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An asymptotic test for Quantitative Trait Locus
detection in presence of missing genotypes

Charles-Elie Rabier(1)

ABSTRACT. — We consider the likelihood ratio test (LRT) process re-
lated to the test of the absence of QTL (a QTL denotes a quantitative
trait locus, i.e. a gene with quantitative effect on a trait) on the inter-
val [0, T ] representing a chromosome. The originality is in the fact that
some genotypes are missing. We give the asymptotic distribution of this
LRT process under the null hypothesis that there is no QTL on [0, T ] and
under local alternatives with a QTL at t� on [0, T ]. We show that the
LRT process is asymptotically the square of a “non-linear interpolated
and normalized Gaussian process”. We have an easy formula in order to
compute the supremum of the square of this interpolated process. We
prove that the threshold is exactly the same as in the classical situation
without missing genotypes.

RÉSUMÉ. — Nous considérons le processus de test de rapport de vraisem-
blance (LRT) relatif au test d’absence de QTL (un QTL désigne un gène à
effet quantitatif sur un trait) sur un intervalle [0, T ] représentant un chro-
mosome. L’originalité de cette étude vient du fait que certains génotypes
s’avèrent manquants. Nous donnons la distribution asymptotique du pro-
cessus de LRT, sous l’hypothèse nulle d’absence de QTL sur [0, T ], et
sous des alternatives locales où le QTL se situe en t� sur [0, T ]. Nous
montrons que le processus de LRT est asymptotiquement le carré d’un
“processus Gaussien d’interpolation non linéaire et renormalisé”. Nous
présentons une formule simple permettant le calcul du maximum du carré
du processus interpolé. Pour finir, nous prouvons que la valeur critique est
exactement la même que dans la configuration classique sans génotypes
manquants.
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1. Introduction

We study a backcross population: A×(A×B), where A and B are purely
homozygous lines and we address the problem of detecting a Quantitative
Trait Locus, so-called QTL (a gene influencing a quantitative trait which
is able to be measured) on a given chromosome. The trait is observed on
n individuals (progenies) and we denote by Yj , j = 1, ..., n, the observa-
tions, which we will assume to be Gaussian, independent and identically
distributed (i.i.d.). The mechanism of genetics, or more precisely of meiosis,
implies that among the two chromosomes of each individual, one is purely
inherited from A while the other (the “recombined” one), consists of parts
originated from A and parts originated from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance
on [0, T ] is called the genetic distance, it is measured in Morgans (see for
instance [29] or [27]). The genome X(t) of one individual takes the value
+1 if, for example, the “recombined chromosome” is originated from A at
location t and takes the value −1 if it is originated from B. The admitted
model for the stochastic structure of X(.) is due to Haldane which states
that:

X(0) ∼ 1

2
(δ+1 + δ−1), X(t) = X(0)(−1)N(t)

where for any b ∈ R, δb denotes the point mass at b and N(.) is a standard
Poisson process on [0, T ]. In a more practical point of view, the Haldane [17]
model assumes no crossover interference and the Poisson process represents
the number of crossovers on [0, T ] which happen during meiosis. Calculations
on the Poisson distribution show that

r(t, t′) := P (X (t)X (t′) = −1) = P (|N (t)−N (t′)| odd) =
1

2

(
1− e−2|t−t′|) ,

we set in addition
r̄(t, t′) = 1− r(t, t′).

We assume an “analysis of variance model” for the quantitative trait:

Y = µ + X(t�) q + σε (1.1)

where ε is a Gaussian white noise and t� is the true location of the QTL.

Indeed, it is well known that there is a finite number of loci underlying
the variation in quantitative traits (e.g. in aquaculture and livestock, see
[18]). In this study, we will focus only on one locus (so-called QTL) and on
only one quantitative trait. We will study the concept of QTL mapping: we
will look for associations between allele variation at the QTL and variation
in the quantitative trait of interest.
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Usually, in the classical problem of detecting a QTL on a chromosome,
the genome information is available only at fixed locations t1 = 0 < t2 <
... < tK = T , called genetic markers. Note that in the following, the word
“genotype” will refer to the genome information at all the markers locations.
So, usually an observation is

(Y, X (t1) , ..., X (tK)) ,

and the challenge is that the location t� of the QTL is unknown. An impor-
tant aspect of QTL mapping is the presence of missing genotypes. Genotype
data is rarely complete due to failures in the genotyping assays (see [7], [1])
or in order to reduce genotyping costs. For instance, under selective geno-
typing, only the individuals with extreme phenotypes are genotyped (e.g.
[20], [19], [11], [21], [23]). The originality of this paper is that we consider
the classical problem (i.e. without missing genotypes), but this time, we
consider two real thresholds S− and S+ with S− � S+ and the genotype
of one individual is available if and only if the phenotype Y belongs to the
interval S− � Y � S+. If we call X(t) the random variable such as

X(t) =

{
X(t) if Y ∈ [S− , S+]
0 otherwise,

then, in our problem, one observation will be now
(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations:

• when Y ∈ [S− , S+], we have X(t1) = X(t1), ...,X(tK) = X(tK).

• when Y /∈ [S− , S+], we have X(t1) = 0, ...,X(tK) = 0, which means
that the genome information is missing at the marker locations.

It can be proved (see Section 2) that
(
Y, X (t1) , ..., X (tK)

)
obeys to

a mixture model with known weights, times a function g(·) which does not
depend of the parameters µ, q and σ:
(
p (t�) f(µ+q,σ) (Y ) 1Y ∈[S−,S+] + (1− p(t�)) f(µ−q,σ) (Y ) 1Y ∈[S−,S+]

+ 1
2 f(µ+q,σ) (Y ) 1Y /∈[S−,S+] + 1

2 f(µ−q,σ) (Y ) 1Y /∈[S−,S+]

)
g (.) (1.2)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the
function p(t) is fully given in Section 2.

We consider that we have n observations
(
Yj , Xj (t1) , ..., Xj (tK)

)
,

j = 1, ..., n which are i.i.d., with the same distribution as described previ-
ously, and we want to test the presence of a QTL. Since its true location is
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unknown, we have to consider the location t� as an unknown parameter t,
and the likelihood process will also depend on the parameter t. The absence
of a QTL is given by the null hypothesis H0:“q=0,” and the likelihood ratio
test (LRT) of H0 against its general alternative, has test statistic supt Λn(t),
where Λn(t) is the LRT statistic at location t. This paper gives the exact
asymptotic distribution of this LRT statistic under the null hypothesis and
under contiguous alternatives. Note that arg supt Λn(t) is a natural estima-
tor of the QTL location.

In the classical problem of detecting a QTL on a chromosome, that is
to say in the oracle situation where all the individuals are genotyped, the
asymptotic distribution of the LRT statistic has been given under some
approximations by [25], [24], [9], [2], [5], [8]. Recently, [6] have shown that
the distribution of the LRT statistic is asymptotically that of the maximum
of the square of a “non linear normalized interpolated process”.

In this paper, we study a problem which has never been studied theo-
retically before: the detection of a QTL on a chromosome when only the
genotypes of the non extreme individuals (i.e. the individuals for which the
phenotypes Y belong to the interval [S−, S+]) are available. The main re-
sult of the paper (Theorems 2.1 and 4.1) is that the distribution of the LRT
statistic is asymptotically that of the maximum of the square of a “non lin-
ear normalized interpolated process”. This is a generalization of the results
obtained by [6] only for the oracle situation. Under the null hypothesis,
despite the missing genotypes, our process is exactly the same as the one
obtained by [6]. However, under the alternative, we show that the mean
functions of the two processes are not the same anymore.

Some important results are also introduced in Theorem 4.2 and Lemma
3.1. In Theorem 4.2, we give the Asymptotic Relative Efficiency (ARE)
with respect to the oracle situation. Furthermore, we propose a test statistic
(see Lemma 3.1 and formula (3.1)) asymptotically distributed as the LRT,
but which presents computational advantages. Indeed, usually, in order to
perform a LRT, we have to compute an EM algorithm at each location
of the genome, which is quite challenging. In contrast, our test statistic
does not require the use of any EM algorithm. Note that in this paper,
we also prove that the extreme phenotypes (for which the genotypes are
missing) don’t bring any extra information for statistical inference. This
result is complementary to the one obtained in [22], where I show that,
under selective genotyping, the non extreme phenotypes don’t bring any
information for statistical inference.

To conclude, we will illustrate our theoretical results with the help of
simulated data. Note that, according to Theorems 2.1 and 4.1, the threshold
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(i.e. critical value) in our study is exactly the same as the classical threshold
used in the oracle situation. So, in order to obtain our threshold, the Monte-
Carlo Quasi Monte-Carlo methods of [6], based on [16] is still suitable here.
This is an alternative to the permutation method proposed by [10]. Our
method is very fast since it relies on very powerful algorithms developed by
[16]. In contrast, permutation methods are usually time consuming since a
large number of permutations has to be performed in order to obtain an
accurate threshold.

We refer to the book of [28] for elements of asymptotic statistics used in
proofs.

2. Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located
at 0 and T : 0 = t1 < t2 = T . We look for a QTL located at t� ∈ [t1, t2].
As said before, since t� is unknown, we have to consider every locations
t ∈ [t1, t2]. So, let’s consider a location t ∈ [t1, t2].

Notations. — For (i, i′) ∈ {−1, 1}2, Qi,i′

t is the quantity such as

Qi,i′

t = P
(
X(t) = 1

∣∣X (t1) = i,X (t2) = i′
)
.

Notations. — γ, γ+ and γ− are respectively the quantities
PH0

(Y /∈ [S−, S+]), PH0
(Y > S+) and PH0

(Y < S−).

Notations. — B is the quantity such as
B = σ2

(
1− γ − zγ+

ϕ
(
zγ+

)
+ z1−γ− ϕ

(
z1−γ−

))
, where ϕ(x) and zα de-

note respectively the density of a standard normal distribution taken at the
point x, and the quantile of order 1− α of a standard normal distribution.

Using Bayes rules, we have

Q1,1
t =

r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)
(2.1)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)
.

We can remark that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Let us define the quantity p(t) such as
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p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (2.2)

and let θ = (q, µ, σ) be the parameter of the model at t fixed. According
to straightforward calculations present in Appendix, the likelihood of the
triplet

(
Y, X(t1), X(t2)

)
with respect to the measure λ⊗N ⊗N , λ being

the Lebesgue measure, N the counting measure on N, is ∀t ∈ [t1, t2]:

Lt(θ) =
(
p(t)f(µ+q,σ) (Y ) 1Y ∈[S−,S+] + (1− p(t)) f(µ−q,σ) (Y ) 1Y ∈[S−,S+]

+ 1
2 f(µ+q,σ) (Y ) 1Y /∈[S−,S+] + 1

2 f(µ−q,σ) (Y ) 1Y /∈[S−,S+]

)
g (t) (2.3)

where the function

g(t) =
1

2

(
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

)

+
1

2

(
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

)

+ 1X(t1)=01X(t2)=0

can be removed because it does not depend on the parameters. Note that for
t = t�, we find our formula (1.2) of the introduction where p(t�) is described
in formula (2.2).

Before introducing our main theorem, let us define the different hy-
potheses, the score statistic and the LRT statistic at t. Let H0 be the null
hypothesis q = 0 and define the following local alternative

Hat� : “the QTL is located at the position t� with effect q=a/
√
n where a �=0”.

Since the Fisher Information matrix is diagonal (cf. proof of Theorem 2.1
below), the score statistic of the hypothesis “q = 0” at t, for n independent
observations, will be defined as

Sn(t) =

∂lnt
∂q |θ0√

VarH0

(
∂lnt
∂q |θ0

) ,

where lnt (θ) denotes the log-likelihood at t, associated to n observations.

The LRT at t, for n independent observations, will be defined as

Λn (t) = 2
(
lnt

(
θ̂
)
− lnt

(
θ̂|H0

))
,
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where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0
the MLE

under H0.

Notations. — ⇒ is the weak convergence,
F.d.→ is the convergence of

finite-dimensional distributions and
L−→ is the convergence in distribution.

Our main result is the following:

Theorem 2.1. — Suppose that the parameters (q, µ, σ2) vary in a com-
pact and that σ2 is bounded away from zero. With the previous defined no-
tations,

Sn(.)⇒ U(.), Λn(.)
F.d.−→ U2(.), sup Λn(.)

L−→ supU2(.)

as n tends to infinity, under H0 and Hat� where:

• U(.) is the Gaussian process with unit variance such as:

U(t) =
α (t)U (t1) + β (t)U (t2)√

Var (α (t)U (t1) + β (t)U (t2))
(2.4)

where

Cov (U (t1) ,U (t2)) = ρ (t1, t2) = exp (−2|t1 − t2|)

α (t) = Q1,1
t −Q−1,1

t , β (t) = Q1,1
t −Q1,−1

t

and with expectation:

• under H0, m(t) = 0,

• under Hat�

mt�(t) =
α (t) mt�(t1) + β (t) mt�(t2)√
Var (α (t)U (t1) + β (t)U (t2))

where

mt�(t1) =
a
√
B ρ(t1, t�)
σ2

, mt�(t2) =
a
√
B ρ(t�, t2)
σ2

.

In the sense of this equation, U(.) will be called a ”non linear normalized
interpolated process”. We can see that under the null hypothesis, despite
the missing genotypes, U(.) is exactly the same process as the process Z(.)
of Theorem 2.1 of [6] obtained for the oracle situation. However, under
the alternative, the mean functions of the two processes are not the same
anymore: the mean functions are proportional of a factor

√
B/σ. Note also
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that U(.) is the generalization of Z(.). Indeed, if we choose S− = −∞ and
S+ = +∞, that is to say the genotypes of all the individuals are available,
the factor

√
B/σ is equal to 1, and U(.) is the same process as Z(.).

Proof of Theorem 2.1. — The proof is divided into four parts:

(a) Preliminaries (i.e. computation of the Fisher Information Matrix)

(b) Study of the score process under H0

(c) Study of the score process under the local alternative Hat�

(d) Study of the supremum of the LRT process.

Preliminaries

Recall that lt(θ) denotes the log-likelihood. We first compute the Fisher
information at a point θ0 that belongs to H0. The proof relies on two key
lemmas.

Lemma 2.2. — We have the following relationship:

(2p(t)− 1) 1Y ∈[S−,S+] = α(t)X(t1) + β(t)X(t2)

α(t) = Q1,1
t −Q−1,1

t and β(t) = Q1,1
t −Q1,−1

t .

To prove this lemma, use formula (2.2) and check that both sides coincide
when Y ∈ [S−, S+].

Lemma 2.3. — Let W ∼ N(µ, σ2), then

E
(
(W − µ)2 1W∈[S−, S+]

)
= σ2− σ2 P (W /∈ [S−, S+]) − σ (S+−µ) ϕ

(
S+−µ
σ

)

+ σ (S− − µ) ϕ
(
S−−µ
σ

)
.

To prove this lemma, use integration by parts. A consequence of Lemma 2 is

that we have the relationship B = EH0

(
(Y − µ)2 1Y ∈[S−,S+]

)
. To conclude,

after some easy calculations, we find that the Fisher information is diagonal:

Iθ0 = Diag

(
B

(
α2 (t) + β2 (t) + 2α (t)β (t) ρ (t1, t2)

)
/σ4 ,

1

σ2
,

2

σ2

)
.(2.5)
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Study of the score process under H0

Using Lemma 2.2, it is clear that

∂lnt
∂q
|θ0 =

n∑

j=1

Yj − µ
σ2

(2pj (t)− 1) 1Yj∈[S−,S+]

=
α(t)

σ

n∑

j=1

εj Xj(t1) +
β(t)

σ

n∑

j=1

εj Xj(t2) (2.6)

this proves that U(.) is a non linear interpolated process.

On the other hand, we have ∀k = 1, 2:

Sn(tk) =

∂lntk
∂q |θ0√

VarH0

(
∂lntk
∂q |θ0

) =

n∑

j=1

σεj Xj(tk)√
n B

.

Since
∂lnt
∂q |θ0 is centered under H0, a direct application of the central limit

theorem implies that

Sn(tk)
L−→ N(0, 1).

Then, since we have the relationship (cf. formula (2.6))

Sn(t) =
α(t)Sn(t1) + β(t)Sn(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
,

the continous mapping theorem implies that

Sn(t)
L−→ U(t) ∀t ∈ [0, T ].

It proves the convergence of finite-dimensional.

Let us now compute the covariance of the score statistics on markers,
that is to say the covariance between Sn(t1) and Sn(t2). Since

EH0

(
(Y − µ)2 1Y ∈[S−,S+]

)
= B, we have

EH0
(Sn (t1)Sn (t2)) =

1

B EH0

(
(Y − µ)2 X (t1) X (t2) 1Y ∈[S−,S+]

)

=
1

B EH0

(
(Y − µ)2 1Y ∈[S−,S+]

)
E (X (t1)X (t2))

= ρ(t1, t2).

As a consequence,

CovH0
(Sn (t1) ,Sn (t2)) = ρ(t1, t2).
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Let us now prove the weak convergence of the score process. Recall that
the tightness and the convergence of finite-dimensional imply the weak con-
vergence of the score process (see for instance Theorem 4.9 of [5]). Since we
have already proved the convergence of finite-dimensional, let us focus on the
tightness of the score process. Since p(t) and α2(t)+β2(t)+2α(t)β(t)ρ(t1, t2)
are continuous functions, each path of the process Sn(.) is a continuous func-
tion on [t1, t2]. Recall the modulus of continuity of a continous function x(t)
on [t1, t2]:

wx(δ) = sup
|t′−t|<δ

|x(t′)− x(t)| where t1 < δ � t2.

According to Theorem 8.2 of Billingsley (1999), the score process is tight if
and only if the two following conditions hold:

(a) the sequence Sn(t1) is tight.

(b) for each positive ε and η, there exists a δ, with t1 < δ < t2, and an
integer n0 such that P (wSn (δ) � η) � ε ∀n � n0.

According to Prohorov, the sequence Sn(t1) is tight. Then, (a) is verified.
Let us define the functions α̃(t) and β̃(t) in the following way:

α̃(t) = α(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2),

β̃(t) = β(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2).

First, we can notice that ∀δ such as t1 < δ � t2,

wSn(δ) = sup
|t′−t|<δ

|Sn(t′)− Sn(t)|

= sup
|t′−t|<δ

∣∣∣(α̃ (t′)− α̃ (t))Sn (t1) +
(
β̃(t′)− β̃(t)

)
Sn (t2)

∣∣∣

� max (|Sn (t1)| , |Sn (t2)|)
(
wα̃ (δ) + wβ̃ (δ)

)
. (2.7)

Furthermore, the sequence max (|Sn (t1)| , |Sn (t2)|) is uniformly tight. This
way,

∀ε > 0 ∃M > 0 ∀n � 1 P (max (|Sn(t1)| , |Sn(t2)|) �M) � ε. (2.8)

According to Heine’s theorem, since α̃(t) and β̃(t) are continuous on the
compact [t1, t2], these functions are uniformly continuous. So,

∀υ > 0 ∃δ such as t1 < δ < t2, wα̃(δ) + wβ̃(δ) < υ. (2.9)
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Let η be a positive quantity. Using formulae (2.8) and (2.9) and imposing
υ = η/M , we have

P
(
max (|Sn(t1)| , |Sn(t2)|)

(
wα̃(δ) + wβ̃(δ)

)
� η

)
� ε.

As a consequence, according to formula (2.7), we have

∀n � 1 P (wSn(δ) � η) � ε.

It proves (b) of Theorem 8.2 of Billingsley (1999). As a result, the tightness
of the score process is proved. To conclude, the tightness and the convergence
of finite-dimensional imply the weak convergence of the score process.

Study of the score process under the local alternative

Let’s consider a local alternative defined by t∗ and q = a/
√
n.

It remains to compute the asymptotic distribution of Sn(.) under this
alternative. Since we have already proved that Sn(.) is a non linear inter-
polated process (see Lemma 2.2), we only need to compute the distribution
of Sn(t1) and Sn(t2) under the alternative. The mean function of the pro-
cess is obviously a non linear interpolated function (same interpolation as
previously).

So, let’s consider the score statistic at location tk ∀k = 1, 2. Recall that
under H0,

Sn(tk) =

n∑

j=1

σεj Xj(tk)√
n B

, Sn(tk)
L−→ N(0, 1). (2.10)

Since our model is differentiable in quadratic mean, according to Theo-
rem 7.2 of [28], under H0, the log likelihood ratio verifies

lnt� (θ) − lnt� (θ0) =
a√
n

∂lnt�

∂q
|θ0 −

a2

2
EH0

((
∂lt�

∂q
|θ0

)2
)

+ oP (1) (2.11)

where oP (1) denotes a sequence which converges in probability to zero.

According to the central limit theorem and formula (2.5), under H0

lnt�(θ) − lnt�(θ0)
L−→ N

(
−1

2
ϑ2, ϑ2

)
(2.12)

with ϑ2 = a2B
(
α2(t�) + β2(t�) + 2α(t�)β(t�)ρ(t1, t2)

)
/σ4.
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As a consequence, conditions required to apply Le Cam’s third lemma
are fulfilled (cf. formulae (2.10) and (2.12)). Recall that Le Cam’s third
lemma allows to obtain the asymptotic distribution of Sn(tk) under the
local alternative, by computing the covariance beween the log likelihood
ratio and Sn(tk) under the null hypothesis.

In order to compute this covariance easily, we need an explicit expression
of the log likelihood ratio. According to formulae (2.5), (2.6) and (2.11),
under H0,

lnt�(θ) − lnt�(θ0)

=
a

σ
√
n


α (t�)

n∑

j=1

εj Xj(t1) + β (t�)

n∑

j=1

εj Xj(t2)




−a
2B

2σ4

(
α2 (t�) + β2 (t�) + 2α (t�)β (t�) ρ (t1, t2)

)
+ oP (1). (2.13)

First, let us focus on the score statistic at location t1. Then, we have

CovH0


Sn (t1) ,

a α (t�)

σ
√

n

n∑

j=1

εj Xj (t1)




= CovH0




n∑

j=1

σεj Xj (t1)√
n B

,
a α (t�)

σ
√

n

n∑

j=1

εj Xj (t1)




=
a α (t�)√
B

VarH0

(
ε X (t1)

)
=
a α (t�)

√
B

σ2
.

In the same way,

CovH0


Sn (t1) ,

a β (t�)

σ
√

n

n∑

j=1

εj Xj (t2)




=
a β (t�)√
B

CovH0

(
ε X (t1) , ε X (t2)

)

=
a β (t�)

σ2
√
B
EH0

(
(Y − µ)2 X (t1) X (t2) 1Y ∈[S−,S+]

)

=
a β (t�)

σ2
√
B
EH0

(
(Y − µ)2 1Y ∈[S−,S+]

)
E (X (t1) X (t2))

=
a β (t�)

√
B ρ (t1, t2)

σ2
. (2.14)
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As a consequence, since α(t�) + β(t�)ρ(t1, t2) = ρ(t1, t
�),

CovH0
(Sn (t1) , l

n
t� (θ) − lnt� (θ0)) =

a
√
B ρ(t1, t�)
σ2

.

Using the same kind of proof, and the fact that α(t�)ρ(t1, t2) + β(t�) =
ρ(t�, t2), we obtain

CovH0 (Sn(t2), l
n
t� (θ) − lnt� (θ0)) =

a
√
B ρ(t�, t2)
σ2

.

As a result, under the local alternative, according to Le Cam’s third lemma,

Sn (t1)
L−→ N

(
a
√
B ρ(t1, t�)
σ2

, 1

)
and Sn (t2)

L−→ N

(
a
√
B ρ(t�, t2)
σ2

, 1

)
.

Study of the supremum of the LRT process

Since the model with t fixed is regular, it is easy to prove that for fixed t

Λn(t) = S2
n(t) + oP (1)

under the null hypothesis. Our goal is now to prove that the remainder is
uniform in t.

Let us consider now t as an extra parameter. Let t�, θ� be the true
parameter that will be assumed to belong toH0. Note that t� makes no sense
for θ belonging to H0. It is easy to check that at H0 the Fisher information
relative to t is zero so that the model is not regular.

It can be proved that assumptions 1, 2 and 3 of [4] hold. So, we can
apply Theorem 1 of [4] and we have

sup
(t,θ)

lt (θ)− lt� (θ�) = sup
d∈D





 1√

n

n∑

j=1

d(Xj)




2

1∑n

j=1
d(Xj)�0


 + oP (1)

(2.15)
where the observation Xj stands for Yj , Xj(t1), Xj(t2) and where D is the
set of scores defined in [4], see also [15] and [3]. A similar result is true under
H0 with a set D0. Let us precise the sets of scores D and D0. These sets are
defined at the sets of scores of one parameter families that converge to the
true model pt�,θ� and that are differentiable in quadratic mean.

It is easy to see that

D =
{ 〈W, l′t (θ�)〉√

VarH0
(〈W, l′t(θ�)〉)

,W ∈ R3, t ∈ [t1, t2]
}
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where l′ is the gradient with respect to θ. In the same manner

D0 =
{ 〈W, l′t(θ�)〉√

VarH0
(〈W, l′t(θ�)〉)

,W ∈ R2
}
,

where now the gradient is taken with respect to µ and σ only. Of course
this gradient does not depend on t.

Using the transform W → −W in the expressions of the sets of score,
we see that the indicator function can be removed in formula (2.15). Then,
since the Fisher information matrix is diagonal (see formula (2.5)) , it is
easy to see that

sup
d∈D





 1√

n

n∑

j=1

d(Xj)




2

− sup

d∈D0





 1√

n

n∑

j=1

d(Xj)




2



= sup
t∈[t1,t2]







1√
n

n∑

j=1

∂lt
∂q (Xj) |θ0√

VarH0

(
∂lt
∂q (Xj) |θ0

)




2
 .

This is exactly the desired result. Note that the model with t� fixed is
differentiable in quadratic mean, this implies that the alternative defines
a contiguous sequence of alternatives. By Le Cam’s first lemma, relation
(2.15) remains true under the alternative. �

Remark. — According to the Law of Large Numbers, under the null hy-
pothesis H0 and under the local alternative Hat� ,

1
n

∑
1Yj∈[S+,S−] → 1− γ.

So, 1− γ corresponds asymptotically to the percentage of individuals geno-
typed. In the same way, γ+ (resp. γ−) corresponds asymptotically to the
percentage of non-genotyped individuals in the right tail (resp. the left tail)
of the distribution.

3. An easy way to perform the statistical test

Since U(.) is a ”non linear normalized interpolated process”, we can
use Lemma 2.2 of [6] in order to compute easily the supremum of U2(.).
Note that this lemma is suitable here because we have exactly the same
interpolation as in Theorem 2.1 of [6]. It comes

max
t∈[t1,t2]

(α (t)U (t1) + β (t)U (t2))
2

α2 (t) + β2 (t) + 2ρ (t1, t2)α (t) β (t)
(3.1)

= max

(
U

2
(t1) ,U

2
(t2) ,

U2 (t1) + U2 (t2)− 2ρ (t1, t2)U (t1)U (t2)

1− ρ2 (t1, t2)
1U(t2)

U(t1)
∈]ρ(t1,t2), 1

ρ(t1,t2)
[

)
.
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Note that since under H0, the process U(.) is exactly the same process as
the process Z(.) obtained by [6], we will have exactly the same threshold as
the one under the oracle situation (i.e. all the individuals genotyped). So,
the Monte-Carlo Quasi Monte-Carlo method of [6] and based on [16], is still
suitable here.

Let’s focus now on the data analysis. Which test statistic should we use
in order to make the data analysis easy? Indeed, when we focus only on
one location of the genome which is a marker location, performing a LRT
or a Wald test is time consuming: an EM algorithm is required to obtain
the maximum likelihood estimators. So, since we focus here on the whole
chromosome, we have to propose the easiest statistical test for geneticists.

As a consequence, for k = 1, 2 , let’s define now the test statistic Tn(tk)
such as

Tn(tk) =

∑n
j=1(Yj − Y ) Xj(tk)√∑n

j=1(Yj − Y )2 1Yj∈[S−,S+]

.

We introduce the following lemma.

Lemma 3.1. — Let Tn(.) be the process such as

Tn(t) =
α(t)Tn(t1) + β(t)Tn(t2)√

α2(t) + β2(t) + 2ρ(t1, t2)α(t)β(t)
,

then Tn(.)⇒ U(.) and T 2
n(.)⇒ U2(.).

Note that this lemma can easily be proved by contiguity and using Slut-
sky’s lemma. Then, for the data analysis, we just have to consider as a test
statistic supT 2

n(.), which can be obtained easily using formula (3.1) and
replacing U(t1) and U(t2) by respectively Tn(t1) and Tn(t2). Note that, ac-
cording to Lemma 3.1, this test has the same asymptotic properties as the
test based on the test statistic sup Λn(.), which corresponds to a LRT on
the whole chromosome.

On the other hand, a consequence of Lemma 3.1 is that the extreme phe-
notypes (for which the genotypes are missing) don’t bring any information
for statistical inference. Indeed, our test statistics Tn(t) are based only on
the non extreme phenotypes, as soon as we replace the empirical mean Y by
µ̂, an estimator

√
n consistent based only on the non extreme phenotypes

(µ̂ can be obtained by the method of moments for instance). This result is
complementary to the one obtained in [22], where it is shown that, under
selective genotyping, the non extreme phenotypes (i.e. Y ∈ [S−, S+] in the
case of the selective genotyping) don’t bring any information for statistical
inference.
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4. Several markers : the “Interval Mapping”
of [19] in presence of missing genotypes

In that case suppose that there are K markers 0 = t1 < t2 < ... <
tK = T . We consider values t, t′ or t� of the parameters that are distinct of
the markers positions, and the result will be prolonged by continuity at the
markers positions. For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we define t$

and tr as:

t$ = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (t$, tr).

Theorem 4.1. — We have the same result as in Theorem 2.1, provided
that we make some adjustments and that we redefine U(.) in the following
way:

• in the definition of α(t) and β(t), t1 becomes t$ and t2 becomes tr

• under the null hypothesis, the process U(.) considered at marker posi-
tions is the ”squeleton” of an Ornstein-Uhlenbeck process: the station-
ary Gaussian process with covariance ρ(tk, tk′) = exp (−2|tk − tk′ |)

• at the other positions, U(.) is obtained from U(t$) and U(tr) by in-
terpolation and normalization using the functions α(t) and β(t)

• at the marker positions, the expectation is such asmt�(tk) = a
√
Bρ(tk,t�)
σ2

• at other positions, the expection is obtained from mt�(t
$) and mt�(t

r)
by interpolation and normalization using the functions α(t) and β(t).

Proof of Theorem 4.1. — Due to Haldane model with Poisson incre-
ments, for a position t, we can limit our attention to the interval (t$, tr).
As a result when t� belongs to the marker interval (t$, tr), the proof is the
same as the proof of Theorem 2.1. On the other hand, when t� does not
belong to the marker interval (t$, tr), some adjustments have to be done for
computing the distribution of the test statistic under the local alternative.
In particular, in order to obtain an explicit expression of the log likelihood
ratio, we can still use formula (2.13) provided that we replace t1 and t2 by
respectively t�$ and t�r. As a consequence, if we consider tk = t$, we have
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CovH0


Sn (tk) ,

a α (t�)

σ
√

n

n∑

j=1

εj Xj

(
t�$

)



= CovH0




n∑

j=1

σεj Xj (tk)√
n B

,
a α (t�)

σ
√

n

n∑

j=1

εj Xj

(
t�$

)



=
a α (t�)

σ2
√
B
EH0

(
(Y − µ)2 X (tk) X

(
t�$

)
1Y /∈[S−,S+]

)

=
a α (t�)

√
B ρ

(
tk, t

�$
)

σ2
.

In the same way,

CovH0


Sn(tk),

a β (t�)

σ
√

n

n∑

j=1

εj Xj (t
�r)


 =

a β (t�)
√
B ρ (tk, t

�r)

σ2
.

Since α(t�)ρ(tk, t
�$) + β(t�)ρ(tk, t

�r) = ρ(tk, t
�) and according to Le Cam’s

third lemma, we have under the local alternative

Sn(tk)
L−→ N

(
a
√
B ρ (tk, t

�)

σ2
, 1

)
. �

An important point is that since for a position t we can limit our atten-
tion to the interval (t$, tr), Lemma 3.1 and formula (3.1) are still true here.
We just have to replace t1 and t2 by t$ and tr in order to obtain the good
expressions. As a consequence, we can easily compute supT 2

n(.).
We introduce now our Theorem 4.2.

Theorem 4.2. — Let κ be the Asymptotic Relative Efficiency (ARE)
with respect to the oracle situation where all the genotypes are known. Then,
we have

i) κ = 1− γ − zγ+
ϕ

(
zγ+

)
+ z1−γ− ϕ

(
z1−γ−

)

ii) κ reaches its maximum for γ+ = γ or γ− = γ

iii) κ > 1− γ ⇔ z1−γ− ϕ
(
z1−γ−

)
> zγ+

ϕ
(
zγ+

)
.

According to i) of Theorem 4.2, the ARE with respect to the oracle situation,
does not depend on the constant a linked to the QTL effect, and does not
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depend on the location of the QTL t�. On the other hand, according to
ii) of Theorem 4.2, if only a percentage 1 − γ of genotypes is available in
the population considered, the efficiency of our test is maximum when all
the missing genotypes are located in the right tail of the distribution (i.e.
γ+ = γ). Obviously, by symmetry, the efficiency of our test is also maximum
when all the missing genotypes are located in the left tail of the distribution
(i.e. γ− = γ). Note also, that according to iii), our test can reduce costs due
to genotyping when z1−γ− ϕ

(
z1−γ−

)
> zγ+ ϕ

(
zγ+

)
. However, this condition

is very restrictive due to the properties of the Gaussian distribution.

Proof of Theorem 4.2. — The proof of i) is obvious since the mean func-
tion of the process U(.) and the one of the process Z(.) corresponding to the
oracle situation, are proportional of a factor

√
B/σ. Let’s now prove that the

maximum is reached for γ− = γ, that is to say γ+ = 0, since γ = γ+ + γ−.
Note that without loss of generality, it will also prove that the maximum is
reached for γ+ = γ and γ− = 0. We have to answer the following question :
how must we choose γ+ and γ− to maximize the efficiency ? We remind that
γ+ +γ− = γ and that ϕ(.) and Φ(.) denote respectively the density and the
cumulative distribution of the standard normal distribution. Let u(.) be the
function such as : u

(
zγ+

)
= Φ−1

(
γ − 1 + Φ

(
zγ+

))
. Then, z1−γ− = u

(
zγ+

)
.

Let k1(.) be the following function:
k1

(
zγ+

)
= zγ+

ϕ
(
zγ+

)
− u

(
zγ+

)
ϕ

(
u

(
zγ+

))
.

In order to maximize κ, we have to minimize the function k1(.). Let k′1(.),
u′(.) and ϕ′(.) be respectively the derivative of k1(.), u(.) and ϕ(.). We have:

k′1
(
zγ+

)
= ϕ

(
zγ+

)
+ zγ+ϕ

′ (zγ+

)
− u′

(
zγ+

)
ϕ

(
u

(
zγ+

))

−u
(
zγ+

)
u′

(
zγ+

)
ϕ′

(
u

(
zγ+

))
,

u′(zγ+
) =

ϕ(zγ+)

ϕ(z1−γ−)
.

As a consequence,

k′1
(
zγ+

)
= ϕ

(
zγ+

) (
z2γ− − z2γ+

)
.

If zγ+ = +∞, then k′1
(
zγ+

)
= 0. It can been proved that γ+ = 0 corresponds

to a minimum for k1(.). As a result, the efficiency κ reaches its maximum
when γ− = γ. �
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5. Applications

In this Section, we propose to illustrate the theoretical results obtained
in this paper. For all the following applications, we will consider statistical
tests at the 5% level. If we call

hn(tk,tk+1) =
T 2
n(tk) + T 2

n(tk+1)− 2ρ(tk, tk+1)Tn(tk)Tn(tk+1)

1− ρ2(tk, tk+1)
1Tn(tk+1)

Tn(tk)
∈]ρ(tk,tk+1), 1

ρ(tk,tk+1)
[
,

as explained before, an easy way to perform our statistical test is to use
the test statistic

Mn = max
{
T 2
n(t1), T

2
n(t2), hn(t1, t2), ..., T

2
n(tK−1), T

2
n(tK), hn(tK−1, tK)

}
.

Our first result is that the threshold (i.e. critical value) is the same
if only the genotypes of the non extreme individuals (i.e. the individuals
for which Y ∈ [S−, S+]) are available or if all the genotypes are available
(i.e. the oracle situation). So, the Monte-Carlo Quasi Monte-Carlo method,
proposed by [6] (based on [16]) for the oracle situation, is still suitable here
to obtain our threshold. Note that in [6], the authors show that their method
gives better results than the method of [14] based on [26], and the method of
[24] based on [12] and [13]. This way, in Tables 1 and 2, we propose to check
on simulated data, the fact that the threshold is the same as in the oracle
situation. In the following, 1M will denote 1 Morgan whereas 1cM will stand
for 1 centiMorgan. First, in Table 1, we consider a sparse map: a chromosome
of length T = 1M, with two genetic markers located at each extremity. For
such a configuration, if we choose a 5% level, the corresponding threshold is
4.89. We consider γ = 0.2. In other words we have 20% of missing genotypes.
Besides, we consider different values for the percentage γ+ of indivuals not
genotyped in the right tail of the distribution. We can see that, whatever
the value of γ+, the Percentage of False Positives is close to the true level of
the test (i.e. 5% ) even for small values of n (see n = 50). Then, in Table 2,
we consider a more dense genetic map. We still consider a chromosome of
length T = 1M, but 6 genetic markers are now equally spaced every 20cM.
We can notice that, as previously, the Percentage of False Positives is close
to 5%.

Let’s now focus on the alternative hypothesis. To begin, in Table 3, we
consider the sparse map and the same value of γ as previously. For the
QTL effect q, we consider a = 4 : we remind that q = a/

√
n. We focus on

different locations t� of the QTL and different values of γ+. We present the
Theoretical Power based on 100000 paths of the asymptotic process, and
also the Empirical Power (in brackets) obtained for n = 1000. We can see
that the Theoretical Power and the Empirical Power are very close whatever
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the values of t� and γ+ are. Besides, as expected (cf. Theorem 4.2), we can
see that the Theoretical Power is maximum when the missing genotypes are
all located in the right tail of the distribution (i.e. γ+ = γ). Note that we
would have obtained the same result for γ− = γ (i.e. left tail). Finally, in
Table 4, we consider the dense map, and we change the value of a : a = 6.
We obtain the same kind of conclusions as before. This result was expected
since all the theoretical results obtained in this paper, are suitable for any
kind of genetic map.

To conclude, we present in this paper easy ways to analyze data in pres-
ence of missing genotypes. That’s why it must be interesting for geneticists.

6. Appendix

Notations. — Pt {l | i} is the quantity such as ∀ l ∈ {−1, 0, 1} and ∀
i ∈ {−1, 1}

Pt {l | i} = P
(
X (t) = l | X (t) = i

)
.

In order to compute the likelihood, we have to study the different prob-
ability distributions.
To begin with, let us compute P

(
Y ∈ [y , y + dy] ∩ X (t1) = 1 ∩ X (t2) = 1

)
,

and let consider that the location tested t is equal to the true location t� of
the QTL. We have, according to Bayes rules,

P
(
Y ∈ [y , y + dy] ∩ X (t1) = 1 ∩ X (t2) = 1

)

=
∑

i∈{−1,1}
P

(
Y ∈ [y, y + dy] | X (t) = i

)
P

(
X (t) = i ∩X (t1) = 1 ∩X (t2) = 1

)
.

Besides,

P(Y ∈ [y , y + dy] | X(t) = i)=
P(Y ∈ [y , y + dy] ∩X �= 0 | X(t) = i)

P(X(t) �= 0 | X(t) = i)

=
f(µ+iq,σ)(y) 1y∈[S−,S+]

Pt {i | i}

and

P(X(t) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

= P(X(t) �= 0 ∩ X(t) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

= Pt {i | i} P(X(t) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

=
1

2
Pt {1 | 1} r(t1, t) r(t, t2)1i=1 +

1

2
Pt {−1 | −1} r(t1, t) r(t, t2)1i=−1.
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It comes, using formula (2.1),

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = 1)

=
1

2
f(µ+q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

1,1
t

+
1

2
f(µ−q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

−1,−1
t .

In the same way, after some calculations, we find

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = −1)

=
1

2
f(µ+q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

1,−1
t

+
1

2
f(µ−q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

−1,1
t , (6.1)

P(Y ∈ [y , y + dy] ∩ X(t1) = −1 ∩ X(t2) = 1)

=
1

2
f(µ+q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

−1,1
t

+
1

2
f(µ−q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

1,−1
t ,

P(Y ∈ [y , y + dy] ∩ X(t1) = −1 ∩ X(t2) = −1)

=
1

2
f(µ+q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

−1,−1
t

+
1

2
f(µ−q,σ)(y) 1y∈[S−,S+] r(t1, t2) Q

1,1
t .

Finally, when the genotype is missing (i.e. the phenotype is extreme), we
find

P(Y ∈ [y , y + dy] ∩ X(t1) = 0 ∩ X(t2) = 0)

=
1

2
f(µ+q,σ)(y) 1y/∈[S−,S+] +

1

2
f(µ−q,σ)(y) 1y/∈[S−,S+].

As a result, we obtain the expression of the likelihood described in formula
(2.3) of Section 2.
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Table 1. — Percentage of False Positives as a function of the number of individuals
n and the percentage of individuals γ+ not genotyped in the right tail. The chromosome
is of length T = 1M and 2 markers are located at each extremity (γ = 0.2, 1 − γ = 0.8,
a = 0, σ = 1, µ = 0, 10000 samples of n individuals).

n
γ+

1000 200 100 50

γ/4 4.98% 5.43% 4.60% 4.79%
γ/2 5.10% 4.87% 5.17% 4.94%
γ 5.18% 5.31% 4.49% 4.61%

Table 2. — Percentage of False Positives as a function of the number of individuals
n and the percentage of individuals γ+ not genotyped in the right tail. The chromosome
is of length T = 1M and 6 markers are equally spaced every 20cM (γ = 0.2, 1− γ = 0.8,
a = 0, σ = 1, µ = 0, 10000 samples of n individuals).

n
γ+

1000 200 100 50

γ/4 5.08% 4.65% 4.59% 4.48%
γ/2 5.01% 4.70% 4.56% 4.44%
γ 5.06% 4.67% 4.28% 4.20%

Table 3. — Theoretical power and Empirical Power (in brackets) as a function of the
location of the QTL t� and the percentage γ+ of individuals non genotyped in the right
tail. The chromosome is of length T = 20cM and 2 markers are located at each extremity
(γ = 0.2, 1−γ = 0.8, a = 4, σ = 1, µ = 0, 10000 samples of n = 1000 individuals, 100000
paths for the Theoretical Power).

t�

γ+
5cM 12cM 18cM

γ/4 60.46% 58.88% 62.88%
(60.75%) (58.43%) (62.18%)

γ/2 56.17% 54.57% 58.44%
(56.68%) (54.82%) (58.16%)

γ 76.61% 74.79% 79.10%
(76.34%) (74.71%) (78.60%)
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Table 4. — Theoretical power and Empirical Power (in brackets) as a function of the
location of the QTL t� and the percentage γ+ of individuals non genotyped in the right
tail. The chromosome is of length T = 1M and 6 markers are equally spaced every 20cM
(γ = 0.2, 1−γ = 0.8, a = 6, σ = 1, µ = 0, 10000 samples of n = 1000 individuals, 100000
paths for the Theoretical Power).

t�

γ+
12cM 35cM 48cM 77cM

γ/4 83.99% 86.39% 84.91% 87.87%
(83.47%) (85.91%) (84.20%) (87.19%)

γ/2 80.14% 82.75% 80.96% 84.00%
(79.62%) (81.88%) (80.37%) (83.25%)

γ 95.36% 96.23% 95.48% 96.85%
(94.87%) (96.07%) (94.83%) (96.89%)
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[24] Rebäı (A.), Goffinet (B.), Mangin (B.). — Approximate thresholds of interval
mapping tests for QTL detection, Genetics, 138, p. 235-240 (1994).
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