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Mixing time and local exponential ergodicity
of the East-like process in Zd

P. Chleboun(1), A. Faggionato(2), F. Martinelli(3)

RÉSUMÉ. — Le processus East est une châıne linéaire de spins réversible
et bien connue, qui représente le prototype d’une classe générale de systè-
mes de particules en interaction avec des contraintes modélisant des dy-
namiques vitreuses réelles. Dans ce papier, nous considérons une générali-
sation d-dimensionnelle du processus East et nous obtenons de nouveaux
comportements hors équilibre. Bien que la convergence à l’équilibre réversi-
ble ne puisse pas avoir lieu en norme uniforme, de par la présence de con-
figurations bloquantes, nous prouvons une ergodicité exponentielle locale
pour les distributions initiales différentes de la probabilité stationnaire.
Nous établissons également la croissance linéaire en la taille de la bôıte
du temps de mélange dans une bôıte finie.

ABSTRACT. — The East process, a well known reversible linear chain of
spins, represents the prototype of a general class of interacting particle sys-
tems with constraints modeling the dynamics of real glasses. In this paper
we consider a generalization of the East process living in the d-dimensional
lattice and we establish new progresses on the out-of-equilibrium behav-
ior. Despite the fact that convergence to the stationary reversible measure
in the uniform norm cannot hold because of the presence of blocked con-
figurations, we prove a form of (local) exponential ergodicity when the
initial distribution is different from the stationary one. We also establish
that the mixing time in a finite box grows linearly in the side of the box.
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1. Introduction

Kinetically constrained spin models (KCMs) are interacting 0-1 particle
systems, on general graphs, which evolve with a simple Glauber dynamics
described as follows. At every site x the system tries to update the occu-
pancy variable (or spin) at x to the value 1 or 0 with probability p and
q = 1 − p1, respectively. However the update at x is accepted only if the
current local configuration satisfies a certain constraint, hence the models
are “kinetically constrained”. It is always assumed that the constraint at site
x does not depend on the spin at x and therefore the product Bernoulli(p)
probability measure π is the reversible measure. Constraints may require,
for example, that a certain number of the neighbouring spins are in state
0, or more restrictively, that certain preassigned neighbouring spins are in
state 0 (e.g. the children of x when the underlying graph is a rooted tree).

The main interest in the physical literature for KCMs (see e.g. [25, 33] for
a review) stems from the fact that they display many key dynamical features
of real glassy materials: ergodicity breaking transition at some critical value
qc, huge relaxation time for q close to qc, dynamic heterogeneity (i.e. non-
trivial spatio-temporal fluctuations of the local relaxation to equilibrium)
and aging, just to mention a few. Mathematically, despite their simple def-
inition, KCMs pose very challenging and interesting problems because of
the hardness of the constraints, with ramifications in bootstrap percolation
problems [37], combinatorics [14, 38], coalescence processes [18, 19] and
random walks on upper triangular matrices [32]. Remarkably, some of the
mathematical tools developed for the analysis of the relaxation process of
KCMs [7] have proved to be quite powerful also in other contexts such as
card shuffling problems [3] and random evolution of surfaces [9].

Among the KCMs, the most studied model is the East process, a one-
dimensional spin system that was introduced in the physics literature by
Jäckle and Eisinger [26] (cf. also [35, 36] and [17] for a recent mathematical
review). In this case the base graph is Z (or finite connected subsets of it)
and the constraint at x ∈ Z requires that the vertex x− 1 is empty (i.e. its
associated spin is 0).

It is the properties of the East process before and towards reaching
equilibrium which are of interest, with the standard gauges for the speed
of convergence to stationarity given by the relaxation time Trel (≡ inverse
spectral-gap) and the total-variation mixing time Tmix on a finite interval
Λ = {0, . . . , L} (cf. e.g. [29]), where we fix η(0) = 0 for ergodicity.

(1) In the physical applications q ≈ e−cβ at low temperature, where β is the inverse-
temperature and c is a constant.

– 718 –



Mixing time and local ergodicity of the East-like process in Zd

That Trel = O(1)2 in L for any q small enough was first proved in [2]
and, later on, for all q ∈ (0, 1] in [7] by different methods. Subsequently
the analysis of the relaxation time in the physical relevant setting q ↘ 0
(corresponding to the low temperature limit) was developed to a high level
of precision in [10, 11] where the relevant questions of dynamical hetero-
geneities and time scale separation have been rigorously settled. The fact
that the relaxation time is O(1) in L implies, in particular, that Tmix ∼ L
(cf. Theorem 5.1). It is then natural to ask whether the finite volume East
process exhibits the cutoff phenomenon (coined by Aldous and Diaconis [1];
see also [2, 15, 16] and the references therein): over a negligible period of
time (the cutoff window) the distance from equilibrium drops from near 1 to
near 0. As easily seen, the cutoff problem is strongly linked to the following
front progression problem for the East process. For a initial configuration
η with sup{x : η(x) = 0} < ∞, call this rightmost 0 its front and denote
by X(η) its position. At any later time the process starting from η will also
have a front X(ηt) and the key step to prove cutoff is a detailed analysis
of the asymptotic law of X(ηt) as t → ∞. In [4] a kind of shape theorem
was proved: as t → ∞ the law of the process behind the front converges
to an invariant measure ν and 1

tX(ηt) → v∞ in probability for a suitable
constant v∞ > 0. As a consequence Tmix ∼ L/v∞. To prove cutoff one has
to go beyond the law of large numbers and to control the fluctuations of
the front around the mean value v∞t. In [21] it was proved that the latters
obey a CLT, and cutoff with the optimal window ∼

√
L follows.

In several interesting contributions (cf. [22, 23, 24, 28] and references
therein) a natural generalization of the East dynamics to higher dimensions
d > 1, in the sequel referred to as the East-like process, appears to play a
key role in realistic models of glass formers. In d = 2 the East-like process
evolves similarly to the East process but now the kinetic constraint requires
that the South or West neighbor of the updating vertex contains at least
one vacancy (i.e. a zero spin). In general η(x) can flip if η(x − e) = 0 for
some e in the canonical basis of Zd.

In [12, 13] the authors thoroughly analyzed the East-like process with
emphasis on its low temperature (small q) behavior. Among the main results
it was proved that the process on Zd is ergodic with a finite relaxation
time Trel(Zd) and that, as q ↘ 0, Trel(Zd) � Trel(Z)1/d, correcting in this
way some heuristic conjectures which appeared in the physical literature.
In finite volume with ergodic boundary conditions (see Section 2.2 below)
the asymptotics of the relaxation time as q ↘ 0 was also computed quite
precisely and it was shown to depend very strongly on the choice of the

(2) We recall that f = O(g) means that there exists a constant C > 0 such that
|f | � C|g| and that f = Ω(g)⇔ g = O(f).

– 719 –



P. Chleboun, A. Faggionato, F. Martinelli

boundary conditions. Finally the asymptotics as q ↘ 0 of the persistence
times (see Section 4.3 below) was also established but only up to a spatial
scale O(1/q1/d).

Other natural questions concerning the out-of-equilibrium behavior of
the East-like process, for example the convergence as t →∞ of the particle
density to the equilibrium value p for a general class of initial laws or the
asymptotics as L→∞ of the mixing time Tmix in a box of side L, remained
open.

A main difficulty posed by the above questions for KCMs is that the
presence of blocked configurations (i.e. configurations which violate all the
constraints) prevent the infinite system to have a finite logarithmic Sobolev
constant. In particular the (local) convergence to the reversible measure in
the uniform norm ‖ · ‖∞ does not hold and the standard strategy (see e.g.
[34]) to prove local exponential decay to equilibrium via the hypercontrac-
tivity property cannot be used. Thus, answering the above two questions for
KCMs (concerning the convergence of the particle density and the mixing
time in a finite box) is, in general, a very difficult task and few results are
available [5, 6, 8, 21].

In this paper we develop a new technique which allows us to prove a form
of local exponential ergodicity for the East-like process in Zd (cf. Theorem
4.3) with a stretched exponential decay. As a consequence we derive, in
particular, convergence of the time dependent particle density (cf. Corollary
4.5). The local exponential ergodicity (with a pure exponential decay) has
been already established for d = 1 (cf. [5]) using special features of the
one dimensional East process which do not hold in higher dimensions (cf.
Remark 4.4).

Finally, the main ideas entering in the proof of the local exponential
ergodicity, combined with the key results from Section 3, also prove an
exponential tail for the law of the persistence time of the spin at a given
vertex (cf. Theorem 4.7). Such a bound is the main input for our last main
result, namely that the mixing time in a finite box grows linearly in the
side of the box (cf. Theorem 5.1). As a consequence the East-like process
provides an example of a dynamics for which the relaxation time, the mixing
time and the entropic relaxation time (inverse of the logarithmic Sobolev
constant) lie on three different time scales of order 1, L, Ld respectively (cf.
Remark 5.2).
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2. The Model

2.1. Notation

For any x = (x1, . . . , xd) ∈ Zd we denote its �1-norm by ‖x‖1 =
∑d
i=1 |xi|.

For any x ∈ Zd we define the positive quadrant Zdx,+ at x as the set

{y ∈ Zd : yi � xi, i = 1, . . . , d}. When x is the orgin we will simply write
Zd+. We will also let Zdx,↑ � Zdx,+ \ {x} and Zdx,↓ � {y ∈ Zd : x ∈ Zdy,↑}. The

interpretation of these two sets is as follows: Zdx,↑ is the set of vertices other

than x which are influenced by the spin at x, while Zdx,↓ are those vertices
other than x which influence the spin at x.

We denote by B = {e1, e2, . . . , ed} the canonical basis of Zd and, given
a set X ⊂ Zd, we define its East-boundary3 by

∂EX � {y ∈ Zd \X : y + ei ∈ X for some ei} .

Given Λ ⊂ Zd, we will denote by ΩΛ the product space {0, 1}Λ endowed
with the product topology. If Λ = Zd we simply write Ω. In the sequel we
will refer to the vertices of Λ where a given configuration η ∈ ΩΛ is equal
to one (zero) as the particles (vacancies) of η. If V ⊂ Λ and η ∈ ΩΛ we will
write η�V for the restriction of η to V . In particular we will simply write
η�V = 1 to mean that η(x) = 1 for all x ∈ V . Finally, for any Λ ⊂ Zd, a
configuration σ ∈ Ω∂EΛ will be referred to as a boundary condition.

2.2. Finite volume process and boundary conditions

Given a region Λ ⊂ Zd and a configuration σ ∈ Ω∂EΛ, we define the
constraint at site x ∈ Λ with boundary condition σ, in the sequel denoted
by cΛ,σx (η), as the indicator function of the event in ΩΛ that there exists
e ∈ B such that (σ · η)(x− e) = 0, where σ · η ∈ ΩΛ∪∂EΛ is the configuration
equal to σ on ∂EΛ and η on Λ. Then the East-like process with parameter
q ∈ (0, 1) and boundary condition σ is the continuous time Markov chain
with state space ΩΛ and infinitesimal generator

LσΛf(η) =
∑

x∈Λ

cΛ,σx (η)
[
η(x)q + (1− η(x))p

]
·
[
f(ηx)− f(η)

]

=
∑

x∈Λ

cΛ,σx (η)
[
πx(f)− f

]
(η), (2.1)

(3) The label “East” is inherited from the one dimensional case and is there only for
historical reasons.
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where p = 1− q, ηx is the configuration in ΩΛ obtained from η by flipping
its value at x, and πx is the Bernoulli(p) probability measure on the spin at
x.

We call the boundary condition σ ergodic if the process given by (2.1)

is ergodic. For example if Λ =
∏d
i=1[ai, bi] then a boundary condition σ

is ergodic if and only if σ(a − e) = 0 for some e ∈ B. If σ is such that
by removing some single vacancy in σ one obtains a non-ergodic boundary
condition then σ is said to be minimal. On the other hand if σ is identically
equal to zero we call it a maximal boundary condition.

Since the local constraint cΛ,σx (η) does not depend on η(x), it is simple to
check that the East-like process is reversible w.r.t. the product Bernoulli(p)
probability measure πΛ =

∏
x∈Λ πx on ΩΛ.

In what follows we will adopt the following convention:

• We will write π instead of πΛ whenever no confusion can arise.

• Our results will be uniform in the choice of the ergodic boundary
condition σ, hence the superscript σ will be usually omitted.

• We will write PΛ
η (·) and EΛ

η (·) for the law and the associated expec-
tation of the process with initial condition η and boundary condition
σ. The only exception is when Λ = Zd+ and the boundary condition
σ is minimal, i.e. σ(−e) = 0 for some e ∈ B and σ(x) = 1 otherwise.
In that case we will write Pmin

η (·) and Emin
η (·).

• The dependence on p of the various constants will be omitted.

2.3. The infinite volume East-like process

We also define the East-like process on the entire lattice Zd as follows. Let
cx(η) � 11(∃ e ∈ B such that η(x− e) = 0), be the constraint at x 4. Then
the East-like process on Zd is the continuous time Markov process with
state space Ω, with reversible measure given by the product Bernoulli(p)
probability measure π =

∏
x∈Zd πx and infinitesimal generator L whose

action on functions depending on finitely many spins is given by

Lf(η) =
∑

x∈Zd
cx(η)

[
η(x)q + (1− η(x))p

]
·
[
f(ηx)− f(η)

]

=
∑

x∈Zd
cx(η)

[
πx(f)− f

]
(η) . (2.2)

(4) We will adopt the notation 11(A) for the indicator of the event A
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We will denote by Pη(·) and Eη(·) the law and the associated expectation of
the process started from η. In general, if the law of the initial configuration
is ν, we will write Pν(·), Eν(·)

2.4. Spectral Gap

In the sequel, the spectral gap of a reversible Markov generator A will
be denoted by gap(A). It is defined as the infimum over all non-constant
functions f in the domain of A of the ratio between the Dirichlet form of
f and its variance w.r.t. the reversible probability measure. In the finite
dimensional case, if A is irreducible then gap(A) > 0. A positive spectral
gap implies, in particular, that the reversible measure is mixing for the
semigroup generated by A and that the variance contracts exponentially
fast:

Var(etAf) � e−2t gap(A)Var(f), ∀ f ∈ L2 . (2.3)

We now recall some properties of the spectral gap for the East-like process
which will be important in the following (for more details see [12, 13]). The
infinite volume East-like process has a positive spectral gap for all p ∈ (0, 1).
If Λ ⊂ Zd then gap(LσΛ) is bounded from below by a positive constant
uniformly in choice of the boundary condition σ among the ergodic ones.
Moreover the spectral gap satisfies the following monotonicity property. Let
Λ =

∏d
i=1[1, �i] and Λ′ =

∏d
i=1[1, �

′
i] with �i � �′i for any i and let σ, σ′ be

boundary conditions for Λ,Λ′ respectively, such that σ(x) � σ′(x) for any
x ∈ ∂EΛ. Then gap(Lσ′Λ′) � gap(LσΛ) (cf. [12, Lemma 3.1]).

2.5. Graphical construction

We recall a graphical construction of the East-like process on Zd, which
will be very useful in the sequel. A similar construction, with slight mod-
ifications, holds also in the finite volume case. To each x ∈ Zd, we as-
sociate a rate one Poisson process and, independently, a family of inde-
pendent Bernoulli(p) random variables {sx,� : � ∈ N} (N := {0, 1, . . . }).
The occurrences of the Poisson process associated to x will be denoted
by {tx,� : � ∈ N}, labelled in increasing order. We assume independence
as x varies in Zd. Sometimes in the sequel we will refer to the collection
{tx,�, sx,�}�∈N as the clock rings and coin tosses associated to the vertex x.
We write (Θ,P) for the probability space on which the above objects are de-
fined. Notice that, P-almost surely, all the occurrences {tx,� : � ∈ N, x ∈ Zd}
are different (this property will be often used below without further men-
tion).
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Given a probability measure ν on Ω we consider the product probability
measure Pν � ν ⊗ P on the product space Ω ⊗ Θ. Then on (Ω ⊗ Θ,Pν)
we can define a càdlàg Markov process (ηt)t � 0 which is exactly the East-
like process on Zd given by (2.2) with initial distribution ν, as follows. The
initial configuration η0 associated to the element (η, ϑ) ∈ Ω⊗Θ is given by
η. At each time t = tx,�(ϑ) the site x queries the state of its own constraint
cx

(
ηt−

)
. If and only if the constraint is satisfied (i.e. cx

(
ηt−

)
= 1), then

t is called a legal ring and the configuration ηt is obtained from ηt− by
resetting its value at site x to the value of the corresponding Bernoulli
variable sx,�(ϑ). Using the Harris’s percolation argument [27] the above
definition is well posed for Pν a.e. (η, ϑ). When ν = δη we simply write Pη
instead of Pν5.

Finally, for Λ ⊂ Zd and t > 0, we let FΛ (FΛ,t) be the σ-algebra gen-
erated by all clock rings and coin tosses associated to vertices in Λ (all the
clock rings and coin tosses up to time t).

3. Local stationarity

In this section we prove two results showing a kind of local stationarity of
the reversible measure π. In the first case the region where we want to prove
stationarity of π is a non-random subset Λ of Zd. In the second case the set
Λ will be random and determined by the dynamics itself in the graphical
construction (the definition uses clock rings and coin tosses).

Proposition 3.1. — Let Λ be a finite subset of Zd and assume that
the initial distribution ν of the East-like process in Zd is the product of its
marginals on ΩΛ,ΩΛc and that the marginal on ΩΛ coincides with π. Then,
for any t > 0 and any σ ∈ ΩΛ,

Pν(ηt�Λ = σ | FΛc) = Pν(ηt�Λ = σ | FΛc,t) = π(σ).

Proof. — The first equality follows immediately from the graphical construc-
tion and we will therefore focus on the second one. Let x∗ ∈ Λ be such that
Zdx∗,↑ ∩ Λ = ∅, let Λ∗ � Λ \ {x∗} and let F∗t � FZd\{x∗},t. Clearly such a
vertex always exists. Then

Pν(ηt�Λ =σ | FΛc,t)=

∫
dν(η)Eη

(
11(ηt�Λ∗=σ�Λ∗)Pη

(
ηt(x

∗)=σ(x∗) | F∗t
)
| FΛc,t

)

=

∫
dν(η)Eη

(
11(ηt�Λ∗=σ�Λ∗)

∑

ξ∈{0,1}
π(η(x∗)=ξ)Pη,ξ

(
ηt(x

∗)=σ(x∗) | F∗t
)
| FΛc,t

)
,

(5) Although we have defined Pη ,Pν also for the law of the East–like process, it will be
clear from the context when the notation is referred to the above graphical construction.
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where the notation Pη,ξ(·) indicates that the initial configuration is equal
to η outside x∗ and equal to ξ at x∗. Above we used the definition of x∗

to guarantee that, once the initial condition η is given, the event {ηt�Λ∗ =
σ�Λ∗} is measurable w.r.t. F∗t . Also, by the same reason, the event does not
depend on the value η(x∗). Finally, we have used the assumption on ν to
perform a partial average over the initial value of η(x∗).

We now claim that
∑

ξ∈{0,1}
π(η(x∗) = ξ)Pη,ξ(ηt(x∗) = σ(x∗) | F∗t ) = π(σ(x∗)).

To prove the claim we condition on the event At that there has been at
least one legal ring at x∗ before time t. Notice that also At does not depend
on the initial value η(x∗). Thus

∑

ξ∈{0,1}
π(η(x∗) = ξ)Pη,ξ(ηt(x∗) = σ(x∗) | F∗t )

=
∑

ξ∈{0,1}
π(η(x∗) = ξ)Pη,ξ(ηt(x∗) = σ(x∗) | At,F∗t )Pη(At | F∗t )

+
∑

ξ∈{0,1}
π(η(x∗) = ξ)Pη,ξ(ηt(x∗) = σ(x∗) | Act ,F∗t )Pη(Act | F∗t )

We now observe that, for any η,

(i) Pη,ξ(ηt(x∗) = σ(x∗) | At,F∗t ) = π(σ(x∗)),

because in this case ηt(x
∗) takes the value of the last coin toss at x∗ before

t, and

(ii)
∑

ξ∈{0,1}
π(η(x∗) = ξ)Pη,ξ(ηt(x∗) = σ(x∗) | Act ,F∗t ) = π(σ(x∗)),

because ηt(x
∗) = ξ on the event Act . Hence the claim.

In conclusion

Pν(ηt�Λ = σ | FΛc,t) = Pν(ηt�Λ∗ = σ�Λ∗ | FΛc,t) π(σ(x∗))

= Pν(ηt�Λ∗ = σ�Λ∗ | F(Λ∗)c,t) π(σ(x∗)).

Since π is a product measure, the term Pν(ηt�Λ∗ = σ�Λ∗ | F(Λ∗)c,t) has the
required form on the reduced set Λ∗ and the proof follows by iteration.

Remark 3.2.— In the sequel we will use the above proposition but only
in the special case in which the set Λ has empty intersection with Zdx,↓ for
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any x ∈ ∂EΛ (e.g. Λ is given by a box, Zd+ or some Zdy,↑). In this case, under
the same assumptions of Proposition 3.1, the dynamics in ∂EΛ never queries
the state of the dynamics in Λ. Moreover, calling t1 < t2 < · · · < tn the times
at which a spin of ∂EΛ flips in the time window [0, t] and setting t0 ≡ 0,
tn+1 ≡ t, for any i = 0, 1, . . . , n in the time interval [ti, ti+1) the projection
on Λ of the East–like process equals a.s. the East–like process on Λ with
fixed boundary condition ηti�∂EΛ. In particular in this case Proposition 3.1
follows immediately from the stationarity of π for the East–like process on
Λ with fixed boundary condition.

We now extend Proposition 3.1 to a case in which the set Λ is itself
random. Given a realization of the clock rings and coin tosses at all vertices
and an initial configuration η such that η(0) = 0, let τ0 = 0, z(0) = 0 and
define

τk+1 = inf{s > τk : at time s there is a legal ring at z(k)} ,
z(k+1) = min{x ∈ ∂E{z(k)} : ητ−k+1

(x) = 0} ,

where the minimum is taken w.r.t. the lexicographic order. Notice that
ηt(z

(k)) = 0 for any k, t ∈ [τk, τk+1) a.s. We will refer to this special vacancy
as the distinguished zero (cf. [2] and [17] for an analogous definition for the
one dimensional East process).

Definition 3.3.— We define the trace of the distinguished zero up to
time t as the set

Γt �
{
z(0), z(1), . . . , z(Nt−1)

}
,

where Nt � max{k � 0 : τk � t} and we use the convention that Γt = ∅ if
Nt = 0.

The above definition is well posed Pη–a.s. since limk→∞ τk = +∞ Pη–a.s.

Let also G(1)
0 be the σ-algebra containing all information “below” the origin

and the clock rings at the origin, up to the first legal ring τ1. Formally G(1)
0 is

defined as follows. Given s � 0, let Hs be the smallest σ–algebra generated
by FZd0,↓,s and all the clock rings at the origin up to time s:

Hs := FZd0,↓,s ∨ σ(t0,� : � ∈ N , t0,� � s) .

Note that τ1 is a stopping time w.r.t. the filtration (Hs)s � 0, i.e. the event

{τ1 � s} belongs to Hs for any s � 0. Then we define G(1)
0 as the σ–algebra

Hτ1 given by the events F such that F ∩{τ1 � s} ∈ Hs for any s � 0. Note

that the event {z(1) = z} belongs to G(1)
0 .
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The above construction is of course valid for any initial vacancy of the
initial configuration η. If the distinguished zero is initially at x then we will

write Nx,t, Γx,t, Hx,t and G(1)
x .

We will now construct recursively the σ-algebras G(n)
x , x ∈ Zd. We first

need the following definition.

Definition 3.4 (Time shift in Θ).— Given u > 0 together with ω �
{ty,j , sy,j}y∈Zd,j∈N ∈ Θ, let

θuω � {ty,j+νy,u − u, sy,j+νy,u}y∈Zd,j∈N,

where νy,u � min{j : ty,j � u} (recall that N = {0, 1, . . . }). In other words
the first ring and coin toss at y for θuω are the first ring and coin toss at y
after u and so on.

We then define recursively the family {G(n)
x }n�2 as follows. G(n)

x is the
σ-algebra generated by all events of the form

F (n) = E(1) ∩ {z(1) = z} ∩ {θτ1ω ∈ F (n−1)}, z ∈ ∂E{x}, (3.1)

where E(1) ∈ G(1)
x and F (n−1) ∈ G(n−1)

z .

We are finally ready to state our main result on the law of ηt�Γt .
Proposition 3.5.— For all n � 1, all η such that η(0) = 0 and all t > 0

the conditional distribution of ηt�Γt given G(n)
0 and {Nt = n} coincides with

the reversible measure π.

Proof. — Fix n � 1, σ = (σ0, . . . , σn−1) ∈ {0, 1}n and z ∈ ∂E{0}. Let also

F (n) ∈ G(n)
0 . We must prove that6

Pη(Nt = n; F (n); ηt�Γt = σ) = π(σ)Pη(Nt = n; F (n)). (3.2)

Above, the event {ηt�Γt = σ} has to be thought of as {ηt(z(k)) = σk ∀k =

0, 1, . . . , n − 1}. By the definition of G(n)
0 it is enough to consider events

F (n) as in (3.1) with x = 0. We will exploit (3.1) and use induction. Let η̂τ1
be the configuration in Zd \ {0} equal to ητ1 at all vertices different from
the origin. Let also Pη̂τ1 ,π(·) be the law of the East-like process with initial
condition equal to η̂τ1 outside the origin and sampled from π at the origin.
The strong Markov property7 w.r.t. the Markov time τ1 together with (3.1)

(6) We write P(A;B) instead of P(A ∩B) for shortness.
(7) Here we appeal to the strong Markov property of the underlying Poisson point

process given by the clock rings.
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imply that

Pη(Nt = n; F (n); ηt�Γt = σ)

= Eη
[
11(E(1) ∩ {z(1) = z})11(τ1 < t) × (3.3)

Pη̂τ1 ,π
(
Nz,t−τ1 = n− 1; F (n−1); ηt−τ1�Γz,t−τ1 = σ′; ηt−τ1(0) = σ0

)]
,

where σ′ = (σ1, . . . , σn−1) and we adopt the convention that the event
{ηt−τ1�Γz,t−τ1 = σ′} is the sure event if Γz,t−τ1 = ∅.

Given s > 0 and using Proposition 3.1 we get

Pη̂τ1 ,π
(
Nz,s = n− 1; F (n−1); ηs�Γz,s = σ′; ηs(0) = σ0

)

= Eη̂τ1 ,π
[
11(Nz,s = n− 1)11(F (n−1))11(ηs�Γz,s = σ′)Pη̂τ1 ,π(ηs(0) = σ0 | F{0}c)

]

= π(σ0)Pη̂τ1 ,π(Nz,s = n− 1; F (n−1); ηs�Γz,s = σ′). (3.4)

If we now apply (3.4) to (3.3) we get

Pη(Nt = n; F (n); ηt�Γt = σ)

= π(σ0)Eη
[
11(E(1) ∩ {z(1) = z})11(τ1 < t)

Pη̂τ1 ,π(Nz,t−τ1 = n− 1; F (n−1); ηt−τ1�Γz,t−τ1 = σ′)
]

(3.5)

and (3.2) follows for n = 1. If n � 2 and we inductively assume (3.2) for
n− 1 to write

Pη̂τ1 ,π(Nz,t−τ1 = n− 1; F (n−1); ηt−τ1�Γz,t−τ1 = σ′)

= π(σ′)Pη̂τ1 ,π(Nz,t−τ1 = n− 1; F (n−1)) .

In particular, from (3.5) we get that

Pη(Nt = n; F (n); ηt�Γt = σ)

= π(σ)Eη
[
11(E(1) ∩ {z(1) = z})11(τ1 < t)Pη̂τ1 ,π(Nz,t−τ1 = n− 1; F (n−1))

]

= π(σ)Pη
(
Nt = n; F (n)

)
,

i.e. (3.2) for n.
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4. Out-of-equilibrium results

In this section we begin by proving two results (cf. Lemma 4.1 and
Corollary 4.2 below) showing that, given an initial vacancy at a site x, then
at any given later time t > 0 it is very likely to find a vacancy in Zdx,↓ ∪{x}
close to x. These results will be the keystone for the main outcome of this
section (cf. Theorem 4.3), namely the fact that an initial vacancy is able
to generate a wave of equilibrium (i.e. the reversible measure π) in front of
itself. Finally, in Theorem 4.7 we will estimate the tail of the time needed
to create a vacancy at a given site for the East–like process in the quadrant
Zd+.

4.1. Persistence of the vacancies

Given x ∈ Zd+ we say that x is of class n ∈ N = {0, 1, . . . } and write
x ∈ Cn if mini xi � n. Clearly Cn ⊂ Cn−1.

Lemma 4.1.— Let pn � supx∈Cn supt�0 supη: η(x)=0 Pη(ηt�Λx = 1), where

Λx =
∏d
i=1[0, xi]. Then pn � pn+1.

Proof. — Let us fix x ∈ Cn, t > 0 and an initial configuration η such that
η(x) = 0 and recall Definition 3.3. If we make the initial vacancy at x
“distinguished”, then {ηt�Λx = 1} ⊂ {Nt � n + 1} ∩ {ηt(z(k)) = 1 ∀k =
0, 1, . . . , n}. Thus, using Proposition 3.5,

Pη(ηt�Λx = 1) � pn+1Pη(Nt � n + 1) � pn+1.

The next is a simple but useful consequence of the above result. Fix � � 1
and let Gt be the event that there exists a vertex x ∈ V (�) � [−� + 1, 0]d

such that Tt(x) � t/�d, where

Tt(x) �
∫ t

0

ds 11(ηs(x) = 0) (4.1)

is the total time spent in the zero state by the spin at x up to time t.

Corollary 4.2.— There exist positive constants C, c such that

sup
η: η(0)=0

Pη(Gt) � 1− Ct �de−c�, ∀� � 1.

Proof. — Observe that, if the box V (�) was never completely filled during
the time-lag t, then necessarily the event Gt occurred. Thus it is sufficient
to prove that

sup
η: η(0)=0

Pη(∃ s � t : ηs�V (�) = 1) � Ct�de−c�,
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for some constants C, c > 0. Furthermore, using a union bound over the
possible rings in V (�) within time t (cf. the discussion after equation (5.14)
in [17]) it suffices to prove that

sup
η: η(0)=0

sup
s>0

Pη(ηs�V (�) = 1) � e−c�

for some c > 0. Such a bound follows from Lemma 4.1 with c = − log(p).

4.2. Local exponential ergodicity in Zd

Theorem 4.3.— There exist two positive constants C, c such that the
following holds. Fix t > 0 and let f be a function depending only on the
spins in [1, t1/2d]d with ‖f‖∞ = 1. Then

sup
η: η(0)=0

|Eη(f(ηt))− π(f)| � Ce−c t
1/2d

.

Remark 4.4.— The above result has been proved in [5] for d = 1, with
a pure exponential decay, using the following 1d property: conditionally on
the trajectory of a distinguished zero (ξt)t�0 (cf. Section 3) the evolutions to
the left and to the right of ξt are independent. Hence, between consecutive
jumps of ξt, the East process to its right behaves like (and relaxes like) the
East process on the half-line with a frozen boundary vacancy. For d � 2
there is no analogue of the above feature. The solution is then as follows.
Using Corollary 4.2, for each time t there exists x ∈ [−�, 0]d, � ∼ t1/2d,
which spends at least a time

√
t in the zero state during the time window

[0, t]. We can then exploit such an “intermittent vacancy” as a source of
equilibrium in Zdx,+.

Corollary 4.5.— Let ν be a probability measure on Ω = {0, 1}Zd such
that, for all � � 1 and all x ∈ Zd,

ν
(
{η(y) = 1 ∀y ∈ [x, x + �− 1]d}

)
� e−m�,

for some positive m. Then there exist λ = λ(m) > 0 and C > 0 such that

sup
x
|Eν

(
ηt(x)

)
− p| � Ce−λt

1/2d

.

A special choice of the initial measure ν is any product Bernoulli proba-
bility measure with parameter p′ < 1. In particular the above corollary cov-
ers the physically interesting case of a system starting at high temperature
and evolving towards its equilibrium under a lower temperature dynamics.
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Proof of the Corollary. Without loss of generality consider only the case
x = 0 and, for � � 1, write

|Eν (ηt(0))− p| � 2e−m� +
∫

{η: ∃x∈[−�,−1]d: η(x)=0}
dν(η)|Eη

(
ηt(0)

)
− p|.

Using Theorem 4.3 the second term in the r.h.s. above is smaller than

Ce−ct
1/2d

for any � � t1/2d. Hence the thesis.

Remark 4.6.— A similar result holds if one replaces the spin at x with
an arbitrary function f depending on finitely many spins. In that case the
constant C will depend on f through ‖f‖∞ and the size of the support of
f while the constant λ will stay the same.

Proof of Theorem 4.3. — In what follows c will denote a generic constant
depending on p which may vary from line to line. Fix f as in the theorem
and assume for simplicity that π(f) = 0. Given η such that η(0) = 0, we use
Corollary 4.2 with � ≡ #δt1/2d$ for some small positive constant δ together
with ‖f‖∞ = 1 to write

Eη(f(ηt)) = Eη(f(ηt)11(Gt)) + O(e−cδt
1/2d

),

where Gt is the event that there exists x ∈ [−� + 1, 0]d with Tt(x) � t/�d.
On the event Gt let ξ = (ξ1, . . . , ξd) be the position of the smallest (in
the lexicographical order) vertex of V (�) = [−� + 1, 0]d with the property

that Tt(ξ) � t/�d and let Λξ be the box [ξ1 + 1, t1/2d]×∏d
i=2[ξi, t

1/2d] (see
Figure 1).

t1/ 2d

t1/ 2d

δt1/ 2d

δt1/ 2d

V ( )

Λξ

ξ

Figure 1. — The box Λξ

– 731 –



P. Chleboun, A. Faggionato, F. Martinelli

We then write

Eη(f(ηt)11(Gt)) =
∑

y∈V (�)

Eη
(
11(Ĝt,y)Eη(f(ηt) | FΛcy,t

)
)
,

where Ĝt,y � Gt∩{ξ = y}. Notice that, given η, the event Ĝt,y is measurable
w.r.t. FΛcy,t

. Clearly, for each y ∈ V (�), one has

|Eη
(
11(Ĝt,y)Eη(f(ηt) | FΛcy,t

)
)
|

� 1

minσ∈ΩΛy
π(σ)

Eη
(
11(Ĝt,y)

∑

σ∈ΩΛy

π(σ)|Eσ·η(f(σt) | FΛcy,t
)|

)
,

where σ · η means the configuration equal to σ in Λy and to η outside it.

Above σt � (σ ·η)t�Λy and we used the fact that f depends only on the spins
in Λy. We now observe that, given FΛcy,t

, the evolution in Λy up to time t is
the standard East-like process with boundary conditions that vary at times
say t1, t2, . . . , tn. Moreover, once the initial η is given, the times {ti}ni=1

and the actual value of the boundary conditions {ηti(z)}z∈∂EΛy become

measurable w.r.t. FΛcy
. Call L(i), i = 0, . . . , n, the generator of the East-

like process in Λ with boundary conditions given by ηti (we set t0 ≡ 0
and tn+1 ≡ t). If ηti(y) = 0, then ηti is an ergodic boundary condition
and the spectral gap of L(i) is not smaller than the spectral gap λ in the
positive quadrant with minimal boundary conditions [12]. Thus, using the
Cauchy-Schwarz inequality,

∑

σ∈ΩΛy

π(σ)|Eσ·η(f(σt) | FΛcy,t
)| =

∑

σ∈ΩΛy

π(σ)
∣∣et1L(0)

e(t2−t1)L(1)

. . . e(t−tn)L(n)

f(σ)
∣∣

� ‖et1L(0)

e(t2−t1)L(1)

. . . e(t−tn)L(n)

f‖π

� exp
[
−λ

n∑

i=0

(ti+1 − ti)11(ηti(y) = 0)
]
.

(4.2)

Above ‖ · ‖π denotes the norm in L2(Λy, π). Note that in the last step
we applied the classical inequality Var(etLf) � e−2gap(L)Var(f), valid for
any reversible continuous time Markov chain, to the chains with generators
{L(i)}ni=0, together with the fact that π

(
f (i)

)
= 0 for all functions

f (i) � e(ti−ti−1)L(i)

. . . e(t−tn)L(n)

f .

This last property can be proved by induction on i from n to 0 using that
π(f) = 0 and that L(i) is reversible (hence stationary) in L2(Λy, π).
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We now observe that
∑n
i=0(ti+1 − ti)11(ηti(y) = 0) = Tt(y), the total

time spent in state zero by the spin at y. By construction the latter is at
least t/�d � δ−d

√
t/2 for t large enough. In conclusion

1

minσ∈ΩΛy
π(σ)

Eη
(
11(Ĝt,y)

∑

σ∈ΩΛy

π(σ)|Eσ·η(f(σt) | FΛcy,t
)|

)

�
( 1

p ∧ q

)|Λy|
e−λδ

−d√t/2 = O(e−c
√
t)

for δ small enough and t large enough. Thus

∣∣Eη(f(ηt)11(Gt))
∣∣ � C�d e−c

√
t

for some constant C and the result follows.

4.3. Exponential tail of the persistence times in Zd+

Consider the East-like process in Zd+ with minimal boundary condition,
and let Pmin

η (·) denote its law when the initial configuration is η. Recall also
definition (4.1) of the random variable Tt(x).

Theorem 4.7. — There exist κ, λ > 0 and δ ∈ (0, 1) such that the
following holds. For all x ∈ Zd+ and t � κ‖x‖1,

sup
η
Pmin
η (Tt(x) � δdt) � de−λδt. (4.3)

In particular
sup
η
Pmin
η (τx � t) � de−λδt, (4.4)

where τx � inf{t : ηt(x) = 0}.

Remark 4.8. — For simplicity we have stated the result with minimal
boundary conditions. Actually the same proof, with minor modifications,
holds for any ergodic boundary conditions with uniform constants κ, λ, δ.
From the result it follows that Emin

η (τx) = O(|x|). It is also easy to show,

using the finite speed of propagation, that Emin
η (τx) = Ω(|x|).

Proof. — It is obvious that (4.4) follows from (4.3). To prove the latter we
first need a technical lemma. Let x ∈ Zd+ and write x = (x∗, xd) where x∗ =

(x1, . . . , xd−1) ∈ Zd−1
+ . Let I = {y = (x∗, j), j = 1, . . . xd} if xd > 0 and

I = ∅ otherwise (see Figure 2). For the East-like process in Zd+ with ergodic
boundary conditions and initial configuration η, the variable Tt((x∗, 0)) is
measurable w.r.t. FIc,t. Moreover, since the projection on the slab Zd−1

+ ×{0}
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of the East-like process in Zd+ with minimal boundary conditions coincides

with the East-like process on Zd−1
+ with minimal boundary conditions, the

law of Tt((x∗, 0)) under Pmin
η coincides with the law of Tt(x∗) in (d − 1)

dimensions. In the sequel, for notation convenience, we will simply write
Tt(x∗) instead of the more precise Tt((x∗, 0)).

(0, 0)

x = (x1, x2, x3)

(x∗, 0)

Figure 2. — The interval I and the point x∗ in three dimensions.

Lemma 4.9.— There exist constants δ ∈ (0, 1) and c > 0 such that

sup
η
Pmin
η (Tt(x) � δTt(x∗) | FIc,t) � (p ∧ q)−xd e−cTt(x

∗).

We postpone the proof of the lemma and write

sup
η
Pmin
η

(
Tt(x) � δdt

)
� sup

η
Pmin
η

(
Tt(x∗) � δd−1t

)

+ sup
η
Pmin
η

(
Tt(x) � δdt ; Tt(x∗) � δd−1t

)

� sup
η
Pmin
η

(
Tt(x∗) � δd−1t

)
+ (p ∧ q)−xd e−cδ

d−1t,

where we used Lemma 4.9 to bound the second term in the r.h.s. of the first
inequality. Notice that the first term in the r.h.s above has the same form
of the starting quantity but now in (d− 1) dimensions. We can then iterate
on the dimension d to get

sup
η
Pmin
η

(
Tt(x) � δdt

)
� sup

η
PEast
η (Tt(x1) � δt) +

d∑

i=2

(p ∧ q)−xi e−cδ
i−1t,
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where PEast
η (·) is the law of the one dimensional East process on the interval

[0, x1] with ergodic boundary conditions. As in [7, Theorem 3.6], the first
term in the r.h.s. above can be bounded by

sup
η
PEast
η (Tt(x1) � δt) � (p ∧ q)−x1PEast

π (Tt(x1) � δt) � (p ∧ q)−x1 e−c
′δt,

for some constant c′ > 0 provided that δ is small enough (independent of t).
The proof of (4.3) is finished by choosing e.g. κ = 2 log (1/(p ∧ q)) /(c∧ c′)δ
and λ = (c ∧ c′)/2.

Proof of Lemma 4.9. — Using the exponential Chebyshev inequality we get

sup
η
Pmin
η

(
Tt(x) � δTt(x∗) | FIc,t

)

� sup
η

inf
γ>0

e−γ(t−δTt(x
∗)) Emin

η

(
eγ(t−Tt(x)) | FIc,t

)

� (1/p ∧ q)xd sup
η

inf
γ>0

e−γ(t−δTt(x
∗)) Emin

η,π

(
eγ(t−Tt(x)) | FIc,t

)
,

where Emin
η,π (·) denotes the expectation w.r.t. the East-like process with ini-

tial law ν(η′) = π(η′�I)11(η′�Zd+\I = η�Zd+\I).

We will now bound the term
Emin
η,π

(
eγ(t−Tt(x)) | FIc,t

)
= Emin

η,π

(
eγ

∫ t
0
ds 11(ηs(x)=1) | FIc,t

)
using the Feynman-

Kac formula. Firstly notice that it is enough to compute the above expec-
tation w.r.t. the process in the box Λx =

∏d
i=1[0, xi]. Secondly, since the

East boundary of any vertex in Λx \ I does not intersect I and since the
initial configuration in Λx \ I is deterministic, the projection of the process
in Λx \ I is measurable w.r.t. FIc,t. Denote by 0 < t1 < t2, . . . , < tn < t the
successive times in [0, t] at which one of the spins at the East boundary of
the interval I changes. During any time interval of the form [ti, ti+1) (define
t0 ≡ 0 and tn+1 ≡ t) the process in I is nothing but the usual one dimen-
sional East process with possibly certain vertices which are unconstrained,
namely those with a zero spin at their East boundary (in particular, the
initial law π in I is preserved at any later time). Let L(i) be the correspond-
ing Markov generator. Because of what we just said L(i) is self-adjoint in
L2(I, π) and, if the boundary spin at (x∗, 0) is zero, it has also a spectral
gap which is not smaller than the spectral gap gap(LEast) on the East pro-
cess on Z [7]. Moreover, for any function F : ΩI &→ R and any s > 0, the
Feynman-Kac formula

E(i)
σ

(
F (σti+1−ti)e

γ
∫ ti+1−ti
0 ds 11(ηs(x)=1)

)
=

(
e(ti+1−ti)(L(i)+γAx)F

)
(σ)
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holds, with AxF (σ) = 11(σ(x) = 1)F (σ) and E(i)
σ (·) being the expectation

over the process with generator L(i) and initial condition σ.

Thus

Emin
η,π

(
eγ

∫ t
0
ds 11(ηs(x)=1) | FIc,t

)

= 〈1, et1(L(0)+γAx) · e(t2−t1)(L(1)+γAx) · · · · · e(t−tn)(L(n)+γAx)1〉π

�
n∏

i=0

‖e(ti+1−ti)(L(i)+γAx)‖π (4.5)

where 〈·〉π denotes the scalar product in L2(I, π) and ‖ · ‖π denotes the
operator norm on L2(I, π).

For i such that ηs((x
∗, 0)) = 1, s ∈ [ti, ti+1), we simply bound

‖e(ti+1−ti)(L(i)+γAx)‖π by eγ(ti+1−ti). Indeed, L(i) +γAx � γ1 as self-adjoint
operators. In the opposite case and provided that γ is small enough (e.g.
γ = gap(LEast)/2) we can use a result from [7, Theorem 3.6] to get that

‖e(ti+1−ti)(L(i)+γAx)‖π � eβγ(ti+1−ti)

where β = pq/(1 + p) + p < 1.

In conclusion

n∏

i=0

‖e(ti+1−ti)(L(i)+γAx)‖π � eβγTt(x
∗)+γ(t−Tt(x∗))

and

sup
η
Pmin
η

(
Tt(x) � δTt(x∗) | FIc,t

)
� (1/p ∧ q)xde−γ(1−β−δ)Tt(x

∗).

The proof is complete if we take e.g. δ = (1− β)/2.

5. Mixing time of the East-like process

Consider the East-like process in Λ = [1, L]d with ergodic boundary
conditions and let

Tmix � inf{t > 0 : max
η
‖PΛ
η (ηt ∈ ·)− π‖TV � 1/4}

be its mixing time.

Theorem 5.1.— There exists C > 0 such that C−1L � Tmix � CL for
all L � 1.
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Remark 5.2. — Notice that the standard inequality Tmix � const.
log(1/π∗) × Trel with π∗ = minη∈ΩΛ π(η) (see e.g. [34]) only gives Tmix =
O(Ld). Also, if the boundary conditions are minimal, it is easy to see that
the logarithmic Sobolev constant αΛ (cf. [34]) satisfies αΛ ∼ L−d. The
upper bound is proved by plugging into the variational characterization
of αΛ the test function given by the indicator of the configuration with-
out vacancies. The lower bound follows at once from the general bound
αΛ � gap(Lmin

Λ )/(2 + log(1/π∗)). Thus the East-like process with minimal
boundary conditions has Trel = O(1), Tmix ∼ L and a logarithmic Sobolev
constant ∼ L−d.

We first establish three key preliminary results before proving Theorem
5.1. We denote by Ω̂Λ the set of configurations such that in any interval
I ⊂ Λ parallel to one of the coordinate axes and of length )(logL)2* there
exists at least one vacancy. The first result says that any initial configuration
will, with high probability, evolve into Ω̂Λ in a time t = O(L).

Lemma 5.3.— For any ε ∈ (0, 1) there exists M such that, for all initial
configurations η ∈ ΩΛ and all L � 1,

sup
t�ML

PΛ
η

(
ηt /∈ Ω̂Λ

)
� ε.

Proof. — Fix an interval I ⊂ [1, L]d of the form I = [x, x + )(logL)2*e],
e ∈ B. Using Theorem 4.7 and its notation, there exist M > 0 and c > 0
independent of L and of the initial configuration such that

PΛ
η (τx �ML/2) � e−cML/2.

The strong Markov property at the hitting time τx together with Theorem
4.3 gives that, for t �ML,

PΛ
η (τx �ML/2 ; ηt(z) = 1 ∀ z ∈ I)

= EΛ
η

(
11(τx �ML/2)PΛ

ητx
(ηt−τx(z) = 1 ∀ z ∈ I)

)

� π(η(z) = 1 ∀ z ∈ I) + Ce−c(t−ML/2)
1/2d

= O(e−c
′(logL)2).

Since the number of such intervals I is O(ec
′′ logL), a union bound over the

choice of I finishes the proof.

The next result is a small refinement of the arguments used in the proof
of Theorem 4.3. Consider the East-like process in Zd+ with ergodic boundary
conditions and let Gt(x; ∆) be the event that the spin at x was unconstrained
(i.e. with at least a vacancy in its East-boundary) for a total time 0 � ∆ � t
during the time interval [0, t]. By construction, given the initial η, Gt(x; ∆)
is measurable w.r.t. FZdx,↓,t.
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Lemma 5.4.— Given x ∈ Zd+, let V be a box of the form V =
∏d
i=1[xi, xi+

� − 1], � � 1, and let f : Zd+ &→ R be a bounded function which does not
depend on the spins in Zdx,↑ \ V . There exist positive constants c, λ so that,
on the event Gt(x; ∆),

max
η
|EZ

d
+
η

(
f(ηt)− fV (ηt) | FV c,t

)
| � C‖f‖∞ ec�

d−λ∆,

where fV (η) � πV (f)(η) is the equilibrium average in V of f . The con-
stant λ can be chosen as the spectral gap of the process in Zd+ with minimal
boundary conditions.

Proof. — Let W = V ∪ (Zd+ \ Zdx,↑) (see Figure 3).

W

x

V

Z2
x,↑ \ V

Figure 3. — The set W when d = 2.

Using the assumption that f does not depend on the spins in Zdx,↑\V and
the oriented nature of the constraints, we can safely replace the East-like
process in Zd+ with the East-like process in W , i.e.

EZ
d
+
η

(
f(ηt)− fV (ηt) | FV c,t

)
= EWη

(
f(ηt)− fV (ηt) | FV c,t

)
.

Clearly, given the initial η, the dynamics of the spins in W \V is measurable
w.r.t. FV c,t. Moreover, using Proposition 3.1,

πV
(
EWη (f(ηs) | FV c,s)

)
= fV (ηs) a.s. ∀ s ∈ [0, t],

where πV averages only over the spins in V . The proof now follows the
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pattern of the proof of Theorem 4.3 (cf. (4.2)). We write

11(Gt(x; ∆))|EWη
(
f(ηt)− fV (ηt) | FV c,t

)
|

� 1/(p ∧ q)�
d

11(Gt(x; ∆))πV
(
|EWη

(
f(ηt)− fV (ηt) | FV c,t

)
|
)

� 1/(p ∧ q)�
d

11(Gt(x; ∆))
[
VarπV

(
EWη (f(ηt) | FV c,t)

)]1/2 � ‖f‖∞ ec�
d−λ∆,

where VarπV denotes the variance w.r.t to πV and c = − log(p ∧ q). The
fact that λ can be taken equal to the spectral gap of the first quadrant with
minimal boundary conditions follows immediately from the monotonicity of
the spectral gap in the boundary conditions and in the volume.

The third result says that the East-like process in the box Λ = [1, L]d

with ergodic boundary conditions reaches equilibrium (in total variation
distance) in a time lag O(log(L)4d) if the initial configuration belongs to
Ω̂Λ. More precisely, let µηt denote the law of ηt under PΛ

η (·).

Lemma 5.5.— For any ε ∈ (0, 1) there exists L0 such that the follow-
ing holds. Let T = (logL)5d and let d(T ) = maxη∈Ω̂Λ

‖µηT − πΛ‖TV. Then

supL�L0
d(T ) � ε.

Proof. — Fix η ∈ Ω̂Λ and let us order the vertices of Λ = [1, L]d as follows.
We first choose some order of the vertices on each hyperplane P = {x ∈ Zd+ :
‖x‖1 = const.} in such a way that two consecutive vertices have distance
O(1) for large L (e.g. they have exactly two coordinates where they differ
by one). Then, for any pair x, y ∈ Λ, we say that x ≺ y if either ‖x‖1 < ‖y‖1
or if x comes before y when they have the same �1-norm. The ith vertex in
the above order will be denoted by x(i).

Next, for any f : ΩΛ &→ R with ‖f‖∞ = 1 and any j = 1, . . . , n, where
n = Ld, we denote by f (j) the new function obtained by averaging f w.r.t.
the equilibrium measure π over the last j spins in the above order. For
notation convenience we set f (0) ≡ f . Notice that f (j) = πj(f

(j−1)), where
πj(·) denotes the marginal of π over the (Ld− j+1)th-spin, and that f (n) =
π(f). Then

|µηt (f)− π(f)| �
n∑

j=1

|µηt (f (j−1))− µηt (f
(j))|, ∀t � 0.

We now choose t = (logL)5d and η ∈ Ω̂Λ and prove that each term in the

above sum is smaller than O(e−(logL)2) for large enough L.
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z

x(n−j+1)

V

Figure 4. — The shaded quasi-triangle corresponds to vertices larger than x(n−j+1) and

the white region corresponds to Λj−1.

Let Λj be the set {x(1), x(2), . . . , x(n−j)}. Using the assumption that the

initial configuration η belongs to Ω̂Λ, there exists a vertex y ∈ (Λj∪∂EΛj)∩
Zd
x(n−j+1),↓ such that |y − x(n−j+1)| � (logL)2 and η(y) = 0. Corollary 4.2

implies that, with probability greater than 1− e−(logL)2 , there exists C > 0
independent of j and a vertex z ∈ (Λj ∪ ∂EΛj) ∩ Zdx(n−j+1),↓ such that:

(i) |z − x(n−j+1)| � C(logL)2,

(ii) one spin in the East boundary of z spends a time greater than
(logL)3d in state 0 up to time t.

Notice that, if V ≡ ∏d
i=1[zi, zi + 3C(logL)2], then neither f (j) nor f (j−1)

depend on the spins in Zdz,↑ \V (see Figure 4) and we can apply Lemma 5.4

to both (V, f (j−1)) and (V, f (j)). Using the fact that πV (f (j−1)) = πV (f (j))
we finally get that

|µηt (f (j−1))− µηt (f
(j))| � e−(logL)2 + C ′ec(logL)2d−λ(logL)3d .

In conclusion, for any L large enough

|µt(f)− π(f)| � 2Lde−(logL)2

and the lemma follows.

We are finally in a position to prove our main result.
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Proof of Theorem 5.1. — The lower bound is straightforward by choosing
as initial condition the configuration without vacancies and using the finite
speed of propagation of information (see e.g. [21, Section 4.4]) to prove that,
with high probability, the process is not able to create vacancies near the
vertex x̂ = (L, . . . , L) in a time t = δL, if δ is small enough.

To prove the upper bound we proceed as follows. Using Lemma 5.3,
uniformly in the initial condition, in a time t = O(L) the East-like chain
will enter the good set Ω̂Λ with probability e.g. greater than 7/8. Using the
Markov property and Lemma 5.5, in an additional time lag O((logL)5d) the
chain will reduce its variation distance from the target distribution πΛ to
less than 1/8.
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