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Annales de la Faculté des Sciences de Toulouse Vol. XXIII, n◦ 4, 2014
pp. 893-905

An extension theorem for Kähler currents
with analytic singularities

Tristan C. Collins(1), Valentino Tosatti(2)

ABSTRACT. — We prove an extension theorem for Kähler currents with
analytic singularities in a Kähler class on a complex submanifold of a
compact Kähler manifold.

RÉSUMÉ. — Nous démontrons un théorème d’extension pour les courants
kählériens avec singularités analytiques dans une classe de Kähler sur une
sous-variété complexe d’une variété kählérienne compacte.

1. Introduction

The problem that we consider in this paper is the following: given a
compact Kähler manifold (X,ω), a compact complex submanifold V ⊂ X,
and a closed positive current T on V in the class [ω|V ], can we find a
closed positive current T̃ on X in the class [ω] with T = T̃ |V ? Extension
questions like this have recently generated a great deal of interest thanks to
their analytic and geometric applications [4, 7, 9, 15, 17]. The first result in
this direction is due to Schumacher [15] who proved that if [ω] is rational
(hence X is projective), then any smooth Kähler metric on V in the class
[ω|V ] extends to a smooth Kähler metric on X in the class [ω] (see also
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[4, 9, 14, 17]). More recently, Coman-Guedj-Zeriahi proved in [4] that under
the same rationality assumption, every closed positive current T on a closed
analytic subvariety V ⊂ X in the class [ω|V ] extends to X.

In our main theorem we get rid of rationality/projectivity assumptions
in the case of extension of Kähler currents with analytic singularities from
a submanifold. More precisely, we prove:

Theorem 1.1. — Let (X,ω) be a compact Kähler manifold and let V ⊂
X be a positive-dimensional compact complex submanifold. Let T be a Kähler
current with analytic singularities on V in the Kähler class [ω|V ]. Then there
exists a Kähler current T̃ on X in the class [ω] with T = T̃ |V .

The techniques that have been used in the past to approach this type
of extension problems range from Siu’s Stein neighborhood theorem [16],
to results of Coltoiu [3] on extending Runge subsets of analytic subsets of
CN, to the Ohsawa-Takegoshi L2 extension theorem [8]. In this paper we
introduce a new constructive extension technique which uses resolution of
singularities to obtain estimates which allow us to glue plurisubharmonic
functions with analytic singularities near their polar set by a modification
of a classical argument of Richberg [13]. The ideas of using resolution of
singularities comes from the recent work of Collins-Greenleaf-Pramanik [1]
on sharp estimates for singular integral operators, which was motivated by
the seminal work of Phong, Stein and Sturm [10, 11, 12]. One advantage of
these local techniques is that we can work on general Kähler manifolds with
arbitrary Kähler classes, although at present we can only extend Kähler
currents with analytic singularities from smooth subvarieties. It would be
very interesting to know how far these techniques can be pushed, but we
have not undertaken this here.

In our recent work [2], we dealt with a very similar extension problem,
and employed a related argument of a more global flavor where we used
resolution of singularities from the very beginning and worked on a blowup
of X. This approach is technically simpler, because it allows us to use di-
rectly Richberg’s gluing technique, but it seems not to be strong enough
to prove Theorem 1.1, because the extension is achieved only on a blowup
of X. On the other hand, the proof of Theorem 1.1 can easily be adapted
to give another proof of [2, Theorem 3.2], which is the key technical result
needed in that paper.

Acknowledgment. — We are grateful to the referee for some useful
corrections and suggestions. The second named author was supported in
part by a Sloan Research Fellowship and NSF grants DMS-1236969 and
DMS-1308988.

– 894 –



Extension theorem for Kähler currents

2. Proof of Theorem 1.1

Let us first recall the necessary definitions and concepts needed for the
proof of Theorem 1.1. Let (X,ω) be a compact Kähler manifold. We say
that a closed positive (1, 1) current T on X is a Kähler current if it satisfies
T � εω as currents, for some ε > 0.

Every closed positive (1, 1) current T cohomologous to ω is of the form
T = ω+i∂∂ϕ for some quasi-plurisubharmonic function ϕ. We say that ϕ (or
T ) has analytic singularities if for any given x ∈ X there is a neighborhood
U of x with holomorphic functions f1, . . . , fN and a smooth function g such
that on U we have

ϕ = c log

(∑

i

|fi|2
)

+ g,

for some c > 0. In this case the polar set {ϕ = −∞} is a closed analytic
subvariety of X. A basic result of Demailly [5] implies that every Kähler
current can be approximated (in the weak topology) by Kähler currents
with analytic singularities in the same cohomology class.

We now turn to the proof of Theorem 1.1. The proof is somewhat techni-
cal, so we briefly outline the main steps. First, we construct local extensions
on a finite open covering of V . We then use an idea of Richberg [13] to glue
the local potentials to construct a Kähler current in a pinched tubular neigh-
borhood in X. That is, near any point where T has positive Lelong number,
the diameter of the tubular neighborhood might pinch to zero. By adding a
suitable potential to the Kähler metric, we also obtain a global Kähler cur-
rent R on X with analytic singularities along V . We then use a resolution
of singularities argument to show that, after possibly reducing the Lelong
numbers of the global Kähler current R, we can glue the Kähler current on
the pinched neighborhood to R, to obtain a global Kähler current.

Proof of Theorem 1.1. — By assumption, we can write T = ω|V + i∂∂ϕ
for some quasi-plurisubharmonic function ϕ on V which has analytic singu-
larities on V . Our goal is to extend ϕ to a function Φ on X with ω + i∂∂Φ
a Kähler current.

Thanks to [6, Lemma 2.1], there exists a function ψ : X → [−∞,∞)
which is smooth on X\V , with analytic singularities along V , and with
i∂∂ψ � −Aω as currents on X, for some large A. Then, for δ sufficiently
small, we have that R = ω + δi∂∂ψ is a Kähler current on X with analytic
singularities along V . Fix one such δ and define F = δψ.
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Choose ε > 0 small enough so that

T = ω|V + i∂∂ϕ � 3εω|V ,

holds as currents on V . We can cover V by finitely many charts {Wj}1�j�N
such that on each Wj there are local coordinates (z1, . . . , zn) and so that
V ∩Wj = {z1 = · · · = zn−k = 0}, where k = dimV . Write z = (z1, . . . , zn−k)
and z′ = (zn−k+1, . . . , zn) and define a function ϕj on Wj (with analytic
singularities) by

ϕj(z, z
′) = ϕ(z′) + A|z|2,

where A > 0 is a constant. If we shrink the Wj ’s slightly, still preserving
the property that V ⊂ ∪jWj , we can choose A sufficiently large so that

ω + i∂∂ϕj � 2εω,

holds on Wj for all j. It will also be useful to fix slightly smaller open sets
W ′j � Uj � Wj such that ∪jW ′j still covers V . Note that since ϕ is smooth
at the generic point of V , by construction all functions ϕj are also smooth
in a neighborhood of the generic point of V ∩Wj .

We wish to glue the functions ϕj together to produce a Kähler current
defined in a neighborhood of V in X. This would be straightforward if the
functions ϕj were continuous, thanks to a procedure of Richberg [13], but
in our case the functions ϕj |V have poles along

P = E+(T ) =


⋃

j

{ϕj = −∞}


 ∩ V.

We can still use the technique of Richberg to produce a Kähler current in
an open neighborhood in X which does not contain the polar set P . An
argument using resolution of singularities will then allow us to get a Kähler
current in a whole neighborhood of V .

The first step is to consider two open sets W1,W2 in the covering with
W ′1∩W ′2∩V nonempty, and fix a compact set K ⊂ V with (W ′1∪W ′2)∩V ⊂
K ⊂ (U1 ∪U2)∩V . Let M1 = K ∩ ∂U2,M2 = K ∩ ∂U1, so that M1 and M2

are disjoint compact subsets of V . This setup is depicted in figure 1.
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Figure 1. — The setup for the local Richberg-type argument.

Pick θ1 a smooth nonnegative cutoff function which is identically 1 in
a neighborhood of M2 in X and θ2 a smooth nonnegative cutoff function
which is identically 1 in a neighborhood of M1 in X so that the supports of
θ1 and θ2 are disjoint. Then, if we choose η > 0 small, the functions

ϕ̃j = ϕj − ηθj , (2.1)

j = 1, 2 have analytic singularities and satisfy ω + i∂∂ϕ̃j � εω on Wj .
Furthermore they are smooth in a neighborhood of the generic point of
V ∩Wj . On W1 ∩W2 we then define

ϕ̃0 = max{ϕ̃1, ϕ̃2},

which satisfies ω+ i∂∂ϕ̃0 � εω and equals ϕ on V ∩W1∩W2. Consider now
a neighborhood of M2\P in X, small enough so that θ1 = 1 and ϕ1, ϕ2 are
finite on it. Since ϕ1, ϕ2 agree on V and are smooth on this neighborhood,
we see that there exists a possibly smaller such neighborhood where

ϕ̃1 = ϕ1 − η < ϕ2 = ϕ̃2,

so that ϕ̃0 = ϕ̃2 there. Similarly, on any sufficiently small neighborhood of
M1\P we have ϕ̃0 = ϕ̃1. Therefore there is an open neighborhood W0 of
(K\((M1 ∩ P ) ∪ (M2 ∩ P ))) ∩ U1 ∩ U2 in X such that ϕ̃0 = ϕ̃1 on W0\U2

and ϕ̃0 = ϕ̃2 on W0\U1. Therefore we can define

W ′ = W0 ∪ (U1\U2) ∪ (U2\U1),
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which is a neighborhood of K\((M1 ∩ P ) ∪ (M2 ∩ P )) in X, and define a
function ϕ′ on W ′ to be equal to ϕ̃0 on W0, equal to ϕ̃1 on U1\U2 and
equal to ϕ̃2 on U2\U1. Then ϕ′ satisfies ω + i∂∂ϕ′ � εω and equals ϕ on
W ′ ∩ V . Clearly, W ′ contains (W ′1 ∪ W ′2) ∩ (V \P ). We refer to W ′ as a
pinched neighborhood of K, since in general it is not a neighborhood of the
whole of K and it might pinch off at points in M1 ∩ P and M2 ∩ P . We
will later need to decrease the value of η, which might change the set W ′

slightly, but it will still remain a pinched neighborhood of K.

We now deal with points in M1 ∩ P and M2 ∩ P . By symmetry, it
suffices to consider a point p ∈ M2 ∩ P . Recall that R = ω + i∂∂F is a
Kähler current on X with analytic singularities exactly along V . Choose a
small coordinate neighborhood U ⊂ X centered at p, small enough so that
θ1 = 1 and θ2 = 0 on U . In particular at points in W ′ sufficiently near p we
have ϕ′ = ϕ̃0 = ϕ̃2 = ϕ2. Since ϕ̃1, ϕ̃2, F have analytic singularities, they
can be expressed as (recall that ϕ1 = ϕ2 on V ∩ U)

ϕ̃1 = δ1 log(
∑

i

|fi|2) + σ1 − η = ϕ1 − η,

ϕ̃2 = δ1 log(
∑

i

|f̃i|2) + σ2 = ϕ2,

F = δ3 log(
∑

j

|gj |2) + σ3,

(2.2)

near p, where σk, k = 1, 2, 3 are local smooth functions, and fi, f̃i, gj are
local holomorphic functions, with the functions gj locally defining V . More-
over, when restricted to V , we have

δ1 log(
∑

i

|fi|2) + σ1 = δ1 log(
∑

i

|f̃i|2) + σ2

since ϕ1, ϕ2 both extend ϕ. Then by the above argument, the function ϕ′

is defined at least on the set S ⊂ U given by

S =

{
δ1 log(

∑

i

|f̃i|2) + σ2 > δ1 log(
∑

i

|fi|2) + σ1 − η

}
= {ϕ̃2 > ϕ̃1} ∩ U,

where the strict inequality in particular requires ϕ̃2 to be finite. The idea is
to show that the singularities of F are comparable to those of ϕ̃2 on U\S.
That is, for 0 < ν < 1 we consider the subset of U given by

Eν =



νδ3 log(

∑

j

|gj |2) + νσ3 � δ1 log(
∑

i

|f̃i|2) + σ2





= {νF � ϕ̃2} ∩ U,
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where we now allow points where both sides of the inequality are −∞. In
particular, we always have that p ∈ Eν . We can also subtract a constant to
F so that supX F � 0, and then we see that the sets Eν are decreasing in ν.

Lemma 2.1. — There exists 0 < ν0 < 1 such that for any 0 < ν � ν0,
the set Eν ∪ S contains an open neighborhood of p.

We refer the reader to figure 2 for the geometry of this local gluing
problem.

Figure 2. — The geometry of the local gluing problem near a pinched point. The shaded
area corresponds to the set S, while the set Eν corresponds to the area above the upper

dashed line, and below the lower dashed line.

The proof of Lemma 2.1 requires several additional lemmas. The main
technique we use is Hironaka’s resolution of singularities. Define an analytic
set G ⊂ U by

G =
(
V ∪ E+(ω + i∂∂ϕ1) ∪ E+(ω + i∂∂ϕ2)

)
∩ U,

and let IG be its defining ideal sheaf. By shrinking U if necessary, we may
assume that every irreducible component of G passes through p. Let π :
Ũ → U be a log resolution of IG obtained by blowing up smooth centers. In
order to simplify the notation, we assume that we first blow up V , to obtain
a divisor D, and then resolve the strict transform of G. After resolving, we
have that

π−1(G) = Ṽ +
∑




D


is a sum of smooth divisors with simple normal crossings and Ṽ is the
irreducible divisor containing π−1(v) for a generic point v ∈ V (Ṽ is the
strict transform of D). If we can show that π−1(Eν ∪ S) contains an open
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neighborhood of Ṽ +
∑

D
, then it would follow immediately that Eν ∪S

contains an open neighborhood of p.

Lemma 2.2. — The set π−1(S) contains an open neighborhood of Ṽ .

Proof. — Pick a point q ∈ Ṽ . Since π is a log resolution, there exists an
open set Z ⊂ Ũ with a coordinate system (w1, . . . , wn) centered at q such
that Ṽ = {w1 = 0} and π∗ exp(ϕ1), π

∗ exp(ϕ2) are of the form

π∗ exp(ϕ1) = U1(w1, . . . , wn)

n∏

i=2

|wi|2αi

π∗ exp(ϕ2) = U2(w1, . . . , wn)

n∏

i=2

|wi|2βi ,

where Uj are smooth, positive functions on Z, and αi, βi are nonnegative
real numbers. That w1 does not appear in the product follows from the fact
that ϕ1, ϕ2 �≡ −∞ on V ∩ U . By definition, we have

π−1(S) ∩ Z =

{
w ∈ Z

∣∣∣∣U1(w)
∏

i�2

|wi|2αi < eηU2(w)
∏

i�2

|wi|2βi
}
.

Now, since ϕ1|V = ϕ2|V , and wi|Ṽ �= 0 for i � 2, we clearly have that
αi = βi, and that U1|Ṽ = U2|Ṽ . Since eη > 1, the lemma is proved. �

By Lemma 2.2, it suffices to work on a compact set away from Ṽ . Fix
a point q ∈ D
 ∩ π−1(Sc) and an open set Z ⊂ Ũ disjoint from Ṽ , with a
coordinate system (w1, . . . , wn) centered at q so that

π∗ exp(F ) = UF (w)

n∏

i=1

|wi|2γi ,

π∗ exp(ϕ2) = U2(w)

n∏

i=1

|wi|2βi
(2.3)

where UF (w) and U2(w) are smooth, positive functions on Z, and βi, γi are
nonnegative real numbers. Our goal is to find 0 < ν < 1 such that

π−1(Eν) ∩ Z =

{
w ∈ Z

∣∣∣∣U2(w)

n∏

i=1

|wi|2βi � Uν
F (w)

n∏

i=1

|wi|2νγi
}

(2.4)

contains a neighborhood of 0 ∈ Cn. First, we prove a lemma.

Lemma 2.3. — In equation (2.3), if γi > 0 for some 1 � i � n, then
βi > 0.
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Proof. — Suppose for some i we have γi > 0 but βi = 0. Let {wi =
0} = D
i . Then βi = 0 means that π∗ exp(ϕ2) �≡ 0 on D
i , while γi > 0
means that π∗ exp(F ) ≡ 0 on D
i . We have that π(D
i) ⊂ V ∩ U , since F
is smooth outside V . However, we can also expand

π∗ exp(ϕ1) = U1(w)

n∏

j=1

|wj |2αj ,

and the fact that ϕ1 �≡ −∞ on V ∩ U again implies that αi = 0. Since
ϕ1|V = ϕ2|V , and π(D
i) ⊂ V , we see again that

π∗ exp(ϕ1) = π∗ exp(ϕ2) on D
i .

Recall that S = {ϕ2 > ϕ1 − η} ∩U . This shows that π(D
i) is contained in
the interior of S, which is impossible because we assumed q ∈ π−1(Sc). �

With these results in place, we can easily complete the proof of Lemma
2.1.

Proof of Lemma 2.1. — Thanks to Lemma 2.3, we can choose a small
ν0 > 0 so that βi > ν0γi for each i such that γi > 0. It follows from the
description in (2.4) that for any 0 < ν � ν0, the set π−1(Eν) ∩ Z contains
an open neighborhood of the point q ∈ D
∩π−1(Sc). Repeating this finitely
many times on a covering of (

∑

D
) ∩ π−1(Sc), and using Lemma 2.2, we

find ν0 > 0 such that for any 0 < ν � ν0, the set π−1(Eν ∪ S) contains an
open neighborhood of Ṽ +

∑

D
. This immediately implies that Eν ∪ S

contains an open neighborhood of p, since π is an isomorphism away from
Ṽ +

∑

D
. �

Furthermore, Lemma 2.1 holds with ν0 independent of the value of η > 0,
which we are then free to decrease later on. We pick ν � ν0 so that

ω + i∂∂F � νω,

holds as currents on X. Since ω is a Kähler metric, we have

ω + i∂∂ (νF ) � ν2ω.

Recall that Eν = {νF � ϕ̃2} ∩ U and S = {ϕ̃2 > ϕ̃1} ∩ U . It follows
that on S we have ϕ̃2 > −∞, and so if U ′ ⊂ U is a slightly smaller open
neighborhood of p, then on (∂Eν)∩S ∩U ′ we have F > −∞ and νF = ϕ̃2.
Note that

(∂(S\Eν)) ∩ U ′ ⊂ ((∂Eν) ∩ S ∩ U ′) ∪ (P ∩ U ′),
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so νF � ϕ′ on (∂(S\Eν)) ∩ U ′. This implies that the function

ϕν =

{
νF, on Eν
max{ϕ′, νF}, on S\Eν , (2.5)

is defined in a neighborhood Up of p and satisfies ω + i∂∂ϕν � ν2ω (and
the value of ν does not change if we decrease η, since the cutoff functions
θ1 and θ2 are constant on U). Furthermore, since F goes to −∞ on V while
ϕ′ is finite on (V \P ) ∩W ′, we have that ϕν equals ϕ′ = ϕ on Up ∩ (V \P ).

Repeating this argument at every point p ∈M2∩P , as well as every point
p ∈M1∩P , taking a finite covering given by the resulting open sets Up, and
taking the smallest ν of the resulting ones, we conclude that there exists
ν > 0 sufficiently small such that ϕν is defined in a whole neighborhood Wν

of K in X, and satisfies the same properties. This completes the first step.

We then fix slightly smaller open sets W ′ν � Uν �Wν such that ∪j�3W
′
j∪

W ′ν still covers V . We replace W1 and W2 with Wν , and replace ϕ1 and ϕ2

with ϕν , and repeat the same procedure with two other open sets in this new
covering. The only difference is that while the functions ϕ1, ϕ2 have analytic
singularities, this is not the case for ϕν , which is instead locally given as
the maximum of finitely many functions with analytic singularities. We now
explain what modifications are needed in the arguments above.

At any subsequent step, we will have two open sets Wa,Wb with W ′a �
Ua � Wa and W ′b � Ub � Wb and with W ′a ∩ W ′b ∩ V nonempty. On
Wa we have a function ϕa with ω + i∂∂ϕa � εω, with ϕa = ϕ on Wa ∩
V , and similarly for Wb. Then exactly as before we obtain a function ϕ′

on a neighborhood of K\((Ma ∩ P ) ∪ (Mb ∩ P )), which is equal to ϕ′ =
max{ϕ̃a, ϕ̃b} on Wa ∩Wb, where we picked cutoff functions θa, θb as before
and defined ϕ̃a = ϕa− η′θa, ϕ̃b = ϕb− η′θb, where η′ > 0 is small enough so
that ω + i∂∂ϕ̃a and ω + i∂∂ϕ̃b are larger than ε′ω for some ε′ > 0. Because
of the construction we just did, near a point x ∈Mb ∩ P we can write

ϕa = max{ϕ̃i1 , . . . , ϕ̃ip , νaF + ρa},

for some p > 0, some 0 < νa < 1 and a continuous function ρa (in general
the maximum will contain several terms of the form νjF + ρj , but since
F (x) = −∞, up to shrinking the open set where we work on, only one of
them contributes to the maximum, and ρa = maxj ρj is continuous). Here
the functions ϕ̃ik are defined in (2.1), so they have analytic singularities,
and so does F , and we can also assume that their values of the parameter
η are all equal and smaller than η′/2. Similarly, we can write

ϕb = max{ϕ̃j1 , . . . , ϕ̃jq , νbF + ρb}.
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We work again on a small coordinate neighborhood U centered at x where
θa = 1 and θb = 0. We proved earlier that ϕ′ is defined at least on S =
{ϕ̃b > ϕ̃a} ∩ U . For 0 < ν < 1 we let Eν = {νF � ϕ̃b} ∩ U . If we can show
that there exists ν such that Eν ∪ S contains a neighborhood of x, then we
can complete this step exactly as before. For simplicity, we write

ϕ̂a = max{ϕ̃i1 , . . . , ϕ̃ip}, ϕ̂b = max{ϕ̃j1 , . . . , ϕ̃jq}.

To prove this, we pick a log resolution π : Ũ → U of the ideal sheaf of

G =

(
V ∪

⋃

k

E+(ω + i∂∂ϕ̃ik) ∪
⋃




E+(ω + i∂∂ϕ̃j�)

)
∩ U,

with π−1(G) = Ṽ +
∑

D
 as before. Now note that S contains the set

A ∩ B, where

A = {ϕ̂b > ϕ̂a − η′} ∩ U, B = {ϕ̂b > νaF + ρa − η′} ∩ U.

The set A equals (
q⋃


=1

p⋂

k=1

{ϕ̃j� > ϕ̃ik − η′}
)
∩ U.

Since ϕ̃j� = ϕj� − ηθj� with 0 � θj� � 1, and similarly for ϕ̃ik , we see that

{ϕ̃j� > ϕ̃ik − η′} ∩ U ⊃ {ϕj� > ϕik − η′/2} ∩ U.

Thanks to Lemma 2.2, each of the sets π−1({ϕj� > ϕik−η′/2}∩U) contains

a neighborhood of Ṽ , and therefore so does π−1(A). On the other hand, we
have that Eν = {νF � ϕb} ∩ U equals

q⋂

m=1

{νF � ϕ̃jm} ∩ {νF � νbF + ρb} ∩ U.

If we choose ν small, then {νF � νbF + ρb} ∩ U = U . Lemma 2.3 together
with the proof of Lemma 2.1 shows that there exists ν > 0 small such that
each set π−1({νF � ϕ̃jm} ∩ U) contains a neighborhood of

(∑




D


)
∩ π−1((∩pk=1{ϕ̃jm > ϕ̃ik − η′} ∩ U)c).

Therefore, Eν contains a neighborhood of
(∑




D


)
∩ π−1((ϕ̂b > ϕ̂a − η′} ∩ U)c) =

(∑




D


)
∩ π−1(Ac).
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This means that π−1(A∪Eν) contains a whole neighborhood of Ṽ +
∑

D
.

On the other hand, the set Eν ∪ B equals

({νF � ϕ̂b} ∪ {ϕ̂b > νaF + ρa − η′})∩U ⊃ (V ∪{νF > νaF +ρa−η′})∩U,

and if we pick ν small enough and possibly shrink U , then this set equals U .
This finally proves that π−1(Eν ∪S) contains a neighborhood of Ṽ +

∑

D
,

which implies that Eν ∪ S contains a neighborhood of x, and this step is
complete.

After at most N such steps, we end up with an open neighborhood W
of V in X with a function ϕ′′ defined on W which satisfies ω+ i∂∂ϕ′′ � ε′′ω
for some ε′′ > 0, which equals ϕ on V . Up to shrinking W , we may assume
that ϕ′′ is defined in a neighborhood of ∂W .

Now we have a Kähler current defined on W . On ∂W the function F is
smooth, so we can choose a large constant A > 0 such that F > ϕ′′ − A in
a neighborhood of ∂W . Therefore we can finally define

Φ =

{
max{ϕ′′, F + A} on W
F + A, on X\W,

which is defined on the whole of X, it satisfies ω + i∂∂Φ � ε′ω for some
ε′ > 0. Since F goes to −∞ on V , while ϕ′′ is continuous near the generic
point of V , it follows that Φ equals ϕ on V. This completes the proof of
Theorem 1.1. �

The following simple example illustrates some of the ideas used in the
proof of Lemma 2.1.

Example 2.4. — Consider C2 with coordinates (x, y). We take V = {y =
0} ⊂ C2, and consider the plurisubharmonic function ϕ = log(|x|2) on V ,
and F = log(|y|2) on C2. Take local extensions

ϕ1 = log(|x− y|2), ϕ2 = log(|x + y|2),

of ϕ. We resolve the singularities of G = {(x − y)(x + y)y = 0} by the
blowup of the origin π(r, s) = (r, rs). In this case {r = 0} = π−1(0, 0), and

π−1(G) = Ṽ +
∑3

=1 D
 with

Ṽ = {s = 0}, D1 = {r = 0}, D2 = {s = 1}, D3 = {s = −1}.

Then

π∗(|y|2) = |r|2|s|2, π∗(|x− y|2) = |r|2|1− s|2, π∗(|x+ y|2) = |r|2|1+ s|2.
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In this case, we have

π−1(S) = {|r|2|1− s|2 < eη|r|2|1 + s|2} = {|1− s|2 < eη|1 + s|2}.
Clearly π−1(S) contains an open neighborhood of Ṽ ∪ {s = 1}. Thus, it
suffices to show that the set

π−1(Eν) =
{
|r|2|1 + s|2 � |r|2ν |s|2ν

}

contains an open neighborhood of ({r = 0} ∪ {s = −1})∩ {|s| > ε}. This is
clear, for any 0 < ν < 1.
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[6] Demailly (J.-P.), Păun (M.). — Numerical characterization of the Kähler cone
of a compact Kähler manifold, Ann. of Math., 159, no. 3, p. 1247-1274 (2004).

[7] Hisamoto (T.). — Remarks on L2-jet extension and extension of singular Hermi-
tian metric with semi positive curvature, preprint, arXiv:1205.1953.

[8] Ohsawa (T.), Takegoshi (K.). — On the extension of L2 holomorphic functions,
Math. Z. 195, no. 2, p. 197-204 (1987).

[9] Ornea (L.), Verbitsky (M.). — Embeddings of compact Sasakian manifolds,
Math. Res. Lett. 14, no. 4, p. 703-710 (2007).

[10] Phong (D.H.), Stein (E.M.), Sturm (J.). — On the growth and stability of real-
analytic functions, Amer. J. Math. 121, no. 3, p. 519-554 (1999).

[11] Phong (D.H.), Sturm (J.). — Algebraic estimates, stability of local zeta func-
tions, and uniform estimates for distribution functions, Ann. of Math. (2) 152, no.
1, p. 277-329 (2000).

[12] Phong (D.H.), Sturm (J.). — On the algebraic constructibility of varieties of
integrable rational functions on Cn, Math. Ann. 323, no. 3, p. 453-484 (2002).

[13] Richberg (R.). — Stetige streng pseudokonvexe Funktionen, Math. Ann. 175,
p. 257-286 (1968).

[14] Sadullaev (A.). — Extension of plurisubharmonic functions from a submanifold,
Dokl. Akad. Nauk USSR 5, p. 3-4 (1982).

[15] Schumacher (G.). — Asymptotics of Kähler-Einstein metrics on quasi-projective
manifolds and an extension theorem on holomorphic maps, Math. Ann. 311, no.
4, p. 631-645 (1998).

[16] Siu (Y.-T.). — Every Stein subvariety admits a Stein neighborhood, Invent. Math.
38, no. 1, p. 89-100 (1976/77).

[17] Wu (D.). — Higher canonical asymptotics of Kähler-Einstein metrics on quasi-
projective manifolds, Comm. Anal. Geom. 14, no. 4, p. 795-845 (2006).

– 905 –


