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Bounds for invariant distances on pseudoconvex Levi
corank one domains and applications

G. P. Balakumar(1), Prachi Mahajan(2)

and Kaushal Verma(3)

ABSTRACT. — Let D ⊂ Cn be a smoothly bounded pseudoconvex Levi
corank one domain with defining function r, i.e., the Levi form ∂∂r of the
boundary ∂D has at least (n− 2) positive eigenvalues everywhere on ∂D.
The main goal of this article is to obtain bounds for the Carathéodory,
Kobayashi and the Bergman distance between a given pair of points
p, q ∈ D in terms of parameters that reflect the Levi geometry of ∂D
and the distance of these points to the boundary. Applications include an
understanding of Fridman’s invariant for the Kobayashi metric on Levi
corank one domains, a description of the balls in the Kobayashi metric on
such domains that are centered at points close to the boundary in terms
of Euclidean data and the boundary behaviour of Kobayashi isometries
from such domains.

RÉSUMÉ. — SoitD un domaine borné, lisse, deCn, de fonction définissan-
te r. Nous supposonsD de corang de Levi 1, c’est-à-dire tel que la forme de
Levi ∂∂r possède au moins (n−2) valeurs propres strictement positives en
tout point du bord ∂D de D. Le but principal de l’article est d’obtenir des
estimées des distances de Caratheodory, Kobayashhi et Bergman, entre
deux points quelconques de D, dépendant de la distance de ces points à
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la frontière ainsi que de paramètres reflétant la géométrie de Levi de ∂D.
Comme applications, nous présentons certaines propriétés de l’invariant
de Fridman pour la métrique de Kobayashi sur les domaines de corang de
Levi 1, nous décrivons les boules pour la métrique de Kobayashi, centrées
en des points proches de la frontière, en termes de données euclidiennes,
et nous étudions le comportement au bord des isométries pour la métrique
de Kobayashi sur de tels domaines.

1. Introduction

The efficacy and ubiquity of invariant metrics such as those of Bergman,
Carathéodory and Kobayashi, whenever they are defined, is a fact that
hardly needs to be justified. Each of these metrics has its own strengths
and weaknesses. For example, while the Carathéodory and Kobayashi met-
rics are distance decreasing under holomorphic mappings, a property not
enjoyed by the Bergman metric in general, it makes up by being Hermitian
whereas the Carathéodory and Kobayashi metrics are only upper semicon-
tinuous in general. For a bounded domain D ⊂ Cn, a point z ∈ D and a
tangent vector v ∈ Cn, let BD(z, v), CD(z, v) and KD(z, v) be the infinites-
imal Bergman, Carathéodory and Kobayashi metrics on D. To recall their
definition, let ∆r ⊂ C be the open disc of radius r > 0 centered at the origin
and this will be abbreviated as ∆ when r = 1. Then

• CD(z, v) = sup
{
|df(z)v| : f ∈ O(D,∆)

}
,

• KD(z, v) = inf
{
1/r : there exists f ∈ O(∆r, D) with f(0) =

z and df(0) = v
}
, and

• BD(z, v) = bD(z, v)/(KD(z, z))1/2, where

KD(z, z) = sup
{
|f(z)|2 : f ∈ O(D), ‖f‖L2(D) � 1

}

is the Bergman kernel and

bD(z, v) = sup
{
|df(z)v| : f ∈ O(D), f(z) = 0 and ‖f‖L2(D) � 1

}
.

While no exact formulae for these metrics are known in general, part
of their utility derives from an understanding of how they behave when z
is close to the boundary ∂D. This is a much studied question and we may
refer to [1], [2], [18], [11], [12], [13], [26], [29], [30] and [40] which provide
quantitative boundary estimates for these infinitesimal metrics on a wide
variety of smoothly bounded pseudoconvex domains in Cn. Now given a
pair of distinct points p, q ∈ D, we may compute the lengths of all possible
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piecewise smooth curves in D that join p and q using these infinitesimal
metrics. The infimum of all such lengths gives a distance function on D
– these integrated versions are the Bergman, the inner Carathéodory and
the Kobayashi distances on D and they will be denoted by dbD(p, q), dcD(p, q)
and dkD(p, q) respectively for p, q ∈ D. Recall that the Carathéodory distance
dCara
D for D is defined by setting

dCara
D (p, q) = sup

{
dp∆

(
f(p), f(q)

)
: f ∈ O(D,∆)

}
,

where dp∆ denotes the Poincaré distance on the unit disc. It is well-known
that dcD is always at least as big as dCara

D . In general, dCara
D need not coincide

with the inner Carathéodory distance dcD. Moreover, it is known from the
work of Reiffen ([49]) that the integrated distance of the infinitesimal metric
CD(z, v), coincides with the inner distance associated to dCara

D which we de-
note by dcD. Recent work on the comparison of dCara

D and another invariant
function, the Lempert function, may be found in [45]. Much less is known
about the boundary behaviour of the integrated distances and our interest
here lies in obtaining estimates of them. Partial answers to this question
may be found in [1], [3] and [24], all of which deal with strongly pseudo-
convex domains in Cn. Optimal estimates of the boundary behaviour of
invariant distances for domains with C1+ε-smooth boundary in dimension
one, may be found in the recent work [46] where estimates for convexifi-
able domains are also dealt with. A more complete treatment for strongly
pseudoconvex domains in Cn was given by Balogh–Bonk in [6] using the
Carnot–Carathéodory metric that exists on the boundary of these domains.
An analogue of these estimates was later obtained by Herbort in [31] on
smoothly bounded weakly pseudoconvex domains of finite type in C2 using
the bidiscs of Catlin (see [11]).

We are interested in supplementing the results of [6] and [31] by ob-
taining bounds for these distances on a Levi corank one domain in Cn. A
smoothly bounded pseudoconvex domain D ⊂ Cn of finite type with smooth
defining function r (here the sign of r is chosen so that D = {r < 0}) is
said to be a Levi corank one domain if the Levi form ∂∂r of ∂D has at least
n− 2 positive eigenvalues everywhere on ∂D. An example of a Levi corank
one domain is the egg domain

E2m =
{
z ∈ Cn : |z1|2m + |z2|2 + . . . + |zn−1|2 + |zn|2 < 1

}
(1.1)

for some integer m � 1. Let 2m be the least upper bound on the 1–type of
the boundary points of D and let U be a tubular neighbourhood of ∂D such
that for any A ∈ U there is a unique orthogonal projection to ∂D which will
be denoted by A∗ such that |A−A∗| = dist(A, ∂D) = δD(A). Furthermore,
we may assume that the normal vector field, given at any ζ ∈ U by

ν(ζ) =
(
∂r/∂z1(ζ), ∂r/∂z2(ζ), . . . , ∂r/∂zn(ζ)

)
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has no zeros in U and is normal to the hypersurface Γ = {r(z) = r(ζ)}. Fix
ζ ∈ U . After a permutation of coordinates if necessary, we may assume that
∂r/∂zn(ζ) 
= 0. Then note that the affine transform

φζ(z) =
(
z1 − ζ1, . . . , zn−1 − ζn−1, 〈ν(ζ), z − ζ〉

)

translates ζ to the origin and is invertible by virtue of the fact that ∂r/∂zn(ζ)

= 0. Moreover, φζ reduces the linear part of the Taylor expansion of rζ =
r ◦ (φζ)−1 about the origin, to

rζ(z) = r(ζ) + 2�zn + terms of higher order. (1.2)

In particular, the origin lies on the hypersurface Γrζ

ζ , the zero set of rζ(z)−
r(ζ) and the normal to this hypersurface at the origin, is the unit vector
along the �zn-axis. In fact, by the continuity of ∂rζ/∂zn, we get a small ball
B(0, R0) (where as usual B(p, r) is the ball around p with radius r), with the
property that the vector field ν(z) has a non-zero component along (the con-
stant vector field) Ln = ∂/∂zn for all z in B(0, R0). Indeed, we may assume
that |∂rζ/∂zn(z)| is bounded below by any positive constant less than 1.
By shrinking B(0, R0), if necessary, we can ensure that |∂rζ/∂zn(z)| � 1/2.
We will perform such shrinking of neighbourhoods henceforth tacitly, taking
care only that the number of times we have done this at the end of all, is fi-
nite. Furthermore, we may repeat the above procedure for any ζ ∈ U . Since r
and (φζ)−1 are smooth (as functions of ζ), the family {∂rζ/∂zn(z)} of func-
tions parametrized by ζ, is equicontinuous. Moreover, the neighbourhood U
is precompact and hence, we may choose the radius R0 to be independent
of ζ.

Continuing with some helpful background and terminology, we assign a
weight of 1/2m to the variable z1, 1/2 to the variable zα for 2 � α � n− 1
and 1 to the variable zn and for multi-indices J = (j1, j2, . . . , jn) and K =
(k1, k2, . . . kn), the weight of the monomial zJzK = zj11 zj22 . . . zjnn zk1

1 zk2
2 . . . zknn ,

is defined to be

wt(zjzK) = (j1 + k1)/2m+ (j2 + k2)/2 + . . .+ (jn−1 + kn−1)/2 + (jn + kn).

Analogous to the definition of degree, we say that a polynomial in C[z, z] is
of weight λ if the maximum of the weights of its monomials is λ; the weight
of a polynomial mapping is the maximum of the weights of its components.
Thus note that the weight of the map φζ is 1 while its ‘multiweight’ is
(1/2m, 1/2, . . . , 1/2, 1).

We now summarize the special normal form for Levi corank one domains
(cf. [14]), details of which are discussed in the appendix. For each ζ ∈
U , there is a radius R > 0 and an injective holomorphic mapping Φζ :
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B(ζ,R)→ Cn such that the transformed defining function ρζ = rζ ◦ (Φζ)−1

becomes

ρζ(w) = r(ζ) + 2�wn +

2m∑

l=2

Pl(ζ;w1) + |w2|2 + . . . + |wn−1|2

+

n−1∑

α=2

∑

j+k�m
j,k>0

�
((

bαjk(ζ)w
j
1w

k
1

)
wα

)
+ R(ζ;w) (1.3)

where

Pl(ζ;w1) =
∑

j+k=l

aljk(ζ)w
j
1w

k
1

are real valued homogeneous polynomials of degree l without harmonic
terms and the error function R(ζ, w) → 0 as w → 0 faster than one of
the monomials of weight 1. Further, the map Φζ is actually a holomorphic
polynomial automorphism of weight one of the form

Φζ(z) =
(
z1 − ζ1, Gζ(z̃ − ζ̃)−Q2(z1 − ζ1), 〈ν(ζ), z − ζ〉 −Q1(

′z − ′ζ)
)

(1.4)

where Gζ ∈ GLn−2(C), z̃ = (z2, . . . zn−1),
′z = (z1, z2, . . . , zn−1) and Q2 is a

vector valued polynomial whose α-th component is a polynomial of weight
at most 1/2 of the form

Qα
2 (t) =

m∑

k=1

bαk (ζ)tk

for t ∈ C and 2 � α � n− 1. Finally, Q1(
′z − ′ζ) is a polynomial of weight

at most 1 and is of the form Q̂1

(
z1 − ζ1, Gζ(z̃ − ζ̃)

)
with Q̂1 of the form

Q̂1(t1, t2, . . . , tn−1) =

2m∑

k=2

ak0(ζ)t
k
1 −

n−1∑

α=2

m∑

k=1

aαk (ζ)tαt
k
1 −

n−1∑

α=2

cα(ζ)t2α.

Since Gζ is just a linear map, Q1(
′z−′ζ) also has the same form when consid-

ered as an element of the algebra of holomorphic polynomials
C[′z − ′ζ], when ζ is held fixed. The coefficients of all the polynomials,
mentioned above, are smooth functions of ζ. By shrinking U , if needed, we
can ensure that R > 0 is independent of ζ because these new coordinates
depend smoothly on ζ. Further Q1(0, . . . , 0) = 0 and that the lowest degree
of its monomials is at least two. On the other hand, while Q2(0) = (0, . . . , 0),
the lowest degree of the terms in Qα

2 is at least (and can be) one. In case,
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the polynomials Qα
2 and Q1 are identically zero, it turns out that the argu-

ments become even simpler and this will be evident from the sequel. Note
that Φζ(ζ) = 0 and

Φζ(ζ1, . . . , ζn−1, ζn − ε) = (0, . . . , 0,−ε ∂r/∂zn(ζ)).

Note that each Φζ is a polynomial automorphism of Cn and it will be
referred to as the canonical change of variables for a Levi corank one domain.
Though it reduces the defining function to (1.3), it is not simple in the sense
of being weighted homogeneous in the variables z − ζ. This is evident in
(1.2) where only the linear part of the expansion is reduced to its simplest
form (up to a permutation) and later in the final transformation (1.4).
Evidently, Φζ is neither a ‘decoupled polynomial mapping’ nor a weighted
homogeneous map in z − ζ. This poses difficulties in imitating Herbort’s
calculations directly and we shall discuss these difficulties as we encounter
them, namely in Section 2.6.

Recall that in general, the degree (or weight) of a holomorphic polyno-
mial automorphism of Cn is not equal to that of its inverse. However, the
inverse of Φζ has the same form as Φζ . The precise definition and properties
of these maps is provided in the appendix. These maps belong to the alge-
braic group EL consisting of weight preserving polynomial automorphisms
whose first component has weight 1/2m, the next n− 2 components having
weight 1/2 each and the last component having weight 1; in particular, the
weight of Φζ is one.

To construct the distinguished polydiscs around ζ (more precisely, bi-
holomorphic images of polydiscs), with notations as in [31] define for each
δ > 0, the special-radius

τ(ζ, δ) = min
{(

δ/|Pl(ζ, ·)|
)1/l

,
(
δ1/2/Bl′(ζ)

)1/l′

: 2 � l � 2m, 2 � l′ � m
}
.

(1.5)

where

Bl′(ζ) = max{|bαjk(ζ)| : j + k = l′, 2 � α � n− 1}, 2 � l′ � m.

Here, the norm of the homogeneous polynomials Pl(ζ, ·) of degree l, is taken
according to the following convention: for a homogeneous polynomial

p(v) =
∑

j+k=l

aj,kv
j v̄k,

define |p(·)| = maxθ∈R |p(eiθ)|. It was shown in [14] that the coefficients
bαjk’s in the above definition of τ(ζ, δ) are insignificant and may be dropped
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out, so that

τ(ζ, δ) = min
{(

δ/|Pl(ζ, ·)|
)1/l

: 2 � l � 2m
}
.

Set

τ1(ζ, δ) = τ(ζ, δ) = τ, τ2(ζ, δ) = . . . = τn−1(ζ, δ) = δ1/2, τn(ζ, δ) = δ

and define

R(ζ, δ) = {z ∈ Cn : |zk| < τk(ζ, δ), 1 � k � n}

which is a polydisc around the origin in Cn with polyradii τk(ζ, δ) along the
zk direction for 1 � k � n and let

Q(ζ, δ) = (Φζ)−1
(
R(ζ, δ)

)

which is a distorted polydisc around ζ. It was shown in [14] that for all
sufficiently small positive δ – say, for all δ in some interval (0, δe) with δe
some number less than 1 – there is a uniform constant C0 > 1 such that

(i) these ‘polydiscs’ satisfy the engulfing property, i.e., for all ζ ∈ U if
η ∈ Q(ζ, δ), then Q(η, δ) ⊂ Q(ζ, C0δ) and

(ii) if η ∈ Q(ζ, δ) then τ(η, δ) � C0τ(ζ, δ) � C2
0τ(η, δ).

For A,B ∈ U let

M(A,B) = {δ > 0 : A ∈ Q(B, δ)}

which is a sub-interval of [0,∞) since the distorted polydiscs Q(B, δ) are
monotone increasing as a function of δ. Then define

d′(A,B) = inf M(A,B)

if M(A,B) 
= ∅ (otherwise we simply set it equal to +∞) and let

d(A,B) = min{d′(A,B), |A−B|l∞} (1.6)

which is an auxiliary pseudo-distance function on D. Here we work with the
l∞ norm of A−B instead of the usual Euclidean distance for convenience.
Now, let

η(A,B) = log

(
1 +

d(A,B)

δD(A)
+

n−2∑

α=2

∣∣∣Φ̂A(B)α

∣∣∣
√

δD(A)
+

∣∣∣Φ̂A(B)1

∣∣∣
τ
(
A, δD(A)

)
)
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where Φ̂A(B) differs from ΦA(B) by a permutation of co-ordinates to ensure
ν(A)n 
= 0 i.e., Φ̂A(B) = ΦA ◦ PA(B) where PA(z) is any permutation of
the variables z1, . . . , zn such that ∂(r ◦ P−1

A )/∂zn 
= 0. The existence of PA

follows from the assumption that ν(A) 
= 0. If A,B are close enough, then
we may certainly choose PA = PB . Finally, let

1(A,B) = 1/2
(
η(A,B) + η(B,A)

)

and as usual, for quantities S, T we will write S � T to mean that there is
a constant C > 0 such that S � CT , while S ≈ T means that S � T and
T � S both hold.

It is known ([13]) that these infinitesimal metrics are uniformly com-
parable on a pseudoconvex Levi corank one domain D, i.e., BD(z, v) ≈
CD(z, v) ≈ KD(z, v) uniformly for all (z, v) ∈ D × Cn. Thus to get lower
bounds for the integrated distances it suffices to understand dcD alone. We
use the inequality dCara

D � dcD to get sharper lower bounds on dcD and this
is the only motivation for introducing dCara

D .

Theorem 1.1. — Let D ⊂ Cn be a smoothly bounded Levi corank one
domain and U a tubular neighbourhood of ∂D as above. Then for all A,B ∈
U ∩D we have that

1(A,B)− l � dcD(A,B) � dkD(A,B) � 1(A,B) + L

where l and L are some positive constants. In particular, the same bounds
hold for dbD(A,B) as well.

Obtaining a lower bound for dcD amounts to understanding the sepa-
ration properties of bounded holomorphic functions on D. To do this, the
boundary ∂D will be bumped outwards near a given ζ ∈ ∂D as in [13]
to get a larger domain that contains D near ζ. The pluricomplex Green
function for these large domains will then be used to construct weights for
an appropriate ∂-problem as in [31] and the solution thus obtained will be
modified to get a holomorphic function with a suitable L2 bound near ζ.
Solving another ∂-problem will extend this to a bounded holomorphic func-
tion on D with control on its separation properties. This function is then
used to bound dcD from below. Theorem 1.1 has several consequences and
we elaborate them in the following paragraphs.

In [21], Fridman defined an interesting non-negative continuous function
on a given Kobayashi hyperbolic complex manifold of dimension n, say X
that essentially determines the largest Kobayashi ball at a given point on
X which is comparable to the unit ball Bn. To be more precise, let BX(p, r)
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denote the Kobayashi ball around p ∈ X of radius r > 0. The hyperbolicity
of X ensures that the intrinsic topology on X is equivalent to the one
induced by the Kobayashi metric. Thus for small r > 0, the ball BX(p, r) is
contained in a coordinate chart around p and hence there is a biholomorphic
imbedding f : Bn → X with BX(p, r) ⊂ f(Bn). Let R be the family of all
r > 0 for which there is a biholomorphic imbedding f : Bn → X with
BX(p, r) ⊂ f(Bn). Then R is evidently non-empty. Define

hX(p,Bn) = inf
r∈R

1

r

which is a non-negative real valued function on X. Since the Kobayashi
metric is biholomorphically invariant, the same holds for hX(p,Bn) which
shall henceforth be called Fridman’s invariant. The same construction can
be done using any invariant metric that induces the intrinsic topology on
X and we may also work with homogeneous domains other than the unit
ball. However we shall work with the Kobayashi metric exclusively. A useful
property identified in [21] was that if hX(p0,Bn) = 0 for some p0 ∈ X, then
hX(p,Bn) = 0 for all p ∈ X and that X is biholomorphic to Bn. Moreover,
p �→ hX(p,Bn) is continuous on X. The boundary behaviour of Fridman’s
invariant was studied in [44] for a variety of pseudoconvex domains and the
following statement extends this to the class of Levi corank one domains.

Theorem 1.2. — Let D ⊂ Cn be a smoothly bounded pseudoconvex do-
main of finite type. Let {pj} ⊂ D be a sequence that converges to p0 ∈ ∂D.
Assume that the Levi form of ∂D has rank at least n− 2 at p0. Then

hD(pj ,Bn)→ hD∞((′0,−1),Bn)

as j →∞ where D∞ is a model domain defined by

D∞ =
{
z ∈ Cn : 2�zn + P2m(z1, z1) + |z2|2 + . . . + |zn−1|2 < 0

}

and P2m(z1, z1) is a subharmonic polynomial of degree at most 2m (m � 1)
without harmonic terms, 2m being the 1-type of ∂D at p0.

By scaling D along {pj}, we obtain a sequence of domains Dj , each
containing the base point (′0,−1), that converge to D∞ as defined above.
It should be noted that the polynomial P2m(z1, z1) depends on how the
sequence {pj} approaches p0. This is simply restating the known fact that
unlike the strongly pseudoconvex case, model domains near a weakly pseu-
doconvex point are not unique. Since Fridman’s invariant is defined in terms
of Kobayashi balls, the main technical step in this theorem is to show the
convergence of the Kobayashi balls in Dj around (′0,−1) with a fixed radius
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R > 0 to the corresponding Kobayashi ball on D∞ with the same radius.
Theorem 1.1 is used in this step.

Another consequence of scaling near a Levi corank one point combined
with Theorem 1.1 is a description of the Kobayashi balls near such points
in terms of parameters that reflect the Levi geometry of the boundary. This
is well known in the strongly pseudoconvex case – indeed, the Kobayashi
ball around a given point p near a strongly pseudoconvex boundary point
is essentially an ellipsoid whose major and minor axis are of the order of
(δD(p))1/2 and δD(p) respectively.

Theorem 1.3. — Let D ⊂ Cn be a smoothly bounded pseudoconvex Levi
corank one domain. Then for all R > 0, there are constants C1, C2 > 0
depending only on R and D such that

Q(q, C1 δD(q)) ⊂ BD(q,R) ⊂ Q(q, C2 δD(q))

for each q ∈ D sufficiently close to ∂D.

Analogues of this for weakly pseudoconvex finite type domains in C2

and convex finite type domains in Cn were obtained in [44] by a direct scal-
ing. These estimates are useful in establishing a generalized sub-mean value
property for plurisubharmonic functions and defining suitable approach re-
gions for boundary values of functions in Hp spaces at least on strongly
pseudoconvex domains (see [38] for example).

The next and last class of applications of Theorem 1.1 deal with the
problem of biholomorphic inequivalence of domains in Cn. The paradigm
underlying many of the results in this direction (see for example [9] and
[47]) is that a pair of domains in Cn cannot have boundaries with different
Levi geometry and yet be biholomorphic. For proper holomorphic mappings,
it is known (see for example [19] and [17]) that the target domain cannot
have a boundary with more complicated Levi degeneracies than the source
domain. Fridman’s invariant provides another approach to this problem with
the advantage of quickly reducing it to the case of algebraic model domains.
Here is an example to illustrate this point of view and we refer the reader
to [5] for an alternative proof that works for proper holomorphic mappings
as well.

Theorem 1.4. — Let D1, D2 ⊂ Cn be bounded domains with p0 ∈ ∂D1

and q0 ∈ ∂D2. Assume that ∂D1 is C2-smooth strongly pseudoconvex near
p0 and that ∂D2 is C∞-smooth pseudoconvex and of finite type near q0.
Suppose further that the Levi form of ∂D2 has rank exactly n − 2 at q0.
Then there cannot exist a biholomorphism f : D1 → D2 with q0 ∈ clf (p0),
the cluster set of p0.
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When p0 is also a Levi corank one point on ∂D1, it is known ([55]) that
a proper holomorphic mapping f : D1 → D2 extends continuously to ∂D1

near p0. In fact, a similar result can be proved for isometries of these metrics
as well. To set things in perspective, let D,G be bounded domains in Cn

equipped with one of these invariant metrics. An isometry f : D → G is
simply a distance preserving map. Note that no further assumptions such
as smoothness or holomorphicity are being included as part of the definition
of an isometry. A C1-Kobayashi isometry is a C1-diffeomorphism f from D
onto G with f∗(KG) = KD, and C1-Bergman and Carathéodory isometries
are defined likewise. Of course, biholomorphisms are examples of isometries,
but whether all isometries are necessarily holomorphic or conjugate holo-
morphic seems interesting to ask. Let us say that an isometry is rigid if it is
either holomorphic or conjugate holomorphic. If isometries of the Bergman
metric between a pair of strongly pseudoconvex domains in Cn are consid-
ered, a result in [27] shows that the isometry must be rigid. Recent work on
the rigidity of local Bergman isometries may be found in [43]. Isometries of
the Kobayashi metric between a strongly pseudoconvex domain and the ball
are also shown to be rigid in [35] while a more recent result in [25] proves
the rigidity of an isometry between a pair of strongly convex domains even
in the non equidimensional case; the choice of either the Kobayashi or the
Carathéodory metric is irrelevant here since the two coincide. However, this
seems to be unknown for isometries of the Kobayashi or the Carathéodory
metric between a pair of strongly pseudoconvex domains. On the other
hand, the results of [42] and [6] show that isometries behave very much
like holomorphic mappings. In particular, they exhibit essentially the same
boundary behaviour as biholomorphisms. The following statements further
justify this claim and extend some of the results in [42].

Theorem 1.5. — Let f : D1 → D2 be a C1-Kobayashi isometry between
two bounded domains in Cn. Let p0 and q0 be points on ∂D1 and ∂D2

respectively. Assume that ∂D1 is C∞-smooth pseudoconvex of finite type in
a neighbourhood U of p0 and that ∂D2 is C2-smooth strongly pseudoconvex
in a neighbourhood V of q0. Suppose further that the Levi form of ∂D1 has
rank at least n− 2 near p0 and that q0 belongs to the cluster set of p0 under
f . Then f extends as a continuous mapping to a neighbourhood of p0 in D1.

The following result provides an explicit computation of KE2m , the
Kobayashi metric of the egg domain E2m introduced in (1.1) for m � 1/2 –
notice that when m is not an integer, the boundary of E2m is not smooth.
This extends the computation done for such egg domains in C2 in [41] and
[10]. It is straightforward to see that for any θ ∈ R and (p1, . . . , pn) ∈ E2m,
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(z1, . . . , zn) �→


eιθ

(
1− |p̂|2

)1/2m

(1− 〈ẑ, p̂〉)1/m
z1,Ψ(ẑ)




is an automorphism of E2m. Here 〈·, ·〉 denotes the standard Hermitian inner
product in Cn−1, z ∈ Cn is written as z = (z1, ẑ), ẑ = (z2, . . . , zn) and Ψ is
an automorphism of Bn−1 that takes p̂ to the origin. More precisely,

Ψ(ẑ) =

(
1− |p̂|2

)1/2
(
ẑ − 〈ẑ,p̂〉|p̂|2 p̂

)
−

(
1− 〈ẑ,p̂〉|p̂|2

)
p̂

1− 〈ẑ, p̂〉

for p̂ 
= 0̂. Since automorphisms are isometries for the Kobayashi metric, it is
enough to compute the explicit formula for KE2m

at the point (p, 0̂) ∈ E2m,
for 0 < p < 1, from which the general formula follows by composition with
an appropriate automorphism of E2m as described above.

Theorem 1.6. — The Kobayashi metric for E2m at the point (p, 0̂) for
0 < p < 1, is given by

KE2m

(
(p, 0, . . . , 0), (v1, . . . , vn)

)
=





(
m2p2m−2|v1|2

(1−p2m)2 + |v2|2
1−p2m + · · ·+ |vn|2

1−p2m

)1/2

for u � p,

mα(1−t)|v1|
p(1−α2)(m(1−t)+t) for u > p,

where

u =

(
m2|v1|2

|v2|2 + · · ·+ |vn|2
)1/2

, (1.7)

t =
2m2p2

u2 + 2m(m− 1)p2 + u
(
u2 + 4m(m− 1)p2

)1/2
(1.8)

and α is the unique positive solution of

α2m − tα2m−2 − (1− t)p2m = 0.

Moreover, KE2m is C1-smooth on E2m × (Cn \ {0}) for m > 1/2.

It should be mentioned that the Kobayashi metric at the origin,
KE2m

(
(0, 0, . . . , 0), v

)
= qE2m(v) where qE2m denotes the Minkowski func-

tional of E2m. Moreover, the number α has an alternate definition: α =
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qE2m

(
p(1− t)1/2m, (t/(n− 1))

1/2
, . . . , (t/(n− 1))

1/2
)
. Theorem 1.6 is use-

ful in proving the isometric inequivalence of weakly spherical Levi corank
one domains (the notion of weak sphericity is recalled from [7] and defined in
the last section) and strongly pseudoconvex domains – see [42] for a related
result in C2.

Theorem 1.7. — Let D1, D2 ⊂ Cn be bounded domains with p0 ∈ ∂D1

and q0 ∈ ∂D2. Assume that there are holomorphic coordinates in a neigh-
bourhood U1 around p0 in which U1 ∩D1 is defined by

{
z ∈ Cn : 2�zn + |z1|2m + |z2|2 + . . . + |zn−1|2 + R(z, z) < 0

}

where m > 1 is a positive integer and the error function R(z, z)→ 0 faster
than at least one of the monomials of weight one. Suppose further that ∂D2

is C2-smooth strongly pseudoconvex near q0. Then there cannot exist a C1-
Kobayashi isometry f : D1 → D2 with q0 ∈ clf (p0).

To outline the proof of this statement, we scale D1 along a sequence of
points that converges to p0 along the inner normal to D1. The limit do-
main is exactly E2m. In trying to adapt the scaling method for isometries,
note that the normality of the scaled isometries needs the stability of the
Kobayashi distance function on Levi corank one domains, i.e., the arguments
used in analysing Fridman’s invariant. This ensures the existence of the limit
of scaled isometries, the limit being an isometry between E2m and the unit
ball. The final argument, which uses the explicit form of the Kobayashi met-
ric on E2m as given above, involves showing that this continuous isometry
is in fact rigid which then leads to a contradiction.

Acknowledgements. — An independent and technically different proof
of Theorem 1.1 has also been obtained by Gregor Herbort. We were informed
of this after the completion of this manuscript and we would like to thank
him for sharing a copy of his then unpublished manuscript and for a clarify-
ing remark on an earlier version of this article that has been incorporated;
his work has recently appeared in [32]. Thanks are also due to Peter Pflug for
a timely comment that helped remove an ambiguity and to Nikolai Nikolov
who pointed out the relevance of [45] and [46]. Last but not least, we thank
the anonymous referee for a careful reading of this manuscript.

2. Proof of Theorem 1.1

We begin with some helpful generalities, notation and terminology. In
general, if ρ is a smooth function defined on some open set V in Cn, then
there are 2 simple ways of constructing Hermitian forms associated to ρ.
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We shall restrict to the case when the level sets of ρ are smooth real hy-
persurfaces, so let us assume that ρ has a nowhere-vanishing gradient in V .
Consider the canonical +ve-semi definite Hermitian form associated to ρ by

〈Y,W 〉 →
( n∑

j=1

∂ρ

∂zj
(z)Yj

)( n∑

k=1

∂ρ

∂zk
(z)Wk

)
=

n∑

j,k=1

∂ρ

∂zj
(z)

∂ρ

∂zk
(z)Y jWk

for Y,W tangent vectors at z. The associated quadratic form is given by

Cρ(z, Y ) =
∣∣∣

n∑

j=1

∂ρ

∂zj
(z)Yj

∣∣∣
2

(2.1)

which is evidently positive semi-definite. Denote by Mρ(z), the matrix as-
sociated to this form with respect to (unless otherwise mentioned) the
standard co-ordinates. Assume after a permutation of coordinates, that
∂ρ/∂zn 
= 0. Let ζ ∈ V and for 1 � j � n− 1 define the vectors

Lj(ζ) =
(
0, . . . , 0, 1, 0, . . . , 0, bζj

)

where the jth entry in the above tuple is 1 and

bζj = bj(ζ, ζ) = −
( ∂ρ

∂zn
(ζ)

)−1( ∂ρ

∂zj
(ζ)

)

This collection of n− 1 vectors forms a basis for the complex tangent space
at ζ to the hypersurface

Γρ
ζ =

{
z ∈ V : ρ(z) = ρ(ζ)

}

and is called the canonical basis for the complex tangent space denoted HΓρ
ζ ,

being independent of the choice of the defining function (up to a permutation
to ensure ∂ρ/∂zn 
= 0). Next, observe that each Lj is an eigenvector for
Mρ(z) with eigenvalue 0. Hence, HΓρ

ζ is contained in the kernel of Mρ(ζ)

while the vector ν(ζ) is an eigenvector of Mρ(ζ) of eigenvalue |ν(ζ)|2.

There is another way to construct a Hermitian form out of ρ whose
associated quadratic form is

Lρ(z, Y ) =

n∑

j,k=1

∂2ρ(z)

∂zj∂zk
YjY k (2.2)

for any given z ∈ V and Y ∈ Cn. This is the complex Hessian and in general
need not be positive or negative semi-definite. Restricted to HΓρ

ζ , this is the
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standard Levi form. When Γρ
ζ is pseudoconvex, the restriction of Lρ to HΓρ

ζ

is positive semi-definite. In particular, all this applies to ρ = r, the defining
function of the given domain D as in the introductory section 1.

Henceforth, C will denote a positive constant that may vary from line to
line. Positive constants will also be denoted by K,L or Cj for some integer
j (for instance as in the last part of Lemma 2.1) and these may also vary
as we move from one part of the text to another.

2.1. Basic properties of the pseudo-distance induced by the bi-
holomorphically distorted polydiscs Q

Recall the function d defined in (1.6) and another notation from the
introduction: for any a ∈ D ∩ U , we denote by a∗ the point closest to a in
∂D.

Lemma 2.1. — The function d satisfies

(i) For all a, b ∈ U we have d(a, b) = 0 if and only if a = b,

(ii) There exists C > 0 such that for all a, b ∈ U ,

d(a, b) � Cd(b, a)

(iii) There exist constants R0 and L > 0 such that for all a, b ∈ U with
|a− b| < R0, one has

d(a, b) � 1/2L d′(a, b)

(iv) There exists C > 0 such that for all a, b, c ∈ U , we have

d(a, b) � C
(
d(a, c) + d(b, c)

)

(v) For a suitable constant C > 0, we have d(a, a∗) � CδD(a) for all
a ∈ U and

(vi) There exist constants C1, C2 > 0 such that for all a, b ∈ U with
d′(a, b) < 1, we have

C1 |a− b|2m � d′(a, b) � C2 |a− b| .

Proof. — The proofs of parts (i)-(v) follow exactly as in [31]. To establish
(vi), observe that a ∈ Q(b, δ) if and only if |Φb(a)1| < τ(b, δ), |Φb(a)α| <

√
δ

for all 2 � α � n− 1 and |Φb(a)n| < δ. As a consequence,

|Gb(ã− b̃)−Q2(a1 − b1)| <
√

δ

– 295 –



G. P. Balakumar, Prachi Mahajan, Kaushal Verma

which implies that

|Gb(ã− b̃)| <
√

δ + Q2(a1 − b1).

But we already know that

|a1 − b1| < τ(b, δ) � δ1/2m.

Moreover, since G−1
b is uniformly bounded below in norm in a neighbour-

hood of b, we see that

|ã− b̃| �
√

δ + τ(b, δ) � δ1/2m,

provided δ < 1. It follows that |′a − ′b| � δ1/2m and consequently that
|an− bn| � δ1/2m. To summarize, we conclude that |a1− b1|, |ã− b̃|, |′a− ′b|
and |an − bn| are all less than δ1/2m times a constant. Hence, d(a, b) �
|a− b|2m. Now to prove the upper inequality of (vi), write

∣∣Φb(a)
∣∣2 =

∣∣a1 − b1
∣∣2 +

∣∣Gζ(ã− b̃)−Q2(a1 − b1)
∣∣2

+
∣∣(bζn)−1

(
an − bn

)
−Q1(

′a− ′b)
∣∣2.

Note that the right hand side above is at most Cb|a − b|2, where Cb is the
maximum of the absolute values of Gζ , (bζn)−1 and the coefficients of the
polynomials Q1(

′a − ′b), Qα
2 (a1 − b1) for 2 � α � n − 1, all of which are

smooth functions of b. Hence, Cb is bounded above by a positive constant
(say, C2) that depends only on the domain D. This proves the lemma. �

Observe that sufficiently small balls in this pseudo-distance d are the an-
alytic polydiscs Q(·, δ). In particular, the topology generated by d coincides
with the Euclidean topology. However as part (vi) of Lemma 2.1 shows, the
pseudodistance d is not bi-Lipschitz equivalent to the Euclidean distance.
Infact a more precise description of the local behaviour of d in terms of the
various components of the canonical transforms Φb(a) which are explicitly
known, is laid down in lemma 2.11.

2.2. Local domains of comparison and plurisubharmonic weights

The task now is to compare the pseudo-distance d induced by the dis-
torted polydiscs which captures certain key aspects of the CR-geometry of
the boundary of our Levi corank one domain D, to the distance induced
by an algebra of uniformly bounded holomorphic functions, dCara

D . This
will be a starter towards our ultimate goal of obtaining better bounds on
dcD. To the end of obtaining a lower bound on dCara

D , we first construct
for every given pair of points A,B ∈ D ∩ U which are at least ε-apart in
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the pseudo-distance d, a function f ∈ H∞(D) separating the given pair
by an amount depending only on ε. The plan for this construction is to
set up a ∂̄-problem whose solution will give a smooth L2-function with the
required separation properties. Modification of this solution to ensure holo-
morphicity is a simple routine matter. But extracting information about the
values of this L2-holomorphic function near the boundary, so as to deter-
mine whether it also lies in H∞(D), and thereby obtain a function which
will bound dCara

D from below, seems difficult as explained by Catlin in his
introduction to [11]. A strategy followed therein to overcome this difficulty,
is to bump the domain Dζ , pushing the boundary as far as possible sub-

ject to certain constraints: dist(ζ, ∂Dζ
t ) < t for one and among others, that

∂Dζ
t be pseudoconvex; here Dζ

t with t ∈ R+ denotes the bumped domain.

The afore-mentioned ∂̄-problem is solved first on Dζ
t to obtain a solution

f̃ ∈ H2(Dζ
t ). The bumping technique as well as the ∂̄-problem are sophisti-

cated enough, so as to achieve good control of the L2-norm of f̃ in terms of
the distances of the giver pair of points – that f̃ separates – to the boundary
along different directions. In particular, ∂Dζ lies well within the bumped

domain Dζ
t ; well enough, to extract information about the values of f̃ near

∂Dζ via an appropriate application of the Cauchy integral formula. This
leads to the sought after function in H∞(D) with the desired separation
properties as well.

The technical tools required for this bumping procedure are a family
{λδ} of uniformly bounded smooth plurisubharmonic functions with grow-
ing Hessians near ζ, which exist owing to the pseudoconvex finite type char-
acter of the boundary. The condition that the Levi form of ∂Dζ have at most
one zero eigenvalue, furnishes from [13] further control on the blow-up rate
of the derivatives of {λδ}. The bumping functions Eζ,t is manufactured by
suitably summing up these λδ’s. The defining function ρζ of the bumped
domain is taken to be ρζ,t = ρζ +Eζ,t. Now we would like these functions to
be as simple as possible – simplicity given the constraints and needs of the
problem at hand. In our present context, this means tangible estimates of
Eζ,t. Indeed, to bring out what tangible estimates mean, we introduce the
one parameter family of decoupled algebraic functions

Ĵζ,t(w) = Jζ,t(w)− t,

where

Jζ,t(w) =
(
t2+|wn|2+

2m∑

j=2

|Pj(ζ, ·)|2|w1|2j+|w2|4+. . .+|wn−1|4
)1/2

. (2.3)

Now, all relevant analytic behaviour of Eζ,t can be estimated in terms of
Jζ,t as stated more precisely, in the lemma 2.2 below. It also turns out that
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Jζ,t(w) is useful in estimating the L2 norms of holomorphic functions on Dζ
t .

Above all, these functions are tangible in the sense that they are defined
directly in terms of the defining function – all one needs to know is the size
of the derivatives of ρζ(w) of order up to 2m in the variable w. At this point,
we would like to remark that Ĵζ,t(w) is a (inhomogeneous) pseudo-norm in

the sense that Ĵζ,t(w − z) is a pseudo-distance. Observe that Ĵζ,t(w − z)
is symmetric and satisfies the triangle inequality up to a positive constant.
Indeed, let P (|w|) denote the expression

|wn|2 +

2m∑

j=1

|Pj(ζ, ·)|2|w1|2j + |w2|4 + . . . + |wn−1|4.

It is well known that

|A + B|2j � 22j−1(|A|2j + |B|2j)

for A,B ∈ R and j ∈ N. Applying the above inequality to each term in
P (|w + z|), it follows that P (|w + z|) � P (|w|) + P (|z|). This gives the
pseudo-triangle inequality for Ĵζ,t(w − z). The simplicity of the bumpings

Dζ
t of interest here, can be kept track of, by observing their difference from

the trivial bumpings Dt,ζ := {w ∈ Cn : ρt,ζ(w) := ρζ(w)− t < 0}. It turns
out that this difference can be measured via the anisotropic pseudo-norm
Ĵζ,t as in (2.21) below. Thus, these bumpings Dζ

t are tractable and useful.
Suffice it to say that they have been a useful intermediate tool in yielding
optimal estimates for our infinitesimal invariant metrics as in [11] and [13]
and their integrated distances in dimension two as in [31].

We begin our study of the bumping procedure applied to a segment of
a tubular neighbourhood Uζ,t of ∂Dζ , near ζ = 0, defined by

Uζ,t = {w : |ρζ(w)| < s|Jζ,t(w)|} ∩B(0, R), (2.4)

where s,R are small positive constants. So, we carry out the bumping pro-
cess in the region where the variation in ρζ is small in the pseudo-norm Ĵζ,t –

we may also rewrite the defining inequality for Uζ,t as |ρst,ζ(w)| < sĴζ,t(w)

when ρζ(w) > 0 i.e., when w lies outside our domain Dζ ; since Dζ
t can

be compared with Dt,ζ via Ĵζ,t we may include Dt,ζ into our domain of
study. In this domain Uζ,t ∪ Dt,ζ , it is possible to perform well-controlled
bumping; in particular, the afore-mentioned special control available on the
λδ’s contributes to attaining sharp lower bounds on the Hessian of Eζ,t. We
shall now just put down the summary of these well-known matters more
precisely, for our case of interest, from Proposition 2.2 and Theorem 2.4 of
[13].
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Lemma 2.2. — For sufficiently small R1 < R0, s > 0 and each ζ ∈
∂D∩B(0, R1), there exists on {ρζ < t}∪Uζ,t, a smooth negative real valued
plurisubharmonic function Eζ,t with the following properties:

(i) −C3Jζ,t � Eζ,t � −1/C3Jζ,t

(ii) The complex Hessian of Eζ,t satisfies

LEζ,t(w, Y ) ≈ Jζ,t(w)
( ∣∣∣ Y1

τ(ζ, Jζ,t(w))

∣∣∣
2

+

n−1∑

k=2

∣∣∣ Yk√
Jζ,t(w)

∣∣∣
2

+
∣∣∣ Yn

Jζ,t(w)

∣∣∣
2 )

for all w ∈ {ρζ < t} ∪ Uζ,t and Y ∈ Cn.

(iii) The first directional derivative of Eζ,t satisfies

|〈∂Eζ,t(w), Y 〉|2 � C4Jζ,t(w)LEζ,t(w, Y )

(iv) Let ρζ,t = ρζ + ε0Eζ,t. Then for small enough ε0 > 0 the domain

Dζ
t =

{
w ∈ {ρζ < t} ∪ Uζ,t : ρζ,t(w) < 0

}

is pseudoconvex.

The positive constants C3, C4 and s here are and independent of the
parameters t and ζ. It is clear that Dζ

t ⊃ Dζ . Part (iii) above compares
the complex Hessian of Eζ,t(w) with the canonical positive semi-definite
Hermitian form |〈∂Eζ,t(w), Y 〉|2 associated to the smooth function Eζ,t. It
ensures that LEζ,t satisfies a good enough lower bound for the bumpings
to retain pseudoconvexity while pushing out ∂Dζ as far as possible. Part
(ii) provides a more concrete estimate on the complex Hessian of Eζ,t(w).
Together with part (iii), this aids in checking that the bumpings are optimal.
Let us just examine what happens at ζ, the origin:

〈∂ρζ,t(w), Y 〉 = 〈∂ρζ(w), Y 〉+ ε0〈∂Eζ,t(w), Y 〉 (2.5)

for Y ∈ Cn. Setting w = 0 and restricting Y to the complex tangent space
to Dζ at the origin, i.e., {z ∈ Cn : zn = 0}, we see that

〈∂ρζ,t(0), Y 〉 = ε0〈∂Eζ,t(0), Y 〉.
But we already know from parts (iii) and (ii) that

|〈∂ρζ,t(0), Y 〉|2 � C4ε
2
0

(
Jζ,t(0)

)2




∣∣∣∣∣
Y1

τ
(
ζ, Jζ,t(0)

)
∣∣∣∣∣

2

+

n−1∑

α=2

∣∣∣∣∣
Yα√
Jζ,t(0)

∣∣∣∣∣

2



� ε20|′Y |2. (2.6)
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since τ
(
ζ, Jζ,t(0)

)
�

√
Jζ,t(0) and Jζ,t(0) = t. Now, consider

Lρζ,t(0, Y ) = Lρζ (0, Y ) + ε0LEζ,t(0, Y ).

Recall that Lρζ (0, Y ) is positive semi-definite due to pseudoconvexity of Dζ

at the origin. Hence,

Lρζ,t(0, Y ) � ε0Jζ,t(0)




∣∣∣∣∣
Y1

τ
(
ζ, Jζ,t(0)

)
∣∣∣∣∣

2

+

n−1∑

α=2

∣∣∣∣∣
Yα√
Jζ,t(0)

∣∣∣∣∣

2



= ε0t
(∣∣ Y1

τ(ζ, t)

∣∣2 +
1

t

n−1∑

α=2

∣∣Yα

∣∣2
)
. (2.7)

Using the fact that τ(ζ, t) � t1/2m, we get that

Lρζ,t(0, Y ) � ε0t
1−1/m|′Y |2.

Observe that (2.6) and (2.7) together imply that the bumped domains touch
the domain Dζ minimally in the complex tangential directions and approx-
imately to the first order along the normal direction at the origin. Fur-
thermore, rewriting (2.5) together with Lemma 2.2(iii) yields the following
estimates about the variation of the normal vector fields with respect to the
bumping procedure:
∣∣〈∂ρζ,t(w), Y 〉 − 〈∂ρζ(w), Y 〉

∣∣2 = ε20
∣∣〈∂Eζ,t(w), Y 〉

∣∣2

� C4ε
2
0

(
Jζ,t(w)

)2




∣∣∣∣∣
Y1

τ
(
ζ, Jζ,t(w)

)
∣∣∣∣∣

2

+

n−1∑

α=2

∣∣∣∣∣
Yα√

Jζ,t(w)

∣∣∣∣∣

2

+

∣∣∣∣
Yn

Jζ,t(w)

∣∣∣∣
2



= C4ε
2
0

(∣∣∣∣
Jζ,t(w)

τ(ζ, Jζ,t(w))

∣∣∣∣
2

|Y1|2 +

n−1∑

α=2

∣∣
√

Jζ,t(w)Yα

∣∣2 +
∣∣Yn

∣∣2
)

� C4ε
2
0

(
Jζ,t(w)

∣∣′Y
∣∣2 + |Yn|2

)
.

Here we use the fact that τ
(
ζ, Jζ,t(w)

)
� Jζ,t(w)1/2 and that Jζ,t(w) � 1

for w near the origin. The above analysis shows that the bumping process
pushes the boundary ∂Dζ

t in the ‘normal’ direction Yn relatively more than
in the complex tangential directions.

As in [13] and [31], the domains Dζ
t , serve as local pseudoconvex domains

of comparison containing certain special polydiscs P (w, t, θ) of optimal size:

P (w, t, θ) = ∆
(
w1, τ

(
ζ, θJζ,t(w)

))
×∆

(
w2,

√
θJζ,t(w)

)
× . . .

×∆
(
wn−1,

√
θJζ,t(w)

)
×∆

(
wn, θJζ,t(w)

)
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In an earlier notation, we note that P (w, t, θ) is just the translate of the
polydisc R(w, θJζ,t(w)) centered at the origin, to the point w. The polyradii
of P (w, t, θ) are so chosen as to have Lemma 2.3. This lemma is contained in
Proposition 2.5 of [13] and its proof therein. This lemma allows us to fit such
optimally sized polydiscs about any given point w ∈ Dζ near ζ, within the
intersection of the bumped domain Dt

ζ and Uζ,t. The reason for interpolating
a polydisc herein, is that they are the simplest domains for which the Cauchy
integral formula is valid. In particular, we may obtain estimates on the value
at a point z of any function holomorphic in it, in terms of the distance of
z to the boundary along various (coordinate) directions. Let us state this
more precisely and in general terms, as this elementary estimate will play
a key role (for instance at (2.34)). Let Ω be a domain in Cn and h ∈ O(Ω).
Then for each z ∈ Ω and any polydisc P = ∆1×. . .×∆n around z contained
in Ω, it follows from the Cauchy integral formula that

|h(z)| � C
‖ h ‖L2

δ∆1(z1)× . . .× δ∆n(zn)
(2.8)

for some universal constant C that depends only on the dimension n. Here,
each ∆j denotes a disc in the Czj -plane around zj . In particular we have
(2.8) for large enough polydiscs which reach out to the boundary along as
many of the coordinate directions as possible while being contained within
Ω. Recall that the L2-norm of a function is bounded above by its L∞-norm
(up to a constant) on any compact measure space. Here holomorphicity en-
ables a reverse estimate – of course we cannot claim that an L2 holomorphic
function is bounded but we get a control on its rate of blow-up as z → ∂P ,
in terms of the direction of approach, from (2.8). Now, let us get back to our
polydiscs which geometrically estimate the region gained by our bumpings.

Lemma 2.3. — There exist numbers M0, r0, θ > 0 such that

(a) For all ζ ∈ ∂D, any t > 0 and w ∈ Dζ ∩B(0, r0) one has

Dζ
t ⊃ P (w, t, θ).

(b) Next, the variation of the defining function ρζ on the polydisc P (w, t, θ)
is described by the statement

|ρζ(x)| �M0θJζ,t(w).

for all x ∈ P (w, t, θ).

Subjecting the defining functions ρζ,t of our bumped domains to the
Diederich – Fornaess modification for producing a strongly plurisubhar-
monic exhaustion function, yields a family of uniformly bounded smooth
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functions ψw
ζ,t on Dζ

t , whose Hessians satisfy sharp lower bounds on the
polydiscs P (w, t, θ). This owes to a finer control on the derivatives of λδ

available for Levi corank one domains, as compared to a less sharp control
known for general smooth pseudoconvex domains of finite type. The reader
is referred to [12] for the general but less refined bumping constructs which
can also be used to derive a lower bound on the infinitesimal Kobayashi
metric. It turns out that ψw

ζ,t is a plurisubharmonic barrier function for
ζ ∈ ∂Dζ of algebraic growth (see [12], for a proof). In particular, ∂Dζ near
ζ is regular in the sense of Sukhov (cf. [55]) and B-regular in the sense of
Sibony (see [51] and [52]). This, in turn, implies that Dζ has a Stein neigh-
bourhood basis. This fact will be used in the sequel. But before all, let us
put down the construction of ψw

ζ,t, which will be useful for constructing the

weight functions for our ∂̄-problem.

Lemma 2.4. — After shrinking θ, given w ∈ Dζ
t ∩ {ρζ < 0} there exists

on Dζ
t a plurisubharmonic function ψw

ζ,t < 0 such that

(i) ψw
ζ,t � −1 on P (w, t, θ)

(ii) For any Y ∈ Cn and x ∈ P (w, t, θ), we have that

Lψwζ,t(x, Y ) � C5

( |Y1|2
τ(ζ, Jζ,t(w))2

+

n−1∑

k=2

|Yk|2
Jζ,t(w)

+
|Yn|2(

Jζ,t(w)
)2

)

where C5 is a positive constant.

Proof. — Following the Diederich – Fornaess technique ([20]) as men-
tioned above, set

ψ(x) = −
(
− ρζ,t(x)e−K|x|

2
)η0

which is strongly plurisubharmonic on Dζ
t . Following [31], we define

ψw
ζ,t(x) = ψ(x)

/
Jζ,t(w)η0 .

First note that the pseudoconvexity of Φζ
(
∂D ∩B(ζ,R0)

)
gives

Lρζ (x, Y ) � −K1|ρζ(x)||Y |2 −K1|Y ||〈∂ρζ(x), Y 〉| (2.9)
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whenever x ∈ Φζ
(
B(ζ,R0)

)
, for some constant K1 > 0. Furthermore, a

standard calculation of the complex Hessian of ψ (see [48] for details) yields

Lψ(x, Y )

= η0|ψ(x)|
(

1− η0

2

|〈∂ρζ,t(x), Y 〉|2
ρζ,t(x)2

+
∣∣∣
√

1− η0

2

|〈∂ρζ,t(x), Y 〉|
ρζ,t(x)

+

√
2Kη0√
1− η0

〈x, Y 〉
∣∣∣
2

+K
(
|Y |2 −Kη0

(
1 +

2η0

1− η0

)
|〈x, Y 〉|2

)
+
Lρζ,t(x, Y )

ρζ,t(x)

)

� η0|ψ(x)|
(

1− η0

2

|〈∂ρζ,t(x), Y 〉|2
ρζ,t(x)2

+ K
(
|Y |2 −Kη0

(
1 +

2η0

1− η0

)
R2
∗|Y |2

)

+
Lρζ,t(x, Y )

ρζ,t(x)

)
.

Here we have used the estimate |〈x, Y 〉|2 � R2
∗|Y |2 for some positive con-

stant R∗. Choosing K and η0 suitably, we can ensure that the following
inequality holds throughout Dζ

t :

Lψ(x, Y ) � η0|ψ(x)|
(1− η0

2

|〈∂ρζ,t(x), Y 〉|2
ρζ,t(x)2

+
1

2
K|Y |2 +

Lρζ,t(x, Y )

ρζ,t(x)

)
.

(2.10)
To verify (i), let x ∈ P (w, t, θ). Writing this analytically, translates to the
following string of inequalities:

|x1 − w1| < τ
(
ζ, θJζ,t(w)

)
,

|xα − wα| <
√

θJζ,t(w) for all 2 � α � n− 1, and (2.11)

|xn − wn| < θJζ,t(w).

Recall that Jζ,t(w) =
√

t2 + P (|w|), where P (|w|) is the inhomogeneous
pseudo-norm given by:

P (|w|) = |wn|2 +

2m∑

j=2

|Pj(ζ, ·)|2|w1|2j + |w2|4 + . . . + |wn−1|4.

Write the difference Jζ,t(x)− Jζ,t(w) as

Jζ,t(x)− Jζ,t(w) =

(
Jζ,t(x)

)2 −
(
Jζ,t(w)

)2

Jζ,t(x) + Jζ,t(w)
. (2.12)

The aim now is to obtain an analogue of the estimate (4.3) in [31]. This
estimate is essentially an assertion about the uniform comparability
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Jζ,t(x) ≈ Jζ,t(y). Furthermore, such an estimate will lead to the engulf-
ing property for the polydiscs P (w, t, θ) analogous to that for the Catlin
– Cho polydiscs Q(·, ·). To this end, we begin by applying the triangle in-
equality to the numerator which is

∣∣P (|w|) − P (|x|)
∣∣, on the right side of

(2.12). This gives

∣∣∣|xn|2 − |wn|2 +

n−1∑

α=2

(
|xα|4 − |wα|4

)
+

2m∑

j=2

|Pj(ζ, ·)|2
(
|x1|2j − |w1|2j

)∣∣∣

�
∣∣|xn|2 − |wn|2

∣∣ +

n−1∑

α=2

∣∣|xα|4 − |wα|4
∣∣ +

2m∑

j=2

|Pj(ζ, ·)|2
∣∣|x1|2j − |w1|2j

∣∣.

(2.13)

Note that the first term on the right here namely,
∣∣|xn|2−|wn|2

∣∣, is bounded

above up to a constant by θJζ,t(w). Indeed,
∣∣|xn|2 − |wn|2

∣∣ � |xn − wn| �
θJζ,t(w) by the last inequality in (2.11). Next, to likewise – estimate the
last summand of (2.13), we use the following well-known inequality:

|x1|2j � 22j−1(|x1 − w1|2j + |w1|2j),

which implies that

∣∣∣|x1|2j − |w1|2j
∣∣∣ � 22j−1|x1 − w1|2j + (22j−1 − 1)|w1|2j

for each j � 2m. Hence,

|Pj(ζ, ·)|2
∣∣|x1|2j−|w1|2j

∣∣�22j−1|Pj(ζ, ·)|2|x1−w1|2j+(22j−1−1)|Pj(ζ, ·)|2|w1|2j .
(2.14)

It follows from the definition of τ
(
ζ, θJζ,t(w)

)
that

|Pj(ζ, ·)|2 �
θ2(Jζ,t(w))2

(
τ
(
ζ, θJζ,t(w)

))2j
. (2.15)

But we know from (2.11) that |x1 − w1|2j �
(
τ
(
ζ, θJζ,t(w)

))2j

. Therefore,

22j−1|Pj(ζ, ·)|2|x1 − w1|2j � 22j−1θ2
(
Jζ,t(w)

)2 � θJζ,t(w). (2.16)

Finally, since τ
(
ζ, θJζ,t(w)

)
�

(
θJζ,t(w)

)1/2
, we may rewrite (2.15) as

|Pj(ζ, ·)|2 �
θ2(Jζ,t(w))2

θj(Jζ,t(w))j
.
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We may estimate the second summand on the right of (2.14) as follows: use
part (b) of lemma 2.3 as well as the fact that w is close to ζ (which is the
origin), to get

|w| ≈ |ρζ(w)| �M0θJζ,t(w).

Therefore, |w1|2j � |w|2j �
(
θJζ,t(w)

)2j
so that

(22j−1 − 1)|Pj(ζ, ·)|2|w1|2j �
θ2

(
Jζ,t(w)

)2

θj
(
Jζ,t(w)

)j
(
θJζ,t(w)

)2j
=

(
θJζ,t(w)

)j+2

Now since w ∈ Dζ
t , we have ρζ(w) + ε0Eζ,t(w) < 0 i.e.,

ε0Eζ,t(w) < −ρζ(w) = |ρζ(w)|.

Note that the constants hidden in the various �,�-bounds here and in what
follows can be taken to be independent of ζ, θ and t unless otherwise spelled
out. Therefore, by part (i) of lemma 2.2, we obtain that |Jζ,t(w)| � |ρζ(w)|
and subsequently by lemma 2.3(b) that

(
θJζ,t(w)

)j+2 �
(
θ|ρζ(w)|

)j+2 � θj+3|Jζ,t(w)| < θJζ,t(w)

since we may assume θ < 1. In all therefore, we obtain for the second
summand at (2.14) that

(22j−1 − 1)|Pj(ζ, ·)|2|w1|2j � θJζ,t(w),

just as we did for the first summand at (2.14) in the estimation (2.16). It
is now clear that we will similarly also have that the ‘mid-summands’ in
the right of the inequality (2.13) namely,

∣∣|xα|4 − |wα|4
∣∣, must be bounded

above by θJζ,t(w) up to some positive constant. Getting back to our aim at
(2.12), we put together the various foregoing estimates to conclude that the
numerator on the right of (2.12) is bounded above in modulus by θJζ,t(w)
up to some positive constant, as well. For the denominator therein, note
that it is bounded below by 2t. The above analysis yields

|Jζ,t(x)− Jζ,t(w)| � (C ′6/2t) θJζ,t(w) (2.17)

We may choose some t > 0 such that the foregoing inequalities here are
valid; we may shrink the value of t in what follows if necessary, but only
finitely many times. In particular, fixing such a value of t now and letting
C6 = C ′6/2t, we rewrite (2.17) as the pair of bounds

Jζ,t(x) � (1 + C6θ)Jζ,t(w) and Jζ,t(x) � (1− C6θ)Jζ,t(w)
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which describe the variation of Jζ,t(·) on P (w, t, θ). We have thus established
(4.3) of [31] in our setting. Here, θ is chosen small enough so as to ensure
1− C6θ > 0. We remark in passing that (2.17) may also be rewritten as

|Ĵζ,t(x)− Ĵζ,t(w)| � (C ′6/2t) θĴζ,t(w) + C ′6/2, (2.18)

where as we know C ′6 is a constant depending on the given domain D but
with no more particular dependence on w, ζ, t, θ. Of course the above in-
equality is just a rephrased form of the triangle inequality for the pseudo-
norm Ĵζ,t up to constants; so (2.17), (2.18) are expected. However, we need
to go through their derivation to keep track of what the constants depend
on.

Moving on further, it follows from Lemma 2.2(i) and Lemma 2.3(b) that

|ρζ,t(x)| � ε0|Eζ,t(x)| − |ρζ(x)|
� ε/C3 Jζ,t(x)−M0θJζ,t(w)

� ε0/C3(1− C6θ)Jζ,t(w)−M0θJζ,t(w)

� ε0/2C3 Jζ,t(w)

and

|ρζ,t(x)| � ε0|Eζ,t(x)|+ |ρζ(x)|
� ε0C3 Jζ,t(x) + M0θJζ,t(w)

� C3ε0(1 + C6θ)Jζ,w(w) + M0θJζ,w(w)

� Jζ,t(w)

provided θ and ε0 are sufficiently small. Putting the above two observations
together, we see that

(ε0/2C3)Jζ,t(w) � |ρζ,t(x)| � Jζ,t(w). (2.19)

Furthermore,

|Eζ,t(x)| � C3Jζ,t(x) � C3(1 + C6θ)Jζ,t(w) � C7|ρζ,t(x)|, (2.20)

which implies that

|ρζ,t(x)| ≈ |Eζ,t(x)| ≈ Jζ,t(w).

for all x ∈ P (w, t, θ). At this point we would like to note that since ρζ,t(x) ≈
dist(x, ∂Dζ

t ), it follows that on P (w, t, θ)

|dist(x, ∂Dζ
t )− dist(x, ∂Dt,ζ)| ≈ Ĵζ,t(w) (2.21)
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where Ĵζ,t(x) = Jζ,t(x) − t, and Dt,ζ =
{
w ∈ Cn : ρt,ζ(w) := ρζ(w) − t <

0
}
. Thus the anisotropic pseudo-norm Ĵζ,t measures the difference between

the trivial bumpings given by {ρt,ζ} and the bumpings {ρζ,t} engineered
taking into account the CR geometry of ∂Dζ . Getting back from this note
to the lemma at hand, it follows from (2.19) that ψ(x) � −|ρζ,t(x)|η0 �
−

(
Jζ,t(w)

)η0
for all x ∈ P (w, t, θ). This gives

ψw
ζ,t(x) =

ψ(x)(
Jζ,t(w)

)η0
� −1.

To establish (ii), let us examine the complex Hessian of ρζ,t:

Lρζ,t(x, Y ) = Lρζ (x, Y ) + ε0LEζ,t(x, Y )

� −K1

(
|ρζ(x)||Y1|2 + |〈∂ρζ(x), Y 〉||Y |

)
+ ε0LEζ,t(x, Y ) by (2.9)

� −K1

(
|ρζ,t(x)|+ ε0|Eζ,t(x)|

)
|Y |2 −K1|〈∂ρζ,t(x), Y 〉||Y |

−K1ε0|〈∂Eζ,t(x), Y 〉||Y |+ ε0LEζ,t(x, Y ) (2.22)

for x ∈ P (w, t, θ). Note that, by (2.20), the first term −K1

(
|ρζ,t(x)| +

ε0|Eζ,t(x)|
)
|Y |2 in (2.22) is at least

−K1

(
|ρζ,t(x)|+ ε0C7|ρζ,t(x)|

)
|Y |2. (2.23)

Now, consider the third term in (2.22):

−ε0K1|〈∂Eζ,t(x), Y 〉||Y | � −ε0K1

√
C3

√
Jζ,t(x)

√
LEζ,t(x, Y )|Y | (2.24)

by Lemma 2.2(iii). The part (ii) of the same lemma gives

√
LEζ,t(x, Y ) �

√
Jζ,t(x)√
C3

(
|Y1|2(

τ(ζ, Jζ,t(x)
)2 +

n−1∑

α=2

|Yα|2
Jζ,t(x)

+
|Yn|2(

Jζ,t(x)
)2

)1/2

=
1√
C3

(
Jζ,t(x)

τ
(
ζ, Jζ,t(x)

)2 |Y1|2 +

n−1∑

α=2

|Yα|2 +
|Yn|2
Jζ,t(x)

)1/2

.

(2.25)

Using the fact that τ
(
ζ, Jζ,t(x)

)
�

(
Jζ,t(x)

)1/2
in (2.25), we get

√
Jζ,t(x)

√
C3

√
LEζ,t(x, Y ) �

(
Jζ,t(x)|Y1|2 + Jζ,t(x)

n−1∑

α=2

|Yα|2 + |Yn|2
)1/2

.

– 307 –



G. P. Balakumar, Prachi Mahajan, Kaushal Verma

Since Jζ,t(x) is small, it follows that

−ε0K1|〈∂Eζ,t(x), Y 〉||Y | � −ε0K1|Y |2 � −ε0K1|ρζ,t(x)||Y |2. (2.26)

Here we used that |ρζ,t(x)| is bounded away from zero on the polydiscs

P (w, t, θ) ⊂ Dζ
t . To estimate the second term in (2.22), we use the following

version of the Cauchy-Schwarz inequality:

xy � ε/2 x2 + 1/2ε y2

where x, y and ε are positive numbers. Applying this inequality for x = |Y |,
y = |〈∂ρζ,t(x), Y 〉| and ε = |ρζ,t(x)|, we see that

−K1|〈∂ρζ,t(x), Y 〉||Y | � −K1/2 |ρζ,t(x)||Y |2−K1/2 |ρζ,t(x)| |〈∂ρζ,t(x), Y 〉|2.
(2.27)

The inequalities (2.23), (2.27) and (2.26) together with (2.22) imply that

Lρζ,t(x, Y )

|ρζ,t(x)| � −K2|Y |2 −
1

K2

|〈∂ρζ,t(x), Y 〉|2
|ρζ,t(x)|2 +

ε0
2

LEζ,t(x, y)

|ρζ,t(x)| .

Using the above inequality and (2.10), and adjusting constants as in [31],
we finally get

Lψ(x, Y ) � η0ε0
2
|ψ(x)|LEζ,t(x, Y )

|ρζ,t(x)| � C8|ψ(x)|LEζ,t(x, Y )

Jζ,t(w)
. (2.28)

This estimate in conjunction with Lemma 2.2(ii) yields the required estimate
for the complex Hessian of ψ and consequently, for ψw

ζ,t as well. Indeed,

|ψ(x)| = |ρζ,t(x)|η0e−Kη0|x|2 .

Consequently, |ψ(x)| � |Jζ,t(w)|η0 by using (2.19). Therefore, we get from
(2.28) that

Lψwζ,t(x, Y ) =
Lψ(x, Y )(
Jζ,t(w)

)η0

� C8
|ψ(x)|(

Jζ,t(w)
)η0

LEζ,t(x, Y )

Jζ,t(w)

� C8

LEζ,t(x, Y )

Jζ,t(w)

� C10
Jζ,t(x)

Jζ,t(w)

(
|Y1|2

τ(ζ, Jζ,t(w)
)2 +

n−1∑

k=2

|Yk|2
Jζ,t(w)

+
|Yn|2(

Jζ,t(w)
)2

)

� C10(1− C6θ)

(
|Y1|2

τ(ζ, Jζ,t(w)
)2 +

n−1∑

k=2

|Yk|2
Jζ,t(w)

+
|Yn|2(

Jζ,t(w)
)2

)
.

This proves the lemma. �
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2.3. Separation properties of the pluri-complex Green function

The weight functions for setting up the appropriate ∂-problem will be
formulated in terms of the pluri-complex Green function which was intro-
duced by Klimek [36]. For any domain Ω, these are given by

GΩ(z, w) = sup
{
u(z) : u ∈ PSHw(Ω)

}
.

Here for w ∈ Ω, PSHw(Ω) denotes the family of all plurisubharmonic func-
tions that are negative on Ω and which have the property that the function
u(z)− log |z−w| is bounded from above near w. The Green function itself is
again a member of PSHw(Ω). Any fixed sub-level set of the pluri-complex
Green function GΩ(·, w) is contained in the corresponding sublevel set of any
member of PSHw(Ω). The following lemma provides a link between the sep-
aration properties of the sub-level sets of the pluri-complex Green function
associated with the bumped domain Dζ

t and the polydiscs P (w, t, θ). To this
end, note that the polydiscs P (w, t, θ) are balls in the metric defined by

∣∣∣∆θJζ,t(w)
ζ (z − w)

∣∣∣
l∞

≈ V̂w(z) :=

(
|z1 − w1|2

τ(ζ, θJζ,t(w))2
+

n−1∑

α=2

|zα − wα|2
θJζ,t(w)

+
|zn − wn|2
θJζ,t(w)2

)1/2

.

The pluri-complex Green function with a pole w ∈ Dζ for our bumped
domain, can then be controlled by a suitable blend of the logarithm of this
metric V̂w near w, and the negative plurisubharmonic exhaustion for Dζ

t

as in the previous section. Recall that the ψw
ζ,t are uniformly bounded in

modulus on polydiscs P (w, t, θ) which as noted are the sub-level sets of
V̂w(z).

Lemma 2.5. —

(a) There is a bound M1  1 (depending on θ) such that given σ ∈ (0, 1)

one has for all w ∈ Dζ
t ∩Dζ that

P (w, t, σθ) ⊃
{
GDζt (·, w) < log σ −M1

}
.

(b) Further, one can find σ0 in such a way that for any two points w,w′ ∈
Dζ

t but with w′ 
∈ P (w, t, θ) one has

P (w′, t, σ0θ) ∩ P (w, t, σ0θ) = ∅.
In particular, we have

{
GDζt (·, w

′) < log σ0 −M1

}
∩ {GDζt (·, w) < log σ0 −M1

}
= ∅.

for all w,w′ ∈ Dζ .
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Proof. — Let ξ : R→ R be a smooth increasing function with ξ(s) = s
for all s � 1/4 and with ξ(s) = 3/4 if s � 7/8. Thereafter, let Vw(z) denote
the smooth function V̂w(z)2. Also choose a convex increasing function χ on
R satisfying χ(s) = −7/4 for s � −2 and χ(s) = s if s � −3/2. Then, for a
large enough M ′ (depending on θ), the function

φw = 1/2 log ξ ◦ Vw + M ′χ ◦ ψw
ζ,t

becomes plurisubharmonic on Dζ
t and hence a candidate for the supremum

that defines GDζt (·, w). We have

φw � 1/2 log ξ ◦ Vw − 7/4 M ′.

If now z ∈ Dζ
t is a point for which GDζt (z, w) < log σ − 7/4 M ′, then

log ξ ◦ Vw(z) � 2 log σ,

which implies Vw(z) � σ2, provided σ < 1/2. But then this ensures that
z ∈ P (w, t, σθ) for Vw dominates the square of the metric that defines the
polydisc P . So we may let M1 = 7/4 M ′, to obtain the assertion of part (a)
of the lemma.

For part (b) of the lemma, we argue by contradiction. So, assume that
(b) fails to hold for any choice of σ0. This assumption means that there

exists, corresponding to every choice of σ0 > 0, a pair of points w,w′ ∈ Dζ
t

with w′ 
∈ P (w, t, θ) and such that P (w′, t, σ0θ) ∩ P (w, t, σ0θ) 
= ∅. Now,
firstly the condition that w′ 
∈ P (w, t, θ) means that at least one out of the
following list of inequalities must hold.

(1) |w1 − w′1| > σ0τ
(
ζ, θJζ,t(w)

)
or,

(α) |wα − w′α| > σ0

√
θJζ,t(w) for 2 � α � n− 1 or,

(n) |wn − w′n| > σ0θJζ,t(w).

Next, by our assumption, there is point x (dependent on σ0) lying in
both the polydiscs P (w, t, σ0θ) and P (w′, t, σ0θ) – where the value of σ0

will be chosen appropriately in a moment, to obtain a contradiction. To
this end, first note what happens to the above list of inequalities as we vary
the value of σ0 in a small interval (0, δ), say: at least one of the inequalities
must hold for most values of σ0. Indeed, let us just suppose that the first of
the inequalities in the above list holds, for infinitely many values of σ0 which
decrease to 0. Next, assume that x = x(σ0) ∈ P (w′, t, σ0θ) ∩ P (w, t, σ0θ).
Then a combined application of the facts that Jζ,t(x) ≈ Jζ,t(w) ≈ Jζ,t(w

′)
and that τ(w, δ) ≈ τ(w′, δ) gives

|w1 − w′1| � |w1 − x1|+ |w′1 − x1| � σ0C11τ(ζ, θJζ,t(w))
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with some constant C11 which does not depend on σ0, w, w′ and θ. Recalling
a basic estimate for τ(·, ·), we conclude – in the event that (1) holds infinitely
often – that for a positive constant C̃11 independent of σ0 we must have

τ
(
ζ, θJζ,t(w)

)
� C̃11

(
σ0θJζ,t(w)

)1/2m
(2.29)

holding for infintely many values of σ0 which decrease to 0; noting now, that
the left side here is independent of σ0 while the right side→ 0 as σ0 → 0, we
obtain the desired contradiction. It is now also clear that similar arguments
will take care of the remaining cases – namely, the cases where one of the
other inequalities out of the list above, holds for most (small) values of σ0

– as well. �

2.4. Localization lemmas

Lemma 2.6. — There exists L > 0 with the following property

(a) If t is sufficiently small and w′ ∈ P (w, t, θ/2) ∩Dζ and

f ∈ H∞
(
P (w, t, θ)

)
, then there exists f̃ ∈ H2(Dζ

t ) such that

f̃(w) = f(w), f̃(w′) = f(w′) and

|f̃ |L2(Dζt )
� L Jζ,t(w)

(√
Jζ,t(w)

)n−2

τ
(
ζ, Jζ,t(w)

)
|f |L∞ .

(b) If w′ 
∈ P (w, t, θ/2) ∩Dζ and f ∈ H∞
(
P (w, t, θ)

)
, then there exists

f̃ ∈ H2(Dζ
t ) such that f̃(w) = f(w), f̃(w′) = 0 and

|f̃ |L2(Dζt )
� L Jζ,t(w)

(√
Jζ,t(w)

)n−2

τ
(
ζ, Jζ,t(w)

)
|f |L∞ .

Proof. — Let f be a function from H∞
(
P (w, t, θ)

)
. For part (a), we

choose a non-negative cut-off function ξ ∈ C∞(R) such that ξ(s) = 1 for
s � 1/3 and ξ(s) = 0, if s � 7/8. Now, define

v = ∂
[
ξ
( |z1 − w1|2
τ(ζ, θJζ,t(w))2

)
ξ
( |z2 − w2|2
θ2Jζ,t(w)

)

. . . ξ
( |zn−1 − wn−1|2

θ2Jζ,t(w)

)
ξ
( |zn − wn|2

θ2
(
Jζ,t(w)

)2

)
f
]

(2.30)

which is a smooth ∂-closed (0, 1)-form on Dζ
t with support

supp(v) ⊂ P (w, t, θ) \ P (w, t, θ/
√

3).
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By Lemma 2.5 we have

GDζt (·, w) � log(1/
√

3)−M1

on supp(v) and then since w′ lies in P (w, t, θ/2), we similarly have

GDζt (·, w
′) � log(1/

√
3− 1/2) − log(1 + 2C12)−M1

on supp(v), because P
(
(w′, t, 1/

√
3−1/2

1+2C12
θ)

)
⊂ P (w, t, θ/

√
3). The plurisub-

harmonic function

Φ = ψw
ζ,t + 4GDζt (·, w) + 4GDζt (·, w

′)

is bounded from below on supp(v) by some constant −T < 0. From theorem

5 of [31] we obtain a solution u ∈ C∞(Dζ
t ) to the equation ∂u = v such that

∫

Dζt

|u|2e−Φd2nz � 2

∫

Dζt

|v|2
∂∂ψwζ,t

e−Φd2nz (2.31)

where d2nz denotes the standard Lesbegue measure on Cn identified with
R2n. Now, by Lemma 2.4, it follows that |v|2

∂∂ψwζ,t
� L1|f |2L∞ for some

unimportant constant L1. Indeed, note first by the holomorphicity of f that
we have

v(z1, . . . , zn) = f(z) · ∂
(
W1W2 . . .Wn

)

where

Wj = ξ
(∣∣ zj − wj

τj(ζ, θJζ,t(w))

∣∣2
)
.

Let
Ŵj = Πn

k=1,k �=jWk.

Then observe that |Ŵj | � 1. Choose some constant C with

∣∣dξ
ds

(s)
∣∣2 � C

for s ∈ [1/3, 7/8]. Note next that the (0, 1)-form v can be written as

v = f

n∑

j=1

Ŵj
∂Wj

∂zj
dzj .

Next, note that

∣∣∣∂Wn

∂zn

∣∣∣
2

� C
∣∣∣ zn − wn(

θJζ,t(w)
)2

∣∣∣
2

� 1

|θJζ,t(w)|2
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where the second inequality follows from |zn − wn| �
(
θJζ,t(w)

)2
since

z ∈ P (w, t, θ) which in turn comes from the fact supp(v) ⊂ P (w, t, θ).
Similarly, we have for each 2 � α � n− 1 that

∣∣∣∂Wα

∂zα

∣∣∣
2

�
∣∣∣ zα − vα(√

θJζ,t(w)
)2

∣∣∣
2

� 1

θJζ,t(w)

and finally

∣∣∣∂W1

∂z1

∣∣∣
2

� C
∣∣∣ zn − wn(

τ
(
w, θJζ,t(w)

))2

∣∣∣
2

�
τ
(
w, θJζ,t(w)

)2

τ
(
w, θJζ,t(w)

)4 =
1

τ
(
w, θJζ,t(w)

)2

as well, so that an application of part (ii) of Lemma 2.4 to the form |v|2
∂∂ψwζ,t

(which will read as an upper bound) evaluated at the pair

(x, Y ) =
(
z, f(z)

(
Ŵ1(z), . . . , Ŵn(z)

))

actually cancels the scaling factors in the definition of the form |v|2
∂∂ψwζ,t

and

yields our afore-mentioned claim that |v|2
∂∂ψwζ,t

� |f |2L∞ . This subsequently

extends the estimate (2.31) as
∫

Dζt

|u|2d2nz �
∫

Dζt

|v|2e−Φd2nz

� 2L1e
TVol(supp v) |f |2L∞

� 2L1e
T θ2n Jζ,t(w)2

(√
Jζ,t(w)

)2(n−2)

τ
(
ζ, Jζ,t(w)

)2|f |2L∞

� 2L1e
TJζ,t(w)2

(√
Jζ,t(w)

)2(n−2)

τ
(
ζ, Jζ,t(w)

)2|f |2L∞ .

since θ is a small constant which may be assumed to be < 1. The function

f̃(z) =
[
ξ
( |z1−w1|2
τ(ζ,θJζ,t(w))2

)
ξ
( |z2−w2|2
θ2Jζ,t(w)

)
. . .

ξ
( |zn−1 − wn−1|2

θ2Jζ,t(w)

)
ξ
( |zn − wn|2

θ2
(
Jζ,t(w)

)2

)]
· f(z) − u(z)

now becomes holomorphic and has the desired properties, as u(w) = u(w′) =
0 while the L2-estimate for f̃ follows immediately from that for the function
u.

Next we do part (b) in a manner similar to (a): Firstly, if w′ 
∈ P (w, t, θ/2)
then with a number σ0 > 0 (independent of w,w′, t) we have

P (w, t, σ0θ/2) ∩ P (w′, t, σ0θ/2) = φ.
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Let us denote by f1(z) the product

ξ
( |z1 − w1|2
(σ0θ/2)2τ(ζ, Jζ,t(w))2

)
ξ
( |z2 − w2|2
(σ0θ/2)2Jζ,t(w)

)

. . . ξ
( |zn−1 − wn−1|2
(σ0θ/2)2Jζ,t(w)

)
ξ
( |zn − wn|2

(σ0θ/2)2
(
Jζ,t(w)

)2

)

and solve ∂u = v with v = ∂(f1f). Now,

supp(v) ⊂ P (w, t, σ0θ/2) \ P
(
w, t, (σ0θ/2

√
3)

)
.

Then, just as in part (a), we see that

GDζt (·, w) � log
(
σ0/(2

√
3)

)
−M1

on supp(v). Furthermore, supp(v) is disjoint from P (w′, t, σ0θ/2) and so

GDζt (·, w
′) � log

(
σ0/(2

√
3)

)
−M1 − log(1 + 2C12).

Proceeding exactly as in part (a) from here on, we arrive at the statement
in (b) of our Lemma. �

Lemma 2.7. — Let x ∈ D and denote by ζ the point closest to x in
the boundary ∂D. Let y be a point such that wy = Φζ(y) ∈ Dζ

t . Let wx =
Φζ(x). Then, given f ∈ H∞

(
P (wx, t, θ)

)
it is possible to find a function

f̂ ∈ H∞(D) such that f̂(x) = f(wx) and |f̂ |L∞ � L∗|f |L∞ , where L∗ is
some positive constant (independent of f). Further, we may also arrange

for f̂ to satisfy f̂(y) = f(wy) in case wy ∈ P (wx, t, θ/2) and f̂(y) = 0 if
wy 
∈ P (wx, t, θ/2).

Proof. — We apply Lemma 2.6 to the pair of points w = wx, w′ =
wy and the function f . This yields a function f̃ ∈ H2(Dζ

t ) with f̃(wx) =

f(wx) and f̃(y) = f(wy) in case wy ∈ P (wx, t, θ/2) and f̃(y) = 0, if wy 
∈
P (wx, t, θ/2). It satisfies the L2-estimate

|f̃ |
L2

(
Dζt

) � LJζ,t(wx)
(√

Jζ,t(w)
)n−2

τ(ζ, Jζ,t(wx))|f |L∞ . (2.32)

Let λ � 0 be a smooth function on R such that λ(x) = 1 for x � (3/4)2

and λ(x) = 0 for x � (7/8)2. We note that there exists δ0 (independent of
ζ, t, x, y and f) such that

v̂=

{
∂
(
λ( |Φ

ζ(z)|2
r2
0

)·f̃ ◦ Φζ
)

; on (Φζ)−1(Dζ
t ) ∩ {r < δ0}

0 ; on {r < δ0} ∩
(
{|Φζ | � 7r0/8} ∪ {|Φζ | � 3r0/4}

)
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defines a smooth ∂-closed (0, 1)-form on {r < δ0}; here r0 is the radius from
Lemma 2.3. This follows from the fact that

(Φζ)−1(Dζ
t )∩

(
B(ζ, 7/8r0)\B(ζ, 3/4r0)

)
⊃{r < δ0}∩

(
B(ζ, 7/8r0)\B(ζ, 3/4r0)

)
.

Consulting now the discussion on the existence of a Stein-neighbourhood
basis in [52] and as noted prior to Lemma 2.4, we ascertain for ourselves the
possibility of being able to choose a Stein neighbourhood Ω of D such that

D ⊂ {r < δ2} ⊂ Ω ⊂ {r < δ0}.

On Ω, using results from [28] – where we work with the elementary weight
4 log | · −x|+ 4 log | · −y| – we can solve the equation ∂û = v̂ with a smooth
function û such that û(x) = û(y) = 0 and

|û|L2(Ω) � C13|f̃ ◦ Φζ |L2({r<δ0}) � C14|f̃ |L2(Dζt )
(2.33)

for some positive constants C13, C14. Then certainly the function

f̂(z) = λ(
|Φζ(z)|2

r2
0

) · f̃ ◦ Φζ(z)− û(z)

is holomorphic on D. We need to estimate the L∞-norm of f̂ .

Let z ∈ D and suppose first that wz = Φζ(z) ∈ B(0, r0) ∩ {ρζ < 0}.
Then we know by part (a) of Lemma 2.3 that

P (wz, t, θ) ⊂ Dζ
t .

Using (2.8) this gives

|f̂(z)| = |f̂ ◦ (Φζ)−1(wz)|

�
|f̂ ◦ Φζ |L2(Dζt )

πτ(ζ, Jζ,t(wz))
(√

Jζ,t(wz)
)n−2

Jζ,t(wz)
(2.34)

�
|f̂ |L2(Dζt )

+ |u ◦ (Φζ)−1|L2(Dζt )

πτ(ζ, Jζ,t(wz))
(√

Jζ,t(wz)
)n−2

Jζ,t(wz)

� C15

|f̂ |L2(Dζt )

πτ(ζ, Jζ,t(wz))
(√

Jζ,t(wz)
)n−2

Jζ,t(wz)

� C15L|f |L∞ .

The last estimate here comes from (2.32). Now assume that wz ∈ {ρζ <

0} ∩ {|Φζ | � 0.9r0}. Then we see that |f̂(z)| = |û(z)|. But û is defined on
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{r < δ2} and holomorphic on {r < δ2} ∩ {Φζ | � 0.9r0}. After possibly
shrinking δ2 > 0 we find using the mean value inequality that

|û(z)| � δ−n2 |û|L2({r<δ2}) � L∗|f |L∞

because of (2.32) and (2.33), proving the desired L∞-estimate for f̂ . �

Next, as in [31] again, we have the following separation of points Lemma
and given the foregoing lemmas, the proof is verbatim as in [31] and this
time we shall not repeat it.

Lemma 2.8. — There is a uniform constant c0 > 0 such that for any
a, b ∈ D ∩ U with b 
∈ Q2δD(a)(ζ) where ζ = a∗, one has

dCara
D (a, b) � c0.

2.5. Estimation of the inner Caratheodory distance from below

Let U be a tubular neighbourhood of ∂D as before, U ′ a relatively com-
pact neighbourhood of ∂D inside U . We intend to estimate dcD(A,B) for
two points A,B ∈ U ′. We split the procedure into two cases

d′(B,A) > 4CeδD(A) (2.35)

d′(B,A) � 4CeδD(A) (2.36)

Before we begin, we put down 2 elementary inequalities which will be of
recurrent use in the sequel. The first, is the following simple version of the
Cauchy – Schwarz inequality

|z1 + . . . + zN |2 � N
(
|z1|2 + . . . |zN |2

)

where N ∈ N for any set of complex numbers {zj}Nj=1. Second, is the fol-
lowing logarithmic inequality

log(1 + rx) � r log(1 + x)

where x and r are positive reals with r < 1.

We now begin with case (2.35).

Lemma 2.9. — Assume that (2.35) holds. Then with some universal
constant C∗ > 0 we have

dcD(A,B) � C∗ log
(
1 +

d(B,A)

δD(A)

)
.
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Proof. — Let A,B ∈ D ∩ U ′ be points such that d′(B,A) � 4CeδD(A).
Choose a smooth path γ : [0, 1]→ D from A to B satisfying

2dcD(A,B) � Lc
D(γ)

where Lc
D(γ) refers to the length of γ in the inner Caratheodory metric.

We shall split again into two cases:

If γ([0, 1]) 
⊂ U ∩D, then we can find an exit time, i.e., a number t′1 ∈ (0, 1)
with γ([0, t′1)) ⊂ D ∩ U and γ(t′1) ∈ ∂U ∩ D. Now we apply Cho’s lower
bound on the differential metric as in [13] and find

Lc
D(γ) � Lc

D(γ|[0,t′1]
)

� C1 log
δD(∂U)

δD(A)
. (2.37)

Indeed, the lower bound from [13] reads

CD(z,X) � |〈L1(z), X〉|
τ
(
z, δD(z)

) +

n−1∑

α=2

|〈Lα(z), X〉|√
δD(z)

+
|Xn|
δD(z)

– recall that Ln ≡ 1; here we shall let z vary in a small neighbourhood of
A∗ = π(A), assumed to be the origin after a translation, on which such an
estimate is guaranteed by [13]. Further we may also assume after a rotation
that ν

(
A∗

)
= Ln = (′0, 1); at this point we may also want to note that

the hypothesis on d′(A,B), of the case under consideration remains intact,
since these transformations preserve d′ in the sense that they transform
the d′ associated with the initial domain D into the d′ of the transformed
domain. In particular, we have for z in a small ball Bδ and X ∈ Cn the
estimate

CD(z,X) � |Xn|
δD(z)

.

which contains in it the rate of blow-up of the Caratheodory metric along
the normal direction, since ν(π(z)) must have a non-zero component along
Ln. To unravel this information precisely from the above inequality and in
a more useful form for our purposes, we need to restrict ourselves to the
cone

Czα =
{
X ∈ Tπ(z)(Cn) :

∣∣〈ν
(
π(z)

)
, X〉

∣∣ > α
∣∣ν

(
π(z)

)∣∣}

where α ∈ (0, 1]. Let

C =
⋃

z∈D
{z} × Czα
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and consider the function defined on C by

R(z,X) =
∣∣∣ |Xn|
|〈ν

(
π(z)

)
, X〉| − 1

∣∣∣

which is zero for all those z whose π(z) is the origin, i.e., the zn-axis. Now
note that R(z,X) is continuous on C as |〈ν

(
π(z)

)
, X〉| is bounded away from

0 and also that R(A∗, X) = 0. Therefore, given any ε (1/2, say) there is a
δ0 (which we may take to be < δ) such that

|R(z,X)−R(A∗, X)| < ε

for all z ∈ Bδ0 which is to say, we have
∣∣∣ Xn

〈ν
(
π(z)

)
, X〉

∣∣∣ > 1− ε = 1/2.

or equivalently that
|Xn| > 1/2

∣∣〈ν
(
π(z)

)
, X〉

∣∣. (2.38)

Now getting to our setting, since the curve γ(t) moves away from the bound-
ary during the interval I = [0, t′1) meaning, dist

(
(γ(t′1), ∂D)

)
= dist(∂U, ∂D)

= δD(U) is greater than γ(0) = A ∈ U , we must have that the ‘normal com-
ponent’ of the curve, namely 〈γ̇(t), ν

(
π(γ(t))

)
〉, must be non-zero (bigger

than some α > 0) for some non-trivial stretch of time, i.e., for a sub-interval
of I of non-zero length – call this sub-interval I again – so that we may
apply the fore-going considerations, in particular (2.38) to pass to a further
sub-interval of I of non-zero length, if necessary, where we have

|γ̇n(t)| � 1/2 |〈γ̇(t), ν
(
π(γ(t))

)
〉|.

Indeed as mentioned above, the existence of such an interval follows just
from continuity and the fact that ν

(
π(γ(t))

)
at t = 0 is just (′0, 1), so that

|γ̇n(0)|
|〈γ̇(0), ν

(
π(γ(0))

)
〉| = 1

and we may take this sub-interval, which we shall denote again by I, to be
of the form [0, t′2). We then have on this sub-interval that

CD(γ(t), γ̇(t)) � |γ̇n(t)|
δD(γ(t))

�
|〈γ̇(t), ν

(
π(γ(t))

)
〉|

δD(γ(t))

�
|〈γ̇(t), ν

(
π(γ(t))

)
〉|

|r(γ(t))| .
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We have elaborately presented the steps that lead to this lower bound be-
cause of its re-occurrence later in a more complicated setting. Integrating
the final estimate in the above with respect to t, leads to (2.37) which sub-
sequently yields,

Lc
D(γ) � C1 log

δD(∂U)

δD(A)

� 1

2
C1 log

(
1 +

δD(∂U)

δD(A)

)

� 1

2
C1 log

(
1 +

δD(∂U)

diam(D)

d(B,A)

δD(A)

)

� C2 log
(
1 +

d(B,A)

δD(A)

)

where

C2 =
1

2
C1

δD(∂U)

diam(D)
.

The second inequality in the foregoing string of inequalities, can be ensured
by choosing U0 such that δD(A) � δD(∂U), while the third one follows
because δD(∂U)� diam(D). This finishes case (i).

The other sub-case is (ii): γ([0, 1]) ⊂ U ∩D.
Since d′(B,A) > 4CeδD(A) we have

4CeδD(A) < inf M(B,A)

and therefore
B 
∈ Q4CeδD(A)(A) ⊃ Q2CeδD(A)(A

∗).

Thus we can choose a number t1 ∈ (0, 1) such that

γ(t1) ∈ ∂Q2CeδD(A)(A
∗).

This shows that the following set is not empty

SA,B :=
{
j ∈ Z+ : ∃ 0 = t0 < t1 < . . . < tj < 1

such that γ(tν) ∈ ∂Q2CeδD(γ(tν−1))

(
γ(tν−1)

∗), 1 � ν � j
}
.

Since γ([0, 1]) ⊂ D ∩ U , the boundary point γ(t)∗ is well-defined for any
t ∈ [0, 1]. As in [31] again, SA,B can be ascertained to be a finite set and
consequently we may define the number

m := max SA,B
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and choose numbers 0 = t0 < t1 . . . < tm < 1 such that

γ(tν) ∈ ∂Q2CeδD(γ(tν−1)

(
γ(tν−1)

∗), 1 � ν � m.

Further following [31], we get 2dcD(A,B) � c0m and subsequently follow
the steps therein to estimate m from below, which uses the pseudo-distance
property of d and leads eventually to the estimate

d(B,A) � Cm+2
∗ δD(A)

where C∗ is a constant bigger than 1 (in fact bigger than 6). This gives

C2m
∗ � d(B,A)

δD(A)
.

From this it follows that

(1 + C∗)
2m > 1 + C2m

∗ � 1 +
d(B,A)

δD(A)

which subsequently leads to

2m log(1 + C∗) > log
(
1 +

d(B,A)

δD(A)

)

which gives

m � log
(
1 +

d(B,A)

δD(A)

)

But then recalling that
c0 ·m � 2dcD(A,B)

we finally see that

dcD(A,B) � log
(
1 +

d(B,A)

δD(A)

)

�

Now we turn to the other possibility:

Lemma 2.10. — Assume that (2.36) holds. Then with some universal
constant C21 > 0 we have

dCara
D (A,B) � C21 log

(
1 + |ΦA(B)n|2/δD(A)2

+

n−1∑

α=2

|ΦA(B)α|2/δD(A) + |ΦA(B)1|2/τ(A∗, δD(A))2
)
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Proof. — Suppose that A,B are points in D ∩ U ′ which satisfy (2.36).
Then clearly

B ∈ Q4CeδD(A)(A)

and

ΦA(B) ∈ ∆
(
0, τ(A, 4CeδD(A))

)
×∆

(
0,

√
4CeδD(A)

)
× . . .

×∆
(
0,

√
4CeδD(A)

)
×∆

(
0, 4CeδD(A)

)
⊂ P (wA, t, θ)

with a number θ > 0 independent of A,B and t := 4CeδD(A). Here we put
wA = ΦA∗(A). According to Lemma 2.7 applied to the point x = A and
y = B, there exists for any function f ∈ H∞

(
P (w, t, θ)

)
having norm equal

to one, a function f̂ ∈ H∞(D) with |f̂ |L∞ � L∗ for some constant L∗ such
that

f̂(A) = f(wA)

f̂(B) = f(wB)

where wB = ΦA∗(B). This implies

dCara
D (A,B) � dP

( 1

L∗
f(wA),

1

L∗
f(wB)

)
.

We now make our choice of the function f namely, put

f(v) = fn(v1, v2, . . . , vn) =
1

C ′ δD(A)

((
ΦA ◦ (ΦA∗)−1

)
(v1, v2, . . . , vn)

)
n

(2.39)
where C ′ is a constant chosen so that |f |L∞ � 1 and is independent of A,B
– to see that this can indeed be done, notice that

ΦA ◦ (ΦA∗)−1(v) =
(
ΦA − ΦA∗

)
◦ (ΦA∗)−1(v) + v

and hence

C ′|f(v)| �
∣∣(ΦA − ΦA∗

)
◦ (ΦA∗)−1(v)

∣∣ + |vn|
δD(A)

� C +
|vn|

δD(A)
.

But then on P (wA, t, θ) we have

|vn| � |vn − (wA)n|+ |(wA)n| � θJA∗,t(wA) + t � C ′′t � C ′′′δD(A).
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Certainly f(wA) = 0. Together with a basic estimate concerning the Poincaré
distance dp∆ on the unit disc – estimate (6.6) in [31] – we get

dCara
D (A,B) � dp∆

(
0,

1

L∗
f(wB)

)
� 1

2
log

(
1 +

|ΦA(B)n|2
(L∗C ′)2(δ(A))2

)

with some suitable constant C ′ > 0. Similarly next, choosing the function
f to be

f(v) = fα(v) =
1

C ′
√

δ(A)

(
ΦA ◦ (ΦA∗)−1

)
(v)α,

for all 2 � α � n− 1 – which also has L∞-norm not bigger than 1, viewed
as a function on P (wA, t, θ) – we also obtain (since again f(wA) = 0) that

dCara
D (A,B) � dp∆

(
0,

1

L∗
f(wB)

)
� 1

2
log

(
1 +

|ΦA(B)α|2
(L∗C ′)2(

√
δ(A))2

)

and similarly again, choosing

f(v) = f1(v) =
1

C ′τ
(
A, δD(A)

)(
ΦA ◦ (ΦA∗)−1

)
(v)1

with C ′ a suitable constant adjusted so that f1 ∈ L∞
(
P (wA, t, θ)

)
, we get

dCara
D (A,B) � dp∆

(
0,

1

L∗
f(wB)

)
� 1

2
log

(
1 +

|ΦA(B)1|2

(L∗C ′)2τ
(
A, δD(A)

)2

)

To summarize then, we have for each 1 � j � n, that

dCara
D (A,B) � log

(
1 + c

∣∣Φ
A(B)j
τj(A)

∣∣2
)

for some constant c < 1. Adding together these inequalities over the index j
gives the estimate asserted in the Lemma. Let us note here for later purposes
that the foregoing inequalities may also be rewritten as

dCara
D (A,B) � max

1�j�n
log

(
1 +

∣∣Φ
A(B)j
τj(A)

∣∣2
)

(2.40)

as c < 1. �

We now proceed to demonstrate that the estimates of the last two lem-
mas fit together well to yield Theorem 1.1. For reasons of symmetry it is
enough to verify that

dcD(A,B) � η(A,B).
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Before we begin, let us just record one useful fact which is the analogue
of lemma 3.2 of [31] and follows by the very same line of proof therein.

Lemma 2.11. — If a, b ∈ D ∩ U are points with |a− b| < R0, we have

max
{
|
(
Φa(b)

)
n
|, |

(
Φa(b)

)
2
|2, . . . , |

(
Φa(b)

)
n−1
|2, max

2�l�2m
|Pl(a)||

(
Φa(b)

)
1
|l
}

� d′(b, a)

� 2 max
{
|
(
Φa(b)

)
n
|, |

(
Φa(b)

)
2
|2, . . . , |

(
Φa(b)

)
n−1
|2, max

2�l�2m
|Pl(a)||

(
Φa(b)

)
1
|l
}

Now suppose (2.35) holds. Then we claim that for some c1 > 0 we have

d(B,A)/δD(A) � C12

(
|ΦA(B)n|/δD(A)

+

n−1∑

α=2

|ΦA(B)α|/
(
δD(A)

)1/2
+ |ΦA(B)1|/τ(A, δD(A))

)
(2.41)

For the proof of this, let 0 < ε < 2d′(B,A) be a number such that
B ∈ Qε(A). Then

ΦA(B) ∈ ∆
(
0, τ(A, ε)

)
×∆(0,

√
ε)× . . .×∆(0,

√
ε)×∆(0, ε).

In particular, |ΦA(B)n| � ε � 2d′(B,A). But then we also know |ΦA(B)| �
c′1|A−B|, which implies

|ΦA(B)n| � min
{
2d′(B,A), c′1|A−B|

}
� c′2d(B,A).

with some constant c′2 > 1. In particular,

|ΦA(B)n|
δD(A)

� c′2
d(B,A)

δD(A)

Next we estimate |ΦA(B)1|/τ
(
A, δD(A)

)
. Since the function t → t/τ(A, t)

is increasing and ε � d′(B,A) > 4CeδD(A), we get

|ΦA(B)1|
τ
(
A, δD(A)

) � τ(A, ε)

τ
(
A, δD(A)

) � c′3
ε

δD(A)
� 2c′3

d′(B,A)

δD(A)
.

Moreover since |ΦA(B)1| � c′1|A−B| and τ
(
A, δD(A)

)
� c′4δD(A) we get

|ΦA(B)1|
τ
(
A, δD(A)

) � c′5
|A−B|
δD(A)
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and subsequently that

|ΦA(B)1|
τ
(
A, δD(A)

) � c′6
d(B,A)

δD(A)
.

Also

|ΦA(B)α|√
δD(A)

�
√

ε√
δD(A)

� ε

δD(A)
� 2d′(B,A)

δD(A)
<

2Ld(B,A)

δD(A)
.

This completes the verification of the claim (2.41) and then Lemma 2.9
proves

dcD(A,B) � C∗ρ(A,B)

for those points A,B that satisfy (2.35).

Next we move on to the case when A,B satisfy (2.36). In this case we
claim that for some positive constant c2 > 0 we have

d(B,A)

δD(A)
� c2

(
|ΦA(B)n|
δD(A)

+

n−1∑

α=2

|ΦA(B)α|√
δD(A)

+
|ΦA(B)1|

τ
(
A, δD(A)

)
)

(2.42)

First, we note that we have d′(B,A) � ε where we now let

ε = 2 max
{
|
(
ΦA(B)

)
n
|, |

(
ΦA(B)

)
2
|2,

. . . , |
(
ΦA(B)

)
n−1
|2, max

2�l�2m
|Pl(A)||

(
ΦA(B)

)
1
|l
}

We split into the various possible cases for the value of ε and deal with them
one by one. First, suppose that ε = 2|ΦA(B)n|. Then we get

d(B,A)

δD(A)
� d′(B,A)

δD(A)
� ε

δD(A)
= 2
|ΦA(B)n|
δD(A)

.

Next we look at what happens when ε happens to be 2 max {|Pl(A)||ΦA(B)1|l}.
In this case note that

d(B,A)

δD(A)
� ε

δD(A)

= 2
max {|Pl(A)||ΦA(B)1|l}

δD(A)

� max
( |ΦA(B)1|
τ
(
A, δD(A)

)
)l

� |ΦA(B)1|
τ
(
A, δD(A)

)
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provided we assure ourselves that |ΦA(B)1|/τ
(
A, δD(A)

)
� C for some

constant C. To see this, choose any sequence ηj → d′(B,A) from above.
Then by definition of d′(B,A) we have B ∈ Qηj (A) for all j. This gives
|ΦA(B)1| � τ(A, ηj). Letting j → ∞ we find |ΦA(B)1| � τ

(
A, d′(B,A)

)
.

Then since we are in the case (2.36) i.e., d′(B,A) � 4CeδD(A), we obtain

τ
(
A, d′(B,A)

)
� C ′τ

(
A, δD(A)

)

Therefore, |ΦA(B)1| � C ′τ
(
A, δD(A)

)
, finishing this case.

If it happens that ε = 2|ΦA(B)α|2 for some 2 � α � n − 1, then similar
arguments with τ1(A) = τ1

(
A, δ(A)

)
replaced by τα(A) =

√
δ(A) gives

d(B,A)

δD(A)
� 2
|ΦA(B)α|2

δD(A)
� |Φ

A(B)α|√
δD(A)

Summarizing the results of the various cases depending on the value of ε,
we thus get that for some 1 � j � n the inequality

d(B,A)

δ(A)
� |Φ

A(B)j |
τj(A)

(2.43)

must hold. This will be used in the sequel.

Putting together what we inferred for each of the possible values that ε
may take, we may now also assert that (2.42) holds, from which it in-turn
follows from Lemma 2.10 that

dcD(A,B) � dCara
D (A,B) � C log

(
1 +

(
d(B,A)/δD(A)

)2
)
. (2.44)

Now we get to the end result, the lower bound as stated in Theorem 1.1;
but we wish to first summarise for convenience, a couple of results from our
variety of estimates encountered in course of our dealings of the two cases
(2.35) and (2.36) which will be useful in the sequel – to be precise, parts (i)
and (ii) of part (a) of the following proposition, come from the discussion
of Lemmas 2.9 and 2.10 respectively. We then conclude by showing how
the desired end, re-written in part (b) of this proposition, follows from its
previous parts.

Proposition 2.12. —

(a) For points A,B ∈ D ∩ U ′, depending on whether they are far or
near, as measured by the pseudo-distance d′, we have two cases and
correspondingly various estimates as in the first two statements below:

– 325 –



G. P. Balakumar, Prachi Mahajan, Kaushal Verma

(i) d′(B,A) > 4CeδD(A). Then for some constants K11,K12 > 0
we have

dcD(A,B) � K11 log
(
1 +

(
d(B,A)/δD(A)

))

and

d(B,A)/δD(A) � K12

(
|ΦA(B)n|/δD(A)

+

n−1∑

α=2

|ΦA(B)α|/
(
δD(A)

)1/2
+ |ΦA(B)1|/τ(A, δD(A))

)

(ii) d′(B,A) � 4CeδD(A). Then for some constants K21,K22,K23

> 0 we have

dCara
D (A,B) � K21 log

(
1 + |ΦA(B)n|2/δD(A)2

+

n−1∑

α=2

|ΦA(B)α|2/δD(A) + |ΦA(B)1|2/τ(A, δD(A))2
)

and

d(B,A)/δD(A) � K22

(
|ΦA(B)n|/δD(A)

+

n−1∑

α=2

|ΦA(B)α|/
(
δD(A)

)1/2
+ |ΦA(B)1|/τ

(
A, δD(A)

))

from which it was seen to follow in the foregoing lemmas, that

dcD(A,B) � dCara
D (A,B) � K23 log

(
1 +

(
d(B,A)/δD(A)

)2
)

(b) Finally, we have the lower bound valid for all A,B ∈ D∩U and some
constant K > 0:

dcD(A,B) � K log
(
1+
|ΦA(B)n|
δD(A)

+

n−2∑

α=2

|ΦA(B)α|(
δD(A)

)1/2
+
|ΦA(B)1|

τ
(
A, δD(A)

)
)
−K

n
log 2

obtained by combining the first two inequalities in (ii) and (i) of
part(a).

Proof. — As noted earlier, it remains only to combine the two cases to
get the final inequality as stated in (b). We may assume that the constant
K12 < 1 in the second inequality in (i). Then

K12 log
(
1 + Q

)
� log(1 + K12Q) � log

(
1 + d(B,A)/δD(A)

)
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where Q is the quantity

|ΦA(B)n|/δD(A) +

n−1∑

α=2

|ΦA(B)α|/
(
δD(A)

)1/2
+ |ΦA(B)1|/τ(A, δD(A)).

We therefore have

dcD(A,B) � K11 log
(
1 + d(B,A)/δD(A)

)
� K11K12 log(1 + Q),

when in the first case of (a) of the proposition. In particular

dcD(A,B) � log(1 + Q)− 1

n
log 2 (2.45)

To deal with case (ii), let us denote by E the expression

|ΦA(B)n|2/δD(A)2 +

n−1∑

α=2

|ΦA(B)α|2/δD(A) + |ΦA(B)1|2/τ(A, δD(A))2.

Next we use the inequality

|z1 + . . . + zN |2 � N
(
|z1|2 + . . . |zN |2

)

with N = n, to convert the inequality in (ii) of the proposition and express
it in terms of E to get

dCara
D (A,B) � K21 log(1 + E) � K21 log(1 + Q2/n)

� K21

n
log(1 + Q2)

� K21

n
log

1

2
(1 + Q)2

=
2K21

n
log(1 + Q)− K21

n
log 2 (2.46)

Combining (2.45) and (2.46) gives the final inequality of the proposition. �

Finally, we can also get from part (b) of the last Proposition that

dcD(A,B) � log

(
1 +
|d(B,A)|
δD(A)

+

n−2∑

α=2

∣∣ΦA(B)α
∣∣

√
δD(A)

+

∣∣ΦA(B)1
∣∣

τ
(
(A, δD(A)

)
)
− l.

(2.47)

for some positive constant l.
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To see this, first let us finish the easy case namely, when we are in the
case (a)(i) of the last Proposition. Then, recall from our arguments for the
inequality (2.41) that we had

d(B,A)

δD(A)
� c
|ΦA(B)j |
τj(A)

for all 1 � j � n and for some constant c < 1. Now from the first inequality
in (a)(i) of Proposition 2.12 we have

dcD(A,B) � log

(
1 +

1

2

d(B,A)

δD(A)
+

1

2

d(B,A)

δD(A)

)

� log

(
1 +

1

2

d(B,A)

δD(A)
+

c

2

n−1∑

j=1

|ΦA(B)j |
τj(A)

)

� log

(
1 +

d(B,A)

δD(A)
+

n−1∑

j=1

|ΦA(B)j |
τj(A)

)

as required.

The other case to deal with is when we are in the situation of (a)(ii)
Proposition 2.12. Again to finish off the easy sub-case first, suppose that
the maximum on the right hand inequality in Lemma 2.11 happens to be
|ΦA(B)n|; we then have the following chain of inequalities giving the claim:

dcD(A,B)

� K log

(
1 +

∣∣ΦA(B)n
∣∣

δD(A)
+

n−2∑

α=2

∣∣ΦA(B)α
∣∣

√
δD(A)

+

∣∣ΦA(B)1
∣∣

τ
(
(A, δD(A)

)
)
−K log n/2

� K log

(
1 +

1

2

|d′(B,A)|
δD(A)

+

n−2∑

α=2

∣∣ΦA(B)α
∣∣

√
δD(A)

+

∣∣ΦA(B)1
∣∣

τ
(
(A, δD(A)

)
)
−K log n/2

� K

2
log

(
1 +
|d′(B,A)|
δD(A)

+

n−2∑

α=2

∣∣ΦA(B)α
∣∣

√
δD(A)

+

∣∣ΦA(B)1
∣∣

τ
(
(A, δD(A)

)
)
−K log n/2

� K

2
log

(
1 +
|d(B,A)|
δD(A)

+

n−2∑

α=2

∣∣ΦA(B)α
∣∣

√
δD(A)

+

∣∣ΦA(B)1
∣∣

τ
(
(A, δD(A)

)
)
−K log n/2.

(2.48)

The remaining possibilities are when the maximum on the right inequality
in the Lemma 2.11 is attained by |ΦA(B)k|2 for some 2 � k � n − 1 or by
max2�l�2m |Pl(A)|||ΦA(B)k|l with k = 1. In this case, we first appeal to the
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inequality (2.43) and put it in the from

1

2

|ΦA(B)k|
τk(A)

� 1

2

d(B,A)

δD(A)
(2.49)

Next recall from (2.40) that for all 1 � j � n we have that

ed
Cara
D (A,B) � 1 +

∣∣∣Φ
A(B)j
τj(A)

∣∣∣
2

Summing over the first n− 1 indices gives

ed
Cara
D (A,B) � (n− 1) +

n−1∑

j=1

∣∣∣Φ
A(B)j
τj(A)

∣∣∣
2

� (n− 1) +
1

2

n−1∑

j=1

∣∣∣Φ
A(B)j |
τj(A)

∣∣∣
2

+
1

2

|ΦA(B)|
τk(A)

which can be re-written using (2.49) as

dCara
D (A,B) � log

(
1 +

1

2(n− 1)

n−1∑

j=1

∣∣∣Φ
A(B)j
τj(A)

∣∣∣
2

+
1

2(n− 1)

|ΦA(B)k|
τk(A)

)
− l

� log

(
1 +

1

2(n− 1)

n−1∑

j=1

∣∣∣Φ
A(B)j
τj(A)

∣∣∣
2

+
c

(n− 1)

d(B,A)

δD(A)

)
− l

� log

(
1 +

c

(n− 1)

d(B,A)

δD(A)
+

1

2(n− 1)2

∣∣∣
n−1∑

j=1

ΦA(B)j
τj(A)

∣∣∣
2
)
− l

� log

(
1 +

n−1∑

j=1

∣∣∣Φ
A(B)j
τj(A)

∣∣∣
2

+
d(B,A)

δD(A)

)
− l

� log

(
1

n

(
1 +

n−1∑

j=1

∣∣∣Φ
A(B)j
τj(A)

∣∣∣
)2

+
d(B,A)

δD(A)

)
− l

� log

(
1

n

(
1 +

n−1∑

j=1

∣∣∣Φ
A(B)j
τj(A)

∣∣∣
)

+
1

n

d(B,A)

δD(A)

)
− l

= log

(
1 +

n−1∑

j=1

∣∣∣Φ
A(B)j
τj(A)

∣∣∣ +
d(B,A)

δD(A)

)
− log n− l. (2.50)

finishing the proof of the inequality claimed at (2.47).
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2.6. Upper bound on the invariant distances

In this section we shall establish the upper bound on the Kobayashi
distance dkD(A,B) between two points A,B ∈ D ∩ U . We have already
mentioned the availability of optimal upper bounds on the infinitesimal
Kobayashi metric for Levi corank one domains, in the introductory section.
We shall rephrase it here in a form useful for the methods of the present
sub-section. For now, we begin the proof of the upper bound in theorem
1.1 right away, by first getting an upper bound on the Kobayashi distance
between two points which are on the same inner normal to ∂D at an arbi-
trary boundary point and close to it. This can be obtained following [31]
with almost no changes.

Lemma 2.13. — Suppose that Ã, B̃ are points in D ∩ U such that Ã∗ =
B̃∗, then

dkD(Ã, B̃) � 1

2
log

(
1 + C̃

|δ(Ã)− δ(B̃)|
min{δ(Ã), δ(B̃)}

)

for some positive constant C̃.

Here we have denoted the boundary distance by δD(·) more simply by
δ(·) and we shall continue doing so for the rest of this section. With this
lemma as a start, we now proceed to get an upper bound on the Kobayashi
distance between the points A and B, in terms of the distances of A,B
to the boundary and the distance between them measured in the pseudo-
distance d′, as expressed in Theorem 1.1. So suppose that A,B ∈ D ∩ U ; if
|A−B| � R then the claim follows from proposition 2.5 of [24]. So we have
only to deal with the case when A,B ∈ D∩U with |A−B| < R in which case
d(A,B) ≈ d′(A,B). Now we shall split-up again into two cases depending
upon whether A,B are near or far, when their distance is measured by
the pseudo-distance d′; to quantify the definition of nearness here, we first
choose positive constants C1, L, η with the following properties:

(a): d(x, y) � C1

(
d(x, z1)+ d(z1, z2)+ d(z2, y)

)
holds for all x, y, z1, z2 ∈

U and

(b): d(x, y) � d′(x, y)/L whenever d′(x, y) is finite.

If we choose a thin enough tubular neighbourhood U0 ⊂ U of ∂D and
the constant η small enough, we can achieve for any pair of points A,B ∈ U0

that, the points A−ηd′(A,B)νA∗ and B−ηd′(B,A)νB∗ , still lie in U . Define
M = 3LC1/η and shrink U to ensure δ(z) < δe/2M for all z ∈ D∩U – this
in turn ensures that the special analytic polydiscs Q(A, 2MδD(A)) are well
defined – here δe is the number introduced in section 1. Recall that δe was
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taken to be less than 1 and therefore the same will hold for all boundary
distances δ(·). We shall continue doing such adjustments of neighbourhoods
and constants tacitly; the sloppiness caused due to overloaded notation is
taken care of by keeping track of what entities such changes depend on.

We now proceed with the two cases mentioned above. The first one, is
laid down precisely in

Lemma 2.14. — Suppose that the points A,B ∈ D∩U satisfy d′(A,B) �
M max{δ(A), δ(B)}. Then

dkD(A,B) � C1 log

(
1 +

|ΦA(B)1|
τ
(
A, δ(A)

) +

n−1∑

α=2

|ΦA(B)α|√
δ(A)

+
d(A,B)

δ(A)

)

+ log

(
1 +

|ΦB(A)1|
τ
(
B, δ(B)

) +

n−1∑

α=2

|ΦB(A)α|√
δ(B)

+
d(B,A)

δ(B)

)
+ C2.

for some positive constants C1, C2 depending on the domain D but free from
any particular dependence on A,B.

Proof. — We begin with the observation that the upper bound on the
infinitesimal Kobayashi metric from Theorem 1 of [13] – using the fact from
[14] that η(z, δ) ≈ τ(z, δ) where η(·, ·) (only for now in the notations of [13],
[14]) is the quantity occurring in bound as stated in [13] – can be put in the
form:

KD(z,X) � C
( |〈L1(z), X〉|

τ
(
z, δ(z)

) +

n−1∑

α=2

|〈Lα(z), X〉|√
δ(z)

+
|Xn|
δ(z)

)
. (2.51)

Here z ∈ D∩U ; of course this estimate as it stands, is valid only on a small
ball about π(z) and when we are in the normalization of the foregoing sec-
tions, in particular ∂r/∂zn 
= 0. However, to rephrase the above estimate to
ensure its validity on the entire tubular neighbourhood D∩U , only requires
z to be replaced by σ(z) for an appropriate permutation σ (depending on
which portion of the tubular neighbourhood z is situated). As we shall be
interested only in size estimates of various quantities here and since per-
mutations are isometries – so, in particular the distance to the boundary
and the quantity τ remain preserved i.e., τ(z, δ(z)) = τ

(
σ(z), δσ(D)(σ(z))

)

– we shall as always, suppress these permutations in the calculations. Actu-
ally, we can even overlook these issues completely, in view of our standing
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assumption for the rest of this section that dist(A,B) < R. Next, note that
∣∣∣|〈Lj(z), X〉| − |〈Lj(π(z)), X〉|

∣∣∣ �
∣∣∣〈Lj(z), X〉 − 〈Lj(π(z)), X〉

∣∣∣

=
∣∣∣ ∂r/∂zj
∂r/∂zn

(z)− ∂r/∂zj
∂r/∂zn

(
π(z)

)∣∣∣|Xn|

� |z − π(z)||Xn| by the mean value inequality

= δ(z)|Xn|. (2.52)

We thus get, for some constant C2 > 0 and for each 1 � j � n− 1, that

|〈Lj(z), X〉|
τj(z, δ(z))

� |〈Lj(π(z)), X〉|
τj(z, δ(z))

+
δ(z)

τj(z, δ(z))

<
|〈Lj(π(z)), X〉|

τj(z, δ(z))
+ C2

using which we rewrite (2.51) for clarity in the sequel as:

KD(z,X)�C
( |〈L1(π(z)), X〉|

τ
(
z, δ(z)

) +

n−1∑

α=2

|〈Lα(π(z)), X〉|√
δ(z)

+
|Xn|
δ(z)

)
+some constant

(2.53)

Now assume that δ(A) � δ(B). Let B′ be the point in D ∩ U such that
δ(B′) = δ(A) and (B′)∗ = B∗. So in particular, B,B′ lie on the same normal
to ∂D at B∗. Lemma 2.13 prompts an estimation of dkD(A,B) in terms of
the distances dD(A,B′) and dD(B′, B), because the latter can be estimated
by that lemma; while the former distance dD(A,B′) is bounded above by
the Kobayashi-length of any curve joining A,B′. More precisely, if c is any
one such curve, we will have the estimation as in the following string of
inequalities:

dkD(A,B) � dkD(A,B′) + dkD(B′, B)

� LKob
D (c) + dkD(B,B′)

� LKob
D (c) + C ′ log

(
1 + C̃

|δ(B′)− δ(B)|
min{δ(B′), δ(B)}

)

= LKob
D (c) + C ′ log

(
1 + C̃

|δ(B′)− δ(B)|
δ(B)

)

� LKob
D (c) + C ′ log

(
1 + C̃

d′(A,B)

δ(B)

)
. (2.54)

The last inequality follows from our hypotheses of lemma 2.14, so that
|δ(A)− δ(B)| � d′(A,B) and subsequently since |δ(B′)− δ(A)| = 0, we get
|δ(B′)− δ(B)| � d′(A,B).
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We have now to construct a suitable path c connecting A and B′ in
D ∩ U , trying to keep its Kobayashi-length as small as possible while also
taking care that it be estimable in tangible terms. First, let ΨA = (ΦA)−1

and γ(t) = (ΨA)
(
tΦA(B)

)
denote the pull-back of the straight line join-

ing ΦA(A) = 0 and the point ΦA(B). Then γ(0) = A, γ(1) = B; but
it is not clear that γ is contained within our domain D. However, γ lies
trapped within the analytic polydisc Q

(
A, 2d′(A,B)

)
. To see this indeed,

we must go back to the definitions of the special analytic polydisc Q(·, ·),
the pseudo-distance d′ and the curve γ, all of which are defined in terms of
the simplifying change of variables as in (1.4). Recall that

Q
(
A, 2d′(A,B)

)
= ΨA

(
R

(
A, 2d′(A,B)

))
(2.55)

where we recall R(A, 2d′(A,B)) is the polydisc centered at the origin with
polyradius (τ1, . . . , τn) with τj = τj(A, 2d′(A,B)) as introduced in section
1. To verify that γ(t) = ΨA(tΦA(B)) lies in the sets at (2.55) is tantamount
to checking the following list of n-inequalities:

(1) |tΦA(B)1| < τ
(
A, 2d′(A,B)

)
,

(α) |tΦA(B)α| <
√

2d′(A,B), for 2 � α � n− 1,

(n) |tΦA(B)n| < 2d′(A,B).

We confine to display the checking of the first:

|tΦA(B)1| � |ΦA(B)1| � τ
(
A, d′(A,B)

)
< τ

(
A, 2d′(A,B)

)
,

just by the definition of d′(A,B). Next, by our hypotheses of our the lemma
we are currently dealing with, d′(A,B) �Mδ(A); so, by the monotonically
increasing nature of τ(A, δ) with respect to δ and thereby of the distorted
polydiscs Q(A, ·), we get in all that

γ ⊂ Q2d′(B,A)(A) ⊂ Q2Mδ(A)(A).

We now define our path c in terms of γ as follows. Let γ∗(t) denote π∂D(γ(t))
=

(
γ(t)

)∗
for short; let c(t) = γ∗(t) − δ(A)νγ∗(t). Then δ(c(t)) = δ(A) for

all t. Note that

c(1) = γ∗(1)− δ(A)νγ∗(1) = B∗ − δ(A)νB∗ = B′,

so c is a curve in D ∩ U connecting A and B′ which maintains a constant
distance from ∂D.

Next, to extend the chain of inequalities in (2.54) and reach the required
upper bound, we need to estimate the length of c in the Kobayashi metric.
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To this end, we first write out the estimate for the size of ċ(t), measured in
the infinitesimal Kobayashi metric provided by (2.53):

KD

(
c(t), ċ(t)

)
�
|〈L1

(
c∗(t)

)
, ċ(t)〉|

τ
(
c(t), δ

(
c(t)

) +

n−1∑

α=2

|〈Lα

(
c∗(t)

)
, ċ(t)〉|√

δ
(
c(t)

) +
|ċ(t)n|
δ
(
c(t)

) + C3

=
|〈L1

(
γ∗(t)

)
, ċ(t)〉|

τ
(
c(t), δ

(
c(t)

) +

n−1∑

α=2

|〈Lα

(
γ∗(t)

)
, ċ(t)〉|√

δ
(
c(t)

) +
|ċ(t)n|
δ
(
c(t)

) + C3

(2.56)

for some constant C3 > 0; here we have used the fact that γ∗(t) = c∗(t)
for all t ∈ [0, 1]. Since the curve c is defined in terms of the curve γ, let us
replace ċ(t) by γ̇(t) in the above inequality. For this, if we write N(x) for
ν
(
π∂D(x)

)
, we have

ċ(t) = D
(
π∂D

)
|γ(t)(γ̇(t))− δ(A) · d

dt
ν
(
π∂D(γ(t))

)

=
(
D(π∂D)(γ(t))− δ(A)D(N)(γ(t))

)
γ̇(t)

= γ̇∗(t)− δ(A)DN
(
γ(t)

)(
γ̇(t)

)
(2.57)

since

γ̇∗(t) = D
(
π∂D

)
(γ(t)) · γ̇(t). (2.58)

Now we upper bound (2.56), by the length of γ̇ as measured by the metric
appearing on the right hand side of (2.53). To do this, we analyze and
estimate each summand in (2.56). First consider

|〈L1

(
γ∗(t)

)
, ċ(t)〉|

τ
(
c(t), δ

(
c(t)

)

and the numerator herein, which by (2.57) may be estimated as

∣∣〈L1

(
γ∗(t)

)
, ċ(t)〉

∣∣ =
∣∣∣
〈
L1

(
γ∗(t)

)
, γ̇∗(t)− δ(A)DN(γ(t))

(
γ̇(t)

)〉∣∣∣

=
∣∣〈L1

(
γ∗(t)

)
, γ̇∗(t)〉

∣∣ + δ(A)
∣∣∣
〈
L1

(
γ∗(t)

)
, DN(γ(t))

(
γ̇(t)

)〉∣∣∣

�
∣∣〈L1

(
γ∗(t)

)
, γ̇∗(t)〉

∣∣ + δ(A)
∣∣L1

(
γ∗(t)

)∣∣
∣∣∣DN(γ(t))

∣∣∣|γ̇(t)|
�

∣∣〈L1

(
γ∗(t)

)
, γ̇∗(t)〉

∣∣ + δ(A)|γ̇(t)|. (2.59)

Now we may use the techniques in the proof of lemma (2.2) of [6], to compare
the components along the complex tangential direction L1, of the tangent
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vector of the curve γ and that of its projection onto the boundary. More
precisely,

∣∣∣
〈
L1

(
γ∗(t)

)
, γ̇∗(t)

〉
−

〈
L1

(
γ∗(t)

)
, γ̇(t)

〉∣∣∣ � Cδ
(
γ(t)

)
|γ̇(t)|.

for some constant C > 0 independent of γ. Indeed, first recall the geomet-
rically obvious relation between the curve γ and its orthogonal projection
onto the boundary γ∗, namely:

γ∗(t)− γ(t) = −r
(
γ(t)

)
ν
(
γ∗(t)

)
. (2.60)

A differentiation then yields the desired connection between the tangent
vectors,

γ̇∗(t)− γ̇(t) = −
〈
ν
(
γ(t)

)
, γ̇(t)

〉
ν
(
γ∗(t)

)
− r

(
γ(t)

)
DN(γ(t))

(
γ̇(t)

)

= −r
(
γ(t)

)
DN(γ(t))

(
γ̇(t)

)
. (2.61)

In particular then, we get for any j = 1, . . . , n, that

∣∣〈Lj

(
γ̇∗(t)

)
, γ̇∗(t)〉 − 〈Lj

(
γ̇∗(t)

)
, γ̇(t)〉

∣∣ = −r
(
γ(t)

)∣∣∣DN(γ(t))
∣∣∣|γ̇(t)|

� δ(γ(t))|γ̇(t)|.

Consequently, (2.59) can be rewritten now as:
∣∣〈L1

(
γ∗(t)

)
, ċ(t)〉

∣∣ �
∣∣〈L1

(
γ∗(t)

)
, γ̇(t)〉

∣∣ + C1δ
(
γ(t)

)
|γ̇(t)

∣∣ + δ(A)|γ̇(t)|.

Let us rewrite this as an estimate for the first term in (2.56).

|〈L1

(
γ∗(t)

)
, ċ(t)〉|

τ
(
c(t), δ(c(t))

) �
|〈L1

(
γ∗(t)

)
, γ̇(t)〉|

τ
(
c(t), δ(c(t))

)

+
δ
(
γ(t)

)

τ
(
c(t), δ(c(t))

) |γ̇(t)|+ δ(A)

τ
(
c(t), δ(c(t))

) |γ̇(t)| (2.62)

Consider the ratio of distances appearing in the second term on the right
namely,

δ
(
γ(t)

)

τ
(
c(t), δ(c(t))

) =
δ
(
γ(t)

)

τ
(
c(t), δ(A)

) .

Now, from the fact that the curve γ lies trapped within the analytic polydisc
Q

(
A, 2Mδ(A)

)
, by hypothesis of lemma 2.14, we may estimate the distance

of γ(t) to the boundary ∂D as follows. First, for all points z which lie in the
polydisc R(A, δ) about the origin, we have

∣∣ΨA(z)−ΨA(0)
∣∣ � C|z|
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where the Lipschitz constant C is independent of A, owing to the fact that
the polynomial maps {ΨA(·)}, are Lipschitz uniformly in A ∈ D ∩ U . Of
course the special radii of the polydisc R is of no relevance to the last
inequality but use will be made of the fact the constant C here, may also
be taken independent δ ∈ (0, δe). Put differently, if a point w lies in Q(A, ·),
then it must satisfy

|w −A| � C|ΦA(w)|. (2.63)

Let us apply this observation to the situation at hand: since γ(t) ∈
Q(A, 2Mδ(A)), we have

|γ(t)−A| � C|ΦA(γ(t))| = |tΦA(B)| � C|ΦA(B)| � max
1�j�n

{τj(A, δ(A))}

� τ1
(
A, δ(A)

)

where all constants at the various �-bounds here are independent of γ i.e.,
of the points A,B. Therefore,

δ
(
γ(t)) � dist

(
γ(t), A

)
+ δ

(
A

)
� Cτ

(
A, δ(A)

)

for some constant C independent of A,B. Thus we get that the ratio

δ(γ(t))

τ
(
c(t), δ(c(t))

) � δ(γ(t))

τ
(
A, δ(A)

) (2.64)

is bounded above by a constant independent of A and B. In these calcula-
tions, we use the fact that τ

(
c(t), δ(c(t))

)
= τ

(
c(t), δ(A)

)
≈ τ

(
A, δ(A)

)
.

This fact follows from the uniform comparability of these distinguished
radii at different points within a distorted polydisc. In addition, it also
uses the fact that the path c(t) remains at a fixed small distance from
the boundary of D (small enough to define the polydiscs and to validate
the application of the comparability of the radii, by covering the path by
finitely many such polydiscs). Also, the lower bound on the special radius
τ
(
A, δ(A)

)
�

√
δ(A) � δ(A) is used repeatedly in this paper.

Recall that we were seeking to obtain some control on the terms occur-
ring in the right hand side of (2.62). The ratio on the left of (2.64) is a factor
appearing in the inequality (2.62); we may now express that inequality as

|〈L1

(
γ∗(t)

)
, ċ(t)〉|

τ
(
c(t), δ(c(t))

) �
|〈L1

(
γ∗(t)

)
, γ̇(t)〉|

τ
(
A, δ(A)

) + C|γ̇(t)|. (2.65)

What we have just obtained is a bound on the first term in (2.56). The
next n − 2 summands in (2.56) can be similarly dealt with. For the last
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term in (2.56), we proceed as follows. First recall (2.57) and write out the
equality which it contains for the last component, namely,

ċ(t)n = γ̇∗(t)n − δ(A)
(
DN(γ(t))

(
γ̇(t)

))
n

Therefore,

|ċ(t)n|
δ(c(t))

� |γ̇
∗(t)n|

δ(c(t))
+

δ(A)

δ(c(t))

∣∣∣DN(γ(t))
∣∣∣|γ̇(t)| � |γ̇

∗(t)n|
δ(A)

+ C|γ̇(t)| (2.66)

where C is again some constant independent of A,B since DN(z) = D(ν ◦
π)(z) is Lipchitz uniformly in z ∈ D ∩ U .

Let us now pause to sum up the discussion so far, of the estimate (2.56),
from the estimates (2.65), through its analogues for the components of ċ(t)
along Lα for α = 2, . . . , n− 1 and (2.66), as:

KD

(
c(t), ċ(t)

)
�
|〈L1

(
γ∗(t)

)
, γ̇(t)〉|

τ
(
A, δ(A))

) +

n−1∑

α=2

|〈Lα

(
γ∗(t)

)
, γ̇(t)〉|√

δ(A)
+
|γ̇∗(t)n|
δ(A)

+ C|γ̇(t)|+ some constant

which more simply may be recorded for now as

KD

(
c(t), ċ(t)

)
�
|〈L1

(
γ∗(t)

)
, γ̇(t)〉|

τ
(
A, δ(A))

) +

n−1∑

α=2

|〈Lα

(
γ∗(t)

)
, γ̇(t)〉|√

δ(A)
+
|γ̇∗(t)n|
δ(A)

+ some constant. (2.67)

Here we have used the fact that |γ̇(t)| can be bounded above by a uniform
constant independent of the curve γ, A,B – to verify this, let us write down:

γ̇(t) = DΨA(tΦA(B))
(
ΦA(B)

)
.

So, |γ̇(t)| �
∣∣DΨA(tΦA(B))

∣∣|ΦA(B)| which is bounded above on the pre-
compact neighbourhood U , as ΦA,ΨA are polynomial automorphisms with
coefficients varying smoothly in the variable A which comes from the thin
neighbourhood U .

Now, recall that the goal of lemma 2.14, was reduced at (2.54) to ob-
taining an upper-bound for LKob

D (c); this will now of course be obtained by
integrating the upper bound (2.67) above. To obtain a concrete upper bound
for dkD(A,B), we must now estimate the summands in (2.67), involving the
coordinates of the points A,B or some explicit function of them alone, as
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far as possible. We now turn towards this end. We begin by noticing for
example that

∣∣∣〈L1

(
γ∗(t)

)
, γ̇(t)〉

∣∣∣ =
∣∣∣γ̇(t)1 −

( ∂r/∂z1

∂r/∂zn

)(
γ∗(t)

)
γ̇(t)n

∣∣∣

� |γ̇(t)1|+ |γ̇(t)n|
and subsequently rewrite this out for convenience as

|〈L1

(
γ∗(t)

)
, γ̇(t)〉|

τ
(
A, δ(A)

) � |γ̇(t)1|
τ
(
A, δ(A)

) +
|γ̇(t)n|

τ
(
A, δ(A)

) .

Further, recalling that 1/τ
(
A, δ(A)

)
� 1/δ(A), we obtain

|〈L1

(
γ∗(t)

)
, γ̇(t)〉|

τ
(
A, δ(A)

) � |γ̇(t)1|
τ
(
A, δ(A)

) +
|γ̇(t)n|
δ(A)

. (2.68)

Similar calculations give for each 2 � α � n− 1, that

|〈Lα

(
γ∗(t)

)
, γ̇(t)〉|√

δ(A)
� |γ̇(t)α|√

δ(A)
+
|γ̇(t)n|
δ(A)

. (2.69)

Finally, it remains to replace γ̇∗(t)n by the n-th component (alone) of
γ̇(t) in (2.67). To do this, let us go back to (2.61) and read that equation
for the n-th component. Apply the triangle inequality therein and the fact
that |r(z)| ≈ δ(z) for all z ∈ D ∩ U , to get

|γ̇∗(t)n|
δ(A)

� |γ̇(t)n|
δ(A)

+
δ(γ(t))

δ(A)

∣∣
(
DN(γ(t))

(
γ̇(t)

))
n

∣∣. (2.70)

At this point, we realize that we require a sharper estimate on δ(γ(t)) than
that obtained at (2.64). The best grasp on the distance δ(γ(t)) is attained
by observing the key feature of the canonical transform ΦA which defines
the curve γ – it is that transform (unique among such maps in the group EL,
up to a unitary linear map) which casts the weighted homogeneous Taylor
expansion of the defining function of our Levi corank one domain, in the new
coordinates about the point A, as in (1.3). Indeed, such a Taylor expansion
of r(γ(t)) = ρA(tζ) where ζ = ΦA(B), reads

ρA(tζ) = r(A) + 2�(tζn) +

2m∑

l=2

∑

j+k=l

aljk(A)tj+kζj1ζ
k

1

+

n−1∑

α=2

∑

j+k�m
j,k>0

�
((

bαjk(A)tj+k+1ζj1ζ
k

1

)
ζα

)
+

n−1∑

α=2

t2|ζα|2 + R(A; tζ).
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This gives the following upper bound on the boundary distance on γ:

δ(γ(t)) ≈ |r(γ(t))| = |ρA(tζ)| � δ(A) + 2|ζn|+
2m∑

l=2

∑

j+k=l

|aljk(A)||ζ1|j+k

+

n−1∑

α=2

∑

j+k�m
j,k>0

|bαjk(A)|ζ1|j+k|ζα|+
n−1∑

α=2

|ζα|2 +
∣∣R(A; tζ)

∣∣

where we recall that the remainder function satisfies

R
(
A;

(
τ(A, δ),

√
δ, . . . ,

√
δ, δ

))
/δ → 0 as δ → 0.

In particular, |R(A; tζ)| � CδD(A) for some positive constant independent
of A,B. Subsequently, therefore we may put the foregoing estimate in the
following simplified form, where the right side is only a ‘weight one’ poly-
nomial in the components of ΦA(B).

δ(γ(t)) � δ(A) + |ΦA(B)n|+
2m∑

l=2

|ΦA(B)1|l
( ∑

j+k=l

|aljk(A)|
)

+

n−1∑

α=2

∑

j+k�m
j,k>0

|bαjk(A)||ΦA(B)1|j+k|ΦA(B)α|+
n−1∑

α=2

|ΦA(B)α|2. (2.71)

Now just by the definition of τ(A, δ(A)) we have

|bαj,k(A)| �
√

δ(A)τ(A, δ(A))−(j+k)

Combined with the fact that ΦA(B) ∈ R(A, 2Mδ(A)), this gives the fol-
lowing estimate on the coupled monomials in the |ΦA(B)j |’s occurring in
(2.71):

n−1∑

α=2

∑

j+k�m
j,k>0

|bαjk(A)||ΦA(B)1|j+k|ΦA(B)α|

� Ĉδ(A)1/2τ(A, δ(A))−(j+k)τ(A, 2MδD(A))j+k
√

δ(A)

� Cδ(A),

where Ĉ is a universal constant and C a constant which depends on the
domain D but not on the points A,B.
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A similar treatment with all other monomials in the components of
ΦA(B) appearing on the right of the inequality (2.71) verifies that they
are all bounded above by δ(A) up to some constant. Altogether this yields
that the factor δ(γ(t))/δ(A) is bounded above by a constant independent
for the points A,B; combined with the earlier observation that the same is
true of |DN(γ(t))

(
γ̇(t)

)
| occurring in the second term on the right side of

(2.70) as well, we may now conclude that

|γ̇∗(t)n|
δ(A)

� |γ̇(t)n|
δ(A)

+ some constant.

Hence the calculations so far, have lead to reducing (2.67) as

KD

(
c(t), ċ(t)

)
�

( |γ̇1(t)|
τ
(
A, δ(A)

) +

n−1∑

α=2

|γ̇α(t)|√
δ(A)

+
|γ̇(t)n|
δ(A)

)
+ some constant.

(2.72)
This subsequently entails the estimation of the components of γ̇(t). We now
proceed towards this. Denoting ΦA(B) by ζ as above, let us begin with the
expression for γ̇ given by:

γ̇(t) = DΨA|tζ
(ζ).

The expression for the inverse map ΨA and its derivative have been put
down in the appendix, section 9, using which we may write down γ̇(t) more
explicitly in the form

γ̇(t) =
(
ζ1, HA(ζ̃) + HA

(
ζ1

∂Q2

∂z1
(tζ1)

)
, bAn

(
ζn +

n−1∑

j=1

ζj
∂Q̃1

∂zj
(t′ζ)

))

where HA = G−1
A and

Q̃1(
′z) = (bAn )−1

(
〈b̃A, HA

(
z̃ +Q2(z1)

)
〉+ bA1 z1

)
+Q1

(
z1, HA

(
z̃ +Q2(z1)

))
.

where Q1 and Q2 are the same polynomials that occur in the expression for
Φζ as in (1.4). To carry out the afore-mentioned estimation at (2.72), we
first note that it now reads up to an additive constant, as follows

KD

(
c(t), ċ(t)

)
�
|bAn |

∣∣∣ζn +
n−1∑
j=1

ζj
∂Q̃1

∂zj
(t′ζ)

∣∣∣

δ(A)

+

∣∣∣∣∣
HA(ζ̃) + HA

(
ζ1

(
∂Q2

∂z1
(tζ1)

))
√

δ(A)

∣∣∣∣∣ +
|ζ1|

τ
(
A, δ(A)

) . (2.73)
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Now we estimate the numerator in the first summand, which contains in it
the following sum 1

n−1∑

j=1

ζj
∂Q1

∂zj
(t ′ζ).

This is of course a polynomial of the same form as Q1 in ζ (i.e., up to mul-
tiplication by some factors which are either powers of t or some integers),
since it is obtained by applying the differential operator z1∂/∂z1 + . . . +
zn−1∂/∂zn−1 which is of weight zero, to the polynomial Q1(

′z) and evalu-
ated at t ′ζ. We shall confine ourselves to presenting a few samples of the
estimations required here as they are all based on the same idea. The key
point on which the calculations here rely on, is the fact from [14] and [56]
that, within the special analytic polydiscs Q(A, ·), variation of not only the
defining function but also its derivatives obtained by applying differential
operators of weight no less than −1, are controlled by the ‘radii’ of such
polydiscs. We now illustrate how this works. Let us recall the expression for
Q1, in the notations of [56] for convenience:

Q1(
′z) =

2m∑

k=2

dkz
k
1 +

n−1∑

α=2

m∑

k=1

dα,kz
k
1

(
zα + Pα

2 (z1)
)

+

n−1∑

α=2

cα
(
zα + Pα

2 (z1)
)2

(2.74)
where we recall that

Pα
2 (z1) =

m∑

l=1

eαl z
l
1.

Then we will have
n−1∑

j=1

ζj
∂Q̃1

∂zj
(t′ζ) =

2m∑

k=2

kdkt
k−1ζk1 +

n−1∑

α=2

m∑

k=2

(k + 1)dαkt
kζk1 ζα

+

n−1∑

α=2

m∑

k=1

m∑

l=1

(l + k)dα,ke
α
l t

l+k−1ζl+k
1

+

n−1∑

α=2

2c2αtζ
2
α + 2

n−1∑

α=2

m∑

l=1

cαe
α
l t

l(l + 1)ζl1ζα

+

n−1∑

α=2

2
( m∑

l=1

eαl t
lζl1

)( m∑

l=1

eαl t
l−1lζl1

)

Now using the estimates on the various coefficients from Lemma (3.4) of
[56] – for instance again, the coefficient (l+k)dα,ke

l
αt

l+k−1 occurring in the

(1) There is no typo here; we wish to focus only on Q1 rather than Q̃1.
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second summand in the above, which we shall denote by cα,l,k,t, can be
estimated as

|cα,l,k,t| � (l + k)
{
δ(A)τ1

(
A, δ(A)

)−k
τα

(
A, δ(A)

)−1}
{
δ(A)τ1

(
A, δ(A)

)−l
τα

(
A, δ(A)

)−1}
tl+k−1

� (δ(A))2τ1
(
A, δ(A)

)−(k+l)
τα

(
A, δ(A)

)−2

= δ(A)τ1
(
A, δ(A)

)−(k+l)

since τα
(
A, δ(A)

)
=

√
δ(A) and t < 1. Consequently, the corresponding

monomial can be estimated as

|cα,l,k,tζl+k
1 |= |cα,l,k,t||ΦA(B)1|l+k � δ(A)τ1

(
A, δ(A)

)−(k+l)
τ1

(
A, 2MδD(A)

)l+k

� δ(A).

Subsequent similar computations yield

∣∣∣
n−1∑

j=1

ζj
∂Q1

∂zj
(t′ζ)

∣∣∣ � δ(A),

where the constants hidden in the �-inequalities are all independent of our
chosen pair of points A,B. Thereafter a likewise treatment for the remaining

terms in
n−1∑
j=1

ζj∂Q̃1/∂zj(t
′ζ), result finally in the same upper bound as well

for the numerator of the first term in (2.73), which means that the first term
in (2.73) above is bounded above up to a constant, by

|ΦA(B)n|
δ(A)

+ some constant.

Next, to say a few words about the second term at (2.73), we first observe
that it is bounded above by

∣∣HA

∣∣
( |ζ̃|√

δ(A)
+

∣∣ζ1
(
∂Q2

∂z1
(tζ1)

)∣∣
√

δ(A)

)
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and then note that

∣∣∣ζ1
∂Q2

∂z1
(tζ1)

∣∣∣ =
∣∣∣

m∑

k=1

kbαk t
k−1ζk1

∣∣∣

�
m∑

k=1

k|bαk ||ΦA(B)1|k

�
m∑

k=1

δ(A)τ1
(
A, δ(A)

)−k
τα(A, δ(A))−1τ1

(
A, 2Mδ(A)

)k
,

(by Lemma 3.4 of [56])

�
√

δ(A) .

Thus the upshot is that the second summand in (2.73) is bounded above,
up to a multiplicative constant, by

n−1∑

α=2

|ΦA(B)α|√
δ(A)

+ some constant.

In all (2.73) transforms to the more concrete upper bound

KD

(
c(t), ċ(t)

)
� |Φ

A(B)n|
δ(A)

+
|ΦA(B)1|
τ
(
A, δ(A)

) +

n−1∑

α=2

|ΦA(B)α|√
δ(A)

+ C

for some positive constant C independent of A,B. We have thus reached
the explicit upper bound sought for at (2.56). Thus (2.54) now becomes

dkD(A,B) � |Φ
A(B)n|
δ(A)

+
|ΦA(B)1|
τ
(
A, δ(A)

) +

n−1∑

α=2

|ΦA(B)α|√
δ(A)

+ C

+ C ′ log
(
1 + C̃

d′(B,A)

δ(B)

)

� |Φ
A(B)n|
δ(A)

+
|ΦA(B)1|
τ
(
A, δ(A)

) +

n−1∑

α=2

|ΦA(B)α|√
δ(A)

+ log
(
1 +

d′(B,A)

δ(B)

)
+ L,
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for some positive constant L depending on the domain D but free of any
particular dependence on A,B. We may rewrite this now as

dkD(A,B) � log

(
1 +
|ΦA(B)n|

δ(A)
+
|ΦA(B)1|
τ
(
A, δ(A)

) +

n−1∑

α=2

|ΦA(B)α|√
δ(A)

)

+ log
(
1 +

d′(B,A)

δ(B)

)
+ L (2.75)

Indeed, notice that by the hypothesis of lemma 2.14 we have: B ∈ Q2Mδ(A)(A),
using which we get that

|ΦA(B)n|
δ(A)

+
|ΦA(B)1|
τ
(
A, δ(A)

) +

n−1∑

α=2

|ΦA(B)α|√
δ(A)

is uniformly bounded above; we then get (2.75) by simply using the fact
that the function (log(1 + x))/x is bounded below by a positive constant
when x varies over a compact interval of positive reals. Next, note that A,B
are close enough for d′(A,B) ≈ d(A,B) to hold. Since |ΦB(A)n| � d(A,B),
we may write the last inequality as

dkD(A,B) � log

(
1 +

d(A,B)

δ(A)
+
|ΦA(B)1|
τ
(
A, δ(A)

) +

n−1∑

α=2

|ΦA(B)α|√
δ(A)

)

+ log
(
1 +

d(B,A)

δ(B)

)
+ L.

Now this is the bound when δ(A) � δ(B), an assumption made just after
(2.53). Notice that the second logarithmic term here involves δ(B), whereas
the preceding term involves δ(A) and ΦA. So to drop the condition ‘if δ(A) �
δ(B)’, it is not artificial to restate it in a more symmetric fashion, as in the
statement of the lemma (2.14), to complete its proof herewith. �

Finally, the case complementary to the one dealt by lemma 2.14 namely,
d(A,B) �M max{δ(A), δ(B)}, can be reduced essentially to the first, as in
section 7 of [31] following the line of arguments therein and the foregoing
estimate may be obtained in that case as well.

3. Fridman’s invariant function on Levi corank one domains

The purpose of this section is to prove Theorem 1.2. But before that, we
gather some interesting properties of Fridman’s invariant function hD(·,Bn)
that were proved in [21].
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Proposition 3.1. — Let Ω be a Kobayashi hyperbolic manifold of com-
plex dimension n. Then

• if there is a p0 ∈ Ω such that hΩ(p0,Bn) = 0, then hΩ(·,Bn) ≡ 0 and
Ω is biholomorphically equivalent to Bn.

• p �→ hΩ(p,Bn) is continuous on Ω.

To put things in perspective, we state the following result on the bound-
ary behaviour of Fridman’s invariant for strongly pseudoconvex domains.

Theorem 3.2. — Let D ⊂ Bn be a bounded domain, p0 ∈ ∂D and let
{pj} ⊂ D be a sequence that converges to p0. If D is C2-smooth strongly
pseudoconvex equipped with the Kobayashi metric, then hD(pj ,Bn) → 0 as
j →∞.

The reader is referred to [44] for a proof. It should be noted that, for D a
Levi corank one domain, as in Theorem 1.2, the limit hD∞

(
(′0,−1),Bn

)
can

be strictly positive, unlike the strongly pseudoconvex case, and, in general,
depends on the nature of approach pj → p0 ∈ ∂D. Recall that, here, and in
the sequel, for any z ∈ Cn, z = (′z, zn) and ′z will denote (z1, . . . , zn−1).

Before going further, let us briefly recall the scaling technique (cf. [56])
for a smoothly bounded pseudoconvex domain D ⊂ Cn of finite type when
the Levi form of ∂D has rank at least (n− 2) at p0 ∈ ∂D. Assume that D
is given by a smooth defining function r, p0 is the origin and that ∂r

∂z̄ (p0) =
(′0, 1). Consider a sequence pj ∈ D that converges to the origin and denote
by ζj , the point on ∂D chosen so that ζj = pj + (′0, εj) for some εj > 0.
Also, εj ≈ δD(pj).

Let Φζj be the polynomial automorphisms of Cn corresponding to ζj ∈
∂D as described in (1.4). It can be checked from the explicit form of Φζj

that Φζj (ζj) = (′0, 0) and

Φζj (pj) =
(′

0,−εj/d0(ζ
j)

)
,

where d0(ζ
j) =

(
∂r/∂zn(ζj)

)−1

→ 1 as j → ∞. Define a dilation of coor-

dinates by

∆
εj
ζj (z1, z2, . . . , zn) =

( z1

τ(ζj , εj)
,

z2

ε
1/2
j

, . . . ,
zn−1

ε
1/2
j

,
zn
εj

)
,

where τ(ζj , εj) are as defined in (1.5). Note that ∆
εj
ζj◦Φζj (pj) =

(′
0,−1/d0(ζ

j)
)
.

For brevity, we write
(′

0,−1/d0(ζ
j)

)
= zj and (′0,−1) = z0. It was shown

– 345 –



G. P. Balakumar, Prachi Mahajan, Kaushal Verma

in [56] that the scaled domains Dj = ∆
εj
ζj ◦Φζj (D) converge in the Hausdorff

sense to

D∞ =
{
z ∈ Cn : 2�zn + P2m(z1, z1) + |z2|2 + . . . + |zn−1|2 < 0

}

where P2m(z1, z1) is a subharmonic polynomial of degree at most 2m (m �
1) without harmonic terms, 2m being the 1-type of ∂D at p0. Recall that
the polynomial P2m(z1, z1) depends on how the sequence pj approaches p0

and hence, the domain D∞ is canonically linked to the given domain D and
the sequence pj → p0. More can be said about the polynomial P2m(z1, z1) if
pj approaches p0 along the inner normal to ∂D at p0. Furthermore, observe
that D∞ is complete hyperbolic (each point on ∂D∞, including the point at
infinity, is a local holomorphic peak point – cf. Lemma 1 of [8]) and hence
D∞ is taut.

It is natural to investigate the stability of the Kobayashi metric at the
infinitesimal level first. The following lemma can be proved using the same
ideas as in Lemma 5.2 of [44]. The only requirement is to establish the
normality of a scaled family of holomorphic mappings which follows from
Theorem 3.11 of [56].

Lemma 3.3. — For (z, v) ∈ D∞ × Cn, limj→∞KDj (z, v) = KD∞(z, v).
Moreover, the convergence is uniform on compact sets of D∞ × Cn.

Proof of Theorem 1.2. — There are two cases to be examined:

(i) lim infj→∞ hD(pj ,Bn) = 0, or

(ii) lim infj→∞ hD(pj ,Bn) > c for some positive constant c.

In the first case, arguments similar to the ones employed in Theorem
5.1(i) of [44] together with Lemma 3.3 show that the limit domain D∞ is
biholomorphic to Bn. On the other hand, this will not be true in the second
case.

To analyse case (ii), it will be useful to consider the stability of the
Kobayashi balls on the scaled domains Dj around zj ∈ Dj with a fixed
radius R > 0. The proof of this is accomplished in two steps. In the first
part, we show that the sets BDj (z

j , R) do not accumulate at the point at
infinity in ∂D∞. The proof of this statement relies on Theorem 1.1 and
unravelling the definition of the ‘normalizing maps’ Φζj and the dilations
∆

εj
ζj . The second part is to show that the sets BDj (z

j , R) do not cluster at
any finite boundary point of ∂D∞.

Lemma 3.4. — For each R > 0 fixed, BDj (z
j , R) is uniformly compactly

contained in D∞ for all j large.
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Proof. — Since the scaling maps ∆
εj
ζj ◦ Φζj are biholomorphisms and

therefore Kobayashi isometries, it immediately follows that

BDj (z
j , R) = ∆

εj
ζj ◦ Φζj

(
BD(pj , R)

)
.

We assert that BDj (z
j , R) cannot accumulate at the point of infinity in

∂D∞. To establish this, assume that q ∈ BD(pj , R) and consider the lower
bound on the Kobayashi distance given by Proposition 2.12:

C∗ log

(
1 +

(d(pj , q)

δD(pj)

)2
)
� dkD(pj , q) � R

which yields that

d(pj , q) � (exp(R/C∗)− 1)
1/2

δD(pj) < exp(R/C∗)δD(pj)

where C∗ is a positive constant (uniform in j). Then the definition of the
pseudodistance d quickly leads to the following two possibilities:

• either |pj − q|l∞ < exp(R/C∗)δD(pj) or

• for each j, there exists δj ∈
(
0, exp(R/C∗)δD(pj)

)
such that pj ∈

Q(q, δj).

Now, Proposition 3.5 of [56] tells us that if pj ∈ Q(q, δj) then q ∈
Q(pj , Cδj) for some uniform constant C > 0. Hence, the second statement
above can be rephrased in the following manner – for every j there exists
δj ∈

(
0, exp(R/C∗)δD(pj)

)
such that q ∈ Q(pj , Cδj) or equivalently that

q ∈
(
Φpj

)−1
(
∆(0, τ(pj , Cδj))×∆(0,

√
Cδj)×. . .×∆(0,

√
Cδj))×∆(0, Cδj)

)

In other words, each Kobayashi ball BD(pj , R) is contained in the union
Gj

1 ∪Gj
2 where

Gj
1 =

{
z ∈ Cn : |z − pj |l∞ < exp(R/C∗)δD(pj)

}
and

Gj
2 =

(
Φpj

)−1
(
∆(0, τ(pj , Cδj))×∆(0,

√
Cδj)×. . .×∆(0,

√
Cδj)×∆(0, Cδj)

)
.

The idea is to verify that the sets ∆
εj
ζj ◦ Φζj (Gj

1) and ∆
εj
ζj ◦ Φζj (Gj

2) are
uniformly bounded. For this, consider

Φζj (Gj
1) = Φζj

({
z ∈ Cn : |z − pj |l∞ < exp(R/C∗)δD(pj)

})

=
{
w ∈ Cn : |

(
Φζj

)−1
(w)− pj |l∞ < exp(R/C∗)δD(pj)

}
.
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Now, write

w − Φζj (pj) = Φζj
((

Φζj
)−1

(w)
)
− Φζj (pj)

and note that the derivatives {DΦζj} are uniformly bounded in the operator

norm by L, say. Therefore, for w ∈ Φζj (Gj
1), we have that

∣∣w − Φζj (pj)
∣∣
l∞
� L

∣∣(Φζj
)−1

(w)− pj
∣∣
l∞

< Lexp(R/C∗)δD(pj),

and consequently that,

Φζj (Gj
1) ⊂

{
w ∈ Cn :

∣∣w − Φζj (pj)
∣∣
l∞

< Lexp(R/C∗)δD(pj)
}
.

Since Φζj (pj) =
(′

0,−εj/d0(ζ
j)

)
, the above inclusion can be rewritten as

Φζj (Gj
1) ⊂

{
w : |wk| < Lexp(R/C∗)δD(pj)

for 1 � k � n− 1,

∣∣∣∣wn +
εj

d0(ζj)

∣∣∣∣ < Lexp(R/C∗)δD(pj)

}
.

Hence

∆
εj
ζj ◦ Φζj (Gj

1) ⊂
{
w : |w1| <

Lexp(R/C∗)δD(pj)

τ(ζj , εj)
,

|wα| <
Lexp(R/C∗)δD(pj)

εj1/2
for 2 � α � n− 1,

∣∣∣∣wn +
1

d0(ζj)

∣∣∣∣ <
Lexp(R/C∗)δD(pj)

εj

}
. (3.1)

If w = (w1, . . . , wn) belongs to the set described by (3.1) above, then





|w1| < Lexp(R/C∗)δD(pj)
τ(ζj ,εj)

� Lexp(R/C∗)εj
τ(ζj ,εj)

,

|wα| < Lexp(R/C∗)δD(pj)
εj1/2

� Lexp(R/C∗)εj1/2 for 2 � α � n− 1,

|wn| < Lexp(R/C∗)δD(pj)
εj

+ 1
d0(ζj)

� Lexp(R/C∗) + 1

(3.2)

since εj ≈ δD(pj) and d0(ζ
j) ≈ 1. Furthermore, to examine the sets ∆

εj
ζj ◦

Φζj (Gj
2), first note that these sets are the images of the unit polydisc in Cn

under the maps ∆
εj
ζj ◦Φζj ◦

(
Φpj

)−1◦
(
∆

Cδj
pj

)−1
. Let K be a positive constant

such that |detD
(
Φζj ◦

(
Φpj

)−1)| < K for all j large. It follows that each set

∆
εj
ζj ◦ Φζj (Gj

2) is contained in a polydisc centered at
(′

0,−1/d0(ζ
j)

)
, given
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by

∆

(
0,K2 τ(pj , Cδj)

τ(ζj , εj)

)
×∆

(
0,K2

(
Cδj
εj

)1/2
)
× . . .

. . .×∆

(
0,K2

(
Cδj
εj

)1/2
)
×∆

(
− 1

d0(ζj)
,K2 Cδj

εj

)
. (3.3)

Observe that, if w belongs to the polydisc as defined above, then




|w1| < K2 τ(pj ,Cδj)
τ(ζj ,εj)

,

|wα| < K2
(
Cδj
εj

)1/2

� K2
(
δD(pj)

εj

)1/2

� K2 for 2 � α � n− 1,

|wn| < K2 Cδj
εj

+ 1
d0(ζj)

� K2 δD(pj)
εj

+ 1 � K2 + 1.

(3.4)

It follows from [14] that ε
1/2
j � τ(ζj , εj) and τ(pj , Cδj) � τ(pj , εj) ≈

τ(ζj , εj). As a consequence, we see that if w belongs to either of the sets
(3.2) or (3.4), then |w| is uniformly bounded. Hence, by virtue of the in-

clusions (3.1) and (3.3), it is immediate that the sets ∆
εj
ζj ◦ Φζj (Gj

1) and

∆
εj
ζj ◦ Φζj (Gj

2) are uniformly bounded. This in turn implies that the sets

BDj (z
j , R) cannot cluster at the point at infinity in ∂D∞.

It remains to show that the sets BDj (z
j , R) do not cluster at any finite

point of ∂D∞. Suppose that there is a sequence of points qj ∈ BDj (z
j , R)

such that qj → q0 ∈ ∂D∞ where q0 is any finite boundary point. Recall
Theorem 2.3 of [5] which provides a neighbourhood U of any given bound-
ary point of the limit domain D∞, such that on the portion of each scaled
domain Dj intercepted by U , we have a uniform rate of blow up of the
infinitesimal Kobayashi metric of Dj . More precisely here, there is a neigh-
bourhood U of q0 in Cn, a positive constant C and J ∈ N, such that

KDj (z, v) � C
( |

(
DjΦz(z)(v)

)
1
|

τ
(
z, δDj (z)

) +

n−1∑

α=2

|
(
DjΦz(z)(v)

)
α
|

(δDj (z))1/2
+
|
(
DjΦz(z)(v)

)
n
|

δDj (z)

)

(3.5)

for all z ∈ U ∩Dj with j � J and tangent vector v ∈ Cn. Here, the notation
jΦz(·) is the special boundary chart (as described by (1.4)) corresponding
to z, when z is viewed as a point in the scaled domain Dj . Evidently, the
last component of DΦζ(z)(v) is given by

(
DΦζ(z)(v)

)
n

= 〈ν(ζ), v〉 −
n∑

j=1

∂Q1

∂zj
(′z − ′ζ)vj ,
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from which we get (
DjΦz(z)(v)

)
n

= 〈ν(z), v〉.
Consider a neighbourhood Ũ of z0 disjoint from U and which is compactly
contained in D∞. Then zj ∈ Ũ for all j large. Let γj be any piecewise C1-
path connecting zj = γj(0) and qj = γj(1). Let tj be the last of the timings
of entry of γj into U . That is, tj ∈ (0, 1) is such that the sub-curve of γj

defined by
σj(t) = γj(t) for t ∈ (tj , 1]

is contained entirely in U ∩Dj . We particularly note then that the uniform
lower bound (3.5) holds with (z, v) replaced by (σj(t), σ̇j(t)) for all j large.
Note also that σj is contained in an ε-neighbourhood of ∂Dj for some fixed
uniform ε > 0 and for all j large. It thus follows from (3.5) that

1∫

0

KDj
(
γj(t), γ̇j(t)

)
dt �

∫ 1

tj

KDj
(
σj(t), σ̇j(t)

)
dt

�
1∫

tj

∣∣∣
(
DjΦ(σj(t))(σj(t)

)(
σ̇j(t)

))
n

∣∣∣
δDj

(
σj(t)

) dt

=

1∫

tj

〈
ν

(
σj(t)

)
, σ̇j(t)

〉

δDj
(
σj(t)

) dt.

The fact that the last integrand is positive follows from the considerations as
in the arguments following (2.37). To be more precise, we focus on a stretch
of time where the curve σj has a non-zero component along the normal to
∂Dj at πj

(
σj(t)

)
(as explained in Section 2). It can be checked that this

stretch of time can be taken to be a non-zero constant, uniform in j, since
the domains Dj converge to D∞. Furthermore, it can be checked that the
last integrand is up to a factor of 2 at least

�
〈
ν

(
σj(t)

)
, σ̇j(t)

〉

2 δDj
(
σj(t)

) =
1

2 δDj
(
σj(t)

) d

dt
δDj

(
σj(t)

)
=

1

2

d

dt
log δDj

(
σj(t)

)

so that
1∫

0

KDj
(
γj(t), γ̇j(t)

)
dt � 1

2
log

1

δDj (qj)
− C

for a uniform positive constant C. Finally, taking the infimum over all such
γj , we see that

dkDj (q
j , zj) � 1

2
log

1

δDj (qj)
− C.
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Note that the left hand side here is bounded above by R while the right hand
side becomes unbounded as qj → q0 ∈ ∂D∞. This contradiction completes
the proof of the lemma. �

Once we are able to control the behaviour of Kobayashi balls BDj (z
j , R)

as j → ∞, we intend to use the following comparison estimate due to
K.T. Kim and D. Ma ([37], [35]) to conclude the stability of the integrated
Kobayashi distance under scaling.

Lemma 3.5. — Let D be a Kobayashi hyperbolic domain in Cn with a
subdomain D′ ⊂ D. Let p, q ∈ D′, dkD(p, q) = a and b > a. If D′ satisfies
the condition BD(q, b) ⊂ D′, then the following two inequalities hold:

dkD′(p, q) �
1

tanh(b− a)
dkD(p, q),

KD′(p, v) � 1

tanh(b− a)
KD(p, v).

This statement compares the Kobayashi distance on the subdomain D′

against its ambient domain D. Recall that the estimate dkD � dkD′ is always
true.

The proofs of Lemmas 5.7, 5.8 and 5.9 of [44] go through verbatim in our
setting, thereby, yielding the following two propositions – which are stated
here without proof.

Proposition 3.6. — lim
j→∞

dkDj (z
j , ·) = dkD∞(z0, ·) and lim

j→∞
dkDj (z

0, ·) =

dkD∞(z0, ·). Moreover, the convergence is uniform on compact sets of D∞.

Proposition 3.7. — Fix R > 0, then the sequence of domains BDj (z
j , R)

converges in the Hausdorff sense to BD∞(z0, R). Moreover, for any ε > 0

• BD∞(z0, R) ⊂ BDj (z
j , R + ε), and

• BDj (z
j , R− ε) ⊂ BD∞(z0, R)

for all j large.

Proof of Theorem 1.2(ii). — By the biholomorphic invariance of the
function h, it follows that hD(pj ,Bn) = hDj (z

j ,Bn) and therefore, it suffices
to show that hDj (z

j ,Bn)→ hD∞(z0,Bn). To verify this, let 1/R be a posi-
tive number that almost realizes hD∞(z0,Bn), i.e., 1/R < hD∞(z0,Bn) + ε
for some ε > 0 fixed. Then there exists a biholomorphic imbedding F :
Bn → D∞ satisfying F (0) = z0 and BD∞(z0, R) ⊂ F (Bn). Pick δ > 0 such
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that BD∞(z0, R − ε) ⊂ F (B(0, 1− δ)). Since F (B(0, 1− δ)) is relatively
compact in D∞ and Dj → D∞, it follows that F (B(0, 1− δ)) is compactly
contained in Dj for all large j. Now, by Proposition 3.7, we see that

BDj (z
j , R− 2ε) ⊂ BD∞(z0, R− ε),

and consequently that

BDj (z
j , R− 2ε) ⊂ F (B(0, 1− δ)) ⊂ Dj ,

which, in turn, implies that

hDj (z
j ,Bn) � 1

R− 2ε

for all j large. Therefore, by the choice of R, it follows that

lim sup
j→∞

hDj (z
j ,Bn) � hD∞(z0,Bn). (3.6)

The goal now is to show that

hD∞(z0,Bn) � lim inf
j→∞

hDj (z
j ,Bn).

Firstly, observe that lim infj→∞ hDj (z
j ,Bn) is finite (cf. inequality (3.6)

above) and there is a subsequence hDjk (zjk ,Bn) of hDj (z
j ,Bn) that con-

verges to lim infj→∞ hDj (z
j ,Bn). Let Rk be a sequence of positive numbers

and F jk : Bn → Djk be a sequence of biholomorphic imbeddings with
the property that F jk(0) = zjk , BDjk (zjk , Rk) ⊂ F jk(Bn) and 1/Rk �
hDjk (zjk ,Bn) + ε. Recall the scalings ∆

εjk
ζjk
◦ Φζjk associated with the se-

quence pjk and consider the mappings

θjk :=
(
∆

εjk
ζjk
◦ Φζjk

)−1

◦ F jk : Bn → D,

and note that θjk(0) = pjk → p0 ∈ ∂D as k → ∞. We claim that F jk

admits a convergent subsequence. Indeed, applying Theorem 3.11 from [56]

to θjk assures us that the family ∆
εjk
ζjk
◦ Φζjk ◦ θjk = F jk is normal and

the uniform limit F is a holomorphic mapping from Bn into D∞. Moreover,
F (0) = limk→∞ F jk(0) = z0. Furthermore, by the first part of the proof
and choice of the numbers Rk, it follows that

1/Rk � hDjk (zjk ,Bn) + ε � hD∞(z0,Bn) + 2ε

for all k large. On the other hand, the largest possible radii admissible
in the definition of Fridman’s invariant function hD(pjk ,Bn) (which equals
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hDjk (zjk ,Bn)) is at most 1/c. Hence, we may assume that the sequence Rk

converges to R0 > 0.

We show that F : Bn → D∞ is an imbedding and that F (Bn) contains
the Kobayashi ball BD∞(z0, R0 − 2ε). To this end, it is straightforward to
check that

BDjk (zjk , R0 − ε) ⊂ BDjk (zjk , Rk) ⊂ F jk(Bn)

for all k large. But by Proposition 3.7,

BD∞(z0, R0 − 2ε) ⊂ BDjk (zjk , R0 − ε)

and consequently, that BD∞(z0, R0−2ε) ⊂ F jk(Bn) for all large k. It follows
that BD∞(z0, R0 − 2ε) ⊂ F (Bn), which, in turn, implies that F is non-
constant.

To establish the injectivity of F , consider any point a ∈ Bn. Each map-
ping F jk(·)−F jk(a) never vanishes in Bn \ {a} because of the injectivity of
F jk in Bn. Applying Hurwitz’s theorem to the sequence F jk(·) − F jk(a) ∈
O (Bn \ {a},Cn), we have that F (z) 
= F (a) for all z ∈ Bn \ {a}. Since a is
any arbitrary point of Bn, this exactly means that F is injective.

To conclude, observe that the above analysis shows that R0−2ε is a can-
didate for the infimum that defines hD∞(z0,Bn), and hence hD∞(z0,Bn) �
1/ (R0 − 2ε). This last observation, in turn, implies that

hD∞(z0,Bn) � lim inf
j→∞

hDj (z
j ,Bn)

as desired.

4. A quantitative description of Kobayashi balls in terms
of Euclidean parameters - Proof of Theorem 1.3

The fact that the topology induced by the Kobayashi distance and the
pseudo-distance d′ coincide (indeed, with the Euclidean topology) means
that

Q (p, C1(p,R)δD(p)) ⊂ BD(p,R) ⊂ Q (p, C2(p,R)δD(p)) (4.1)

holds true for each p ∈ D ∩ U and for some positive constants C1(p,R),
C2(p,R) (which depend on the point p, the radius R and the domain D).
The purpose of Theorem 1.3 is to show that these constants can be chosen
independent of the point p; such a uniform ‘ball-box’ estimate is expected
to naturally follow from theorem 1.1. Indeed it does; but working it out
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rigorously is not trivial. The proof is based on the fact that the integrated
Kobayashi distance is stable under scaling (cf. Propositions 3.6 and 3.7).

Proof of Theorem 1.3. — For p ∈ D, let us first prove that Q (p, C1δD(p))
⊂ BD(p,R) for some uniform constant C1. Suppose that this is not the
case. Then there are points pj ∈ D, p0 ∈ ∂D, pj → p0 and a sequence of
positive numbers Cj → 0 with the property that for each j, the ‘polydisc’
Q

(
pj , CjδD(pj)

)
is not entirely contained in the Kobayashi ball BD(pj , R).

Applying a biholomorphic change of coordinates, if needed, we may as-
sume that p0 is the origin and the domain D near the origin is defined
by

{
z ∈ Cn : 2�zn +

2m∑

l=2

Pl(z1) + |z2|2 + . . . + |zn−1|2

+

n−1∑

α=2

∑

j+k�m
j,k>0

�
((

bαjkw
j
1w

k
1

)
wα

)
+ terms of higher weight < 0

}

as in (1.3). Denote by ζj , the point on ∂D closest to pj chosen such that
ζj = pj + (′0, εj). Then εj ≈ δD(pj) by construction. Furthermore, pick
points qj ∈ Q

(
pj , CjδD(pj)

)
that lie on the boundary of the Kobayashi ball

BD(pj , R). The idea is to scale D with respect to the sequence pj → p0,

and analyse the sets Q
(
pj , CjδD(pj)

)
under the scalings ∆

εj
ζj ◦ Φζj . Recall

from the proof of Lemma 3.4 that the images ∆
εj
ζj ◦ Φζj

(
Q

(
pj , CjδD(pj)

))

are contained in polydiscs centered at
(′0,−1/d0(ζ

j)
)
, given by

∆

(
0,K2 τ

(
pj , CjδD(pj)

)

τ(ζj , εj)

)
×∆

(
0,K2

(
CjδD(pj)

εj

)1/2
)
× . . . (4.2)

. . .× ∆

(
0,K2

(
CjδD(pj)

εj

)1/2
)
×∆

( −1

d0(ζj)
,
K2CjδD(pj)

εj

)
,

where K > 0 is independent of j. Among other things, S. Cho in [12]
proved that τ(ζj , εj) ≈ τ(pj , εj). But we know that δD(pj) ≈ εj so that
τ

(
pj , CjδD(pj)

)
� Cjτ(ζj , εj). Also, d0(ζ

j) ≈ 1 and Cj → 0. These es-
timates show that the sets described in (4.2) are uniformly bounded, and

consequently that, ∆
εj
ζj ◦Φζj

(
Q

(
pj , CjδD(pj)

))
are also uniformly bounded.

In particular, the sequence ∆
εj
ζj ◦ Φζj (qj) is bounded and since Cj → 0, we

have ∆
εj
ζj ◦ Φζj (qj)→ (′0,−1).
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Observe that dkD(pj , qj) = R by construction. Since the scalings ∆
εj
ζj ◦

Φζj : D → Dj are isometries in the Kobayashi metric on D and Dj , it
follows that

dkDj
(
∆

εj
ζj ◦ Φζj (pj),∆

εj
ζj ◦ Φζj (qj)

)
= dkD(pj , qj) = R

or, equivalently that

dkDj
(
(′0,−1/d0(ζ

j)),∆
εj
ζj ◦ Φζj (qj)

)
= R.

But we know that ∆
εj
ζj ◦ Φζj (qj) → (′0,−1). Hence, it follows from Propo-

sition 3.6 that dkD∞ ((′0,−1), (′0,−1)) = R which is not possible. This con-
tradiction validates that there is a constant C1 (uniform in p) such that
Q

(
p, C1δD(p)

)
is contained in the Kobayashi ball BD(p,R).

To verify the inclusion BD(p,R) ⊂ Q(p, C2 δD(p)) for some uniform
constant C2, we suppose, on the contrary, that this does not hold true.
Evidently, in view of (4.1), there are points pj ∈ D, p0 ∈ ∂D, pj → p0

and a sequence of positive numbers Cj → +∞ such that – for each j,
Q

(
pj , CjδD(pj)

)
does not contain the Kobayashi ball BD(pj , R). As be-

fore, pick points ζj ∈ ∂D closest to pj and define εj , D
j , Φζj ,∆

εj
ζj and D∞

analogously. Furthermore, choose qj in the complement of the closure of
Q

(
pj , CjδD(pj)

)
such that qj ∈ BD(pj , R), so that, as before,

dkDj
(
∆

εj
ζj ◦ Φζj (pj),∆

εj
ζj ◦ Φζj (qj)

)
= dD(pj , qj) < R,

and consequently, that

dkDj
(
(′0,−1/d0(ζ

j)),∆
εj
ζj ◦ Φζj (qj)

)
< R,

which implies that

∆
εj
ζj ◦ Φζj (qj) ∈ BDj (z

j , R) ⊂ BD∞(z0, R + ε)

for all j large. Here the last inclusion follows from Proposition 3.7 and as
before, (′0,−1) and (′0,−1/d0(ζ

j)) are written as z0 and zj respectively for
brevity. The above observation can be restated as

dkD∞

(
∆

εj
ζj ◦ Φζj (qj), z0

)
< R + ε. (4.3)

However, we claim that
∣∣∣∆εj

ζj ◦ Φζj (qj)− z0
∣∣∣→ +∞,
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which violates (4.3). Therefore, the theorem is completely proven once the

claim is established. To prove the claim, recall that Φζj (pj) =
(′

0,−εj/d0(ζ
j)

)

and d0(ζ
j) ≈ 1. Therefore, we see that pj ∈ Q(ζj , εj). Next, Proposition 3.5

of [56] quickly leads to the following statement: Q(ζj , εj) ⊂ Q(pj , Cεj) for
some uniform positive constant C. Moreover, δD(pj) ≈ εj so that
Q(ζj , CCjδD(pj)) ⊂ Q

(
pj , CjδD(pj)

)
, where the constant C is independent

of j. Hence, qj lies in the complement of Q(ζj , CCjδD(pj)), by construction,
and therefore, the first component

∣∣∣
(
∆

εj
ζj ◦ Φζj (qj)

)
1

∣∣∣ �
τ
(
ζj , CCjδD(pj)

)

τ(ζj , εj)
� Cj → +∞.

As a consequence,
∣∣∣∆εj

ζj ◦ Φζj (qj)− (′0,−1)
∣∣∣→ +∞, and hence the claim.

5. Proof of Theorem 1.4

Suppose there exists a biholomorphism f from D1 onto D2 with the
property that q0 belongs to the cluster set of f at p0. To begin with, we
assert that f extends as a continuous mapping to p0. This requires the fact
that p0 and q0 are both plurisubharmonic barrier points (cf. [55], [17]). For
the strongly pseudoconvex case, this is well known due to Fornaess and
Sibony ([23]), and for smooth pseudoconvex finite type point q0, the above
statement was proved in [12], [55].

Assume that D1 and D2 are given by a smooth defining functions r1 and
r2 respectively, both p0 = 0 and q0 = 0 and that ∂r1

∂z̄ (p0) = (′0, 1) = ∂r2
∂z̄ (q0).

Let qj be a sequence of points in D2 converging to q0 along the inner normal
to the origin, i.e., qj = (′0,−δj), each δj > 0 and δj ↘ 0. Since f : D1 → D2

is a biholomorphism and 0 ∈ clf (0), there exists a sequence pj ∈ D1 with
pj → 0 such that f(pj) = qj . Now, scale D1 with respect to {pj} and D2

with respect to {qj}.

To scale D1, recall that by [47], for each ξ near p0 ∈ ∂D1, there is
a unique automorphism hξ of Cn with hξ(ξ) = 0 such that the domain
hξ(D1) is given by

{
z ∈ Cn : 2�

(
zn + Kξ(z)

)
+ Hξ(z) + αξ(z) < 0

}

where Kξ(z) =

n∑

i,j=1

aij(ξ)zizj , H
ξ(z) =

n∑

i,j=1

bij(ξ)ziz̄j and αξ(z) = o(|z|2)

with Kξ(′z, 0) ≡ 0 and Hξ(′z, 0) ≡ |′z|2. The automorphisms hξ converge
to the identity uniformly on compact subsets of Cn as ξ → p0. For ξ =
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(ξ1, ξ2, . . . , ξn) ∈ D1 as above, consider the point ξ̃ = (ξ1, ξ2, . . . , ξn−1, ξn+ε)
where ε > 0 is chosen to ensure that ξ̃ ∈ ∂D1. Then the actual form of hξ

shows that hξ̃(ξ) = (′0,−ε).

In order to apply Pinchuk’s scalings to the sequence pj → p0 ∈ ∂D1,
choose ξj ∈ ∂D1 such that if pj = (′pj , pjn), then ξj = (′pj , pjn+εj) ∈ ∂D1 for
some εj > 0. Then εj ≈ δD1

(pj) by construction. Now, define the dilations

T j(z1, z2, . . . , zn) =
(
εj
− 1

2 z1, . . . , εj
− 1

2 zn−1, εj
−1zn

)

and the dilated domains Dj
1 = T j ◦ hξj (D1). It was shown in [47] that Dj

1

converge to

D1,∞ =
{
z ∈ Cn : 2�zn + |z1|2 + |z2|2 + . . . + |zn−1|2 < 0

}

which is the unbounded realization of the unit ball in Cn.

For clarity and completeness, we briefly describe the scalings for the
domain D2, which are simpler this time as the sequence qj approaches q0

normally. To start with, consider ∆j : Cn → Cn, a sequence of dilations,
defined by

∆j(w1, w2, . . . , wn−1, wn) =
(
δ
− 1

2m
j w1, δ

− 1
2

j w2, . . . , δ
− 1

2
j wn−1, δ

−1
j wn

)
.

Note that ∆j(′0,−δj) = (′0,−1) for all j and the domains Dj
1 = ∆j(D1)

converge in the Hausdorff sense to

D2,∞ =
{
w ∈ Cn : 2�wn + Q2m(w1, w1) + |w2|2 + . . . + |wn−1|2 < 0

}
,

where Q2m is the homogeneous polynomial of degree 2m that coincides with
the polynomial of same degree in the homogeneous Taylor expansion of the
defining function for ∂D2 near the origin.

By the biholomorphic invariance of the function h, it follows that
hD1(p

j ,Bn) = hD2(q
j ,Bn). Then Theorem 1.2 assures us that the right

hand side above converges to hD2,∞

(
(′0,−1),Bn

)
. Furthermore, since ∂D1

is strongly pseudoconvex near p0, by Theorem 3.2, we see that the left hand
side above hD1(p

j ,Bn)→ 0 as j →∞. It follows that hD2,∞

(
(′0,−1),Bn

)
=

0. As a result, D2,∞ is biholomorphic to Bn by virtue of Proposition 3.1.
Therefore, the problem has been quickly reduced to investigation for the
special case of model domains, namely, D2,∞ and Bn, which are algebraic.

By composing with a suitable Cayley transform, if necessary, we may as-
sume that there is a biholomorphism F from D1,∞ (which is biholomorphic
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to Bn) onto D2,∞ with the additional property that the cluster set of F−1

at some point (′0, ιa) ∈ ∂D2,∞ (for a ∈ R) contains a finite point of ∂D1,∞.
Then Theorem 2.1 of [16] tells us that F−1 extends holomorphically past
the boundary to a neighbourhood of (′0, ιa). It turns out that F−1 extends
biholomorphically across some point (′0, ιa0) ∈ ∂D2,∞. To prove this claim,
it suffices to show that the Jacobian of F−1 does not vanish identically on
the complex plane

L =
{
(′0, ιa) : a ∈ R

}
⊂ ∂D2,∞.

If the claim were false, then the Jacobian of F−1 vanishes on the entire
wn-axis, which intersects the domain D2,∞. However, F−1 is injective on
D2,∞, and consequently, has nowhere vanishing Jacobian determinant on
D2,∞. This contradiction proves the claim.

Furthermore, it is evident that the translations in the imaginary wn-
direction leave D2,∞ invariant. Therefore, we may assume that (′0, ιa0) is
the origin and that F preserves the origin. Now recall that the Levi form is
preserved under local biholomorphisms around a boundary point, thereby
yielding the strong pseudoconvexity of ∂D2,∞. In particular, Q2m(w1, w1) =
|w1|2 which gives the strong pseudoconvexity of q0 ∈ ∂D2. This contradicts
the assumption that the Levi form of ∂D2 has rank exactly n − 2 at q0.
Hence the result.

6. Continuous extension of isometries – Proof of Theorem 1.5

The proof of Theorem 1.5 will be accomplished in several steps. The
first step is to analyse the behaviour of the Kobayashi metric on a smoothly
bounded pseudoconvex Levi corank one domain.

Proposition 6.1. — Let D be a bounded domain in Cn. Assume that
∂D is smooth pseudoconvex and of finite type near a point p0 ∈ ∂D. Suppose
further that the Levi form of ∂D has rank at least n− 2 near p0. Then for
any ε > 0, there exist positive numbers r2 < r1 < ε, C and C ′ (where r1, r2,
C and C ′ depend on A) such that

dkD(A,B) � C ′

2
log

1

δD(B)
− C, A ∈ D \B(p0, r1), B ∈ B(p0, r2) ∩D.

Proof. — By Theorem 3.10 of [56], there exists a neighbourhood U of
p0 in Cn such that

KD(z, v) ≈ (DΦz(z)v)1
τ (z, δD(z))

+
(DΦz(z)v)2

(δD(z))
1/2

+ · · ·+ (DΦz(z)v)n−1

(δD(z))
1/2

+
(DΦz(z)v)n

δD(z)

(6.1)

– 358 –



Bounds for invariant distances on pseudoconvex Levi corank one domains and applications

for all z ∈ U ∩D and v a tangent vector at z. The neighbourhood U is so
chosen to avoid the point A. Let γ be a piecewise C1-smooth curve in D
joining A and B, i.e., γ(0) = A and γ(0) = B. As we travel along γ starting
from A, there is a last point α on the trace γ with α ∈ ∂U∩D. Let γ(t0) = α
and denote by σ, the subcurve of γ with end-points α and B. Observe that
the trace σ is contained in a δ-neighbourhood of ∂D for some fixed δ > 0.
Here we choose δ > 0 in such a way that the δ-neighbourhood of ∂D does
not contain the point A. Evidently,

∫ 1

0

KD (γ(t), γ̇(t)) dt �
∫ 1

t0

KD (σ(t), σ̇(t)) dt.

From this point, proceeding exactly as in the proof of Lemma 3.4, it follows
using (6.1) that

∫ 1

0

KD (γ(t), γ̇(t)) dt � C ′

2
log

1

δD(B)
− C

for some positive constants C and C ′. Now, taking the infimum over all such
paths γ yields

dkD(A,B) � C ′

2
log

1

δD(B)
− C

as desired. �

Proposition 6.2. — Let f : D1 → D2 be a C1-Kobayashi isometry
between two bounded domains in Cn. Let p0 and q0 be points on ∂D1 and
∂D2 respectively. Assume that ∂D1 is C∞-smooth pseudoconvex of finite
type in a neighbourhood U of p0 and the Levi form of ∂D1 has rank at least
n− 2 near p0. Suppose that ∂D2 is C∞-smooth pseudoconvex finite type in
a neighbourhood V of q0. Then there exist smaller neighbourhoods U1 ⊂ U ,
V2 ⊂ V of p0 and q0 respectively with the following property: if z is an
arbitrary point of U1 ∩D1 such that f(z) ∈ V2 ∩D2, then

|df(z)v| � C
|v|

(δD1
(z))

ν

where ν ∈ (0, 1) and C > 0 are constants independent of z ∈ U1 ∩D1.

Proof. — Since ∂D2 is smooth pseudoconvex of finite type near q0 ∈
∂D2, it follows from [12] that there exists a neighbourhood V2 ⊂ V of q0

and constants C1 > 0 and η ∈ (0, 1) such that

KD2(w, u) � C1
|u|

(δD2(w))
η
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for all w ∈ V2 ∩ D2 and tangent vectors u. Furthermore, since f is a C1-
Kobayashi isometry from D1 onto D2, it follows that

C1
|df(z)v|

(δD2 (f(z)))
η � KD2 (f(z), df(z)v) = KD1(z, v) � |v|

δD1
(z)

,

and hence,

|df(z)v| � (δD2
(f(z)))

η |v|
δD1

(z)
(6.2)

for z ∈ D1 such that f(z) ∈ V2 ∩D2 and tangent vectors v.

Fix A ∈ D1 and let U1 ⊂ U be a neighbourhood of p0 such that

dkD1
(z,A) � C2

2
log

1

δD1(z)
− C3

for z ∈ U1 ∩ D1 and some uniform positive constants C2, C3. This follows
from Proposition 6.1 above. Without loss of generality, we may assume that
the constant C2 is at most 1− η. Moreover,

dkD1
(z,A) = dkD2

(f(z), f(A)) � 1

2
log

1

δD2 (f(z))
+ C4,

and hence
δD2 (f(z)) � C5 (δD1(z))

C2 (6.3)

for all z in U1 ∩D1 and uniform constants C4, C5.

Fix neighbourhoods U1 ⊂ U , V2 ⊂ V of p0 and q0 respectively as above.
If z is any point of U1 ∩D1 such that f(z) ∈ V2 ∩D2, then it follows from
inequalities (6.2) and (6.3) that

|df(z)v| � |v|
(δD1

(z))
ν .

where ν = 1− C2 − η. �

Proof of Theorem 1.5. — The proof involves two steps. The first step is
to show that f extends to D1 ∪ {p0} as a continuous mapping. Once this
claim is established, the second step is to verify that f is continuous on a
neighbourhood of p0 in D1.

By hypothesis, there exists a sequence pj ∈ D1 with pj → p0 and
f(pj) → q0. Assume, on the contrary, that there exists a sequence sj in
D1 with sj → p0 ∈ ∂D1 such that the sequence f(sj) does not converge
to q0. Consider polygonal paths γj in D1 joining pj and sj defined as fol-
lows: for each j, choose pj0, sj0 on ∂D1 closest to pj and sj respectively. Set
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pj
′
= pj − |pj − sj |ν(pj0) and sj

′
= sj − |pj − sj |ν(sj0) where ν(z) denotes

the outward unit normal to ∂D1 at z ∈ ∂D1. Define γj = γj1 ∪ γj2 ∪ γj3 as
the union of three segments, where

• γj1 is the straight line path joining pj and pj
′
along the inner normal

to ∂D1 at the point pj0,

• γj2 is the straight line joining pj
′

and sj
′
, (in case, the straight line

segment joining pj
′
and sj

′
does not lie entirely in D1, take γj2 to be

any curve in D1 at a constant distance from ∂D1 and joining pj
′
and

sj
′
),

• γj3 is the straight line segment joining sj
′

and sj along the inward
normal to ∂D1 at the point sj0.

Evidently, the composition f ◦ γj yields a continuous path in D2 joining
f(pj) and f(sj). Let U1 ⊂ U and V2 ⊂ V be neighbourhoods of p0 and
q0 respectively as given by Proposition 6.2. Fix a smaller neighbourhood
V ′ ⊂ V2 of q0 with V ′ relatively compact in V2. For each j, pick points
uj ∈ ∂V ′ ∩ D2 on the trace(f ◦ γj). Let tj ∈ D1 be such that f(tj) = uj .
Note that the points tj lie on trace(γj) and hence tj → p0 by construction.
Moreover, f(tj) = uj → u0 ∈ V2∩∂D2, where u0 is different from q0. Denote
by σj , the sub-curve of γj with end-points pj and tj . Now, trace(f ◦ σj) is
contained in V2 ∩D2, and hence, it follows from Proposition 6.2 that there
are constants ν ∈ (0, 1) and C > 0 such that

|df(z)v| � C
|v|

(δD1(z))
ν

for all points z on trace(σj). Integrating along the path σj , we obtain that

∣∣f(tj)− f(pj)
∣∣ �

∣∣tj − pj
∣∣1−ν ,

a contradiction. Hence, f extends continuously to D1 ∪ {p0}.

Now, we use the strong pseudoconvexity of ∂D2 at q0 and the continuity
of f at p0 to get neighbourhoods U ′ ⊂ U and V ′′ ⊂ V of p0 and q0 respec-
tively, satisfying the following property: V ′′ ∩ ∂D2 is C2-smooth strongly
pseudoconvex and f(U ′ ∩D1) ⊂ V ′′ ∩D2. By the lower semi-continuity of
rank, there is a neighbourhood U ′′ ⊂ U ′ of p0, U ′′ compactly contained in
U ′ such that U ′′ ∩ ∂D1 is of Levi-rank at least n− 2. Furthermore, we may
assume U ′′ ∩ ∂D1 to be finite type and pseudoconvex. Let a0 ∈ U ′′ ∩ ∂D1

and aj be a sequence of points in D1 with aj → a0. The goal now is to
show that f extends continuously to the point a0. There are two cases to
be considered. After passing to a subsequence, if needed,
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(i) f(aj)→ b0 ∈ V ′′ ∩ ∂D2,

(ii) f(aj)→ b1 ∈ V ′′ ∩D2 as j →∞.

We investigate case (ii) first. Fix a′ ∈ U ′ ∩ D1 and observe that the
quantity dkV ∩D2

(
f(aj), f(a′)

)
is uniformly bounded (say by R) because of

the completeness of V ∩D2. Therefore, for all j large

dkD1
(aj , a′) = dkD2

(
f(aj), f(a′)

)
� dkV ∩D2

(
f(aj), f(a′)

)
< R,

which implies that a′ ∈ BD1
(aj , R). This contradicts the completeness of

D1. Hence, the sequence f(aj)→ b0 ∈ V ′′∩∂D2 and consequently b0 belongs
to the cluster set of a0 under f . From this point, proceeding exactly as in
the first part of the proof yields that f is continuous at the point a0. Since
a0 ∈ U ′′ ∩ ∂D1 was arbitrary, it follows that f extends as a continuous map
on U ′′ ∩ ∂D1 and Theorem 1.5 is completely proven.

Next is the corrected version of one of the earlier works of the second
author (Theorem 1.2 of [42]), which follows as a corollary of Theorem 1.5.

Theorem 6.3. — Let f : D1 → D2 be a C1-Kobayashi isometry between
two bounded domains in C2. Let p0 and q0 be points on ∂D1 and ∂D2 re-
spectively. Assume that ∂D1 is C∞-smooth weakly pseudoconvex of finite
type near p0 and that ∂D2 is C2-smooth strongly pseudoconvex in a neigh-
bourhood U2 of q0. Suppose that q0 belongs to the cluster set of p0 under f .
Then f extends as a continuous mapping to a neighbourhood of p0 in D1.

7. Kobayashi metric of a complex ellipsoid in Cn –
Proof of Theorem 1.6

Let D be a domain in Cn, z ∈ D and v ∈ Cn a tangent vector at the point
z. Recall that a mapping φ ∈ O(∆, D) is said to be a complex geodesic for
(z, v) if φ(0) = z and KD(z, v)φ′(0) = v. Such mappings are also sometimes
referred to as Kobayashi extremals in the literature. A complex ellipsoid is
a domain of the form

E(2m1, . . . , 2mn) =
{
z ∈ Cn : |z1|2m1 + . . . + |zn|2mn < 1

}

where mj > 0 for each j = 1, . . . , n. It is well known that complex ellipsoids
are convex if and only if mj � 1/2 for j = 1, . . . , n. Moreover, they are taut
domains (i.e., O(∆, E(2m1, . . . , 2mn)) is a normal family) and hence, there
always exist complex geodesics through a given point z ∈ E(2m1, . . . , 2mn)
and any tangent vector at the point z. The primary goal of this section is to
describe the Kobayashi metric on the complex ellipsoids for the case m1 �
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1/2 and m2 = · · · = mn = 1 – notice that these are exactly the domains
E2m introduced in (1.1). To understand the Kobayashi metric on E2m, we
use the characterisation of all complex geodesics φ : ∆→ E(2m1, . . . , 2mn),
each mj � 1/2, due to Jarnicki, Pflug and Zeinstra ([34]). Observe that it
suffices to consider only those complex geodesics φ = (φ1, . . . , φn) : ∆→ Cn

for which

φj is not identically zero for any j = 1, . . . , n. (7.1)

After a suitable permutation of variables, we may assume that for some
0 � s � n,

{
0 /∈ φj(∆) for j = 1, . . . , s and
0 ∈ φj(∆) for j = s + 1, . . . , n.

(7.2)

The main result of ([34]) that is needed is:

Theorem 7.1. — A non-constant mapping φ = (φ1, . . . , φn) : ∆ → Cn

with (7.1) and (7.2) is a complex geodesic in E(2m1, . . . , 2mn) if and only
if φ is of the form

φj(λ) =





aj

(
1−ᾱjλ
1−ᾱ0λ

)1/mj

for j = 1, . . . , s,

aj

(
λ−αj
1−ᾱjλ

) (
1−ᾱjλ
1−ᾱ0λ

)1/mj

for j = s + 1, . . . , n,

where

aj ∈ C \ {0} for j = 1, . . . , n,

α1, . . . , αs ∈ ∆̄, α0, αs+1, . . . , αn ∈ ∆,

α0 =

n∑

j=1

|aj |2mjαj ,

1 + |α0|2 =

n∑

j=1

|aj |2mj (1 + |αj |2),

the case s = 0, α0 = α1 = · · · = αn is excluded and,

the branches of powers are such that 11/mj = 1, j = 1, . . . , n.

Proof of Theorem 1.6. — We proceed by induction on the index n. First,
note that the case n = 2 is Theorem 2 of [10]. Next, assume that the result
holds for all integers between 2 and n− 1. To prove the inductive step, fix
(p, 0, . . . , 0) ∈ E2m and (v1, . . . , vn) ∈ Cn. The main objective is to find an
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effective formula for τ = KE2m
((p, 0, . . . , 0), (v1, . . . , vn)). It is well known

(see, for example, Proposition 2.2.1 in [33]) that if p = 0, then

τ = KE2m
((0, 0, . . . , 0), (v1, . . . , vn)) = qE2m

(v1, . . . , vn) (7.3)

where qE2m denotes the Minkowski functional of E2m. Furthermore,
qE2m

(v1, . . . , vn) is the only positive solution of the equation

|v1|2m
(qE2m

(v1, . . . , vn))
2m +

|v2|2
(qE2m

(v1, . . . , vn))
2 + · · ·+ |vn|2

(qE2m
(v1, . . . , vn))

2 = 1.

(7.4)

For 0 < p < 1, if v̂ = (v2, . . . , vn) = 0̂, then

τ = KE2m ((p, 0, . . . , 0), (v1, 0, . . . , 0)) = K∆(p, v1) =
|v1|

1− p2
.

Hence, we may assume that v̂ 
= 0̂ in the sequel.

Let φ : ∆→ E2m be a complex geodesic with φ(0) = (p, 0̂) and τφ′(0) =
(v1, . . . , vn). Evidently, φ1 is not identically zero and φ2, . . . , φn cannot be
identically zero simultaneously. Suppose that φ4 = · · · = φn ≡ 0, then the
mapping φ̃ = (φ1, φ2, φ3) : ∆ → E(2m, 2, 2) ⊂ C3 is a complex geodesic
through the point (p, 0, 0) in E(2m, 2, 2) and consequently,

τ = KE2m
((p, 0, . . . , 0), (v1, . . . , vn)) = KE(2m,2,2) ((p, 0, 0), (v1, v2, v3)) .

The right hand side above is known explicitly by induction hypothesis,
thereby, yielding an explicit formula for τ . The above analysis shows that we
may assume that φj is not identically zero for any j = 1, . . . , n. This assump-
tion does not restrict the generality, since mappings with zero-components
are exactly lower dimensional complex geodesics, as observed above. Then,
φ satisfies (7.1) and (7.2) (with s = 0 or s = 1).

Consider the case s = 1 first. Applying Theorem 7.1 gives that

φ1(λ) = a1

(
1− ᾱ1λ

1− ᾱ0λ

)1/m

,

φj(λ) = aj

(
λ− αj

1− ᾱjλ

) (
1− ᾱjλ

1− ᾱ0λ

)
for j = 2, . . . , n,

where aj , αj are as stated in Theorem 7.1. It follows that

φ(0) = (a1,−a2α2, . . . ,−anαn) and

φ′1(0) = a1(ᾱ0 − ᾱ1)/m,

φ′j(0) = aj
(
(1− |αj |2)− αj(ᾱ0 − ᾱj)

)
for j = 2, . . . , n.
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But we know that φ(0) = (p, 0̂) and τφ′(0) = (v1, . . . , vn). Therefore,

a1 = p, α2 = · · · = αn = 0, and

τp(ᾱ0 − ᾱ1)/m = v1, τa2 = v2, . . . , τan = vn.

These conditions, in turn, imply that

α0 = p2mα1, and

1 + |α0|2 = p2m
(
1 + |α1|2

)
+ |a2|2 + . . . + |an|2,

and consequently,

τpᾱ1(p
2m − 1)/m = v1, and (7.5)

1 + p4m|α1|2 = p2m
(
1 + |α1|2

)
+ |v2|2/τ2 + . . . + |vn|2/τ2. (7.6)

Eliminating τ from the above two equations, we get

p2
(
|v2|2 + . . . + |vn|2

)

m2|v1|2
=

1− |α1|2p2m

|α1|2 (1− p2m)
.

Observe that the right hand side above is at least 1 and hence for

m2|v1|2
|v2|2 + . . . + |vn|2

� p2,

solving equations (7.5) and (7.6) for τ , it follows that

τ =

(
m2p2m−2|v1|2

(1− p2m)2
+
|v2|2

1− p2m
+ . . . +

|vn|2
1− p2m

)1/2

. (7.7)

To summarize, the condition s = 1 is equivalent to requiring that m2|v1|2
|v2|2+···+|vn|2

� p2 and in this case, τ is defined by (7.7).

For the second case, when s = 0, let u and t be parameters as defined by
equations (1.7) and (1.8) respectively. Observe that the condition s = 0 is
equivalent to requiring that u > p. Moreover, the parameter t is a solution
of

(m− 1)2p2t2 −
(
u2 + 2m(m− 1)p2

)
t + m2p2 = 0, (7.8)

and hence, satisfies 0 < t < 1. As before, Theorem 7.1 applied once again
gives

φ1(λ) = a1

(
λ− α1

1− ᾱ1λ

) (
1− ᾱ1λ

1− ᾱ0λ

)1/m

,

φj(λ) = aj

(
λ− αj

1− ᾱjλ

) (
1− ᾱjλ

1− ᾱ0λ

)
for j = 2, . . . , n,
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where aj , αj satisfy the conditions listed in Theorem 7.1. It is immediate
that

φ(0) = (−a1α1, . . . ,−anαn) and

φ′1(0) = a1

(
(1− |α1|2)−

α1

m
(ᾱ0 − ᾱ1)

)
,

φ′j(0) = aj
(
(1− |αj |2)− αj(ᾱ0 − ᾱj)

)
for j = 2, . . . , n.

It follows that

−a1α1 = p, α2 = . . . = αn = 0, and

τa1

(
1− |α1|2 −

α1

m
(ᾱ0 − ᾱ1)

)
= v1, τa2 = v2, . . . , τan = vn.

As a consequence,

α0 = |a1|2mα1, and

1 + |α0|2 = |a1|2m
(
1 + |α1|2

)
+ |a2|2 + . . . + |an|2,

so that

|v1|
τ

=
p

|α1|

(
1− |α1|2 −

|α1|2
m

( p2m

|α1|2m
− 1

))
, and (7.9)

1 +
p4m

|α1|4m−2
− p2m

|α1|2m
(
1 + |α1|2

)
=
|v2|2
τ2

+ . . . +
|vn|2
τ2

. (7.10)

Writing |α1| = α, the goal now is to solve the equations (7.9) and (7.10) for
α. To achieve this, first eliminate τ from the above two equations, so that

(
(m− 1)α2m −mα2m−2 + p2m

)2

α4m−2 − p2mα2m − p2mα2m−2 + p4m
=

m2|v1|2
p2 (|v2|2 + . . . + |vn|2)

.

But the right hand side above is exactly the quotient u2/p2 and hence,

p2
(
(m− 1)α2m −mα2m−2 + p2m

)2
=

u2
(
α4m−2 − p2mα2m − p2mα2m−2 + p4m

)
.

The above equality can be rewritten as (refer Example 8.4.7 of [33])

α2m − tα2m−2 − (1− t)p2m = 0, or (7.11)

(m− 1)2
p2

u2
α2m − m2p2

tu2
α2m−2 +

(
u2 − p2

)

(1− t)u2
p2m = 0.

Further observe that the equation (7.11) is equivalent to

α = qE(2m,2)

(
p(1− t)

1
2m , t

1
2

)
, (7.12)
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where qE(2m,2) denotes the Minkowski functional of

E(2m, 2) =
{
z ∈ C2 : |z1|2m + |z2|2 < 1

}
, and therefore satisfies

|v1|2m(
qE(2m,2)(v1, v2)

)2m +
|v2|2(

qE(2m,2)(v1, v2)
)2 = 1.

It follows from the formulation (7.12) that the equation (7.11) has a unique
solution α in the open interval (0, 1). Once we know α rather explicitly, it
is easy to compute τ – Indeed, substituting (7.11) into the expression (7.9)
yields

τ =
mα2m−1|v1|

p (m(1− t) + t) (p2m − α2m−2)

which, in turn, equals

τ =
mα(1− t)|v1|

p(1− α2) (m(1− t) + t)
whenever u > p. (7.13)

The equations (7.7) and (7.13) together give a comprehensive formula for
the infinitesimal Kobayashi metric of the ellipsoid E2m.

We assume that m > 1/2 for the rest of this section. To complete the
proof, it remains to establish smoothness of KE2m

. To this end, we first show
that away from the zero section of the tangent bundle of the domain E2m,
both expressions (7.7) and (7.13) are C1-smooth in each of the variables
p, v1, . . . , vn. While it is straightforward to infer smoothness from (7.7), to
verify the claim for (7.13), the following observation will be needed: The
Kobayashi indicatrix of the complex ellipsoid E(2m, 2) at the origin, i.e.,
{(v1, v2) ∈ C2 : KE(2m,2) ((0, 0), (v1, v2)) = 1} is given by the equation
|v1|2m + |v2|2 = 1. The indicatrix is evidently C1 since m > 1/2. As a
consequence, the Kobayashi metric KE(2m,2) ((0, 0), (v1, v2)) must be a C1-
function of the variables v1 and v2. Equivalently, the Minkowski functional
qE(2m,2) of the domain E(2m, 2) (which equals KE(2m,2) ((0, 0), (v1, v2))) is
C1. It follows from (7.12) that α is C1-smooth with respect to the parameter
t, which in turn, varies smoothly as a function of p, v1, . . . , vn. This proves
the claim.

Recall that every point of E2m is in the orbit of the point (p, 0̂) for
0 � p < 1. Moreover, since the action of the automorphism group of E2m

is real analytic, to conclude that KE2m is C1, it suffices to show that the
Kobayashi metric is C1-smooth at the point v = (v1, v̂) 
= (0, 0̂) in the
tangent space T(p,0̂)E2m = Cn with u = p. We will show that for each
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j = 1, . . . , n,

lim
p�u→p

∂KE2m

∂|vj |
(
(p, 0̂), (v1, v̂)

)
= lim

p<u→p

∂KE2m

∂|vj |
(
(p, 0̂), (v1, v̂)

)
, and (7.14)

lim
p→u+

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
= lim

p→u−

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
. (7.15)

When u � p, we have

KE2m

(
(p, 0̂), (v1, v̂)

)
=

(
m2p2m−2|v1|2

(1− p2m)2
+
|v2|2

1− p2m
+ . . . +

|vn|2
1− p2m

)1/2

from which it follows that

lim
p�u→p

∂KE2m

∂|v1|
(
(p, 0̂), (v1, v̂)

)
=

mp2m−1

1− p2m
, and (7.16)

lim
p�u→p

∂KE2m

∂|v2|
(
(p, 0̂), (v1, v̂)

)
=

(
m2|v1|2 − p2|v3|2 − . . .− p2|vn|2

m2|v1|2
)1/2

.

(7.17)

The computation in the second case, 0 < p < u, will involve several steps.
To begin with, it is straightforward to check that

lim
p<u→p

t = 1 and lim
p<u→p

α = 1. (7.18)

Next, differentiating (7.8) with respect to |v1| gives

∂t

∂|v1|
= − 2u2t

|v1| (2(m− 1)p2 (m(1− t) + t) + u2)
,

which implies that

lim
p<u→p

∂t

∂|v1|
=

2m

(1− 2m)p

(
|v2|2 + . . . + |vn|2

)−1/2
. (7.19)

Differentiating (7.11) with respect to |v1| quickly leads to

2
(
mα2m−1 − (m− 1)tα2m−3

) ∂α

∂|v1|
=

(
α2m−2 − p2m

) ∂t

∂|v1|
. (7.20)

Taking the limit as u tends to p from above in (7.20), and using (7.19), we
get

lim
p<u→p

∂α

∂|v1|
=

m
(
1− p2m

)

(1− 2m)p

(
|v2|2 + . . . + |vn|2

)−1/2
. (7.21)

– 368 –



Bounds for invariant distances on pseudoconvex Levi corank one domains and applications

Also, observe that the equations (7.11) and (7.8) are equivalent to

1− t

1− α2
=

α2m−2

α2m−2 − p2m
and u2 =

p2 (m(1− t) + t)
2

t

respectively, so that (7.13) can be rewritten as

KE2m

(
(p, 0̂), (v1, v̂)

)
=

α2m−1

α2m−2 − p2m

( |v2|2
t

+ . . . +
|vn|2

t

)1/2

, (7.22)

which upon differentiation turns out to be

∂KE2m

∂|v1|
(
(p, 0̂), (v1, v̂)

)
=

(
(2m− 1)α2m−2

t1/2 (α2m−2 − p2m)

∂α

∂|v1|
− α2m−1

2t3/2 (α2m−2 − p2m)

∂t

∂|v1|

− 2(m− 1)α4m−4

t1/2(α2m−2 − p2m)2
∂α

∂|v1|

) (
|v2|2 + . . . + |vn|2

)1/2
.

So that

lim
p<u→p

∂KE2m

∂|v1|
(
(p, 0̂), (v1, v̂)

)
=

mp2m−1

1− p2m
(7.23)

owing to (7.19), (7.21) and (7.18). The expressions (7.16) and (7.23) together
verify that (7.14) holds for j = 1. Furthermore, a similar computation yields
that

lim
p<u→p

∂t

∂|v2|
=

2p

(2m− 1)m2|v1|2
(
m2|v1|2 − p2|v3|2 − . . .− p2|vn|2

)1/2
, and

lim
p<u→p

∂α

∂|v2|
=

p
(
1− p2m

)

(2m− 1)m2|v1|2
(
m2|v1|2 − p2|v3|2 − . . .− p2|vn|2

)1/2
.

Consequently, we find that, in agreement with the first case (cf. (7.17))

lim
p<u→p

∂KE2m

∂|v2|
(
(p, 0̂), (v1, v̂)

)
=

(
m2|v1|2 − p2|v3|2 − . . .− p2|vn|2

m2|v1|2
)1/2

.

Finally, an argument similar to the one used above shows that

lim
p�u→p

∂KE2m

∂|vj |
(
(p, 0̂), (v1, v̂)

)
= lim

p<u→p

∂KE2m

∂|vj |
(
(p, 0̂), (v1, v̂)

)

for each j = 3, . . . , n.
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In the third case, 0 = p < u, the Kobayashi indicatrix of E2m at the
origin, defined as

{v ∈ Cn : KE2m ((0, . . . , 0), (v1, . . . , vn)) = 1},

is given by the equation |v1|2m + |v2|2 + . . . + |vn|2 = 1. Since m > 1/2,
the indicatrix is C1 which, in turn, implies that the Kobayashi metric
KE2m ((0, . . . , 0), (v1, . . . , vn)) is also a C1 function of the variable v.

To verify that (7.15) holds, we evaluate the left hand side first. Note
that from (7.7), we obtain

lim
p→u+

KE2m

(
(p, 0̂), (v1, v̂)

)
=

m|v1|
u (1− |u|2m)

.

On differentiating (7.7) with respect to p, we have that

2KE2m

(
(p, 0̂), (v1, v̂)

) ∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)

=
2mp2m−1

(1− p2m)2
(
|v2|2 +. . .+ |vn|2

)
+

2m2(m− 1)p2m−3

(1− p2m)
2 |v1|2+

4m3p4m−3

(1− p2m)
3 |v1|2.

Letting p→ u+, and using the above observation, we get

lim
p→u+

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
=

mu2m−2
(
u2m + 2m− 1

)

(1− u2m)
2 |v1|.

Working with the right hand side of (7.15), observe that

lim
p→u−

t = 1 and lim
p→u−

α = 1.

It follows from the definition of the parameter t that

∂t

∂p
=

2p (m(1− t) + t)
2

2p2(m− 1) (m(1− t) + t) + u2
,

which implies that

lim
p→u−

∂t

∂p
=

2

(2m− 1)u
. (7.24)

To compute ∂α/∂p, we differentiate both sides of (7.11). After simplification,
we get

(
2mα2m−1 − 2t(m− 1)α2m−3

) ∂α

∂p
=

(
α2m−2 − p2m

) ∂t

∂p
+ 2m(1− t)p2m−1,
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so that

lim
p→u−

∂α

∂p
=

1− u2m

(2m− 1)u
. (7.25)

Using (7.13) to write the derivative of KE2m with respect to p, it follows,
by virtue of (7.24) and (7.25), that

lim
p→u−

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
=

mu2m−2
(
u2m + 2m− 1

)

(1− u2m)
2 |v1|,

as required.

To conclude that KE2m
is C1, it remains to verify that KE2m

(
(p, 0̂), (v1, v̂)

)

is C1 at p = 0 with respect to the variable p. Firstly, recall from (7.7) that
when u � p,

KE2m

(
(p, 0̂), (v1, v̂)

)
=

(
m2p2m−2|v1|2

(1− p2m)2
+
|v2|2

1− p2m
+ . . . +

|vn|2
1− p2m

)1/2

,

so that

2

(
m2p2m−2|v1|2

(1− p2m)2
+
|v2|2

1− p2m
+ . . . +

|vn|2
1− p2m

)1/2
∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)

=
2mp2m−1

(1− p2m)2
(
|v2|2 +. . .+ |vn|2

)
+

2m2(m− 1)p2m−3

(1− p2m)
2 |v1|2+

4m3p4m−3

(1− p2m)
3 |v1|2,

from which it can be derived that

lim
u�p→0

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
= 0. (7.26)

Next, we need to rewrite (7.13) (or, equivalently, (7.22)) so that the alternate
formulation of KE2m

(
(p, 0̂), (v1, v̂)

)
for u > p is well-defined for p = 0. To

this end, formally define

t̃ =
t1/2|v1|

p (|v2|2 + . . . + |vn|2)1/2
(7.27)

and

α̃ =
p

α|v1|
, (7.28)

so that the expression (7.22) for the Kobayashi metric takes the form

KE2m

(
(p, 0̂), (v1, v̂)

)
=

1

α̃t̃ (1− p2α̃2m−2|v1|2m−2)
(7.29)
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whenever u > p. Note that, substituting for t in (1.8) gives t̃ as

t̃
2
=

2|v1|2

|v1|2 + 2
(
1− 1

m

)
p2 (|v2|2 +. . .+ |vn|2) + |v1|

(
|v1|2 + 4

(
1− 1

m

)
p2 (|v2|2 +. . .+ |vn|2)

)1/2
.

(7.30)

Next, write t and α in terms of t̃ and α̃ using (7.27) and (7.28) and plug
in the resulting expressions into the equation (7.12) in place of t and α
respectively. This will show that α̃ is uniquely determined by the following
equation:
(

1− t̃2p2
(
|v2|2 + . . . + |vn|2

)

|v1|2

)
|v1|2mα̃2m + t̃2

(
|v2|2 + . . . + |vn|2

)
α̃2 = 1.

(7.31)
Henceforth, we use equations (7.30) and (7.31) to define t̃ and α̃ respectively.
In particular, when u > p = 0 (i.e., |v1| > 0), it follows from (7.30) that
t̃ = 1, and consequently, (7.31) and (7.29) reduce to

|v1|2mα̃2m + |v2|2α̃2 + . . . + |vn|2α̃2 = 1, (7.32)

and

KE2m
((0, 0, . . . , 0), (v1, v2, . . . , vn)) =

1

α̃

respectively for |v1| > 0. Observe that the above formulae are in agreement
with the expression for the Kobayashi metric at the origin given in terms
of the Minkowski functional of E2m (cf. equations (7.3) and (7.4)). More-
over, (7.29) gives a formula for the Kobayashi metric when u > p, that is
equivalent to (7.22). Furthermore, (7.29) has an advantage over (7.22) that
it defines KE2m at p = 0.

We now use (7.29) to show that KE2m

(
(p, 0̂), (v1, v̂)

)
is C1-smooth at

p = 0 with respect to p. To start with, differentiating (7.30) and (7.31) with
respect to p and letting p tend to 0 gives

lim
p→0

∂t̃

∂p
= 0 and lim

p→0

∂α̃

∂p
= 0,

respectively, for |v1| > 0. Moreover, differentiating (7.29) with respect to p,
we see that

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
=

t̃
(
(2m− 1)p2|v1|2m−2α̃2m−2 − 1

)
∂α̃
∂p + α̃

(
p2|v1|2m−2α̃2m−2 − 1

)
∂t̃
∂p + 2pt̃|v1|2m−2α̃2m−1

α̃2 t̃2 (1− p2|v1|2m−2α̃2m−2)2
,
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and hence

lim
u>p→0

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
= 0

whenever |v1| > 0. Furthermore, it can be checked that

lim
u>p→0

∂KE2m

∂p

(
(p, 0̂), (v1, v̂)

)
= 0 for |v1| → 0.

This finishes the proof of the theorem.

8. Proof of Theorem 1.7

Suppose that there is a C1-Kobayashi isometry f from D1 onto D2

with q0 ∈ clf (p0), the cluster set of p0. Firstly, from the explicit form of
the defining function for U1 ∩ ∂D1, it is clear that ∂D1 near p0 is smooth
pseudoconvex and of finite type with Levi rank exactly (n− 2).

Assume that both p0 = 0 and q0 = 0 and choose a sequence pj =
(′0,−δj) ∈ U1∩D1 on the inner normal approaching the origin. By Theorem
1.5, it readily follows that f extends continuously up to p0. As a consequence,
qj = f(pj) converges to q0 which is a strongly pseudoconvex point in ∂D2.
The idea is to apply the scaling technique to (D1, D2, f) as in the proof of
Theorem 1.4. To scale D1, we only consider dilations

∆j(z1, z2, . . . , zn−1, zn) =
(
δ
− 1

2m
j z1, δ

− 1
2

j z2, . . . , δ
− 1

2
j zn−1, δ

−1
j zn

)
.

Note that ∆j(′0,−δj) = (′0,−1) for all j and the domains Dj
1 = ∆j(D1)

converge in the Hausdorff sense to

D1,∞ =
{
z ∈ Cn : 2�zn + |z1|2m + |z2|2 + . . . + |zn−1|2 < 0

}
,

which is biholomorphic to E2m.

While for D2, we use the composition T j ◦hξj as in Section 5 - we include
a brief exposition here for completeness: Consider points ξj ∈ ∂D2 defined
by ξj = qj +(′0, εj), for some εj > 0. As before, hξ

j

are the ‘centering maps’
(cf. [47]) corresponding to ξj ∈ ∂D2, and T j are the dilations

T j(w1, w2, . . . , wn) =
(
εj
− 1

2 w1, . . . , εj
− 1

2 wn−1, εj
−1wn

)
.

It was shown in [47] that the dilated domains Dj
2 = T j ◦ hξj (D2) converge

to
D2,∞ =

{
w ∈ Cn : 2�wn + |w1|2 + |w2|2 + . . . + |wn−1|2 < 0

}
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which is the unbounded representation of the unit ball in Cn. Among other
things, the following claim was verified in [53]: For w ∈ D2,∞,

dk
Dj2

(w, ·)→ dkD2,∞ (w, ·) (8.1)

uniformly on compact sets of D2,∞. As a consequence, the sequence of
Kobayashi metric balls BDj2

(·, R)→ BD2,∞ (·, R), and, for large j,

BD2,∞ (·, R) ⊂ BDj2
(·, R + ε) , and

BDj2
(·, R− ε) ⊂ BD2,∞ (·, R) . (8.2)

The scaled maps f j = T j ◦ hξj ◦ f ◦ (∆j)−1 : Dj
1 → Dj

2 are isometries

in the Kobayashi metric on Dj
1 and Dj

2 and note that f j(′0,−1) = (′0,−1)
for all j. Exhaust D1,∞ by an increasing union {Kν} of relatively compact
domains, each containing (′0,−1). Fix a pair K1 compactly contained in K2

say, and let ω(K1) be a neighbourhood of K1 such that ω(K1) ⊂ K2. Since
the domains Dj

1 converge to D1,∞, it follows that ω(K1) ⊂ K2 is relatively

compact in Dj
1 for all j large. Now, to establish that f j admits a convergent

subsequence, it will suffice to show that f j restricted to ω(K1) is uniformly
bounded and equicontinuous. For each z ∈ K2, note that for all j large,

dk
Dj2

(
f j(z), (′0,−1)

)
= dk

Dj1
(z, (′0,−1)) � dkD1,∞ (z, (′0,−1)) + ε

where the last inequality follows from Proposition 3.6. Observe that the
right hand side above is bounded above by a uniform positive constant, say
R̃ > 0. Therefore, by (8.2), it follows that

f j(K2) ∈ BDj2

(
(′0,−1), R̃

)
⊂ BD2,∞

(
(′0,−1), R̃ + ε

)
, (8.3)

which exactly means that {f j(K2)} is uniformly bounded.

The following observation will be needed to deduce the equicontinu-
ity of f j restricted to ω(K1). For each z ∈ ω(K1), there is a small ball
B(z, r) around z with radius r > 0, which is compactly contained in ω(K1).
For R′  2R̃, we intend to apply Lemma 3.5 to the domain Dj

2 with the
Kobayashi ball BDj2

((′0,−1), R′) as the subdomain D′. Let z̃ ∈ B(z, r),

then, for f j(z̃), f j(z) as p and q respectively, and R′/2 as b, it can be
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checked that all the conditions of Lemma 3.5 are satisfied. So that

dkB
D
j
2
((′0,−1),R′)

(
f j(z), f j(z̃)

)
�

dk
Dj2

(
f j(z), f j(z̃)

)

tanh
(
R′
2 − dk

Dj2
(f j(z), f j(z̃))

)

�
dk
Dj2

(
f j(z), f j(z̃)

)

tanh
(
R′
2 − 2R̃

) (8.4)

where the last inequality above is a simple consequence of triangle inequality
and (8.3).

Furthermore, it turns out that for any small neighbourhood W of q0 ∈
∂D2 and for all large j, BD2,∞ ((′0,−1), R′ + ε) ⊂ T j ◦hξj (W ∩D2). On the
other hand, let R > 1 be such that

hξ
j

(W ∩D2) ⊂ {w ∈ Cn : |w1|2 + . . . + |wn−1|2 + |wn + R|2 < R2}
⊂ {w ∈ Cn : 2R(�wn) + |w1|2 + . . . + |wn−1|2 < 0} = D0 ≈ Bn.

Observe that T j leaves the domain D0 invariant for each j, therefore, we
may conclude that

BD2,∞ ((′0,−1), R′ + ε) ⊂ T j ◦ hξj (W ∩D2) ⊂ D0 ≈ Bn.

Now, using the explicit form of the Kobayashi metric on Bn, it follows that

|f j(z)− f j(z̃)| � dkD0

(
f j(z), f j(z̃)

)
� dkBD2,∞ ((′0,−1),R′+ε)

(
f j(z), f j(z̃)

)
.

(8.5)

While from (8.2), we see that

dkBD2,∞ ((′0,−1),R′+ε)

(
f j(z), f j(z̃)

)
� dkB

D
j
2
((′0,−1),R′)

(
f j(z), f j(z̃)

)
. (8.6)

Finally, we deduce, using the expression for the Kobayashi metric (which
equals the Poincaré metric) on B(z, r), that

dk
Dj2

(
f j(z), f j(z̃)

)
= dk

Dj1
(z, z̃) � dkB(z,r)(z, z̃) � |z − z̃|. (8.7)

so that

|f j(z)− f j(z̃)| � |z − z̃|

by virtue of (8.5), (8.6), (8.4) and (8.7). Hence, there is a well-defined contin-
uous limit of some subsequence of f j . Denote this limit by f̃ : D1,∞ → D2,∞.
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The proof now divides into two parts. The first part is to show that f̃ is an
isometry between D1,∞ and D2,∞ and the second step is to show that f̃ is
either holomorphic or conjugate holomorphic.

I. f̃ is an isometry

If f̃ were known to be holomorphic, then the maximum principle would
imply that f̃ : D1,∞ → D2,∞. However, f̃ is known to be just continuous. To
overcome this difficulty, consider Ω1 ⊂ D1,∞, the set of all points z ∈ D1,∞
such that f̃(z) ∈ D2,∞. Note that f̃ ((′0,−1)) = (′0,−1) ∈ D2,∞ and hence

Ω1 is non-empty. Also, since f̃ is continuous, it follows that Ω1 is open in
D1,∞.

Assertion. — dkD1,∞(p, q) = dkD2,∞

(
f̃(p), f̃(q)

)
for all p, q ∈ Ω1.

Grant this for now. Then, for s ∈ ∂Ω1 ∩ D1,∞, let sj ∈ Ω1 such that
sj → s. Assuming that the assertion holds true, we have that

dkD1,∞

(
sj , (′0,−1)

)
= dkD2,∞

(
f̃(sj), (′0,−1)

)
(8.8)

for all j. Since s ∈ ∂Ω1 ∩ D1,∞, f̃(sj) converges to a point of ∂D2,∞.
Furthermore, D2,∞ is complete in the Kobayashi metric, and hence, the
right hand side in (8.8) is unbounded. However, the left hand side remains
bounded again because of completeness of D1,∞. This contradiction shows

that Ω1 = D1,∞. In other words, f̃ : D1,∞ → D2,∞ and dkD1,∞(p, q) =

dkD2,∞

(
f̃(p), f̃(q)

)
for all p, q ∈ D1,∞.

To verify the assertion, recall that dk
Dj1

(p, q) = dk
Dj2

(
f j(p), f j(q)

)
for all j.

The statement dk
Dj1

(p, q)→ dkD1,∞(p, q) follows from the proof of Proposition

3.6. Hence, it remains to show that the right hand side above converges to

dkD2,∞

(
f̃(p), f̃(q)

)
. To achieve this, note that

∣∣dk
Dj2

(
f j(p), f j(q)

)
−dk

Dj2

(
f̃(p), f̃(q)

)∣∣ � dk
Dj2

(
f j(p), f̃(p)

)
+dk

Dj2

(
f̃(q), f j(q)

)

by the triangle inequality. Since f j(p) → f̃(p) and Dj
2 → D2,∞, it follows

that there is a small ball B
(
f̃(p), r

)
around f̃(p) which contains f j(p) and

which is contained in Dj
2 for all large j, where r > 0 is independent of j.

Thus

dk
Dj2

(
f j(p), f̃(p)

)
�

∣∣f j(p)− f̃(p)
∣∣.
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Similarly, it can be checked that dk
Dj2

(
f̃(q), f j(q)

)
is arbitrarily small. Fur-

thermore, it follows from (8.1) that dk
Dj2

(
f̃(p), f̃(q)

)
→ dkD2,∞

(
f̃(p), f̃(q)

)
.

Hence the assertion.

Next, we claim that f̃ is surjective. To see this, consider any point t0 ∈
∂
(
f̃(D1,∞)

)
∩D2,∞ and let tj ∈ f̃(D1,∞) satisfying tj → t0. Pick sj ∈ D1,∞

such that f̃(sj) = tj . Then

dkD1,∞

(
(′0,−1), sj

)
= dkD2,∞

(
f̃((′0,−1)), f̃(sj)

)
.

There are two cases to be considered depending on whether sj → s ∈ ∂D1,∞
or sj → s0 ∈ D1,∞ as j → ∞. In case sj → s, observe that the right hand
side above remains bounded because of the completeness of D2,∞. But left
hand side is unbounded since D1,∞ is complete in the Kobayashi metric.
This contradiction shows that sj → s0 ∈ D1,∞, which, in turn, implies that

f̃(s0) = t0. Now, consider the isometries (f j)−1 : Dj
2 → Dj

1. Exactly the
same arguments as above show that some subsequence of (f j)−1 converges
uniformly on compact sets of D2,∞ to g̃ : D2,∞ → D1,∞. It follows that

f̃ ◦ g̃ ≡ idD2,∞ . In particular, f̃ is surjective and f̃ is a isometry between
D1,∞ and D2,∞ in the Kobayashi metric.

II. f̃ is holomorphic or conjugate holomorphic

The proof of the fact that f̃ is a biholomorphic mapping follows exactly
as in [54]. To outline the key ingredients, the first step is to show that f̃ is
differentiable everywhere, which implies that the Kobayashi metric KD1,∞
is Riemannian. By Theorem 1.6, we know that KE2m or equivalently that
KD1,∞ is C1-smooth. Recall that D1,∞ ≈ E2m and D2,∞ ≈ Bn. So that f̃
after composing with appropriate Cayley transforms, leads to a continuous
isometry F̃ between two C1-smooth Riemannian manifolds

(
E2m,K

2m

)
and(

Bn,KBn
)
. Applying the Myers-Steenrod theorem repeatedly to F̃ , yields

the desired result.

Once we know that F̃ : E2m → Bn is holomorphic, which, additionally,
may be assumed to preserve the origin, it follows that 2m = 2. Indeed, F̃
is a biholomorphism between two circular domains, E2m and Bn such that
F̃ (0) = 0 and is, hence, linear. In particular 2m = 2. Said differently, there
are holomorphic coordinates at p0 in which a tiny neighbourhood around
p0 can be written as
{
z ∈ Cn : 2�zn + |z1|2 + |z2|2 + . . . + |zn−1|2 + higher order terms < 0

}
,

which violates the assumption that the Levi rank at p0 ∈ ∂D1 is exactly
n − 2. Alternatively, one can use Theorem 1.4 or results from [5] to arrive
at a contradiction. Hence the theorem. �
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9. Appendix

The group of all polynomial automorphisms of Cn is usually denoted by
GAn(C) and two special subgroups of GAn(C) are the affine subgroup

Afn(C) = {F ∈ GAn(C) : deg(F ) � 1}
and the triangular subgroup

BAn(C) =

{F ∈ GAn(C) : Fj = ajzj + Hj where aj ∈ C∗ and Hj ∈ C[z1, . . . , zj−1]}
whose members are also called elementary automorphisms.

The Jung-van der Kulk theorem says that every polynomial automor-
phism in dimension n = 2 can be obtained as a finite composition of affine
and elementary automorphisms; using this fact it can be derived (cf. [22])
that the degree of the inverse Φ−1 of a polynomial automorphism of C2 is
the same as the degree of Φ. However, these facts are known to be false in
higher dimensions.

The weight of a polynomial automorphism – or more generally a poly-
nomial endomorphism of Cn – is by definition the maximum of the weights
of its components.

Let us assign a weight of 1/2m to the variable z1 where m ∈ N, 1/2
to the variables zα for all 2 � α � n − 1 and 1 to the variable zn as in
the introduction and consider the collection EL = E(1/2m,1/2,1), of all weight
preserving polynomial automorphisms of the form

F (z) =
(
a1z1 + b1, A(′′z) + P2(z1), anzn + bn + Pn(′z)

)
(9.1)

where ′′z = (z2, . . . , zn−1),
′z = (z1, . . . , zn−1), A is an invertible affine

transform on Cn−2, P2 is a vector valued polynomial all of whose com-
ponents are polynomials of weight at-most 1/2 and Pn is a polynomial of
weight at-most 1 while b1, bn ∈ C and a1, bn ∈ C∗ = C \ {0}. One may also
note that if m > 1, then any (component wise) weight preserving polyno-
mial automorphism has necessarily got to be of the form (9.1). In general, it
is not true that the degree (resp. weight) of the inverse Φ−1 of a polynomial
automorphism Φ, is same as the degree (resp. weight) of Φ. However, since
EL consists of ‘elementary like’ polynomial automorphisms that preserve the
weight of each component, we have that the weights of the components of
the inverse of F is same as those of F , for each F ∈ EL. Indeed, note that
the inverse of F is given by

F−1(z) =
(
a−1
1 (z1−b1), A

−1
(′′z−P2

(
a−1
1 (z1−b1)

))
, a−1

n

(
zn−bn−P ′n(′z)

))
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where P ′n(′z) = Pn

(
a−1
1 (z1 − b1), A

−1
(′z−P2(a

−1
1 (z1 − b1))

))
. It is easy to

see that F−1 lies in EL. Next note that if we pick another G ∈ EL given by

G(z) =
(
c1z1 + d1, B(′′z) + Q2(z1), cnzn + dn + Qn(′z)

)

say, then

G(F (z)) =
(
c1a1z1 + c1b1 + d1, BA(′′z) + BP2(z1) + Q2(a1z1 + b1),

cnanzn + cnbn + dn + Qn

(
c1z1 + d1, A(′′z) + P2(z1)

))

which is again in E(1/2m,1/2,1) completing the verification that EL is a group.
In fact noting that EL is in bijection with a product of finitely many copies
of CM \ {0}, CN for some M,N ∈ N and GLn−2(C) we see that EL is a
non-singular affine algebraic variety; next noting that the composition of
maps in EL when viewed as an operation on the various coefficients here, is
a polynomial operation on these coefficients and likewise for taking inverses
as well, we conclude that E is a complex algebraic group. Finally, we note
that the topology on EL obtained from its identification as mentioned above,
is the same as the topology of uniform convergence on compacts i.e., the
topology of uniform convergence on compacts on EL is the same as the
topology of ‘convergence of the coefficients of the polynomial maps’.

Recall the special reduction procedure for the Taylor expansion of any
given smooth defining function for a piece of Levi corank one hypersurface.
Let Σ be a smooth pseudoconvex real-hypersurface in Cn of finite type with
the property that the Levi-rank is at-least n − 2 at each of its points. We
assume that the origin lies in Σ and that the D’ Angelo 1-type of the points
of Σ is bounded above by some integer 2m. Let r be a smooth defining
function for Σ with ∂r/∂zn(z) 
= 0 for all z in a small neighborhood U in
Cn of Σ such that the vector fields

Ln = ∂/∂zn, Lj = ∂/∂zj + bj(z, z̄)∂/∂zn,

where bj =
(
∂r/∂zn

)−1
∂r/∂zj , form a basis of CT (1,0)(U) and satisfy

Ljr ≡ 0 for 1 � j � n − 1 and for each z ∈ U , all eigenvalues of
∂∂̄r(z)(Li, L̄j)2�i,j�n−1 are positive.

The main objective of this reduction procedure is to obtain a certain
normal form near ζ ∈ U in which there are no harmonic monomials of
weight less than one, when weights are taken with respect to the inverses
of the multitype at ζ ∈ U . Recall that Levi corank one hypersurfaces are h-
extendible/semiregular i.e., their Catlin multitype and D’ Angelo multitype
agree at every point.
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We digress a little here, to recall and introduce the term ‘weakly spheri-
cal’ used in the introduction. First, we recall the notion of weak sphericity of
Barletta – Bedford from [7]: a smooth pseudoconvex hypersurface M ⊂ C2

of finite type 2m at p ∈ M can after a change of coordinates centered at
p = 0, be defined by a function of the form

2�z2 +P2m(z1, z̄1)+%z2

k∑

l=1

Ql(z1)+σ2m+1(z1)+σ2(%z2)+(%z2)σm+1(z1)

Here P2m(z1, z̄1) is a non-zero homogeneous subharmonic polynomial of
degree 2m without harmonic terms, the Ql’s are homogeneous polynomials
of degree l and the σj ’s vanish to order j in z1 or %z2. To put it succinctly,
the lowest weight component in the weighted homogeneous expansion of the
defining function with respect to the weight (1, 1/2m) given by the type,
is of weight one and of the form 2�z2 + P2m(z1, z̄1). Now according to [7],
M is weakly spherical at p if P2m(z1, z̄1) = |z1|2m = |zm1 |2 – note that a
‘squared norm of a polynomial’ of weight 1/2 in the single variable z1, is
necessarily of the form c|z1|2m for some positive constant c. We may extend
this notion to higher dimensions for h-extendible/semiregular hypersurfaces
as follows: call a smooth pseudoconvex hypersurface M ⊂ Cn which is h-
extendible at a point p ∈M , to be weakly spherical at p if there is a change of
coordinates that maps p to the origin, in which the lowest weight component
of the weighted homogeneous expansion of the defining function of M about
p ∈M which we may assume to be the origin, performed with respect to the
weights given by the inverse of the multitype (mn, . . . ,m1) of M at p = 0,
is of the form

2�zn + |P1(
′z)|2 + . . . + |Pn−1(

′z)|2.
This when expanded is of the form

2�zn + c1|z1|mn + c2|z2|mn−1 + . . . + cn−1|zn−1|m2 + mixed terms (9.2)

where the phrase ‘mixed terms’ denotes a sum of weight 1 monomials annihi-
lated by at-least one of the natural quotient maps C[′z, ′z]→ C[′z, ′z]/(zjzk)
for 1 � j, k � n − 1, j 
= k. It was shown in [5] that if a h-extendible hy-
persurface admits a Lipschitz CR mapping into a strongly pseudoconvex
hypersurface, then the source must be weakly spherical i.e., the fibres of the
mapping must consist only of weakly spherical points. Stated differently,
the local model for the source of our CR-mapping must be the pull-back of
a piece of the sphere ∂Bn via a proper weighted homogeneous polynomial
endomorphism of Cn.

Now, the mixed terms in (9.2) involving the zα’s for 2 � α � n−1, must
be of the form zαzβ where 2 � β � n−1 with β 
= α, since wt(zα) = 1/2. An
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application of the spectral theorem, removes the occurrence of such terms
with α 
= β. The remaining mixed terms must be of the form zαz

j
1 where

2 � α � n− 1 and 1 � j � m and constitutes the polynomial

n−1∑

α=2

m∑

j=1

�(bαj z
j
1zα),

say. Then an application of the change of variables given by

w1 = z1, wn = zn

wα = zα − P (z1) for 2 � α � n− 1

where P (z1) =
m∑
j=1

bαj z
j
1, removes the occurrence of such terms as well and

the transformed defining function when expanded about p = 0 reads

2�zn + |z1|2m + |z2|2 + . . . + |zn−1|2 + R(z, z)

with the error function R(z, z)→ 0 faster than atleast one of the monomials
of weight 1. The domain D1 in the hypothesis of theorem 1.7 has its defining
function about a boundary point p in the above form; we shall say that p is
weakly spherical if the integer m > 1.

Getting back from this digression about weakly spherical Levi corank one
hypersurfaces, to the afore-mentioned reduction procedure for arbitrary Levi
corank one hypersurfaces, we recall that it can be split up into five simpler
steps – for ζ ∈ U , the map Φζ = φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1 where each φj is
described below.

The first step is to normalize the linear part of the Taylor series as in
(1.2). Recall that this was done via the affine map φ1 given by

φ1(z1, . . . , zn) =
(
z1 − ζ1, . . . , zn−1 − ζn−1,

(
zn − ζn −

n−1∑

j=1

bζj (zj − ζj)
)
(bζn)−1

)

=
(
z1 − ζ1, . . . , zn−1 − ζn−1, 〈ν(ζ), z − ζ〉

)

where the coefficients bζn =
(
∂r/∂zn(ζ)

)−1
and bζj are clearly smooth func-

tions of ζ on U . Therefore, φ1 translates ζ to the origin and

r(φ−1
1 (z)) = r(ζ) + 2�zn + terms of higher order.

where the constant term disappears when ζ ∈ Σ.
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Now, since the Levi form restricted to the subspace

L∗ = spanCn〈L2, . . . , Ln−1〉

of T
(1,0)
ζ (∂Ω) is positive definite, we may diagonalize it via a unitary trans-

form φ2 and a dilation φ3 will then ensure that the Hermitian – quadratic
part involving only z2, z3, . . . , zn−2 in the Taylor expansion of r is |z2|2 +
|z3|2 + . . .+ |zn−2|2. The entries of the matrix that represents the composite
of the last two linear transformations are smooth functions of ζ and in the
new coordinates still denoted by z1, . . . zn, the defining function is in the
form

r(z) = r(ζ) + 2�zn +

n−1∑

α=2

m∑

j=1

2�
(
(aαj z

j
1 + bαj z̄

j
1)zα

)
+ 2�

n−1∑

α=2

cαz
2
α

+
∑

2�j+k�2m

aj,kz
j
1z̄

k
1 +

n−1∑

α=2

|zα|2 +

n−1∑

α=2

∑

j+k�m
j,k>0

2�
(
bαj,kz

j
1z̄

k
1zα

)

+ O(|zn||z|+ |z∗|2|z|+ |z∗||z1|m+1 + |z1|2m+1) (9.3)

This still does not reduce the quadratic component of the Taylor series as
far as we can; more can be done: the pluriharmonic terms of weights up to 1
here i.e., z2

α as also zk1 , z̄
k
1 , z

k
1zα, z̄

k
1 z̄α can all be removed by absorbing them

into the normal variable zn by the following standard change of coordinates
φ4 given by

zj = tj (1 � j � n− 1),

zn = tn − Q̂1(t1, . . . , tn−1)

where

Q̂1(t1, . . . , tn−1) =

2m∑

k=2

ak0t
k
1 −

n−1∑

α=2

m∑

k=1

aαk tαt
k
1 −

n−1∑

α=2

cαt
2
α

with coefficients that are smooth functions of ζ. Even with this, we may still
have quadratic (degree 2) terms involving zn remaining in the expansion.
We do not care to remove them, as they are of weight > 1.

The final step removes all other harmonic monomials of weight up to
one remaining in (9.3), rewritten in the t-coordinates, which are of the form
t̄j1tα by applying the transform φ5 given by

t1 = w1, tn = wn,

tα = wα −Qα
2 (w1) (2 � α � n− 1)
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where

Qα
2 (w1) =

m∑

k=1

bαkw
k
1

with coefficients smooth in ζ, as before (since all these coefficients are simply
the derivatives of some order of the smooth defining function r evaluated
at ζ).

We then have that the composite Φζ of these various simplifying maps
is as given in (1.4) and the normal form for the Taylor expansion is as given
in (1.3). Further, Φζ belongs to the group EL for each fixed ζ ∈ U . Let Qζ

denote the biholomorphically distorted polydisc Q(ζ, ε(ζ)), which is also the
ball of radius ε(ζ) about ζ in the pseudo-distance d defined at (1.6). Then
in particular we now have that, the collection {Qζ ,Φ

ζ}, where ζ varies over
points in the one sided tubular neighbourhood U−, the pseudocovex side of
Σ (in our particular setting it is U∩D) forms an atlas of special charts, giving
U− the structure of a EL-manifold i.e., the associated transition maps lie in
the complex Lie group EL, the group of weight preserving, elementary-like,
weight one polynomial automorphisms described above. Alternately, we may
cover the tubular neighbourhood U with the atlas of charts {Q(ζ, δe),Φ

ζ}
which gives U itself the structure of an EL manifold. It is the former atlas
which is of interest to us.

We need to compute the inverse Ψζ = (Φζ)−1 in the last subsection of
Section 2. Let

(w1, . . . , wn)=Φζ(z)=
(
z1−ζ1, Gζ(z̃−ζ̃)−Q2(z1−ζ1), 〈ν(ζ), z−ζ〉−Q1(

′z−′ζ)
)

(9.4)
where Q2 : C → Cn−2 is a polynomial map whose components are the
polynomials Qα

2 as above. Now, we find out the components of Ψζ , the first
component of which is

z1 = w1 + ζ1 (9.5)

Next, w̃ = Gζ(z̃ − ζ̃)−Q2(z1 − ζ1) i.e., Gζ(z̃ − ζ̃) = w̃ −Q2(w1) so that

z̃ = Hζ

(
w̃ + Q2(w1)

)
+ ζ̃ (9.6)

and finally

wn = 〈ν(ζ), z − ζ〉 −Q1(
′z − ′ζ)

= ∂r/∂zn(ζ)(zn − ζn) +

n−1∑

j=1

∂r/∂zj(ζ)(zj − ζj)−Q1(
′z − ′ζ)
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Now note that z̃−ζ̃ = Hζ

(
w̃+Q2(w1)

)
. So Q1(z1−ζ1, z̃−ζ̃) = Q1

(
w1, Hζ(w̃+

Q2(w1))
)

and subsequently,

wn = ∂r/∂zn(ζ)
(
zn − ζn −

n−2∑

α=2

bζj (zj − ζj)− bζ1(z1 − ζ1)
)

−Q1

(
w1, Hζ(w̃ + Q2(w1))

)

= (bζn)−1
(
zn − ζn − 〈b̃ζ , z̃ − ζ̃〉 − bζ1w1

)
−Q1

(
w1, Hζ(w̃ + Q2(w1))

)

and subsequently,

bζnwn =
(
zn − ζn − 〈b̃ζ , z̃ − ζ̃〉 − bζ1w1

)
− bζnQ1

(
w1, Hζ(w̃ + Q2(w1))

)

giving finally that the last component of z = Ψζ(w) is of the form

zn = bζnwn + ζn + 〈b̃ζ , z̃ − ζ̃〉+ bζ1w1 + bζnQ1

(
w1, Hζ(w̃ + Q2(w1))

)
. (9.7)

which we shall also write more shortly as

zn = bζnwn + bζnQ̃1(
′w) + ζn

where for some slight convenience in the section where it is used, we take
Q̃1 to be of the form

Q̃1(
′w) = (bζn)−1

(
〈b̃ζ , Hζ

(
w̃+Q2(w1)

)
〉+bζ1w1

)
+Q1

(
w1, Hζ

(
w̃+Q2(w1)

))
.

with Q1 and Q2 are the same very polynomials occurring in the expression
for Φζ as in (9.4). Now, altogether, equations (9.5), (9.6) and (9.7) give the
expressions for the various components that constitute the mapping Ψζ(w).
A straightforward computation shows that the derivative of the map Φζ(z)
in standard co-ordinates, is represented by the matrix

DΦζ(z)=




1 0 · · · 0 0

−∂Q2
2

∂z1
(z1 − ζ1) 0
... Gζ

...

−∂Qn−1
2

∂z1
(z1 − ζ1) 0

∂r
∂z1

(ζ)− ∂Q1

∂z1
(′z − ′ζ) · · · ∂r

∂zn−1
(ζ)− ∂Q1

∂z1
(′z − ′ζ) ∂r

∂zn
(ζ)




(9.8)
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so that in particular, the mapping occurring in the definition of the M -
metric namely,

DΦz(z)(X) =
(
X1, Gz(X̃),

n∑

j=1

∂r/∂zj(z)Xj

)
=

(
X1, Gz(X̃), 〈ν(z), X〉

)

which of course is linear for each fixed z but also is weighted homogeneous
in the variables z1 through zn−1, with respect to the weights that we have
assigned to the variables z1, . . . , zn, as well. The above expression is needed
in section 3. We notice in passing that DΦζ for each fixed ζ ∈ U belongs
to the linear Lie group ELn = EL ∩ GLn(C) and gives the tangent bundle
of the EL-manifold mentioned above, the structure of a fibre bundle with
structure group ELn.

Next, we record the derivative of the inverse map Ψζ needed in the last
sub-section of section 2.

DΨζ(w) =




1 0 · · · 0 0

〈(Hζ)R2 ,
∂Q2

∂w1
(w)〉 0

... Hζ

...

〈(Hζ)Rn−1
, ∂Q2

∂w1
(w)〉 0

bζn∂Q̃1/∂w1(
′w) bζn∂Q̃1/∂w2(

′w) . . . bζn∂Q̃1/∂wn−1(
′w) bζn




(9.9)

where we index the rows and columns of the square matrix Hζ = G−1
ζ of

order n−2 by the integers 2, . . . , n−1 and denote its rows herein by (Hζ)Rα .
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