by C does not satisfy a weak purity
property; finally the definition of direct images is intricate. To overcome
these difficulties we introduce here a variant of the cohomological arith-
metic Chow groups that only depends on the complex of global sections of
a Dlog-complex.

Definition 2.1. — Let X be an arithmetic variety, XC = XΣ the asso-
ciated complex manifold and X = (XC, F∞) the associated real manifold. A
Dlog(X)-complex is a graded complex of real vector spaces C∗(∗) provided
with a morphism of graded complexes

c:D∗log(X, ∗) −→ C∗(∗).

Given two Dlog(X)-complexes C and C ′, we say that C ′ is a C-complex if
there is a commutative diagram of morphisms of graded complexes

In this situation, we say that ϕ is a morphism of Dlog(X)-complexes.

We stress the fact that a Dlog-complex is a complex of sheaves while
a Dlog(X)-complex is a complex of vector spaces. If C is a Dlog-complex of
real vector spaces, then the complex of global sections C∗(X, ∗) is a Dlog(X)-
complex. We are mainly interested in the Dlog(X)-complexes of Example 2.2
made out of differential forms and currents. We will follow the conventions
of [12, Section 5.4] regarding differential forms and currents. In particular,
both the current associated to a differential form and the current associated
to a cycle have implicit a power of the trivial period 2πi.

Example 2.2. —

(i) The Deligne complex D∗a(X, ∗) of differential forms on X with ar-
bitrary singularities at infinity. Namely, if E∗(XC) is the Dolbeault
complex ([12, Definition 5.7]) of differential forms on XC then

D∗a(X, ∗) = D∗(E∗(XC), ∗)σ,

– 517 –
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where D∗( , ∗) denotes the Deligne complex ([12, Definition 5.10])
associated to a Dolbeault complex and σ is the involution σ(η) = F ∗∞η
as in [12, Notation 5.65].

Note that D∗a(X, ∗) is the complex of global sections of the Dlog-
complex D∗l,ll,a that appears in [11, Section 3.6] with empty log-log
singular locus. In particular, by [11, Theorem 3.29] it satisfies the
weak purity condition.

(ii) The Deligne complexD∗cur,a(X, ∗) of currents onX. Namely, ifD∗(XC)
is the Dolbeault complex of currents on XC then

D∗cur,a(X, ∗) = D∗(D∗(XC), ∗)σ.

Note that here we are considering arbitrary currents on XC and not
extendable currents as in [12, Definition 6.30].

(iii) Let T ∗XC be the cotangent bundle of XC. Denote by T ∗0XC =
T ∗XC \ XC the cotangent bundle with the zero section deleted and
let S ⊂ T ∗0XC be a closed conical subset that is invariant under F∞.
Let D∗(XC, S) be the complex of currents whose wave front set is
contained in S [13, Section 4]. The Deligne complex of currents on X
having the wave front set included in the fixed set S is given by

D∗cur,a(X,S, ∗) = D∗(D∗(XC, S), ∗)σ.

The maps of complexes D∗a(X, ∗) → D∗cur,a(X, ∗) given by η �→ [η] is
injective and makes ofD∗cur,a(X, ∗) aD∗a(X, ∗)-complex. We will use this map
to identify D∗a with a subcomplex of D∗cur,a. Since D∗a(X, ∗) = D∗cur,a(X, ∅, ∗)
and D∗cur,a(X, ∗) = D∗cur,a(X,T

∗
0X, ∗), examples (i) and (ii) are particular

cases of (iii).

Remark 2.3. — With these examples at hand, we can specialize the def-
inition of C-complex (Definition 2.1) to C = Da(X). When dealing with
hermitian structures on sheaves on non-necessarily proper varieties, we will
work with Da(X)-complexes rather than Dlog(X)-complexes.

We will also follow the notation of [12, Section 3] regarding complexes.
In particular, for p � 0, we will write

C̃2p−1(p) = C2p−1(p)/Im dC , ZC2p(p) = Ker dC ∩ C2p(p).

Definition 2.4. — The arithmetic Chow groups with C coefficients are
defined, for p � 0, as

ĈH
p
(X , C) = ĈH

p
(X ,Dlog)× C̃2p−1(p)/ ∼ (2.1)
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where ĈH
∗
(X ,Dlog) stands for the arithmetic Chow groups defined in [12,

Section 6.1] and ∼ is the equivalence relation generated by

(a(g), 0) ∼ (0, c(g)). (2.2)

For the convenience of the reader, below we will give a more concrete and

direct description of the groups ĈH
∗
(X , C) that does not use the groups

ĈH
∗
(X ,Dlog).

If ϕ : C → C ′ is a morphism of Dlog(X)-complexes (so that C ′ is a
C-complex), then there is a natural surjective morphism

ĈH
p
(X , C)× C̃ ′

2p−1
(p) −→ ĈH

p
(X , C ′) (2.3)

induced by the assignment

((Z, c), c′) �→ (Z,ϕ(c) + c′).

Hence, introducing the equivalence relation generated by

((0, c), 0) ≡ ((0, 0), ϕ(c)),

we see that (2.3) induces an isomorphism

ĈH
p
(X , C)× C̃ ′2p−1(p)/ ≡ ∼−→ ĈH

p
(X , C ′). (2.4)

We next unwrap Definition 2.4 in order to get simpler descriptions of
the arithmetic Chow groups associated to the complexes of Example 2.2.

We start by recalling the construction of ĈH
p
(X ,Dlog). The group of codi-

mension p arithmetic cycles is given by

Ẑp(X ,Dlog) =

{
(Z, g̃) ∈ Zp(X )× D̃2p−1

log (X \ Zp, p)

∣∣∣∣
dD g̃ ∈ D2p

log(X, p)
cl(Z) = [(dD g̃, g̃)]

}
,

where Zp(X ) is the group of codimension p algebraic cycles of X , Zp is the
ordered system of codimension at least p closed subsets of X,

D̃2p−1
log (X \ Zp, p) = lim−→

W∈Zp
D̃2p−1

log (X \W,p),

and cl(Z) and [(dD g̃, g̃)] denote the class in the real Deligne-Beilinson co-
homology group H2p

D,Zp(X,R(p)) with supports on Zp of the cycle Z and
the pair (dD g̃, g̃) respectively.
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For each codimension p − 1 irreducible variety W and each rational
function f ∈ K(W )×, there is a class [f ] ∈ H2p−1

D (X \ |divf |,R(p)). Hence

a class b([f ]) ∈ D̃2p−1
log (X \ Zp, p) that is denoted g(f). Then R̂at

p
(X ,Dlog)

is the group generated by the elements of the form d̂iv(f) = (div(f), g(f)).

Then
ĈH

p
(X ,Dlog) = Ẑp(X ,Dlog)

/
R̂at

p
(X ,Dlog) .

We will use the following well stablished notation. If B is any subring of
R we will denote by Zp

B(X ) = Zp(X ) ⊗ B, by Ẑp
B(X ,Dlog) the group with

the same definition as Ẑp(X ,Dlog) with Zp
B(X ) instead of Zp(X ), and we

write R̂at
p

B(X ,Dlog) = R̂at
p
(X ,Dlog)⊗B. Finaly we write

ĈH
p

B(X ,Dlog) = Ẑp
B(X ,Dlog)

/
R̂at

p

B(X ,Dlog)

Note that ĈH
p

Q(X ,Dlog) = ĈH
p
(X ,Dlog)⊗Q but, in general, ĈH

p

R(X ,Dlog) �=
ĈH

p
(X ,Dlog)⊗R. We will use the same notation for all variants of the arith-

metic Chow groups.

Now, in the definition of ĈH
p
(X , C) we can first change coefficients and

then take rational equivalence. We define

Ẑp(X , C) = Ẑp(X ,Dlog)× C̃2p−1(p)/ ∼

where again ∼ is the equivalence relation generated by (a(g), 0) ∼ (0, c(g)).

There are maps

ζC : Ẑp(X , C) −→ Zp(X ), ζC((Z, g̃), c̃) = Z,

aC : C̃2p−1(p) −→ Ẑp(X , C), aC(c̃) = ((0, 0),−c̃),
ωC : Ẑp(X , C) −→ ZC2p(p), ωC((Z, g̃), c̃) = c(dD g̃) + dC c̃.

We also consider the map

bC :H2p−1(C∗(p))→ Ẑp(X , C)

obtained by composing aC with the inclusion H2p−1(C∗(p)) → C̃2p−1(p),
and the map

ρC : CHp,p−1(X )→ H2p−1(C∗(p))

obtained by composing the regulator map ρ: CHp,p−1(X )→ H2p−1
D (X,R(p))

in [12, Notation 4.12] with the map c:H2p−1
D (X,R(p))→ H2p−1(C∗(p)). We

will also denote by ρC the analogous map with target C̃2p−1(p).
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There are induced maps

ζC : ĈH
p
(X , C) −→ CHp(X ),

aC : C̃2p−1(p) −→ ĈH
p
(X , C),

ωC : ĈH
p
(X , C) −→ ZC2p(p).

Lemma 2.5. —

(i) Let R̂at
p
(X , C) denote the image of R̂at

p
(X ,Dlog) in Ẑp(X , C). Then

ĈH
p
(X , C) = Ẑp(X , C)

/
R̂at

p
(X , C) .

(ii) There is an exact sequence

0→ C̃2p−1(p)
aC−→ Ẑp(X , C)

ζC−→Zp(X )→ 0. (2.5)

(iii) There are exact sequences

CHp,p−1(X )
ρC−→ C̃2p−1(p)

aC−→ ĈH
p
(X , C)

ζC−→CHp(X )→ 0, (2.6)

and

CHp,p−1(X )
ρC−→H2p−1(C∗(p))

bC−→ ĈH
p
(X , C)

ζC⊕ωC−→ (2.7)

CHp(X )⊕ ZC2p(p) −→ H2p(C∗(p))→ 0.

Proof. — (i) Follows easily from the definition.

(ii) By [8, Proposition 5.5] there is an exact sequence

0→ D̃2p−1
log (X, p)

a−→ Ẑp(X ,Dlog)
ζ−→Zp(X )→ 0.

From this and the definition of Ẑp(X , C) we derive the exactness of (2.5).

(iii) Follows from the exact sequences of [8, Theorem 7.3] and the defi-

nition of ĈH
p
(X , C). �

Remark 2.6. — Let C be a Dlog-complex of real vector spaces, and C =

C∗(X, ∗) the correspondingDlog(X)-complex of global sections. Let ĈH
∗
(X , C)

be the arithmetic Chow groups defined in [12, Section 4.2]. Then there is a
map

ĈH
p
(X ,Dlog)× C̃2p−1(p) −→ ĈH

p
(X , C)
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given by (x, g) �→ c(x) + a(g), where here c means the change of coefficients
from Dlog to C and a is the map defined in [12, Notation 4.12]. It is easy
to see that two elements related by the equivalence relation (2.2) have the
same image. Therefore we obtain a map

ĈH
p
(X , C) −→ ĈH

p
(X , C).

From Lemma 2.5 and [12, Theorem 4.13], we deduce that this map is sur-
jective and it is an isomorphism when C satisfies the weak purity property
[12, Definition 3.12].

The contravariant functoriality of ĈH
∗
(X ,Dlog) is easily translated to

other coefficients. Let f :X → Y be a quasi-projective morphism of regular
arithmetic varieties. Let C be aDlog(X)-complex and C ′ aDlog(Y )-complex,
such that there exists a map of complexes f∗ : C ′∗(∗)→ C∗(∗) that makes
the following diagram commutative:

By [12, Theorem 6.13] there is a pull-back map f∗ : ĈH
∗
(Y,Dlog) →

ĈH
∗
(X ,Dlog). Then we define

f∗((Z, g), c) = (f∗(Z, g), f∗(c))

It is easy to see that this map is well defined, because the pull-back map
for the Chow groups with Dlog coefficients is compatible to the map a.

Before stating concrete examples of this contravariant functoriality we
need some notation ([22, Theorem 8.2.4], see also [13, Section 4]). Let
fC:XC → YC denote the induced map of complex manifolds. Let Nf be
the set of normal directions of fC, that is

Nf = {(f(x), ξ) ∈ T ∗0 YC | df tCξ = 0}.

Let S ⊂ T ∗0 YC be a closed conical subset invariant under F∞. When Nf∩S =
∅, the function f is said to be transverse to S. In this case we write

f∗S = {(x,df tCξ) | (f(x), ξ) ∈ S}.

It is a closed conical subset of T ∗0XC invariant under F∞.
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Proposition 2.7. — Let f :X → Y be a quasi-projective morphism of
regular arithmetic varieties.

(i) There is a pull-back morphism f∗: ĈH
p
(Y,Da(Y ))→ ĈH

p
(X ,Da(X)).

(ii) Let Nf be the set of normal directions of fC and S ⊂ T ∗0 YC a closed
conical subset invariant under F∞. If Nf ∩ S = ∅, then there is a
pull-back morphism

f∗: ĈH
p
(Y,Dcur,a(Y, S))→ ĈH

p
(X ,Dcur,a(X, f

∗S)).

(iii) If fF is smooth (hence Nf = ∅) then there is a pull-back morphism

f∗: ĈH
p
(Y,Dcur,a(Y ))→ ĈH

p
(X ,Dcur,a(X)).

Similarly the multiplicative properties of ĈH
∗
Q(X ,Dlog) can be trans-

ferred to other coefficients. Let C, C ′ and C ′′ be Dlog(X)-complexes such
that there is a commutative diagram of morphisms of complexes

Then we define a product

ĈH
p
(X , C)× ĈH

q
(X , C ′)→ ĈH

p+q

Q (X , C ′′)
by

((Z, g), c) ·((Z ′, g′), c′) = ((Z, g) ·(Z ′, g′), c•c(ω(g′))+c(ω(g))•c′+dCc•c′).
(2.8)

As a consequence we obtain the following result.

Proposition 2.8. — Let X be a regular arithmetic variety.

(i) ĈH
∗
Q(X ,Da(X)) is an associative commutative graded ring.

(ii) ĈH
∗
Q(X ,Dcur,a(X)) is a module over ĈH

∗
Q(X ,Da(X)).

(iii) Let S, S′ be closed conic subsets of T ∗0XC that are invariant under

F∞. Then ĈH
∗
Q(X ,Dcur,a(X,S)) is a module over ĈH

∗
Q(X ,Da(X)).

Moreover, if S ∩ (−S′) = ∅, there is a graded bilinear map

ĈH
p
(X ,Dcur,a(X,S))× ĈH

q
(X ,Dcur,a(X,S

′)) −→
ĈH

p+q

Q (X ,Dcur,a(X,S ∪ S′ ∪ (S + S′))).
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(iv) The product is compatible with the pull-back of Proposition 2.7.

We now turn our attention towards direct images. The definition of direct
images for general Dlog-complexes is quite intricate, involving the notion of
covariant f -pseudo-morphisms (see [12, Definition 3.71]). By contrast, we

will give another description of the groups ĈH
∗
Q(X ,Dcur,a(X)) for which the

definition of push-forward is much simpler.

By [7, 3.8.2] we know that any Dlog-Green form is locally integrable.
Therefore there is a well defined map

ϕ: Ẑp(X ,Dlog) −→ Zp(X )⊕ D̃2p−1
cur,a (X, p)

given by (Z, g̃) → (Z, [̃g]) for any representative g of g̃. The previous map
can be extended to a map

ϕDcur,a(X): Ẑ
p(X ,Dcur,a(X)) −→ Zp(X )⊕ D̃2p−1

cur,a (X, p)

given by ϕDcur,a(X)((Z, g̃), h̃) = (Z, [̃g] + h̃).

The following result is clear.

Lemma 2.9. — The map ϕDcur,a(X) is an isomorphism.

This lemma gives us a more concrete description of the group
Ẑp(X ,Dcur,a(X)). In fact, we will identify it with the group Zp(X ) ⊕
D̃2p−1

cur,a (X, p) when necessary. Some care has to be taken when doing this
identification. For instance

ωDcur,a(X)(ϕ
−1
Dcur,a(X)(Z, g̃)) = dDg + δZ . (2.9)

Let now f :X → Y be a proper morphism of regular arithmetic varieties
of relative dimension e. Using the above identification, we define

f∗: Ẑ
p(X ,Dcur,a(X)) −→ Ẑp−e(Y,Dcur,a(Y )) (2.10)

by f∗(Z, g̃) = (f∗Z, f̃∗g), where g is any representative of g̃, and f∗(g) is the
usual direct image of currents given by f∗(g)(η) = g(f∗η).

Proposition 2.10. — The map f∗ in (2.10) sends the group R̂at
p
(X ,Dcur,a(X))

to the group R̂at
p−e

(Y,Dcur,a(Y )). Therefore it induces a map

ĈH
p
(X ,Dcur,a(X)) −→ ĈH

p−e
(Y,Dcur,a(Y )).
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In order to transfer this push-forward to other coefficients we introduce
two extra properties for a Dlog(X)-complex C.

(H1) There is a commutative diagram of injective morphisms of complexes

Since c′ is injective we will usually identify C with its image by c′.

(H2) The map c′ induces isomorphisms

Hn(C∗(p)) ∼= Hn(D∗cur,a(X, p))

for all p � 0 and n = 2p− 1, 2p.

The conditions (H1) and (H2) have two consequences. First if η ∈
D2p−1

cur,a (X, p) is a current such that dDη ∈ C2p(p), there exists a ∈ D2p−2
cur,a (X, p)

such that
dDa+ η ∈ C2p−1(p).

Second, the induced map C̃2p−1(p)→ D̃2p−1(X, p) is injective.

Let C be a Dlog(X)-complex satisfying (H1). Consider the diagram

where A is defined by the cartesian square, i is induced by (H1) and j is
induced by i and ωC .

Lemma 2.11. — If C also satisfies (H2) then j is an isomorphism.

Proof. — By the injectivity of C̃2p−1(p) → D̃2p−1(X, p) and Lemma
2.5 3., the map i is injective. Hence the map j is injective and we only need
to prove that j is surjective.
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Let x = ((Z, g̃), η) ∈ A. This means that (Z, g̃) ∈ ĈH
p
(X ,Dcur,a(X)),

η ∈ ZC2p(p) and ωDcur,a(X)(Z, g̃) = dDg+δZ = η. Let g′ ∈ D2p−1
log (X \|Z|, p)

be a Green form for Z. Then g − [g′] ∈ D2p−1
cur,a (X, p) satisfies dD(g − [g′]) ∈

C2p(p). By (H2) there is a ∈ D2p−2
cur,a (X, p) such that g′′ := g − [g′] + dDa ∈

C2p−1(p). Consider the element x′ = ((Z, g̃′), g̃′′) ∈ ĈH
p
(X , C). To see that

j(x′) = x we have to check that ωC(x′) = η and i(x′) = (Z, g̃). We compute

ωC(x′) = c(dDg′) + dCg
′′ = dD[g′] + δZ + dDg − dD[g′] + dDdDa = η,

i(x′) = (Z, ([g′] + g − [g′] + dDa)∼) = (Z, g̃),

concluding the proof of the lemma. �

We can rephrase the lemma as follows.

Theorem 2.12. — Let C be a Dlog(X)-complex that satisfies (H1) and
(H2). Then the map ϕ can be extended to an injective map

ϕC : Ẑp(X , C) −→ Zp(X )⊕ D̃2p−1
cur,a (X, p).

Moreover

Im (ϕC) =
{

(Z, g̃) ∈ Zp(X )⊕ D̃2p−1
cur,a (X, p) | dDg + δZ ∈ C2p(p)

}
. (2.11)

In view of this theorem, if C satisfies (H1) and (H2), we will identify

Ẑp(X , C) with the right hand side of equation (2.11).

Proposition 2.13. — The Dlog(X)-complexes Da(X), Dcur,a(X,S) and
Dcur,a(X) satisfy (H1) and (H2). Therefore we can identify

Ẑp(X ,Da(X))∼=
{

(Z, g̃) ∈ Zp ⊕ D̃2p−1
cur,a (X, p) | dDg + δZ ∈ D2p

a (X, p)
}

Ẑp(X ,Dcur,a(X,S))∼=
{

(Z, g̃) ∈ Zp ⊕ D̃2p−1
cur,a (X, p) | dDg + δZ ∈ D2p

cur,a(X,S, p)
}

Ẑp(X ,Dcur,a(X))∼=Zp(X )⊕ D̃2p−1
cur,a (X, p).

Proof. — The result for Da(X) follows from the Poincaré ∂-Lemma
for currents [21, Pag. 382]. The result for Dcur,a(X,S) follows from the
Poincaré ∂-Lemma for currents with fixed wave front set [13, Theorem 4.5].
The statement for Dcur,a(X) is Lemma 2.9. �

Remark 2.14. — The previous proposition gives us a more concrete de-
scription of the groups Ẑp(X , C) for C = Da(X), Dcur,a(X,S) and Dcur,a(X)

and also a more concrete description of the groups ĈH
p
(X , C). In particular
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it easily implies that the groups ĈH
p
(X ,Da(X)), p � 0, agree (up to a nor-

malization factor) with the arithmetic Chow groups of Gillet-Soulé ĈH
p
(X )

and that the groups ĈH
p
(X ,Dcur,a(X)), p � 0, agree (again up to a nor-

malization factor) with the arithmetic Chow groups of Kawaguchi-Moriwaki

ĈH
p

D(X ), introduced in [23].

We want to transfer the push-forward of Proposition 2.10 to complexes
satisfying (H1) and (H2). Let again f :X → Y be a proper morphism of
regular arithmetic varieties of relative dimension e. Let C be a Dlog(X)-
complex and C ′ a Dlog(Y )-complex, both satisfying (H1) and (H2). We
assume there exists a map of complexes f∗:C∗(∗) → C ′∗−2e(∗ − e) that
makes the following diagram commutative:

(2.12)

Then, for p � 0, we define maps

f∗: Ẑ
p(X , C)→ Ẑp−e(Y, C ′)

given by

f∗(Z, g̃) = (f∗Z, f̃∗(g)). (2.13)

Observe that this definition involves the identification of Theorem 2.12. By

Proposition 2.10, the assignments (2.13) send the groups R̂at
p
(X , C) to the

groups R̂at
p−e

(Y, C ′). Therefore we obtain induced morphisms

f∗: ĈH
p
(X , C) −→ ĈH

p−e
(Y, C ′).

Before stating concrete examples of this covariant functoriality we need
some notation. Let fC:XC → YC denote the induced proper map of complex
manifolds. If S ⊂ T ∗0XC is a closed conical subset invariant under F∞, then
we write

f∗S = {(f(x), ξ) ∈ T ∗0 YC | (x,df tξ) ∈ S} ∪Nf .

By the properness of f , it is a closed conical subset of T ∗0 YC invariant under
F∞.

Proposition 2.15. — Let f :X → Y, g:Y → Z be proper morphisms of
regular arithmetic varieties of relative dimension e and e′, and S ⊂ T ∗0XC
a closed conical subset invariant under F∞. Then there are maps

f∗: ĈH
p
(X ,Dcur,a(X,S))→ ĈH

p−e
(Y,Dcur,a(Y, f∗S)),
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and similarly

g∗: ĈH
p′

(Y,Dcur,a(Y, f∗S))→ ĈH
p′−e′

(Z,Dcur,a(Z, g∗f∗S)).

Furthermore, the relation (g ◦ f)∗ = g∗ ◦ f∗ is satisfied.

As a particular case of the above proposition we obtain the following
cases.

Corollary 2.16. — Let f :X → Y be a proper morphism of regular
arithmetic varieties of relative dimension e.

(i) There are maps

f∗: ĈH
p
(X ,Da(X))→ ĈH

p−e
(Y,Dcur,a(Y,Nf )).

(ii) If Nf = ∅, then there are maps

f∗: ĈH
p
(X ,Da(X))→ ĈH

p−e
(Y,Da(Y )).

The functoriality and the multiplicative structures satisfy the following
compatibility properties.

Theorem 2.17. — Let f :X → Y be a morphism of regular arithmetic
varieties. Let Nf be the set of normal directions of fC and S, S′ ⊂ T ∗0 YC
closed conical subsets invariant under F∞. Then

f∗(S ∪ S′ ∪ (S + S′)) = f∗(S) ∪ f∗(S′) ∪ (f∗(S) + f∗(S′)).

If Nf ∩ (S∪S′∪S+S′) = ∅ and S∩ (−S′) = ∅ then f∗(S)∩ (−f∗(S′)) = ∅.
In this case, if α ∈ ĈH

p
(Y,Dcur,a(Y, S)) and β ∈ ĈH

q
(Y,Dcur,a(Y, S

′)) then

f∗(α · β) = f∗(α) · f∗(β) ∈ ĈH
p+q

Q (X ,Dcur,a(X, f
∗(S ∪ S′ ∪ (S + S′)))).

Theorem 2.18. — Let f :X → Y be a proper morphism of regular arith-
metic varieties of relative dimension e. Let Nf be the set of normal directions
of fC, S ⊂ T ∗0XC and S′ ⊂ T ∗0 YC closed conical subsets invariant under F∞.
Then

f∗(S ∪ f∗(S′) ∪ (S + f∗(S′))) ⊂ f∗(S) ∪ S′ ∪ (f∗(S) + S′).

If f∗(S)∩ (−S′) = ∅ then Nf ∩ S′ = ∅ and S ∩ (−f∗(S′)) = ∅. In this case,

if α ∈ ĈH
p
(X ,Dcur,a(X,S)) and β ∈ ĈH

q
(Y,Dcur,a(Y, S

′)) then

f∗(α · f∗(β)) = f∗(α) ·β ∈ ĈH
p+q−e
Q (Y,Dcur,a(Y, f∗(S)∪S′ ∪ (f∗(S)+S′))).
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3. Arithmetic K-theory and derived categories

3.1. Arithmetic K-theory

As for arithmetic Chow groups, the arithmetic K-groups of Gillet-Soulé
[18] can be generalized to include more general coefficients at the archimedean
places. An arithmetic Chern character allows to compare these general-
ized arithmetic K-groups and the generalized arithmetic Chow groups. The
arithmetic Chern character is automatically compatible with pull-back and
products whenever defined.

Because the definition of arithmetic K-groups involves hermitian vector
bundles whose metrics have arbitrary singularities at infinity, we are actually
forced to consider Da(X)-complex coefficients.

Definition 3.1. — Let X be an arithmetic variety and C∗(∗) a Da(X)-
complex with structure morphism c : D∗a(X, ∗) → C∗(∗). The arithmetic

K group of X with C coefficients is the abelian group K̂0(X , C) generated
by pairs (E , η), where E is a smooth hermitian vector bundle on X and

η ∈⊕
p�0 C̃

2p−1(p), modulo the relations

(E1, η1) + (E2, η2) = (E , c(c̃h(ε)) + η1 + η2),

for every exact sequence

ε: 0 −→ E1 −→ E −→ E2 −→ 0

with Bott-Chern secondary class c̃h(ε).

An equivalent construction can be given in the same lines as for the gen-
eralized arithmetic Chow groups. First apply the construction of Definition
3.1 to the complex D∗a(X, ∗) and the identity map. The obtained arithmetic

K groups, that are denoted K̂0(X ,Da), are isomorphic to the ones defined
by Gillet and Soulé in [18]. They are also a particular case of the arithmetic
K groups introduced in [11, Sec. 5.2]. Namely, the case when the divisor D
in loc. cit. is empty.

There is a natural morphism

K̂0(X ,Da) −→ K̂0(X , C) (3.1)

[E , η] �−→ [E , c(η)]
induced by c : D∗a(X, ∗)→ C∗(∗), and also
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⊕

p�0

C̃2p−1(p) −→ K̂0(X , C). (3.2)

η �−→ [0, η]

One easily sees the maps (3.1)–(3.2) induce a natural isomorphism of groups

K̂0(X ,Da)×
⊕

p�0

C̃2p−1(p)/ ≡ ∼=−→ K̂0(X , C), (3.3)

where ≡ is the equivalence relation generated by

((E , η), 0) ≡ ((E , 0), c(η)).

Generalized arithmetic K-groups for suitable complexes have pull-backs and
products. Let f : X → Y be a morphism of arithmetic varieties, and suppose
given Da(X) and Da(Y ) complexes C and C ′ respectively, for which there
is a commutative diagram

(3.4)

By description (3.3) and the contravariant functoriality of K̂0( ,Da), we see
there is an induced morphism of groups

f∗ : K̂0(Y, C ′) −→ K̂0(X , C).

For this kind of functoriality, an analog statement to Proposition 2.7 holds,
and we leave to the reader the task of stating it. As for products, let C, C ′

and C ′′ beDa(X)-complexes with a product C⊗C ′ •→C ′′ and a commutative
diagram

(3.5)

Then there is an induced product at the level of K̂0

K̂0(X , C)× K̂0(X , C ′) −→ K̂0(X , C ′′)

described by the rule

[E , η] · [E ′, η′] = [E ⊗ E ′, c(ch(E)) • η′ + c′(ch(E ′)) • η + dCη • η′].
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With respect to this laws, the groups K̂0 enjoy of the analogue properties
to Proposition 2.8.

Finally, we discuss on the arithmetic Chern character. If X is a regular
arithmetic variety, we recall there is an isomorphism of rings [11, Thm. 5.5],
namely

ĉh : K̂0(X ,Da)Q −→
⊕

p�0

ĈH
p

Q(X ,Da).

If C is a Da(X)-complex, by the presentations (2.4) of ĈH
∗
(X , C) and (3.3)

of K̂0 it is clear that ĉh extends to an isomorphism of groups

ĉh : K̂0(X , C)Q −→
⊕

p�0

ĈH
p

Q(X , C).

Suppose now that C,C ′, C ′′ are Da(X)-complexes with a product C⊗C ′ →
C ′′ as above. Then, it is easily seen that there is a commutative diagram of
morphisms of groups

This is in particular true for complexes of currents with controlled wave
front set, a result that we next record.

Proposition 3.2. — Let S, S′ be closed conical subsets of T ∗0XC in-
variant under the action of complex conjugation, with S ∩ (−S′) = ∅.
Define T = S ∪ S′ ∪ (S + S′). If α ∈ K̂0(X ,Dcur,a(X,S))Q and β ∈
K̂0(X ,Dcur,a(X,S

′))Q, then

ĉh(α) · ĉh(β) = ĉh(α · β) ∈
⊕

p

ĈH
p

Q(X ,Dcur,a(X,T )).

Another feature of the Chern character is its compatibility with pull-back
functoriality. Let f : X → Y be a morphism of regular arithmetic varieties.
Let C,C ′ be Da(X) and Da(Y ) complexes, respectively, together with a
morphism of complexes f∗ : C ′ → C satifying the commutativity (3.4).
Then there is a commutative diagram
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Again, the proof is a simple consequence for the known compatibility in the
case of the Da arithmetic Chow groups. In particular we have the following
proposition.

Proposition 3.3. — Let f :X → Y be a morphism of regular arithmetic
varieties, and S ⊂ T ∗0 YC a closed conical subset, invariant under complex
conjugation and disjoint with the normal directions Nf of fC. Then there is
a commutative diagram

3.2. Arithmetic derived categories

For the problem of defining direct images on arithmetic K-theory it is
useful to deal with arbitrary complexes of coherent sheaves instead of locally
free sheaves. We therefore introduce an arithmetic counterpart of our theory
of hermitian structures on derived categories of coherent sheaves, developed
in [10], and the D̂b categories in [9]. We then compare this construction to
the arithmetic K groups.

Definition 3.4. — Let S be a scheme. We denote by Db(S) the derived
category of cohomological complexes of quasi-coherent sheaves with bounded
coherent cohomology.

If X is a regular arithmetic variety, every object of Db(X ) is quasi-isomorphic
to a bounded cohomological complex of locally free sheaves. One checks
there is a well defined map

ObDb(X ) −→ K0(X )

that sends an object F∗ to the class
∑

i(−1)i[E i], where E∗ is quasi-isomorphic
to F∗, and that is compatible with derived tensor products on Db(X ) and
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the ring structure on K0(X ). Our aim is thus to extend this picture and
incorporate hermitian structures.

Let us consider the complex quasi-projective manifold XC associated to
an arithmetic variety X . It comes equipped with the conjugate-linear invo-
lution F∞. Recall the data X = (XC, F∞) uniquely determines a smooth
quasi-projective scheme XR over R, whose base change to C is isomorphic to
XC, and such that its natural automorphism given by complex conjugation
gets identified to F∞. The abelian category of quasi-coherent (resp. coher-
ent) sheaves over XR is equivalent to the category of quasi-coherent (resp.
coherent) sheaves over XC, equivariant with respect to the action of F∞.
Namely, giving a quasi-coherent (resp. coherent) sheaf on XR is equivalent
to giving a quasi-coherent (resp. coherent) sheaf F on XC, together with a
morphism of sheaves

α:F −→ F∞∗F

compatible with the conjugate-linear morphism

F �
∞ : OXC −→ F∞∗OXC

induced by the morphism of R-schemes F∞:XC → XC, satisfying (F∞∗α) ◦
α = id. A similar condition characterizes morphisms of quasi-coherent (resp.
coherent) sheaves. Therefore, we denote the bounded derived category of
coherent sheaves on XR just by Db(X).

The theory of hermitian structures on the bounded derived category of
coherent sheaves on a complex algebraic manifold developed in [10] can be
adapted to the real situation of Db(X), by considering hermitian structures
invariant under the action of complex conjugation. All the results in loc.

cit. carry over to the real case. We denote by D
b
(X) the category whose

objects are objects of Db(X) endowed with a hermitian structure (loc. cit.,
Def. 3.10) invariant under complex conjugation, and whose morphisms are

just morphisms in Db(X). Thus, every object F∗ in D
b
(X) is represented

by a quasi-isomorphism E∗ −−→ F∗, where E∗ is a bounded complex
of hermitian locally free sheaves on XC, equivariant under F∞. There is

an obvious forgetful functor F : D
b
(X) → Db(X), that makes of D

b
(X) a

principal fibered category over Db(X), with structural group KA(X), the
group of hermitian structures over the 0 object [10, Def. 2.34, Thm. 3.13].

Base change to R induces a covariant functor Db(X )→ Db(X).

Definition 3.5. — We define the category D
b
(X ) as the fiber product

category
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We still denote by F the forgetful functor D
b
(X )→ Db(X ).

By construction, F makes of D
b
(X ) a principal fibered category over

Db(X ), with structure group KA(X). In particular, KA(X) acts on D
b
(X ).

The Bott-Chern secondary character c̃h can be defined at the level of KA
groups [10, Sec. 4, Def. 4.6]. In our situation, we actually have a morphism
of groups

c̃h : KA(X) −→
⊕

p

D̃2p−1
a (X, p). (3.6)

More generally, if C is aDa(X)-complex, we may consider a secondary Chern

character with values in
⊕

p C̃
2p−1(p), that we denote c̃hC . In particular,

KA(X) acts on
⊕

p C̃
2p−1(p) through c̃hC .

Definition 3.6. — The arithmetic derived category D̂b(X , C) is defined
as the cartesian product

D
b
(X )×

KA(X),c̃hC

⊕

p

C̃2p−1(p).

Remark 3.7. — If X is regular, then every object of D̂b(X , C) can be
represented by

(F∗, EC −−→ F∗C, η̃)
where E∗ −−→ F∗ is any quasi-isomorphism from a bounded complex of
locally free sheaves over X . Indeed, X is assumed to be regular, so that
F∗ is quasi-isomorphic to a bounded complex of locally free sheaves E∗.
One then endows the E i with smooth hermitian metrics invariant under
complex conjugation, and takes into account that KA(X) acts transitively
on the hermitian structures on F∗C. We introduce the simplified notation

(E∗ −−→ F , η̃) for such representatives.

The categories D̂b(X , C) are the arithmetic analogues to those we in-
troduced in [9, Sec. 4], and have similar properties. We are only going to
review some of them.
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For the next proposition, we recall that any group can be considered as
a category, with morphisms given by the group law. This is in particular
the case of K̂0(X , C).

Theorem 3.8. — If X is regular, there is a natural functor

D̂b(X , C) −→ K̂0(X , C),

that, at the level of objects is given by

(E∗ −−→ F , η̃) �−→
[∑

i

(−1)iE i, η̃
]
,

and at the level of morphism sends any f ∈ Hom
D̂b(X ,C)

(A,B) to [B]− [A].

Proof. — It is enough to see that the defining assignment does not
depend on the representatives. For this, take two objects (E∗ −−→ F∗, η̃)
and (E ′∗ −−→ F∗, η̃′) giving raise to the same class. We have an equivalence
of objects

(E∗ −−→ F∗, η̃) ∼ (E ′∗ −−→ F∗, η̃′)

∼ (E∗ −−→ F∗, η̃′ + c(c̃h(id:F∗ → F ′∗))).
Consequently

η̃ = η̃′ + c(c̃h(id:F∗ → F ′∗)).
Hence, the image of (E∗ −−→ F∗, η̃) is equivalently written

[∑

i

(−1)iE i, η̃′ + c(c̃h(id:F∗ → F ′∗))
]
.

We thus have to show the equality in K̂0(X , C)

[0, c(c̃h(id:F∗ → F ′∗))] ?
=

[∑

i

(−1)iE ′i, 0
]
−

[∑

i

(−1)iE i, 0
]
.

By [10, Lemma 3.5], the quasi-isomorphism E∗ −−→ E ′∗ inducing the
identity on F∗ can be lifted to a diagram
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where a and b are quasi-isomorphisms and cone(a) is meager [10, Def. 2.9].
On the one hand, by the characterization [10, Thm. 2.13] of meager com-
plexes, one can show

[∑

i

(−1)icone(a)i, 0

]
= 0.

On the other hand, we have an exact sequence of complexes

0→ E∗ → cone(a)→ E
′′∗

[1]→ 0,

whose constituent rows are orthogonally split. This shows

[∑

i

(−1)iE i, 0
]
−

[∑

i

(−1)iE
′′i
, 0

]
=

[∑

i

(−1)icone(a)i, 0

]
= 0. (3.7)

Similarly we have

[∑

i

(−1)iE
′i
, 0

]
−

[∑

i

(−1)iE
′′i
, 0

]
=

[∑

i

(−1)icone(b)i, 0

]
. (3.8)

But the complex underlying cone(b) is acyclic, so that

[∑

i

(−1)icone(b)i, 0

]
= [0, c(c̃h(cone(b))]. (3.9)

Finally, by [10, Def. 3.14, Thm. 4.11] we have

c̃h(id : F∗ → F
′∗

) = c̃h(cone(b)). (3.10)

Putting (3.7)–(3.10) together allows to conclude. �

Notation 3.9. — Let X be a regular arithmetic variety. Then we still
denote the image of an object [F∗, η̃] ∈ ObD̂b(X , C) by the morphism of the

proposition by [F∗, η̃]. We call this image the class of [F∗, η̃] in arithmetic
K-theory.

Remark 3.10. — Two tightly isomorphic objects in D̂b(X , C) have the
same class in arithmetic K-theory.

Let f : X → Y be a morphism of regular arithmetic varieties and let
C, C ′ be Da(X) and Da(Y ) complexes respectively, with a commutative
diagram as in (3.4). Then there is a commutative diagram of functors
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The following statement is a particular case.

Proposition 3.11. — Let f : X → Y be a morphism of regular arith-
metic varieties, and S ⊂ T ∗0 YC a closed conical subset invariant under com-
plex conjugation, disjoint with the normal directions Nf of fC. Then there
is a commutative diagram

If C,C ′, C ′′ are Da(X)-complexes with a product C⊗C ′ → C ′′ compati-
ble with the product of Da(X) and X is regular, then there is a commutative
diagram of functors

where the derived tensor product ⊗ is defined by

[F , η]⊗ [G, ν] = [F ⊗ G, c(ch(F)) • ν + η • c′(ch(G)) + dCη • ν]
Proposition 3.12. — Let S, S′ be closed conical subsets of T ∗0XC in-

variant under the action of complex conjugation, with S∩(−S′) = ∅. Define
T = S ∪S′ ∪ (S +S′). If X is regular, then there is a commutative diagram
of functors
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Furthermore, it is compatible with pull-back f∗ whenever defined.

Finally, the class functor and the arithmetic Chern character on arith-
metic K groups, allow to extend it to arithmetic derived categories.

Notation 3.13. — Let X be a regular arithmetic variety and C a Da(X)
complex. We denote by

ĉh : D̂b(X , C) −→
⊕

p

ĈH
p

Q(X , C)

the arithmetic Chern character on D̂b(X , C), obtained as the composition

of the class functor and ĉh on K̂0(X , C).

4. Arithmetic characteristic classes

Let X be a regular arithmetic variety. From the previous sections, there
exists a natural functor

D
b
(X ) −→ K̂0(X ,Da(X))

that factors through D̂b(X ,Da(X)), and there is a ring isomorphism

ĉh : K̂0(X ,Da(X))Q −→
⊕

p

ĈH
p

Q(X ,Da(X)).

We therefore obtain a functor

ĉh : D
b
(X ) −→

⊕

p

ĈH
p

Q(X ,Da(X))

automatically satisfying several compatibilities with the operations in D
b
(X )

and distinguished triangles. More generally, in this section we construct
arithmetic characteristic classes attached to real additive or multiplicative
genera. The case of the arithmetic Todd class will be specially relevant, since
it is involved in the arithmetic Riemann-Roch theorem. Our construction
relies on the one given by Gillet-Soulé [18].

Let B be a subring of R and ϕ ∈ B[[x]] a real power series, defining an
additive genus. For each hermitian vector bundle E , in [18], there is attached

a class ϕ̂(E) ∈ ĈH
∗
B(X ). By the isomorphism [11, Theorem 3.33] we obtain

a class ϕ̂(E) ∈ ĈH
∗
B(X ,Da(X)).
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For every finite complex of smooth hermitian vector bundles E∗, we put

ϕ̂(E∗) =
∑

i

(−1)iϕ̂(E i) ∈
⊕

p

ĈH
p

B(X ,Da(X)).

Let us now consider an object F∗ in D
b
(X ). We choose an auxiliary quasi-

isomorphism ψ : E∗ −−→ F∗, where E∗ is a bounded complex of locally
free sheaves on X . This is possible since X is regular by assumption. We also
fix auxiliary smooth hermitian metrics on the individual terms E i. We thus
obtain an isomorphism ψ: E∗ −−→ F∗ that in general is not tight. The lack
of tightness is measured by a class [ψC] ∈ KA(X), that we simply denote
[ψ] [10, Sec. 3]. Recall that Bott-Chern secondary classes can be defined at
the level of KA(X) (see loc. cit. Sec. 4, and especially the characterization
given in Prop. 4.6). In particular we have a class

ϕ̃(ψ) := ϕ̃([ψ]) ∈
⊕

p

D̃2p−1
a (X, p).

Lemma 4.1. — The class

ϕ̂(E∗) + a(ϕ̃(ψ)) ∈
⊕

p

ĈH
p

B(X ,Da(X)) (4.1)

depends only on F∗.

Proof. — Let ψ′: E ′∗ −−→ F∗ be another finite locally free resolution,
and choose arbitrary metrics on the E ′i. We can construct a commutative
diagram of complexes in Db(X )

(4.2)

where E ′′ is also a finite complex of locally free sheaves, that we endow with
smooth hermitian metrics, and α, β are quasi-isomorphisms. Because the
exact sequences

0→ E∗ → cone(α)→ E ′′∗[1]→ 0,

0→ E ′∗ → cone(β)→ E ′′∗[1]→ 0
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have orhtogonally split constituent rows, we find

ϕ̂(cone(α)) = ϕ̂(E∗)− ϕ̂(E ′′∗), (4.3)

ϕ̂(cone(β)) = ϕ̂(E ′∗)− ϕ̂(E ′′∗). (4.4)

Also, the complexes cone(α) and cone(β) are acyclic, so that

ϕ̂(cone(α)) = a(ϕ̃(cone(α))) = a(ϕ̃(α)), (4.5)

ϕ̂(cone(β)) = a(ϕ̃(cone(β))) = a(ϕ̃(β)), (4.6)

where we took into account the very definition of the class of an isomorphism

in D
b
(X). From the relations (4.3)–(4.6) we derive

ϕ̂(E∗)− ϕ̂(E ′∗) = a(ϕ̃(α)− ϕ̃(β)) = a(ϕ̃(α ◦ β−1
)), (4.7)

where we plugged ϕ̃(α◦β−1
) = ϕ̃(α)−ϕ̃(β) [10, Prop. 4.13]. But by diagram

(4.2) we have α ◦ β−1
= ψ

−1 ◦ ψ′. This fact combined with (4.7) implies

ϕ̂(E∗)− ϕ̂(E ′∗) = a(ϕ̃(α)− ϕ̃(β))

= a(ϕ̃(ψ
−1 ◦ ψ′))

= a(ϕ̃(ψ
′
))− a(ϕ̃(ψ)).

This completes the proof of the lemma. �

Definition 4.2. — The notations being as above, we define

ϕ̂(F∗) := ϕ̂(E∗) + a(ϕ̃(ψ)) ∈
⊕

p

ĈH
p

B(X ,Da(X)),

The additive arithmetic characteristic classes are indeed additive with
respect to direct sum, and are compatible with pull-back by morphisms
of arithmetic varieties. However, the most important property of additive
arithmetic characteristic classes is the behavior with respect to distinguished
triangles. The reader may review [10, Def. 3.29, Thm. 3.33, Def. 4.17, Thm.
4.18] for definitions and main properties, especially for the class in KA(X)
and secondary class of a distinguished triangle.

Theorem 4.3. — Let us consider a distinguished triangle in D
b
(X ):

τ : F∗ −−→ G∗ −−→ H∗ −−→ F∗[1].

Then we have
ϕ̂(F∗)− ϕ̂(G∗) + ϕ̂(H∗) = a(ϕ̃(τ))
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in
⊕

p ĈH
p

B(X ,Da(X)). In particular, if τ is tightly distinguished, we have

ϕ̂(G∗) = ϕ̂(F∗) + ϕ̂(H∗).

Proof. — It is possible to find a diagram

where E∗, E ′∗ are bounded complexes of locally free sheaves and the vertical
arrows are isomorphisms in Db(X ). We choose arbitrary smooth hermitian
metrics on the E i, E ′j , and put the orthogonal sum metric on cone(α). Then,
by construction of the arithmetic characteristic classes, we have

ϕ̂(F∗)− ϕ̂(G∗) + ϕ̂(H∗) = ϕ̂(E∗)− ϕ̂(E ′∗) + ϕ̂(cone(α))

+a(ϕ̃(f)− ϕ̃(g) + ϕ̃(h)).

Because the exact sequence

0→ E ′∗ → cone(α)→ E∗[1]→ 0

has orthogonally split constituent rows, we observe

ϕ̂(E∗)− ϕ̂(E ′∗) + ϕ̂(cone(α)) = 0.

Moreover, by [10, Thm 3.33 (vii)] the equality

ϕ̃(f)− ϕ̃(g) + ϕ̃(h) = ϕ̃(τ)− ϕ̃(η),

holds, and ϕ̃(η) = 0 since η is tightly distinguished. The theorem now
follows. �

We may also say a few words on multiplicative arithmetic characteristic
classes. We follow the discussion in [10, Sec. 5]. Assume from now on that
Q ⊂ B. Let ψ ∈ B[[x]] be a formal power series with ψ0 = 1. We denote
also by ψ the associated multiplicative genus. Then

ϕ = log(ψ) ∈ B[[x]]

defines an additive genus, to which we can associate an addtive arithmetic

characteristic genus ϕ̂. Then, given an object F∗ in D
b
(X ), we have a well

defined class

ψ̂m(F∗) := exp(ϕ̂(F∗)) ∈
⊕

p

ĈH
p

B(X ,Da(X)).
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Observe this construction uses the ring structure of
⊕

p ĈH
p

B(X ,Da(X)),
hence the regularity of X and the product structure of Da(X). In case ψ

has rational coefficients, ψ̂(F∗) takes values in
⊕

p ĈH
p

Q(X ,Da(X)). We also
recall that there is a multiplicative secondary class associated to ψ, denoted
ψ̃m, that can be expressed in terms of ϕ̃:

ψ̃m(θ) =
exp(ϕ(θ))− 1

ϕ(θ)
ϕ̃(θ),

where θ is any class in KA(X). If τ is a distinguished triangle in D
b
(X ),

we will simply write ψ̃m(τ) instead of ψ̃m([τ ]).

Theorem 4.4. — Let ψ be a multiplicative genus, with degree 0 compo-

nent ψ0 = 1. Then, for every distinguished triangle in D
b
(X )

τ :F∗ −−→ G∗ −−→ H∗ −−→ F [1]

we have the relation

ψ̂(F∗)−1ψ̂(G∗)ψ̂(H∗)−1 − 1 = a(ψ̃m(τ)).

In particular, if τ is tightly distinguished, the equality

ψ̂(G∗) = ψ̂(F∗)ψ̂(H∗)
holds.

Proof. — It is enough to exponentiate the relation provided by Theorem

4.3 and observe that, due to the mutliplicative law in
⊕

p ĈH
p
(X ,Da(X)),

one has

exp(a(ϕ̃(τ))) = 1 + a

(
exp(ϕ(τ))− 1

exp(ϕ(τ))
ϕ̃(τ)

)
.

�

Example 4.5. —

(i) The arithmetic Chern class, is the additive class attached to the ad-

ditive genus ch(x) = ex. It coincides with the character ĉh of the
previous section.

(ii) The arithmetic Todd class, is the multiplicative class attached to the
genus

Td(x) =
x

1− e−x
.

Observe that the formal series of Td(x) has constant coefficient 1.
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Remark 4.6. — If C is a Da(X)-complex, we can define arithmetic char-

acteristic classes with values in
⊕

p ĈH
p

B(X , C), just taking their image by

the natural morphism
⊕

p ĈH
p

B(X ,Da(X))→⊕
p ĈH

p

B(X , C). We will use
the same notations to refer to these classes.

5. Direct images and generalized analytic torsion

In the preceding section we introduced the arithmetic K-groups and the
arithmetic derived categories. They satisfy elementary functoriality proper-
ties and are related by a class functor. A missing functoriality is the push-
forward by arbitrary projectives morphisms of arithmetic varieties. Similar
to the work of Gillet-Rössler-Soulé [16], we will define direct images after
choosing a generalized analytic torsion theory in the sense of [9]. Our theory
is more general in that we don’t require our morphisms to be smooth over
the generic fiber. At the archimedean places, we are thus forced to work
with complexes of currents with controlled wave front sets. In this level of
generality, the theory of arithmetic Chow groups, arithmetic K-theory and
arithmetic derived categories has already been discussed. Let us recall that a
generalized analytic torsion theory is not unique, but according to [9, Thm.
7.7 and Thm. 7.14] it is classified by a real additive genus.

Our theory of generalized analytic torsion classes involves the notion of
relative metrized complex [9, Def. 2.5]. In the sequel we will need a variant
on real smooth quasi-projective schemes X = (XC, F∞). With respect to
loc. cit., this amounts to imposing an additional invariance under the action
of F∞.

Definition 5.1. — A real relative metrized complex is a triple ξ =
(f,F∗, f∗F∗), where

• f : X → Y is a projective morphism of real smooth quasi-projective
varieties, together with a hermitian structure on the tangent complex
Tf , invariant under the action of complex conjugation;

• F∗ is an object in D
b
(X);

• f∗F
∗

is an object in D
b
(Y ) lying over f∗F∗.

The following lemma is checked by a careful proof reading of the con-
struction of generalized analytic torsion classes in [9].

Lemma 5.2. — Let T be a theory of generalized analytic torsion classes.
Then, for every real relative metrized complex ξ = (f :X → Y,F∗, f∗F

∗
),
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T (ξ) is a class of real currents,

T (ξ) ∈
⊕

p

D̃2p−1
cur,a (X,Nf , p),

where Nf is the cone of normal directions to f .

It will be useful to have an adaptation of the category Sm∗/C [10, Sec.

5] to real quasi-projective schemes, that we denote Sm∗/R. In this category,
the objects are real smooth quasi-projective schemes, and the morphisms are
projective morphisms with a hermitian structure invariant under complex
conjugation. The composition law is then described in loc. cit., Def. 5.7,
with the help of the hermitian cone construction. We will follow the notation
introduced in [9, Def. 2.12].

Notation 5.3. — Let f :X → Y be in Sm∗/R, of pure relative dimension
e, C a Da(X)-complex, C ′ a Da(Y )-complex and f∗ : C → C ′ a morphism
fitting into the commutative diagram (2.12). Assume furthermore that C is
a Da(X)-module with a product law • as in (3.5). Then we put

f � : C∗(∗) −→ C ′∗−2e(p− e)
η �−→ f∗(η • Td(Tf )).

This morphism induces a corresponding morphism on C̃∗(∗), for which we
use the same notation.

For an arithmetic ring A, we introduce Reg∗/A the category of quasi-
projective regular arithmetic varieties over A, with projective morphisms
endowed (at the archimedean places) with a hermitian structure invariant
under complex conjugation. By construction, there is a natural base change
functor

Reg∗/A −→ Sm∗/R.

Given f :X → Y a morphism in Reg∗/A and objects F∗, f∗F
∗

in D
b
(X )

and D
b
(Y), respectively, we may consider the corresponding real relative

metrized complex, that we will abusively write ξ = (f,F , f∗F
∗
), and its

analytic torsion class T (ξ). We may also write f � instead of fC �, etc.

We are now in position to construct the arithmetic counterpart of [9, Eq.
(10.6)], namely the direct image functor on arithmetic derived categories,
as well as a similar push-forward on arithmetic K-theory.

Definition 5.4. — Let f :X → Y be a morphism in Reg∗/A, C a Da(X)-
complex, C ′ a Da(Y )-complex, both satisfying the hypothesis (H1) and (H2),
and f∗ : C → C ′ a morphism fitting into a commutative diagram like (2.12).
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(i) We define the functor

f∗: D̂
b(X , C) −→ D̂b(Y, C ′),

acting on objects by the assignment

[F∗, η̃] �−→ [f∗F
∗
, f �(η̃)− c′(T (f,F∗, f∗F

∗
))].

Here f∗F
∗

carries an arbitrary choice of hermitian structure. The
action on morphisms of f∗ is just the usual action f∗ on morphisms
of Db(X ).

(ii) We define a morphism of groups

f∗ : K̂0(X , C) −→ K̂0(X , C ′)
[E , η̃] �−→ [

∑

i

(−1)iE ′i, f �(η̃)− T (f, E , f∗E
∗
)],

where we choose an arbitrary quasi-isomorphism E ′∗ −−→ f∗E and
arbitrary smooth hermitian metrics on the E ′i. Here f∗E denotes the
derived direct image of the single locally free sheaf E.

Notice the previous definition makes sense by the anomaly formulas satisfied
by analytic torsion theories [9, Prop. 7.4]. Both push-forwards are compati-
ble through the class map from arithmetic derived categories to arithmetic
K-theory.

Theorem 5.5. — There is a commutative diagram of functors

This is in particular true for C = Dcur,a(X,S) and C ′ = Dcur,a(Y, f∗(S)),
where S ⊂ T ∗0X is a closed conical subset invariant under the action of
complex conjugation.

Proof. — Let [F∗, η̃] be an object in D̂b(X , C). By Remark 3.7, we can

suppose the hermitian structure on F∗ is given by a quasi-isomorphism
E∗ −−→ F∗, where E∗ is a finite complex of locally free sheaves, each one
endowed with a smooth hermitian metric. For every i, we have to endow
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f∗E i with a hermitian structure given by a finite locally free resolution

E i∗ −−→ f∗E i and a choice of arbitrary smooth hermitian metric on every

piece E ij . From the data E i∗ −−→ f∗E i, every i, the procedure of [10,
Def. 3.39] produces a hermitian structure on f∗E∗, via the hermitian cone

construction. Observe the construction of loc. cit. can be done in D
b
(Y).

Combined with the fixed quasi-isomorphism E∗ −−→ F∗, we thus obtain a
hermitian structure on f∗F∗, that we denote by f∗F

∗
.

The class of [F , η̃] in D̂b(X , C) is thus

∑

i

(−1)i[E i, 0] + [0, η̃].

Its image under f∗ is

∑

i

(−1)i


(

∑

j

(−1)j [E ij , 0])− [0, c′(T (f, E i, f∗E
i
))]


 + [0, f �(η̃)]. (5.1)

The class of f∗[F , η̃] in D̂b(Y, C ′) is

[f∗F
∗
, f �(η̃)− c′(T (f,F , f∗F

∗
))]. (5.2)

By the choice of the hermitian structures on F∗ and f∗F
∗

and by Theorem
[9, Prop. 7.6], we have

T (f,F , f∗F
∗
) =

∑

i

(−1)iT (f, E i, f∗E
i
).

Therefore the class in arithmetic K-theory of (5.2) equals (5.1). �

There are several compatibilities between direct images, inverse images
and derived tensor product. We now state them without proof, referring the
reader to [9, Thm. 10.7] for the details.

Proposition 5.6. — Let f :X → Y and g:Y → Z be morphisms in
Reg∗/A. Let S ⊂ T ∗X0 and T ⊂ T ∗Y0 be closed conical subsets.

(i) (Functoriality of push-forward) We have the relation

(g ◦ f)∗ = g∗ ◦ f∗,

as functors D̂b(X , S)→ D̂b(Z, g∗f∗S).
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(ii) (Projection formula) Assume that T ∩Nf = ∅ and that T + f∗S does

not cross the zero section of T ∗Y . Let [F∗, η̃] be in D̂b(X , S) and

[F ′∗, η̃′] in D̂b(Y, T ). Then

f∗([F
∗
, η̃]⊗ f∗[F ′∗, η̃′]) = f∗[F , η̃]⊗ [F ′, η̃′]

in D̂b(Y,W ), where

W = f∗(S + f∗T ) ∪ f∗S ∪ f∗f∗T.

(iii) There are analogous relations on the level of arithmetic K-theory,
compatible with the class functor from arithmetic derived categories.

Remark 5.7. — Strictly speaking, the equalities provided by the previous
statement should be canonical isomorphisms, but as usual we abuse the
notations and pretend they are equalities.

6. Arithmetic Grothendieck-Riemann-Roch

Hermitian tangent complexes. Let f :X → Y be a morphism in Reg∗/A.
We explain how to construct the associated hermitian tangent complex Tf .

This is an object in D
b
(X ), well defined up to tight isomorphism.

Because X , Y are regular schemes and f is projective, it is automatically
a l.c.i. morphism. The tangent complex of f is an object in Db(X ), well
defined up to isomorphism. Consider a factorization

with i being a closed regular immersion and π a smooth morphism. For
instance, one may choose Z = PnY , for some n. Let us denote by I the ideal
defining the closed immersion i. Then I/I2 is a locally free sheaf on X and,
as customary, we define the normal bundle NX/Z = (I/I2)∨. There is a
morphism of coherent sheaves

ϕ: i∗TZ/Y −→ NX/Z ,

namely the dual of the differential map d : I/I2 → i∗ΩZ/Y . We consider ϕ
as a complex with TZ/Y in degree 0, and NX/Z in degree one. We then put

Tf := [ϕ].

The isomorphism class of Tf in Db(X ) is independent of the factorization.
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The base change to C of Tf is naturally isomorphic to the tangent com-
plex TfC : TXC → f∗CYC, which is equipped with a hermitian structure by
assumption. Therefore, the data provided by the constructed complex Tf

and the hermitian structure on f determine an object Tf in D
b
(X ), which

is well defined up to tight isomorphism. By Theorem 4.4, the arithmetic
Todd class of Tf is unambiguously defined.

Definition 6.1. — The arithmetic Todd class of f is

T̂d(f) := T̂d(Tf ) ∈
⊕

p

ĈH
p

Q(X ,Da(X)).

Theorem 6.2. — Let f :X → Y, g:Y → Z be morphisms in Reg∗/A.
Then we have an equality

T̂d(g ◦ f) = f∗T̂d(g) · T̂d(f)

in
⊕

p ĈH
p

Q(X ,Da(X)).

Proof. — By construction of Tf and definition of the composition rule

of morphisms in Reg∗/A, there a is tightly distinguished triangle in D
b
(X )

Tf −−→ Tg◦f −−→ f∗Tg −−→ Tf [1].

We conclude by an application of Theorem 4.4. �

Statement. The arithmetic Grothendieck-Riemann-Roch theorem describes
the behavior of the arithmetic Chern character with respect to the push-
forward functor. Recall that the definition of the push-forward functor de-
pends on the choice of a theory of generalized analytic torsion classes. In its
turn, such a theory corresponds to a real additive genus.

Theorem 6.3. — Let f :X → Y be a morphism in Reg∗/A. Fix a closed
conical subset W of T ∗0X and a theory of generalized analytic torsion classes
T , whose associated real additive genus is S. Then, the derived direct image
functor

f∗: D̂
b(X ,Dcur,a(X,W )) −→ D̂b(Y,Dcur,a(Y, f∗(W )))

attached to T satisfies the equation

ĉh(f∗α) = f∗(ĉh(α)T̂d(f))− a(f∗(ch(F∗C)Td(TfC)S(TfC)), (6.1)

for every object α = [F∗, η̃]. The equality takes place in the arithmetic Chow

group
⊕

p ĈH
p

Q(Y,Dcur,a(Y, f∗(W ))).
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Recall that the genus S=0 corresponds to the homogeneous theory Th,
which is characterized by satisfying an additional homogeneity property [13,
Sec. 9]. Roughly speaking, this condition is exactly the one guaranteeing an
arithmetic Grothendieck-Riemann-Roch theorem without correction term.

Corollary 6.4. — The direct image functor f
h

∗ attached to the homo-
geneous generalized analytic torsion theory Th satisfies an exact Grothendieck-
Riemann-Roch type formula:

ĉh(f
h

∗α) = f∗(ĉh(α)T̂d(f)).

A Grothendieck-Riemann-Roch theorem in Arakelov geometry was proved
by Gillet-Soulé [20], for the degree 1 part of the Chern character (namely
the determinant of the cohomology) and under the restriction on the mor-
phism f to be smooth over C. Also they can only deal with hermitian
vector bundles. They used the holomorphic analytic torsion [2], [3], [4] and
deep results of Bismut-Lebeau [6] on the compatibility of analytic torsion
with closed immersions. The holomorphic analytic torsion was later gen-
eralized by Bismut-Köhler [5], to the holomorphic analytic torsion forms,
that transgress the whole Grothendieck-Riemann-Roch theorem for Kähler
submersions, at the level of differential forms. The extension of the arith-
metic Grothendieck-Riemann-Roch theorem to the full Chern character and
generically smooth morphisms was finally proven by Gillet-Rössler-Soulé
[16]. They applied the analogue to the Bismut-Lebeau immersion theorem,
for analytic torsion forms, established in the monograph by Bismut [1].

Theorem 6.3 provides an extension of the previous results in several
directions. First, we allow the morphism to be an arbitrary projective mor-
phism, non necessarily generically smooth. Second, we can deal with metrized
objects in the bounded derived category of coherent sheaves. Third, we pro-
vide all the possible forms of such a theorem, by introducing our theory of
generalized analytic torsion classes, thus explaining the topological correc-
tion term.

Reductions. Our proof of the arithmetic Grothendieck-Riemann-Roch the-
orem follows the pattern of the classical approach in algebraic geometry.
Namely, it proceeds by factorization of the morphism f into a regular closed
immersion and a trivial projective bundle projection. The advantage of
working with the formalism of hermitian structures on the derived cate-
gory of coherent sheaves makes the whole procedure more transparent and
direct, in particular avoiding the appearance of several secondary classes.
Also the cocyle type relation expressing the behaviour of generalized ana-
lytic torsion with respect to composition of morphisms in Sm∗/R (see the
axioms [9, Sec. 7]) is well suited to this factorization argument.
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By the classification of generalized analytic torsion theories, it is enough
to prove Theorem 6.3 for the homogenous theory Th. From now on we fix
this choice, and hence all derived direct image functors will be with respect
to this theory.

Let f be a morphism in Reg∗/A, and consider a factorization

The tangent complex of π is canonically isomorphic to p′∗TPn
A
/A, where

We may thus endow π with the pull-back by p′ of the Fubini-Study metric
on TPn

A
/A [9, Sec. 5]. We write π for the resulting morphism in Reg∗/A. By

[10, Lemma 5.3], there exists a unique hermitian structure on i such that
f = π ◦ i. Then we recall that we have the equality of functors

f∗ = π∗ ◦ i∗
and the equality of arithmetic Todd genera

T̂d(f) = i∗T̂d(π)T̂d(i).

Lemma 6.5. — It is enough to prove Theorem 6.3 for i and π individu-
ally.

Proof. — Let us assume the theorem known for i and for π. Because

the theorem is known for π, we may apply it to the object i∗α in D
b
(PnY),

to obtain
ĉh(f∗α) = ĉh(π∗(i∗α)) = π∗(ĉh(i∗α)T̂d(π)). (6.2)

Because the theorem is known for i, we also have

ĉh(i∗α)T̂d(π) = i∗(ĉh(α)T̂d(i))T̂d(π)

= i∗(ĉh(α)T̂d(i)i∗T̂d(π)) (6.3)

= i∗(ĉh(α)T̂d(f)).
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Observe we used the projection formula in arithmetic Chow groups (The-

orem 2.18), and that this equality holds in
⊕

p ĈH
p

Q(Y,Dcur,a(Y, f∗(W ))),
because the definition of direct image of wave front sets and the fact that π
is smooth yield f∗(W ) = π∗(i∗(W )). We conclude by putting (6.2)–(6.3) to-
gether and using the fact f∗ = π∗i∗ on arithmetic Chow groups (Proposition
2.15). �

Lemma 6.6. — Theorem 6.3 holds for i.

Proof. — In [13, Thm 10.28], the authors prove the theorem for direct
images by closed immersions, defined on arithmetic K groups. They suppose
as well that the hermitian structure on Ti is given by a smooth hermitian

metric onNX/PnY . Finally, the result in loc,. cit. holds in
⊕

p ĈH
p

Q(Y,Dcur,a(Y )).

By the anomaly formula provided by Theorem 4.4 and the anomaly
formula of generalized analytic torsion theories [9, Prop. 7.4] for change of
hermitian structure on the tangent complex, one can extend [13, Thm 10.28]
to arbitrary hermitian structures on i, in particular the one we fixed. Also, a
careful proof reading of loc. cit. shows that the theorem can be adapted to al-

low α ∈ K̂0(X ,Dcur,a(X,W )), taking values in
⊕

p ĈH
p

Q(PnY ,Dcur,a(PnY , i∗W )).

Finally, to get the result for i∗ on the arithmetic derived category, we use
the class functor to arithmetic K-theory, the commutativity Theorem 5.5
and that the Chern character on arithmetic derived category factors, by
construction, through arithmetic K groups (see Notation 3.13). �

Lemma 6.7 To prove Theorem 6.3 for π, it is enough to prove it when
Y = SpecA and α = O(k), −n � k � 0, where the chosen hermitian
structure on O(k) is the Fubini-Study metric.

Proof. — The derived category Db(PnY) is generated by coherent sheaves
of the form π∗G ⊗p′∗O(k) [9, Cor. 4.11]. By the anomaly formulas [9, Prop.
7.4, Prop. 7.6], we thus reduce to prove the theorem for α of the form
π∗G ⊗ p′∗O(k), for any metric on G. On the one hand, by the formulas in
Prop 5.6, the multiplicativity and pull-back functoriality (Prop. 3.3) of the
Chern character, we have

ĉh(π∗α) = ĉh(G ⊗ π∗p′∗O(k))

= ĉh(G)ĉh(π∗p′∗O(k))

= ĉh(G)ĉh(p∗π′∗O(k))

= ĉh(G)p∗ĉh(π′∗O(k)).
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Here we recall π′ : PnA → SpecA is the structure morphism, that we endow
with the Fubini-Study metric. On the other hand, we similarly prove

π∗(ĉh(π∗G ⊗ p′∗O(k))T̂d(π)) = ĉh(G)π∗(p′∗ĉh(O(k))p′∗T̂d(π′))

= ĉh(G)p∗π′∗(ĉh(O(k))T̂d(π′)).

We thus reduce to prove the theorem for π′ and α = O(k), as was to be
shown. �

The case of projective spaces. To prove Theorem 6.3 in full generality, it
remains to treat the case of the projection π:PnA → SpecA, where we endow
π with the Fubini-Study metric. Since this projection is the pull-back of the
projection π:PnZ → SpecZ it is enough to treat the case when A = Z.

Furthermore, we showed that it is enough to consider α of the form O(k),
−n � k � 0, with the Fubini-Study metric as well and any metric of the
direct image π∗O(k). In [9, Def. 5.7], we introduced the main characteristic
numbers of Th,

thn,k = Th(π,O(k), π∗O(k)), −n � k � 0,

where π∗O(k) was endowed with its L2 metric. Since we will only consider
the homogeneous analytic torsion we will shorthand thn,k = tn,k.

We will denote by 0 the zero vector bundle with trivial hermitian struc-
ture and, for any X, we denote by OX the structural sheaf with the metric
‖1‖ = 1. For −n � k < 0, the complex π∗O(k) can be represented by 0 (the
zero hermitian vector bundle), while the complex π∗O(0) can be represented
by the structural sheaf OZ with the metric ‖1‖2 = 1/n!. Since this metric

depends on n it will be simpler to consider the complexes π∗O(k)
′
= π∗O(k)

for −n � k < 0 and π∗O(k)
′
= OZ. Then we write

t′n,k = Th(π,O(k), π∗O(k)
′
), −n � k � 0.

These characteristic numbers satify

t′n,k =

{
tn,k, if −n � k < 0,
tn,0 − (1/2) log(n!), if k = 0.

Clearly it is equivalent to work with the characteristic numbers tn,k or with
t′n,k.

In order to finish the the proof of Theorem 6.3 it only remains to show
the following particular cases.
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Theorem 6.8. — For every 0 � k � n, we have the equality in

ĈH
1
(SpecZ) = R

a(t′n,−k) = ĉh(π∗O(−k)′)− π∗(ĉh(O(−k))T̂d(π)). (6.4)

The proof will proceed by induction. The next proposition treats the
first case.

Proposition 6.9. — Equation (6.4) holds for k = 0.

Proof. — The proof exploits the behavior of generalized analytic torsion
with respect to composition of morphisms. Let us consider the diagram

The Fubini-Study metric on the tangent space TPnC is invariant under com-
plex conjugation. It induces a metric on the tangent space of the product
of projective spaces. On each morphism on the above diagram we consider
the relative hermitian structure deduced by the hermitian metrics on each
tangent space. With this choice

id = p2 ◦∆, (6.5)

where the composition of relative hermitian structures is defined in [10,
Definition 5.7]. On the relative tangent bundle Tp2

we consider the metric
induced by the metric on TPn×Pn . Since the short exact sequence

0 −→ T p2
−→ TPn×Pn −→ p∗2TP2 −→ 0

is orthogonaly split, we deduce that the metric we consider on p2 agrees
with the metric on the vector bundle T p2 and this, in turn agrees with the
metric on p∗1TPn .

Let Q be the tautological quotient bundle on PnZ with any hermitian
metric invariant under complex conjugation. We denote by K the Koszul
resolution of the diagonal and K the same resolution with the induced
metrics. Namely K is the complex

0→ p∗2Λ
nQ
∨ ⊗ p∗1O(−n)→ . . .→ p∗2Q

∨ ⊗ p∗1O(−1)→ OPn×Pn → 0,
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and there is an isomorphism in the derived category K → ∆∗OPnZ . Since
the theories of homogeneous torsion classes for closed immersions and for
projective spaces are compatible [9, Definition 6.2] the equation

T (p2,K,OPn) + p2�(T (∆,OPn ,K)) = 0 (6.6)

holds. Then

T (p2,K,OPn) = T (p2,OPn×Pn ,OPn) +

n∑

i=1

(−1)iT (p2, p
∗
2Λ

iQ
∨ ⊗ p∗1O(−i), 0)

= π∗1T (π,OPn ,OZ) • ch(OPn)

+

n∑

i=1

(−1)iπ∗1T (π,O(−i), 0) • ch(ΛiQ
∨
)

=

n∑

i=0

(−1)itn,−i • ch(ΛiQ
∨
).

Using that

π1∗(ch(ΛiQ
∨
)Td(π1)) =

{
1, if i=0,
0, otherwise,

we deduce

π1�(T (p2,K,OPn)) = tn,0. (6.7)

By the arithmetic Riemann-Roch theorem for closed immersions

a(T (∆,OPn ,K)) =

n∑

i=0

(−1)ip∗2ĉh(ΛiQ
∨
)·p∗1ĉh(O(−i))−∆∗(ĉh(OPn)T̂d(∆)).

For i > 0

π1∗
(
p2∗

(
p∗2ĉh(ΛiQ

∨
)p∗1ĉh(O(−i))T̂d(p2)

)
T̂d(π1)

)

= π1∗(ĉh(ΛiQ
∨
)T̂d(π1)) · π∗(ĉh(O(−i))T̂d(π)).

Since

ζ(π1∗(ĉh(ΛiQ
∨
)T̂d(π1))) = ζ(π∗(ĉh(O(−i))T̂d(π))) = 0

and Ker ζ is a square zero ideal of the arithmetic Chow ring, we deduce
that, for i > 0

π1∗
(
p2∗

(
p∗2ĉh(ΛiQ

∨
)p∗1ĉh(O(−i))T̂d(p2)

)
T̂d(π1)

)
= 0. (6.8)
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For i = 0 we compute

π1∗
(
p2∗

(
p∗2ĉh(OPn)p∗1ĉh(OPn)T̂d(p2)

)
T̂d(π1)

)
= π∗(ĉh(OPn)T̂d(π))2.

Using that ĉh(OPn) = 1 and that π∗(T̂d(π))− 1 ∈ Ker ζ we obtain that

π∗(ĉh(OPn)T̂d(π))2 = −1 + 2π∗(T̂d(π)). (6.9)

Furthermore, by the choice of metrics on the relative tangent complexes

π1∗p2∗∆∗(ĉh(OPn)T̂d(∆)T̂d(p2)T̂d(π1)) = π∗(ĉh(OPn)T̂d(π)). (6.10)

Using equations (6.8), (6.9) and (6.10) we deduce that

a(π1�(p2�(T (∆,OPn ,K)))) = π∗(ĉh(OPn)T̂d(π))− ĉh(OZ). (6.11)

By equations (6.6), (6.7) and (6.11) we conclude

a(t′n,0) = ĉh(OZ)− π∗(ĉh(OPn)T̂d(π))

proving the proposition. �

Proof of Theorem 6.8. — We now proceed with the induction step. We
assume that equation (6.4) holds for some k � 0 and all n � k. Fix now
n � k + 1. Consider the diagram

where s is the closed immersion induced by a section s of OPn(1). As in
the proof of Proposition 6.9, we consider the relative hermitian structures
defined by the Fubini-Study metric on the tangent bundles. In this way
πn−1 = πn ◦ s.

We consider the Koszul complex

Kn,k:OPn(−k − 1)
s−→OPn(−k)

and we denote by Kn,k the same complex provided with the Fubini-Study
metrics.

By the transitivity [9, Definition 7.1] of the homogeneous theory of an-
alytic torsion, the equation

Th(πn−1,O(−k), πn−1∗O(−k)′) =
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Th(πn,Kn,k, πn−1∗O(−k)′) + πn�(T
h(s,O(−k),Kn,k)).

By definition Th(πn−1,O(−k), πn−1∗O(−k)′) = t′n−1,−k. By the choice of
metrics, the exact sequence

0→ πn∗O(−k − 1)
′ → πn∗O(−k)′ → πn−1∗O(−k)′ → 0 (6.12)

is orthogonal split (all the terms appearing in this short exact sequence are
either 0 or OZ). This implies that

Th(πn,Kn,k, πn−1∗O(−k)′) =

Th(πn,O(−k), πn∗O(−k)′)− Th(πn,O(−k − 1), πn∗O(−k − 1)
′
) =

t′n,−k − t′n,−k−1.

By Lemma 6.6 (the case of closed immersions)

Th(s,O(−k),Kn,k) = ĉh(O(−k))− ĉh(O(−k − 1))− s�(ĉh(O(−k))).

This implies that
πn�(T

h(s,O(−k),Kn,k)) =

πn�ĉh(O(−k))− πn�ĉh(O(−k − 1))− πn−1�ĉh(O(−k)).
Summing up, we deduce

a(t′n−1,−k − t′n,−k + t′n,−k−1) = (6.13)

−πn−1�ĉh(O(−k)) + πn�ĉh(O(−k)) +−πn�ĉh(O(−k − 1)).

Applying the induction hypothesis we get

t′n,−k−1 = −ĉh(πn−1∗O(−k)′) + ĉh(πn∗O(−k)′)− πn�ĉh(O(−k − 1)).

Using again that the exact sequence (6.12) is orthogonally split, we deduce
that

t′n,−k−1 = ĉh(πn∗O(−k − 1)
′
)− πn�ĉh(O(−k − 1)).

completing the inductive step and proving the Theorem 6.8 and therefore
Theorem 6.3. �

Once we have proved that the formal properties of an analytic torsion
theory imply the arithmetic Riemann-Roch theorem we can compute easily
the characteristic numbers tn,k for the homogeneous analytic torsion and
all n � 0 and k ∈ Z. By the Theorem 6.3 they satisfy

a(tn,k) = ĉh(πn∗OPnZ (k))− πn∗(ĉh(OPnZ (k))T̂d(πn)).
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Observe it is enough to compute tn,k for k � −n, since the self-duality of the
homogenous analytic torsion [9, Thm. 9.12] immediately yields the relation

tn,k = (−1)ntn,−k−n−1.

Therefore, from now on we restrict to this range of values of k.

We first compute ĉh(πn∗OPnZ (k))(1). For −n � k � −1 this quantity
vanishes:

ĉh(πn∗OPnZ (k))(1) = 0, −n � k � −1.

Suppose now k � 0. Using that the volume form 1/n!ωn
FS is given, in a

coordinate patch, by

µ =

(
i

2π

)n
dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn

(1 +
∑n

i=1 zizi)
n+1

,

it is easy to see that the basis {xa0
0 . . . xann }a0+...+an=k is orthonormal and

satisfies

‖xa0
0 . . . xann ‖2L2 =

a0! . . . an!

(k + n)!
.

Therefore

ĉh(πn∗OPnZ (k))(1) =
∑

a0+...+an=k

−
(

1

2

)
log

(
a0! . . . an!

(k + n)!

)
.

To compute πn∗(ĉh(OPnZ (k))T̂d(πn)) we follow [19], where the case k =

0 is considered. Let αn,k be the coefficient of xn+1 in the power series

ekx
(

x
1−e−x

)n+1

and let βn,k be the coefficient of xn in the power series
∫ 1

0
φ(t)−φ(0)

t dt, where

φ(t) = ekx
(

1

tx
− e−tx

1− e−tx

) (
x

1− e−x

)n+1

.

Then, by a slight modification of the argument in [19, Proposition 2.2.2 &
2.2.3], we derive

πn∗(ĉh(OPnZ (k))T̂d(πn))(1) =
1

2
a


αn,k

n∑

p=1

p∑

j=1

1

j
+ βn,k


 .

The factor (1/2) appears from the different normalization used here (see [11,
Theorem 3.33]). We thus have to determine the coefficients αn,k and βn,k.
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The numbers αn,k can be obtained similarly to [19, Eq. (27)]. We obtain

αn,k =





0 for −n � k � −1,(
k + n
n

)
for k � 0.

The values of βn,k are expressed in terms of some secondary Todd numbers,
that in turn are determined by a generating series:

βn,k =

n∑

j=0

T̃dn−j
kj

j!
,

where the T̃dm are given by the equality of generating series

∑

m�0

T̃dm

m+ 1
Tm+1 =

∑

m�1

ζ(−(2m− 1))

2m− 1

y2m

(2m)!
, T = 1− e−y. (6.14)

Here ζ stands for the Riemann zeta function. The result is a direct conse-
quence of the definition of βn,k and the computation of the numbers βn,0 in
[19, Prop. 2.2.3 & Lemma 2.4.3].

We summarize these computations for the principal characteristic num-
bers tn,k, −n � k � 0, since it is particularly pleasant.

Proposition 6.10. — The principal characteristic numbers tn,k are given
by

tn,k =




− 1

2

∑n
p=1

∑p
j=1

1
j , for k = 0,

− 1
2

∑n
j=0 T̃dn−j k

j

j! , for −n � k � −1,

where the sequence of numbers T̃dm, m � 0, is determined by (6.14).
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[22] Hörmander (L.). — The analysis of linear partial differential operators. I, second
ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990, Distribution
theory and Fourier analysis.

[23] Kawaguchi (S.) and Moriwaki (A.). — Inequalities for semistable families of
arithmetic varieties, J. Math. Kyoto Univ. 41 (2001), no. 1, 97-182.

– 559 –


