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Annales de la Faculté des Sciences de Toulouse Vol. XXIII, n◦ 5, 2014
pp. 1103-1118

Traces, lengths, axes and commensurability

Alan W. Reid(1)

ABSTRACT. — The focus of this paper are questions related to how various
geometric and analytical properties of hyperbolic 3-manifolds determine
the commensurability class of such manifolds. The paper is for the large
part a survey of recent work.

RÉSUMÉ. — Cet article est bâtit autour de la question suivante : com-
ment des propriétés géométriques et analytiques de variétés hyperboliques
de dimension 3 déterminent-elles leurs classes de commensurabilité. Cet
article est pour la plus grande partie un aperçu de travaux récents.

1. Introduction

This paper is based on three lectures given by the author at the work-
shop, “Hyperbolic geometry and arithmetic: a crossview” held at The Uni-
versité Paul Sabatier, Toulouse in November 2012. The goal of the lectures
was to describe recent work on the extent to which various geometric and
analytical properties of hyperbolic 3-manifolds determine the commensura-
bility class of such manifolds. This is the theme of the paper, and is for the
most part a survey.
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2. The main players

Let M = Hn/Γ be a closed orientable hyperbolic n-manifold. The free
homotopy classes of closed geodesics on M correspond to conjugacy classes
of hyperbolic elements in Γ. If γ ∈ Γ is a hyperbolic element, then associated
to γ is an axis Aγ ⊂ Hn on which γ translates by an amount, �γ say (the
translation length of γ) and also perhaps rotates. The projection of Aγ to M
then determines a closed geodesic in M whose length is �γ . In what follows,
we shall denote the set of axes of all the hyperbolic elements in Γ by A(Γ).

The cases of n = 2, 3 will be of most interest to us, and we briefly recall
that in this case, if γ ∈ PSL(2,C) is a hyperbolic element of trace t, the

eigenvalues of γ are (−t±
√
t2−4)

2 . Let λγ = (−t+
√
t2−4)

2 be the eigenvalue
satisfying |λγ | > 1. Then, in the notation above, if γ is now an element in
the fundamental group of some hyperbolic manifold, the length �γ of the
closed geodesic determined by the projection of Aγ is 2 ln |λγ |.

With M = Hn/Γ as above:

The length spectrum L(M) of M is the set of all lengths of closed geodesics
on M counted with multiplicities.

The length set L(M) of M is the set of lengths all closed geodesics counted
without multiplicities.

The rational length set QL(M) of M is the set of all rational multiples of
lengths of closed geodesics of M .

Recall that if Mj = Hn/Γj (j = 1, 2) are closed orientable hyperbolic
n-manifolds, then they are called commensurable if M1 and M2 have a com-
mon finite sheeted cover. Equivalently, Γ1 and some conjugate of Γ2 (in
Isom(Hn)) have a common subgroup of finite index. We will henceforth use
this as the definiton of commensurability of subgroups. In addition, it will
sometimes be convenient to refer to subgroups being directly commenusrable,
and in this case no conjugations are allowed. Given this, the following are
elementary observations.

If M1 and M2 are commensurable, then:

(i) QL(M1) = QL(M2)

(ii) A(Γ1) = A(Γ2); to be clear, by this we mean that after a choice of
conjugates of Γ1 and Γ2, the set of axes are the same.
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Motivated by these observations, in this article we will focus on the
following questions.

Question 2.1. — If L(M1) = L(M2), are M1 and M2 commensurable?

Question 2.2. — If L(M1) = L(M2), are M1 and M2 commensurable?

Question 2.3. — If QL(M1) = QL(M2), are M1 and M2 commensu-
rable?

Question 2.4. — If A(Γ1) = A(Γ2), are Γ1 and Γ2 commensurable?

Note that a positive answer to Question 2.2 provides positive answers to
Questions 2.1 and 2.3.

In what follows we use the following terminology. In the case when
L(M1) = L(M2), we say that M1 and M2 are length equivalent, and when
L(M1) = L(M2) we say that M1 and M2 are iso-length spectral.

Since it is known (see [6] pp. 415–417) that for closed hyperbolic man-
ifolds, the spectrum of the Laplace-Beltrami operator acting on L2(M),
counting multiplicities, determines L(M), a positive answer to Question 2.2
implies a positive answer to the next question. Recall that closed hyper-
bolic manifolds are called isospectral if they have the same spectrum of the
Laplace-Beltrami operator counted with multiplcities.

Question 2.5. — If M1 and M2 are isospectral, are they commensu-
rable?

We note that at present, the known methods of producing isospec-
tral closed hyperbolic n-manifolds produce commensurable ones. One such
method will be discussed further below (see also [22] and [24]).

Addressing these questions for general closed hyperbolic manifolds seems
very hard at present, but arithmetic manifolds provide a large and interest-
ing class where considerable progress on these questions can be made.

3. Some Number Theoretic Notation

By a number field k we mean a finite extension of Q, the ring of integers
of k will be denoted Rk and the Galois Closure of k over Q denoted by kcl.
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3.1.

A place ν of k will be one of the canonical absolute values of k. The finite
places of k correspond bijectively to the prime ideals of Rk. An infinite place
of k is either real, corresponding to an embedding of k into R, or complex,
corresponding to a pair of distinct complex conjugate embeddings of k into
C. We denote by kν the completion of of k at a place ν. When ν is an
infinite place, kν is isomorphic to R or C depending on whether ν is real or
complex.

If q is a prime power we denote by Fq the finite field of cardinality q.

3.2.

Let k be a field of characteristic different from 2. The standard nota-
tion for a quaternion algebra over k is the following. Let a and b be non-

zero elements of k, then
(
a,b
k

)
(known as the Hilbert Symbol) denotes the

quaternion algebra over k with basis {1, i, j, ij} subject to i2 = a, j2 = b
and ij = −ji.

Let k be a number field, and ν a place of k. If B is a quaternion algebra
defined over k, the classification of quaternion algebras Bν = B ⊗k kν over
the local fields kν is quite simple. If ν is complex then Bν is isomorphic to
M(2, kν) over kν . Otherwise there is, up to isomorphism over kν , a unique
quaternion division algebra over kν , and Bν is isomorphic over kν to either
this division algebra or to M(2, kν).

Let B be a quaternion algebra over the number field k. B is ramified at
a place ν of k if Bν is a division algebra. Otherwise we say B is unramified
at ν. We shall denote the set of places (resp. finite places) at which B is
ramified by Ram B (resp. Ramf B). The discriminant of B is the Rk-ideal∏
ν∈Ramf B Pν where Pν is the prime ideal associated to the place ν.

We summarize for convenience the classification theorem for quaternion
algebras over number fields (see [12] Chapter 7).

Theorem 3.1. —

• The set Ram B is finite, of even cardinality and contains no complex
places.

• Conversely, suppose S is a finite set of places of k which has even
cardinality and which contains no complex places. Then there is a
quaternion algebra B over k with Ram B = S, and this B is unique
up to isomorphism over k.

• B is a division algebra of quaternions if and only if Ram B �= ∅.
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4. On Question 2.2

It is well-known that geometric and topological constraints are forced
on closed hyperbolic manifolds that are isospectral; for example the mani-
folds have the same volume [16]. On the other hand, for length equivalent
manifolds the situation is very different. The following is proved in [9].

Theorem 4.1. — Let M be a closed hyperbolic n-manifold. Then there
exist infinitely many pairs of finite covers {Mj , Nj} of M such that L(Mj) =
L(Nj) and for which vol(Mj)/vol(Nj)→∞.

We will discuss ideas in the proof of this result. To that end, it is helpful
to recall the construction of Sunada [22] that motivates the construction of
[9].

4.1.

Let G be a finite group and H1 and H2 subgroups of G. We say that H1

and H2 are almost conjugate if they are not conjugate in G but for every
conjugacy class C ⊂ G we have:

|C ∩H1| = |C ∩H2|.

For a pair of subgroups H1 and H2 as above, we say that (H1, H2) are
an almost conjugate pair. Many examples of such finite groups exist (see [2],
[7] and [22]). The following is a special case of Sunada’s method [22] (see
also [2], and [3]).

Theorem 4.2. — Let M be a closed hyperbolic n-manifold, G a finite
group, and (H1, H2) an almost conjugate pair in G. If π1(M) admits a
homomorphism onto G, then the finite covers M1 and M2 associated to the
pullback subgroups of H1 and H2 are isospectral and iso-length spectral.

The isospectral and iso-length spectral manifolds produced by Theorem
4.2 can sometimes be isometric. With more work, one can arrange that
they are not, and moreover one can construct non-isometric examples in all
dimensions (see [13] for example).

However, for length equivalence far less is required, and indeed in this
case the non-isometric condition is much easier to arrange.

Subgroups H and K of G are said to be elementwise conjugate if for any
conjugacy class C ⊂ G the following condition holds:

H ∩ C �= ∅ if and only if K ∩ C �= ∅.
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With this definition, we have the following from [9] (see Theorem 2.3):

Proposition 4.3. — Let M be a closed hyperbolic n-manifold, G a group,
and H and K elementwise conjugate subgroups of G. Then If π1(M) admits
a homomorphism onto G, then the covers MH and MK associated to the
pullback subgroups of H and K are length equivalent.

Proof. — To prove the proposition, it suffices to show that a closed
geodesic γ on M has a lift to a closed geodesic on MH if and only if it
has a lift to a closed geodesic on MK . Let ρ denote the homomorphism
π1(M) → G. By standard covering space theory, γ has a closed lift to MH

if and only if ρ([γ]) ∈ G is conjugate into H. By assumption this is true for
H if and only if it is true for K, and the proposition is proved ��

Example. — An easy example of a group with elementwise conjugate
subgroups is the following.

Let G be the alternating group A4, and set a = (12)(34) and b =
(14)(23). Then the subgroups H = {1, a} and the Klein 4–group K =
{1, a, b, ab} are elementwise conjugate.

To see this, first note that since H < K, it only remains to check that if
some conjugacy class C satisfies C ∩K �= ∅ then C ∩H �= ∅. However, this
is clear, since all products of disjoint transpositions are conjugate in A4.

4.2.

To prove Theorem 4.1 it suffices to exhibit groups G that contain el-
ementwise conjugate subgroups and can be surjected by the fundamental
groups of closed hyperbolic manifolds. Many such fundamental groups do
surject A4, but to prove Theorem 4.1 we need other examples. Since the
general case is somewhat involved, we will only prove Theorem 4.1 in the
case when M = Hn/Γ and Γ is large (i.e. Γ contains a finite index subgroup
that surjects a non-abelian free group).

In particular this holds for hyperbolic surfaces, for all closed hyperbolic
3-manifolds (by recent work of Agol [1]), and all arithmetic hyperbolic man-
ifolds in even dimension (and roughly “half” in odd dimensions) by [14].

Theorem 4.4. — Let M = Hn/Γ be a closed hyperbolic n-manifold and
assume that Γ is large. Then for every integer n � 2 and every odd prime
p, there exists a finite tower of covers of M

M0 →M1 → · · · →Mn−1 →Mn →M,

with each Mi → Mi+1 of degree p, such that L(Mj) = L(Mk) for 0 �
j, k � n− 1.
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Proof. — The finite groups in question will be constructed as follows.
Recall that the n–dimensional special Fp–affine group is the semidirect
product Fnp � SL(n,Fp) defined by the standard action of SL(n,Fp) on Fnp .
For concreteness, the multiplication in the group is given by:

(v, S).(w, T ) = (v + Sw, ST ) and (v, S)−1 = (−S−1v, S−1).

We call any Fp–vector subspace V of Fnp a translational subgroup of
Fnp � SL(n,Fp).

Since Γ is large there is a finite index subgroup ∆ that surjects the group
G = Fnp � SL(n,Fp). Thus it remains to show that we can find appropriate
elementwise conjugate subgroups. To that end let V and W be translational
subgroups of G. We claim that if V and W are both non-trivial then they
are elementwise conjugate in G. To see this, let g ∈ G, C the G-conjugacy
class of g, let V �= 0 be a translational subgroup and assume that C∩V �= ∅.
By hypothesis there exists h ∈ G such that hgh−1 ∈ V .

Setting g = (vg, g) and h = (vh, h), we have:

hgh−1 = (vh, h)(vg, g)(vh, h)−1

and a computation shows that the condition hgh−1 ∈ V forces g to have the
form g = (vg, 1). Since SL(n,Fp) acts transitively on non-trivial elements of
Fnp for any w ∈ W (non-zero) there exists T ∈ SL(n,Fp) so that Tv = w.
Then

(0, T )(vg, 1)(0, T )−1 = (Tvg, 1) = (w, 1) ∈W.

Thus we have shown that some conjugate of g lies in W as required. ��

To prove Theorem 4.1 in the general case, other families of groups having
elementwise conjugate subgroups are needed and we refer the reader to [9]
for details.

5. On Questions 2.1 and 2.3

Considerable progress has been made on Questions 2.1 and 2.3 in the
setting of arithmetic manifolds (not just hyperbolic ones). In this section
we will focus on arithmetic hyperbolic manifolds in dimensions 2 and 3,
discussing ideas in the proofs of the following results proved in [19] and [4]
respectively. In particular this gives affirmative answers to Questions 2.1,
2.2, 2.3 and 2.5 when M1 and M2 are both arithmetic. Indeed, Theorem 5.1
is a mild extension of the result in [19], and was discussed in [20].
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Theorem 5.1. — Let M1 = H2/Γ1 be an orientable arithmetic hyper-
bolic 2-manifold and assume that M2 = H2/Γ2 is a closed orientable hyper-
bolic 2-manifold with L(Γ1) = L(Γ2). Then Γ2 is arithmetic, and Γ1 and Γ2

are commensurable.

Theorem 5.2. — If M is an arithmetic hyperbolic 3-manifold, then the
rational length spectrum and the commensurability class of M determine
one another.

In dimensions � 4, work of Prasad and Rapinchuk [18] shows that Theo-
rem 5.2 also holds for all even dimensional arithmetic hyperbolic manifolds.
However, in odd dimensions the situation is different. For example, they
show that for every n = 1 (mod 4) there exist arithmetic hyperbolic n-
manifolds for which Question 2.3 has a negative answer.

The motivation for these theorems came from Question 2.5. For closed
hyperbolic manifolds, the only known constructions for producing isospec-
tral manifolds are that of Sunada described in §4.1, and constructions build-
ing on one due to Vigneras [24]. In particular, all known constructions pro-
duce commensurable hyperbolic manifolds. In contrast to Theorems 5.1 and
5.2, there are constructions of lattices in SL(d,R) and SL(d,C) (for d � 3)
that are isospectral but not commensurable (see [11]).

To discuss the proofs of 5.1 and 5.2 it will be convenient to recall some
material on arithmetic Fuchsian and Kleinian groups (we refer the reader
to [12] for further details).

5.1.

Let k be a totally real number field, and let B be a quaternion alge-
bra defined over k which is ramified at all infinite places except one. Let
ρ : B → M(2,R) be an embedding, O be an order of B, and O1 the
elements of norm one in O. Then Pρ(O1) < PSL(2,R) is a finite co-area
Fuchsian group, which is co-compact if and only if B is not isomorphic to
M(2,Q). A Fuchsian group Γ is defined to be arithmetic if and only if Γ is
commensurable with some such Pρ(O1).

Notation. — Let B/k be as above and O be an order of B. We will
denote the group Pρ(O1) by Γ1

O.

Arithmetic Kleinian groups are obtained in a similar way. In this case
we let k be a number field having exactly one complex place, and B a
quaternion algebra over k which is ramified at all real places of k. As above,
if O is an order of B and ρ : O1 ↪→ SL(2,C), then Γ1

O is a Kleinian group of
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finite co-volume. An arithmetic Kleinian group Γ is a subgroup of PSL(2,C)
commensurable with a group of the type Γ1

O. An arithmetic Kleinian group
is cocompact if and only if the quaternion algebra B as above is a division
algebra.

In both the Fuchsian and Kleinian cases, the isomorphism class of the
quaternion algebra B/k determines a wide commensurability class of groups
in PSL(2,R) and PSL(2,C) respectively (see [12] Chapter 8). By Theorem
3.1 the isomorphism classes of such quaternion algebras will be completely
determined by the finite set of places of k at which B is ramified.

A hyperbolic orbifold H2/Γ or H3/Γ will be called arithmetic if Γ is an
arithmetic Fuchsian or Kleinian group.

Recall that if Γ is a Fuchsian or Kleinian group, the invariant trace-field
of Γ is the field

kΓ = Q({tr2γ : γ ∈ Γ})

and the invariant quaternion algebra

AΓ = {Σajγj : aj ∈ kΓ, γj ∈ Γ(2)}.

As discussed in [12] these are invariants of commensurability. When Γ
is arithmetic, the field k and algebra B coincide with kΓ and AΓ and are
therefore complete commensurability invariants.

We shall call a group G derived from a quaternion algebra if G is a
subgroup of some Γ1

O, regardless of whether G has finite index in Γ1
O.

We remark that independent of arithmeticity, the invariant quaternion
algebra of a non-elementary Fuchsian or Kleinian group can be computed
efficiently from a pair of non-commuting hyperbolic elements α1, α2 ∈ Γ(2)

as (
tr2(α1)− 4, tr[α1, α2]− 2

k

)

(see [12] Chapter 3 for details).

It will also be convenient to recall the following characterization of arith-
meticity (see [23] for the Fuchsian case and [12] for the Kleinian case).

Theorem 5.3. — Let Γ be a Fuchsian (resp. Kleinian group) of finite
co-area (resp finite co-volume). Then Γ is arithmetic if and only if Γ(2) is
dervied from a quaternion algebra.
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Theorem 5.4. — Let Γ be a Fuchsian (resp. Kleinian group) of finite
co-area (resp finite co-volume). Then Γ is derived from a quaternion algebra
if and only if Γ satisfies the following conditions:

1. tr γ is an algebraic integer for all γ ∈ Γ;

2. kΓ is totally real (resp. a field with one complex place);

3. for all σ : kΓ→ R (different from the identity embedding when kΓ is
totally real) we have |σ(tr γ)| < 2 for all non-trivial γ ∈ Γ.

5.2.

We now discuss proofs. The basic idea in both proofs (and indeed in the
work of [18]) is the following two stage plan. For i = 1, 2, let Mi = Hn/Γi
be arithmetic hyperbolic 2 or 3-manifolds.

Step 1: Show equality of the invariant trace-fields kΓ1 and kΓ2.

Step 2: Show that that the invariant quaternion algebras AΓ1 and AΓ2 are
isomorphic using information about their subfields.

We begin with the 2-dimensional case. Note that in Theorem 5.1, only
M1 = H2/Γ1 is assumed arithmetic, thus we first discuss in this case showing
that L(M1) = L(M2) implies M2 is also arithmetic.

First recall from §2 that if γ ∈ PSL(2,C) is a hyperbolic element with

eigenvalue λγ = (−t+
√
t2−4)

2 being the eigenvalue satisfying |λγ | > 1, then
the length of the closed geodesic determined by the projection of the axis
of γ is 2 ln |λγ |.

Thus, in this case if L(M1) = L(M2), then up to sign the traces of
elements of Γ1 and Γ2 are the same, and so the sets {tr γ2} are the same.

Let AΓ1 = B1/k. From §5.1, since Γ1 is arithmetic, tr γ2 is an algebraic
integer in the totally real field k. We therefore deduce from the discussion
above that the elements of Γ2 have algebraic integer trace and kΓ2 = k.

To complete the proof that Γ2 is arithmetic we show that B2 = AΓ2

is ramified at all infinite places except one, for then the characterization
theorem (Theorems 5.3 and 5.4) applies.

To prove this we argue as follows. Let α1 and α2 be a pair non-commuting

hyperbolic elements in Γ
(2)
2 . From above, a Hilbert Symbol for AΓ2 can be

computed as

(
tr2(α1)−4,tr[α1,α2]−2

k

)
. Since Γ1 and Γ2 have the same sets of
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traces (up to sign), we can find β1, β2 ∈ Γ1 such that tr(β1) = ±tr(α1) and
tr(β2) = ±tr([α1, α2]).

Since tr(β1), tr(β2) ∈ k, it follows from [15] Theorem 2.2 that β1, β2 ∈
Γ1 ∩ B1

1 . Let σ : k → R be a non-identity embedding. Since B1 is ramified
at σ it follows that (recall Theorem 5.4) |σ(tr x)| < 2 for all non-trivial
elements x ∈ B1. Thus we can conclude that

σ(tr2(β1)− 4) < 0 and σ(tr(β2)− 2) < 0.

Hence it follows that

σ(tr2(α1)− 4) < 0 and σ(tr([α1, α2])− 2) < 0,

from which it follows that B2 is ramified at σ. Now σ was an arbitrary
non-identity embedding, and so we have shown that B2 is ramified at all
such embeddings as required.

We now describe how to acheive Step 2. This requires the following
result. In the statement Γ is either an arithmetic Fuchsian or Kleinian group.

Theorem 5.5. — Suppose that Γ is derived from a quaternion algebra
B/k.

(i) Let γ be a hyperbolic element of Γ with eigenvalue λγ . The field k(λγ)
is a quadratic extension field of k which embeds into B.

(ii) Let L be a quadratic extension of k. If Γ is Fuchsian assume that L is
not a totally imaginary quadratic extension of k.

Then L embeds in B/k if and only if L = k(λγ) for some hyperbolic
γ ∈ Γ. This will be true if and only if no place of k which splits in L is
ramified in B.

To establish commensurability, it suffices to show that B1
∼= B2 (see

the discussion in §5.2 and [12] Theorem 8.4.6). To that end, we make the
following definition.

Definition. — For j = 1, 2 let

Nj = {L/k : [L : k] = 2, L emebds in Bj and is not a totally imaginary.

quadratic extension of k}.
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Clearly if B1 and B2 are isomorphic the set of quadratic extensions that
embed in one is precisely the set that embeds in the other. The converse is
also true (see [12] Chapter 12). However, a slightly different version of this
is required to finish the proof of Theorem 5.1. The key point to be proved
(see [19] for details) is:

B1 and B2 are isomorphic if and only N1 = N2 .

Given this, the proof is completed as follows. Suppose L ∈ N1. Theorem
5.5 and commensurability shows that L = k(λγ) for some hyperbolic γ ∈ Γ1

with eigenvalue λγ . Since L(M1) = L(M2), it follows that there exists an
element γ′ ∈ Γ2 for which λγ′ = λγ . Hence L = k(λγ) = k(λγ′) embeds in
B2 as required. ��

The proof of Theorem 5.2 proceeds as above, but in this case Step 1
is considerably more difficult to prove. We will discuss some of the ideas
in the proof of this part in the special case where the invariant trace-fields
kj = kΓj satisfy [kj : kj ∩ R] > 2. This simplifies some of the arguments
but gives a flavor of how the proof in the general case proceeds. Step 2 is
achieved exactly as in the Fuchsian case.

For j = 1, 2 define:

Ej = {λ : λ is an e-value of a hyperbolic element of Γj}.

Now the claim is the following (see [4] for details).

Claim. — For j = 1 or 2,

kcl
j =

⋂
{Q(λ)cl : λ ∈ Ej}.

Given this claim, the following result is proved in [4].

Theorem 5.6. — Let k and k′ be number fields having exactly one com-
plex place and the same Galois closure kcl. Then either k and k′ are iso-
morphic, or after replacing k′ by an isomorphic field, k and k′ are quadratic
non-isomorphic extensions of a common totally real subfield k+.

In our case (i.e. [kj : kj ∩R] > 2) the former situation applies and so
the fields are isomorphic.

Remark. — Another number theoretic result proved in [4] is:

Theorem 5.7. — If k is a number field with one complex place, then k
is determined up to isomorphism by its zeta function.
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This result contrasts with the fact that that there are many examples
of number fields which are not determined up to isomorphism by their zeta
functions (see [17]). Moreover it is striking that Theorem 5.7 was proved
along the way to proving a result about isospectrality. This should be con-
trasted with the original impetus for Sunada’s construction, namely the
existence of non-isomorphic number fields with the same zeta functions.
Thus in our setting things appear to have come full circle.

6. On Question 2.4

Instead of lengths of closed geodesics (or equivalently translation lengths
along axes), we consider the “location” of the axes of hyperbolic elements
in arithmetic Fuchsian and Kleinian groups, then again one can get extra
information that allows one to prove (see [10]).

Theorem 6.1. — If Γ1 and Γ2 are arithmetic Fuchsian (resp. Kleinian)
groups then Question 2.4 has a positive answer.

Defining groups Γ1 and Γ2 to be isoaxial if A(Γ1) = A(Γ2), we now
proceed to sketch the proof that isoaxial arithmetic Kleinian groups are
commensurable. The obvious changes can be made for Fuchsian groups.

Let Γ be a Kleinian group and define

Σ(Γ) = {γ ∈ PSL(2,C) | γ(A(Γ)) = A(Γ)}.

It is easy to check that Σ(Γ) is a subgroup of PSL(2,C). Next recall the
commensurator of Γ is the subgroup of PSL(2,C) defined as:

Comm(Γ) = {g ∈ PSL(2,C) : gΓg−1 is directly commensurable with Γ}.

We claim that Comm(Γ) < Σ(Γ). To see this, first observe that if Γ1 and
Γ2 are commensurable Kleinian groups they contain a finite index subgroup
∆. Hence,

A(Γ1) = A(∆) = A(Γ2).

Now if x ∈ Comm(Γ), then xΓx−1 is commensurable with Γ, and so x
preserves the set A(Γ). Also notice that if Γ1 and Γ2 are isoaxial Kleinian
groups, then for any γ ∈ Γ2, A(Γ1) = A(γΓ1γ

−1), and therefore γ ∈ Σ(Γ1).
Hence Γ2 < Σ(Γ1).

The key point is now to show that when Γ is arithmetic, we have
Comm(Γ) = Σ(Γ). For then, the above discussion implies that Γ2 < Comm(Γ1),
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and it is standard that, if Γ2 is also arithmetic, Γ1 and Γ2 are commensu-
rable. ��

Remark. — Unlike Theorem 5.1, for now we are unable to assume that
only one of the groups is arithmetic. For example, the question as to whether
there could be a finitely generated non-arithmetic Fuchsian group that
shares the same set of axes as hyperbolic elements of PSL(2,Z) remains
open, although we suspect that this is not the case. The above arguments
do show that such a group is a subgroup of PGL(2,Q).

7. Some Questions

We close with some questions on topics connected to this survey. The
main one is the following:

Question 7.1. — Do Questions 2.1, 2.2, 2.3, 2.4 and 2.5 have positive
answers for finitely generated non-arithmetic Fuchsian and Kleinian groups?

From Theorem 4.4 we have arbitrarily large (but finite) families of length
equivalent closed hyperbolic manifolds in all dimensions. Given that we can
ask:

Question 7.2. — Do there exist infinite sets of length equivalent, closed
hyperbolic n-manifolds?

If we allow finite volume rather than closed then, Schmutz [21] (in dimen-
sion 2) and more recently [8] (in dimensions 2 and 3) produced examples
of infinitely many finite co-volume but non-cocompact arithmetic groups
that are length equivalent. Indeed, in [8], infinitely many examples are con-
structed that are length equivalent to PSL(2,Z).

Given the examples of Prasad and Rapinchuk mentioned in §5, the fol-
lowing seems particularly interesting.

Question 7.3. — Can the examples of Prasad and Rapinchuk be isospec-
tral?

Recall that a closed hyperbolic surface of genus g is called a Hurwitz
surface if it has precisely 84(g − 1) orientation preserving isometries. This
number is maximal by virtue of Hurwitz’s theorem on automorphisms (see
[5] for a discussion of such surfaces). Given this high order of symmetry it
seems likely that the following question has a positive answer.

Question 7.4. — Is a Hurwitz surface determined up to isometry by its
length spectrum?
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A Hurwitz surface is arithmetic, being a regular cover of the orbifold
H2/∆(2, 3, 7) where ∆(2, 3, 7) is the group of orientation-preserving isome-
tries in the group generated by reflections in the edges of a hyperbolic
triangle with interior angles (π/2, π/3, π/7). The invariant trace-field is
k = Q(cosπ/7) and the invariant quaternion algebra is the quaternion al-
gebra over k which is ramified at two real places and unramified at all finite
places.

We may deduce from the discussion of the proof of Theorem 5.1 that if
S is a hyperbolic surface that is iso-length spectral with a Hurwitz surface,
then S is arithmetic, and indeed S will be a cover of H2/∆(2, 3, 7) of degree
84(g − 1) (although perhaps not regular).
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