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Some simple but challenging Markov processes

Florent Malrieu(1)

RÉSUMÉ. — Ces notes rassemblent l’étude du comportement en temps
long de plusieurs processus de Markov déterministes par morceaux. Ces
processus ont le double intérêt d’être motivés par la modélisation (bi-
ologie, réseaux de communication, chimie,. . . ) et d’impliquer de nom-
breux outils mathématiques : couplage, approches spectrales, équations
aux dérivées partielles non locales ou encore inégalités fonctionnelles. Ces
exemples permettent enfin de formuler des questions ouvertes.

ABSTRACT. — In this note, we present few examples of Piecewise De-
terministic Markov Processes and their long time behavior. They share
two important features: they are related to concrete models (in biology,
networks, chemistry,. . . ) and they are mathematically rich. Their math-
ematical study relies on coupling method, spectral decomposition, PDE
technics, functional inequalities. We also relate these simple examples to
recent and open problems.

1. Introduction

A Piecewise deterministic Markov processes (PDMP1) is a stochastic
process involving deterministic motion punctuated by random jumps. This
large class of non diffusive stochastic models was introduced in the liter-
ature by Davis [20, 21] (see also [34]). As it will be stressed below, these
processes arise naturally in many application areas: biology, communication
networks, reliability of complex systems for example. From a mathematical
point of view, they are simple to define but their study may require a broad
spectrum of tools as stochastic coupling, functional inequalities, spectral
analysis, dynamical systems, partial differential equations.

(1) Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083),
Fédération Denis Poisson (FR CNRS 2964), Université François-Rabelais, Parc de Grand-
mont, 37200 Tours, France.
florent.malrieu(AT)univ-tours.fr

(1) This may also mean ”Persi Diaconis: Mathemagician and Popularizer”.
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The aim of the present paper is to present simple examples of PDMP
appearing in different applied frameworks and to investigate their long
time behavior. Rather than using generic technics (as Meyn-Tweedie-Foster-
Lyapunov. . . strategy) we will focus on as explicit as possible estimates.
Several open and motivating questions (stability criteria, regularity of the
invariant measure(s), explicit rate of convergence. . . ) are also listed along
the paper.

Roughly speaking the dynamics of a PDMP on a set E depends on three
local characteristics, namely, a flow ϕ, a jump rate λ and a transition kernel
Q. Starting from x, the motion of the process follows the flow t �→ ϕt(x)
until the first jump time T1 which occurs in a Poisson-like fashion with rate
λ(x). More precisely, the distribution of the first jump time is given by

Px(T1 > t) = exp

(
−

∫ t

0

λ(ϕs(x)) ds

)
.

Then, the location of the process at the jump time T1 is selected by the
transition measure Q(ϕT1(x), ·) and the motion restarts from this new point
as before. This motion is summed up by the infinitesimal generator:

Lf(x) = F (x) · ∇f(x) + λ(x)

∫

E

(f(y)− f(x))Q(x, dy), (1.1)

where F is the vector field associated to the flow ϕ. In several examples,
the process may jump when it hits the boundary of E. The boundary of
the space ∂E can be seen as a region where the jump rate is infinite (see
for example [18] for the study of billiards in a general domain with random
reflections).

In the sequel, we denote by P(Rd) the set of probability measures on
(Rd,B(Rd)) and, for any p � 1, by Pp(Rd) the set of probability measures
on (Rd,B(Rd)) with a finite pth-moment: µ ∈ Pp(Rd) if

∫

Rd
|x|p µ(dx) < +∞.

The total variation distance on P(Rd) is given by

‖ν − ν̃‖TV = inf
{
P(X �= X̃) : X ∼ ν, X̃ ∼ ν̃

}

= sup

{∫
f dν −

∫
f dν̃ : f bounded by 1/2

}
.

If ν and ν̃ are absolutely continuous with respect to µ with density functions
g and g̃, then

‖ν − ν̃‖TV =
1

2

∫

Rd
|g − g̃| dµ.
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For p � 1, the Wasserstein distance of order p, defined on Pp(Rd), is given
by

Wp(ν, ν̃) = inf

{[
E

(∣∣∣X − X̃
∣∣∣
p)]1/p

: X ∼ ν, X̃ ∼ ν̃

}
.

Similarly to the total variation distance, the Wasserstein distance of order
1 has a nice dual formulation:

W1(ν, ν̃) = sup

{∫
f dν −

∫
f dν̃ : f is 1-Lipschitz

}
.

A generic dual expression can be formulated for Wp (see [62]).

2. Storage models, with a bandit...

Let us consider the PDMP driven by the following infinitesimal genera-
tor:

Lf(x) = −βxf ′(x) + α

∫ ∞

0

(f(x+ y)− f(x)) e−ydy.

Such processes appear in the modeling of storage problems or pharmacoki-
netics that describe the evolution of the concentration of a chemical product
in the human body. The present example is studied in [59, 6]. More real-
istic models are studied in [11, 14]. Similar processes can also be used as
stochastic gene expression models (see [42, 65]).

In words, the current stock Xt decreases exponentially at rate β, and
increases at random exponential times by a random (exponentially dis-
tributed) amount. Let us introduce a Poisson process (Nt)t�0 with inten-
sity α and jump times (Ti)i�0 (with T0 = 0) and a sequence (Ei)i�1 of
independent random variables with an exponential law of parameter 1 in-
dependent of (Nt)t�0. The process (Xt)t�0 starting from x � 0 can be
constructed as follows: for any i � 0,

Xt =

{
e−β(t−Ti)XTi if Ti � t < Ti+1,

e−β(Ti+1−Ti)XTi + Ei+1 if t = Ti+1.

This model is sufficiently näıve to express the Laplace transform of X.

Lemma 2.1 (Laplace transform).— For any t � 0 and s < 1, the Laplace
transform of Xt is given by

L(t, s) := E
(
esXt

)
= L(0, se−βt)

(
1− se−βt

1− s

)α/β

,
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where L(0, ·) stands for the Laplace transform of X0. In particular, the in-
variant distribution of X is the Gamma distribution with density

x �→ xα/β−1e−x

Γ(α/β)
11[0,+∞)(x).

Proof. — Applying the infinitesimal generator to x �→ esx, one deduces that
the function L is solution of the following partial differential equation:

∂tL(t, s) = −βs∂sL(t, s) +
αs

1− sL(t, s).

More generally, if the random income is non longer exponentially distributed
but has a Laplace transform Li then L is solution of

∂tL(t, s) = −βs∂sL(t, s) + α(Li(s)− 1)L(t, s).

As a consequence, if G is given by G(t, s) = logL(t, s) + (α/β) log(1 − s)
then

∂tG(t, s) = −βs∂sG(t, s).

The solution of this partial differential equation is given by
G(t, s) = G(0, se−βt).

The next step is to investigate the convergence to equilibrium.

Theorem 2.2 (Convergence to equilibrium).— Let us denote by νPt the
law of Xt if X0 is distributed according to ν. For any x, y � 0 and t � 0
and p � 1,

Wp(δxPt, δyPt) � |x− y|e−βt,
and (when α �= β)

‖δxPt − δyPt‖TV � e−αt + |x− y|αe
−βt − e−αt
α− β . (2.1)

Moreover, if µ is the invariant measure of the process X, we have for any
probability measure ν with a finite first moment and t � 0,

‖νPt − µ‖TV � ‖ν − µ‖TVe
−αt +W1(ν, µ)α

e−βt − e−αt
α− β .

Remark 2.3 (Limit case).— In the case α = β, the upper bound (2.1)
becomes

‖δxPt − δyPt‖TV � (1 + |x− y|αt)e−αt.
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Remark 2.4 (Optimality).— Applying L to the test function f(x) = xn

allows us to compute recursively the moments of Xt. In particular,

Ex(Xt) =
α

β
+

(
x− α

β

)
e−βt.

This relation ensures that the rate of convergence for the Wasserstein dis-
tance is sharp. Moreover, the coupling for the total variation distance re-
quires at least one jump. As a consequence, the exponential rate of conver-
gence is greater than α. Thus, Equation (2.1) provides the optimal rate of
convergence α ∧ β.

Proof of Theorem 2.2. — Firstly, consider two processes X and Y starting
respectively at x and y and driven by the same randomness (i.e. Poisson
process and jumps). Then the distance between Xt and Yt is deterministic:

Xt − Yt = (x− y)e−βt.

Obviously, for any p � 1 and t � 0,

Wp(δxPt, δyPt) � |x− y|e−βt.

Let us now construct explicitly a coupling at time t to get the upper bound
(2.1) for the total variation distance. The jump times of (Xt)t�0 and (Yt)t�0

are the ones of a Poisson process (Nt)t�0 with intensity α and jump times

(Ti)i�0. Let us now construct the jump heights (EX
i )1�i�Nt and (EY

i )1�i�Nt
of X and Y until time t. If Nt = 0, no jump occurs. If Nt � 1, we choose
EX
i = EY

i for 1 � i � Nt − 1 and EX
Nt

and EY
Nt

in order to maximise the
probability

P
(
XTNt

+ EX
Nt = YTNt + EY

Nt

∣∣XTNt
, YTNt

)
.

This maximal probability of coupling is equal to

exp
(
−|XTNt

− YTNt |
)

= exp
(
−|x− y|e−βTNt

)
� 1− |x− y|e−βTNt .

As a consequence, we get that

‖δxPt − δyPt‖TV � 1− E
[(

1− |x− y|e−βTNt
)
11{Nt�1}

]

� e−αt + |x− y|E
(
e−βTNt11{Nt�1}

)
.

The law of Tn conditionally on the event {Nt = n} has the density

u �→ n
un−1

tn
11[0,t](u).
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This ensures that

E
(
e−βTNt11{Nt�1}

)
=

∫ 1

0

e−βtvE
(
Ntv

Nt−1
)
dv.

Since the law of Nt is the Poisson distribution with parameter αt, one has

E
(
Ntv

Nt−1
)

= αteαt(v−1).

This ensures that

E
(
e−βNt11{Nt�1}

)
= α

e−βt − e−αt
α− β ,

which completes the proof. Finally, to get the last estimate, we proceed
as follows: if Nt is equal to 0, a coupling in total variation of the initial
measures is done, otherwise, we use the coupling above.

Remark 2.5 (Another example).— Surprisingly, a process of the same
type appears in [37] in the study of the so-called bandit algorithm. The
authors have to investigate the long time behavior of the process driven by

Lf(y) = (1− p− py)f ′(y) + qy
f(y + g)− f(y)

g
,

where 0 < q < p < 1 and g > 0. This can be done following the lines of the
proof of Theorem 2.2.

3. The TCP model with constant jump rate

This section is devoted to the process on [0,+∞) driven by the following
infinitesimal generator

Lf(x) = f ′(x) + λ(f(x/2)− f(x)) (x � 0).

In other words, the process grows linearly between jump times that are the
one of a homogeneous Poisson process with parameter λ and it is divided
by 2 at these instants of time. See Section 3.4 for concrete motivations and
generalizations.

3.1. Spectral decomposition

Without loss of generality, we choose λ = 1 in this section. The gener-
ator L of the näıve TCP process preserves the degree of polynomials. As a
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consequence, for any n ∈ N, the eigenvalue λn = −(1 − 2−n) is associated
to a polynomials Pn with degree n. As an example,

P0(x) = 1, P1(x) = x− 2 and P2(x) = x2 − 8x+ 32/3.

Moreover, one can explicitly compute the moments of the invariant measure
µ (see [39]): for any n ∈ N

∫
xn µ(dx) =

n!∏n
k=1(1− 2−k)

.

Roughly speaking, this relation comes from the fact that the functions mn :
t ∈ [0,∞) �→ E(Xn

t ) for n � 0 are solution of

m′n(t) = nmn−1(t) +
(
2−n − 1

)
mn(t).

It is also shown in [24] that the Laplace transform of µ is finite on a neigh-
borhood of the origin. As a consequence, the polynomials are dense in L2(µ).
Unfortunately, the eigenvectors of L are not orthogonal in L2(µ). For ex-
ample, ∫

P1P2 dµ = −64

27
.

This lack of symmetry (due to the fact that the invariant measure µ is
not reversible) prevents us to easily deduce an exponential convergence to
equilibrium in L2

µ.

When the invariant measure is reversible, the spectral decomposition
(and particularly its spectral gap) of L provides fine estimates for the con-
vergence to equilibrium. See for example [41] and the connection with cou-
pling strategies and strong stationary times introduced in [1].

Open question 1 (Spectral proof of ergodicity).— Despite the lack of
reversibility, is it possible to use the spectral properties of L to get some
estimates on the long time behavior of X?

Remark 3.1.— This spectral approach has been fruitfully used in [28, 45]
to study (nonreversible) hypocoercive models.

3.2. Convergence in Wasserstein distances

The convergence in Wasserstein distance is obvious.

Lemma 3.2 (Convergence in Wasserstein distance [57, 16]).— For any
p � 1,

Wp(δxPt, δyPt) � |x− y|e−λpt with λp =
λ(1− 2−p)

p
. (3.1)
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Remark 3.3 (Alternative approach). — The case p = 1 is obtained in
[57] by PDEs estimates using the following alternative formulation of the
Wasserstein distance on R. If the cumulative distribution functions of the
two probability measures ν and ν̃ are F and F̃ then

W1(ν, ν̃) =

∫

R
|F (x)− F̃ (x)| dx.

The general case p � 1 is obvious from the probabilistic point of view:
choosing the same Poisson process (Nt)t�0 to drive the two processes pro-
vides that the two coordinates jump simultaneously and

|Xt − Yt| = |x− y|2−Nt .

As a consequence, since the law of Nt is the Poisson distribution with pa-
rameter λt, one has

Ex,y(|Xt − Yt|p) = |x− y|pE
(
2−pNt

)
= |x− y|pe−pλpt.

This coupling turns out to be sharp. Indeed, one can compute explicitly the
moments of Xt (see [39, 52]): for every n � 0, every x � 0, and every t � 0,

Ex(X
n
t ) =

n!∏n
k=1 θk

+ n!

n∑

m=1

( m∑

k=0

xk

k!

n∏

j=k
j �=m

1

θj − θm

)
e−θmt, (3.2)

where θn = λ(1 − 2−n) = nλn for any n � 1. Obviously, assuming for
example that x > y,

Wn(δxPt, δyPt)
n � Ex((Xt)

n)− Ey((Yt)
n)

∼
t→∞

n!

( n∑

k=0

xk − yk
k!

n−1∏

j=k

1

θj − θn

)
e−θnt.

As a consequence, the rate of convergence in Equation (3.1) is optimal for
any n � 1.

3.3. Convergence in total variation distance

The estimate for the Wasserstein rate of convergence does not provide on
its own any information about the total variation distance between δxPt and
δyPt. It turns out that this rate of convergence is the one of the W1 distance.
This is established in [57, Thm 1.1]. Let us provide here an improvement of
this result by a probabilistic argument.
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Theorem 3.4 (Convergence in total variation distance). — For any
x, y � 0 and t � 0,

‖δxPt − δyPt‖TV � λe−λt/2|x− y|+ e−λt. (3.3)

As a consequence, for any measure ν with a finite first moment and t � 0,

‖νPt − µ‖TV � λe−λt/2W1(ν, µ) + e−λt‖ν − µ‖TV. (3.4)

Remark 3.5 (Propagation of the atom). — Note that the upper bound
obtained in Equation (3.3) does not go to zero as y → x. This is due to the
fact that δxPt has an atom at y + t with mass e−λt.

Proof of Theorem 3.4. — The coupling is a slight modification of the Wasser-
stein one. The paths of (Xs)0�s�t and (Ys)0�s�t starting respectively from

x and y are determined by their jump times (TX
n )n�0 and (TY

n )n�0 up to
time t. These sequences have the same distribution than the jump times of
a Poisson process with intensity λ.

Let (Nt)t�0 be a Poisson process with intensity λ and (Tn)n�0 its jump
times with the convention T0 = 0. Let us now construct the jump times of
X and Y . Both processes make exactly Nt jumps before time t. If Nt = 0,
then

Xs = x+ s and Ys = y + s for 0 � s � t.

Assume now that Nt � 1. The Nt − 1 first jump times of X and Y are the
ones of (Nt)t�0:

TX
k = TY

k = Tk 0 � k � Nt − 1.

In other words, the Wasserstein coupling acts until the penultimate jump
time TNt−1. At that time, we have

XTNt−1
− YTNt−1

=
x− y
2Nt−1

.

Then we have to define the last jump time for each process. If they are such
that

TX
Nt = TY

Nt +XTNt−1
− YTNt−1

,

then the paths of X and Y are equal on the interval (TX
Nt
, t) and can be

chosen to be equal for any time larger than t.

Recall that conditionally on the event {Nt = 1}, the law of T1 is the
uniform distribution on (0, t). More generally, if n � 2, conditionally on
the set {Nt = n}, the law of the penultimate jump time Tn−1 has a den-
sity s �→ n(n − 1)t−n(t − s)sn−211(0,t)(s) and conditionally on the event
{Nt = n, Tn−1 = s}, the law of Tn is uniform on the interval (s, t).
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Conditionally on Nt = n � 1 and Tn−1, T
X
n and TY

n are uniformly
distributed on (Tn−1, t) and can be chosen such that

P
(
TX
n = TY

n +
x− y
2n−1

∣∣∣NX
t = NY

t = n, TX
n−1 = TY

n−1 = Tn−1

)

=

(
1− |x− y|

2n−1(t− Tn−1)

)
∨ 0 � 1− |x− y|

2n−1(t− Tn−1)
.

This coupling provides that

‖δxPt − δyPt‖TV � 1− E
[(

1− |x− y|
2Nt−1(t− TNt−1)

)
11{Nt�1}

]

� e−λt + |x− y|E
(

2−Nt+1

(t− TNt−1)
11{Nt�1}

)
.

For any n � 2,

E
(

1

t− TNt−1

∣∣∣Nt = n

)
=
n(n− 1)

tn

∫ t

0

un−2 du =
n

t
.

This equality also holds for n = 1. Thus we get that

E
(

2−Nt+1

(t− TNt−1)
11{Nt�1}

)
=

1

t
E

(
Nt2

−Nt+1
)

= λe−λt/2,

since Nt is distributed according to the Poisson law with parameter λt.
This provides the estimate (3.3). The general case (3.4) is a straightforward
consequence: if Nt is equal to 0, a coupling in total variation of the initial
measures is done, otherwise, we use the coupling above.

3.4. Some generalizations

This process on R+ belongs to the subclass of the AIMD (Additive In-
crease Multiplicative Decrease) processes. Its infinitesimal generator is given
by

Lf(x) = f ′(x) + λ(x)

∫ 1

0

(f(ux)− f(x)) ν(du), (3.5)

where ν is a probability measure on [0, 1] and λ is a non negative function.
It can be viewed as the limit behavior of the congestion of a single channel
(see [24, 31] for a rigorous derivation of this limit). In [44], the authors give
a generalization of the scaling procedure to interpret various PDMPs as
the limit of discrete time Markov chains and in [40] more general increase
and decrease profiles are considered as models for TCP. In the real world
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(Internet), the AIMD mechanism allows a good compromise between the
minimization of network congestion time and the maximization of mean
throughput. See also [12] for a simplified TCP windows size model. See
[40, 43, 52, 53, 54, 51, 33] for other works dedicated to this process. Gener-
alization to interacting multi-class transmissions are considered in [29, 30].

Such processes are also used to model the evolution of the size of bac-
teria or polymers which mixes growth and fragmentation: they growth in a
deterministic way with a growth speed x �→ τ(x), and split at rate x �→ λ(x)
into two (for simplicity) parts y and x−y according a kernel β(x, y)dy. The
infinitesimal generator associated to this dynamics writes

Lf(x) = τ(x)f ′(x) + λ(x)

∫ x

0

(f(y)− f(x))β(x, y) dy.

If the initial distribution of the size has a density u(·, 0) then this density is
solution of the following integro-differential PDE:

∂tu(x, t) = −∂x(τ(x)u(x, t))− λ(x)u(x, t) +

∫ ∞

x

λ(y)β(y, x)u(y, t) dy.

If one is interesting in the density of particles with size x at time t in the
growing population (a splitting creates two particles), one has to consider
the PDE

∂tu(x, t) = −∂x(τ(x)u(x, t))− λ(x)u(x, t) + 2

∫ ∞

x

λ(y)β(y, x)u(y, t) dy.

This growth-fragmentation equations have been extensively studied from a
PDE point of view (see for example [56, 23, 15, 46]). A probabilistic approach
is used in [10] to study the pure fragmentation process.

4. Switched flows and motivating examples

Let E be the set {1, 2, . . . , n}, (λ(·, i, j))i,j∈E be nonnegative continuous
functions on Rd, and, for any i ∈ E, F i(·) : Rd �→ Rd be a smooth vector
field such that the ordinary differential equation

{
ẋt = F i(xt) for t > 0,

x0 = x

has a unique and global solution t �→ ϕi
t(x) on [0,+∞) for any initial con-

dition x ∈ Rd. Let us consider the Markov process

(Zt)t�0 = ((Xt, It))t�0 on Rd × E
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defined by its infinitesimal generator L as follows:

Lf(x, i) = F i(x) · ∇xf(x, i) +
∑

j∈E
λ(x, i, j)(f(x, j)− f(x, i))

for any smooth function f : Rd × E → R.

These PDMP are also known as hybrid systems. They have been inten-
sively studied during the past decades (see for example the review [64]). In
particular, they naturally appear as the approximation of Markov chains
mixing slow and fast dynamics (see [19]). They could also be seen as a
continuous time version of iterated random functions (see the excellent re-
view [22]).

In this section, we present few examples from several applied areas and
describe their long time behavior.

4.1. A surprising blow up for switched ODEs

The main probabilistic results of this section are established in [38].
Consider the Markov process (X, I) on R2 × {0, 1} driven by the following
infinitesimal generator:

Lf(x, i) = (Aix) · ∇xf(x, i) + r(f(x, 1− i)− f(x, i)) (4.1)

where r > 0 and A0 and A1 are the two following matrices

A0 =

(
−α 1
0 −α

)
and A1 =

(
−α 0
−1 −α

)
(4.2)

for some positive α. In other words, (It)t�0 is a Markov process on {0, 1}
with constant jump rate r (from 0 to 1 and from 1 to 0) and (Xt)t�0 is the

solution of Ẋt = AItXt.

The two matrices A0 and A1 are Hurwitz matrices (all eigenvalues have
strictly negative real parts). Moreover, it is also the case for the matrix
Ap = pA1 + (1− p)A0 with p ∈ [0, 1] since the eigenvalues of Ap are −α ±
i
√
p(1− p). Then, for any p ∈ [0, 1], there exists Kp � 1 and ρ > 0 such

that

‖xt‖ � Kp‖x0‖e−ρt,

for any solution (xt)t�0 of ẋt = Apxt.
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4.1.1. Asymptotic behavior of the continuous component

The first step is to use polar coordinates to study the large time behavior
of Rt = ‖Xt‖ and Ut the point on the unit circle S1 given by Xt/Rt. One
gets that

Ṙt = Rt〈AItUt, Ut〉
U̇t = AItUt − 〈AItUt, Ut〉Ut.

As a consequence, (Ut, It) is a Markov process on S1×{0, 1}. One can show
that it admits a unique invariant measure µ.Therefore, if P(R0 = 0) = 0,

1

t
logRt =

1

t
logR0 +

1

t

∫ t

0

〈AIsUs, Us〉 ds a.s.−−−→
t→∞

∫
〈Aiu, u〉µ(du, i).

The stability of the Markov process depends on the sign of

L(α, r) :=

∫
〈Aiu, u〉µ(du, i).

An ”explicit” formula for L(α, r) can be formulated in terms of the classical
trigonometric functions

cot(x) =
cos(x)

sin(x)
, sec(x) =

1

cos(x)
and csc(x) =

1

sin(x)
.

Theorem 4.1 (Lyapunov exponent [38]).— For any r > 0 and α > 0,

L(α, r) = G(r)−α where G(r) =

∫ 2π

0

(p0(θ; r)−p1(θ; r)) cos(θ) sin(θ) dθ > 0

and p0 and p1 are defined as follows: for θ ∈ (−π/2, 0)

H(θ; r) = exp(−2r cot(2θ))

∫ 0

θ

exp(2r cot(2y)) sec2(y) dy,

C(r) =

[
4

∫ 0

−π2
sec2(x) + (csc2(x)− sec2(x))rH(x; r) dx

]−1

,

p0(θ; r) = C(r) csc2(θ)rH(θ; r),

p1(θ; r) = C(r) sec2(θ)[1− rH(θ; r)],

and for any θ ∈ R,

pi(θ; r) = p1−i(θ + π/2; r) = pi(θ + π; r).
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Sketch of proof of Theorem 4.1. — Let us denote by (Θt)t�0 the lift of (Ut)t�0.
The process (Θ, I) is also Markovian. Moreover, its infinitesimal generator
is given by

Lf(θ, i) = −
[
i cos2(θ) + (1− i) sin2(θ)

]
∂θf(θ, i) + r[f(θ, 1− i)− f(θ, i)].

Notice that the dynamics of (Θ, I) does not depend on the parameter α.
This process has a unique invariant measure µ (depending on the jump
rate r). With the one-to-one correspondence between a point on S1 and a
point in [0, 2π), let us write the invariant probability measure µ as

µ(dθ, i) = pi(θ; r)11[0,2π)(θ) dθ,

The functions p0 and p1 are solution of
{
∂θ(sin

2(θ)p0(θ)) + r(p1(θ)− p0(θ)) = 0,

∂θ(cos2(θ)p1(θ)) + r(p0(θ)− p1(θ)) = 0.

These relations provide the desired expressions.

The previous technical result provides immediately the following result
on the (in)stability of the process.

Corollary 4.2 ((In)Stability [38]).— There exist α > 0, a > 0 and
b > 0 such that L(α, r) is negative if r < a or r > b and L(α, r) is positive
for some r ∈ (a, b).

From numerical experiments, see Figure 1, one can formulate the follow-
ing conjecture on the function G.

Figure 1. — Shape of the function G defined in Theorem 4.1.
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Conjecture 4.3 (Shape of G). — There exists rc ∼ 4.6 such that
G′(r) > 0 for r < rc and G′(r) < 0 for r > rc and G(rc) ∼ 0.2. More-
over,

lim
r→0

G(r) = 0 and lim
r→∞

G(r) = 0.

Open question 2 (Shape of the instability domain).— Is it possible to
prove Conjecture 4.3? This would imply that the set

Uα =
{
r > 0 : ‖Xt‖ p.s.−−−→

t→∞
+∞

}
={r > 0 : L(r, α) > 0}={r > 0 : G(r) > α}

is empty for α > G(rc) and is a non empty interval if α < G(rc).

Remark 4.4 (On the irreducibility of (U, I)).— Notice that one can mod-
ify the matrices A0 and A1 in such a way that (U, I) has two ergodic invari-
ant measures (see [9]).

Open question 3 (Oscillations of the Lyapunov exponent). — Is it
possible to choose the two 2× 2 matrices A0 and A1 in such a way that the
set of jump rates r associated to unstable processes is the union of several
intervals?

4.1.2. A deterministic counterpart

Consider the following ODE

ẋt = (1− ut)A0xt + utA1xt, (4.3)

where u is a given measurable function from [0,∞) to {0, 1}. The system
is said to be unstable if there exists a starting point x0 and a measurable
function u : [0,∞)→ {0, 1} such that the solution of (4.3) goes to infinity.

In [13, 4, 5], the authors provide necessary and sufficient conditions for
the solution of (4.3) to be unbounded for two matrices A0 and A1 inM2(R).
In the particular case (4.2), this result reads as follows.

Theorem 4.5 (Criterion for stability [5]). — If A0 and A1 are given
by (4.2), the system (4.3) is unbounded if and only if

R(α2) :=
1 + 2α2 +

√
1 + 4α2

2α2
e−2
√

1+4α2
> 1. (4.4)

More precisely, the result in [5] ensures that

• if 2α > 1 (case S1 in [5]) then there exists a common quadratic
Lyapunov function for A0 and A1 (and ‖Xt‖ goes to 0 exponentially
fast as t→∞ for any function u),
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• if 2α � 1 (case S4 in [5]) then, the system is

– globally uniformly asymptotically stable (and ‖Xt‖ goes to 0
exponentially fast as t→∞ for any function u) if R(α2) < 1,

– uniformly stable (but for some functions u, ‖Xt‖ does not con-
verge to 0) if R(α2) = 1,

– unbounded if R(α2) > 1,

where R(α2) is given by (4.4).

Proof of Theorem 4.5. — The general case is considered in [5]. The main
idea is to construct the so-called worst trajectory choosing at each instant
of time the vector field that drives the particle away from the origin. The
solutions xt = (yt, zt) of ẋt = A0xt and ẋt = A1xt starting from x0 =
(y0, z0) are respectively given by

{
yt = (z0t+ y0)e

−αt

zt = z0e
−αt and

{
yt = y0e

−αt

zt = (−y0t+ z0)e
−αt.

Let us define, for x = (y, z),

Q(x) = det(A0x,A1x) = αy2 − yz − αz2.

Then the set of the points where A0x and A1x are collinear is given by
{
x ∈ R2 : Q(x) = 0

}
=

{
x = (y, z) : y = γ+z or y = γ−z

}

where

γ+ =
1 +
√

1 + 4α2

2α
> 0 and γ− =

1−
√

1 + 4α2

2α
< 0.

Let us start with x0 = (0, 1) and I0 = 0. Choose t1 = γ+ in such a way
that:

xt1 =
(
γ+e−αγ

+

, e−αγ
+
)
.

Now, set t2 = t1 + γ+ − γ− and It = 1 for t ∈ [t1, t2) in such a way that
yt2 = γ−zt2 i.e. yt2 = −(γ+)−1zt2 . Then, one has

xt2 =
(
γ+e−α(2γ+−γ−),−(γ+)2e−α(2γ+−γ−)

)
.

Finally, choose t3 = t2 − γ− and It = 0 for t ∈ [t2, t3) in such a way that
yt3 = 0. Then, one has

xt3 =
(
0,−(γ+)2e−2α(γ+−γ−)

)
.

The process is unbounded if and only if ‖xt3‖ > 1. This is equivalent to
(4.4).
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Figure 2. — The worth trajectory with α = 0.32 (on the left), α = 0.3314 (in the

middle) and α = 0.34 (on the right). The system evolves clock-wisely from (0, 1).
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4.2. Invariant measure(s) of switched flows

In order to avoid the possible explosions studied in Section 4.1, one can
impose that the state space of the continuous variable is a compact set.

In [7], it is shown thanks to an example that the number of the invari-
ant measures may depend on the jump rate for fixed vector fields (as for
the problem of (un)-stability described in the previous section). Moreover
Hörmander-like conditions on the vector fields are formulated in [2, 7] to
ensure that the first marginal of the invariant measure(s) may be abso-
lutely continuous with respect to the Lebesgue measure on Rd. However the
density may blow up as it is shown in the example below.

Example 4.6 (Possible blow up of the density near a critical
point). — Consider the process on R × {0, 1} associated to the infinitesi-
mal generator

Lf(x, i) = −αi(x− i)∂xf(x, i) + λi(f(x, 1− i)− f(x)).

This process is studied in [36, 58]. The support of its invariant measure µ
is the set [0, 1]× {0, 1} and µ is given by

∫
f dµ =

λ1

λ0 + λ1

∫ 1

0

f(x, 0)p0(x) dx+
λ0

λ0 + λ1

∫ 1

0

f(x, 1)p1(x) dx,

where p0 and p1 are Beta distributions:

p0(x) =
xλ0/α0−1(1− x)λ1/α1

B(λ0/α0, λ1/α1 + 1)
and p1(x) =

xλ0/α0(1− x)λ1/α1−1

B(λ0/α0 + 1, λ1/α1)
.

The density of the invariant measure possibly explodes near 0 or 1.

The paper [3] is a detailed analysis of invariant measures for switched
flows in dimension one. In particular, the authors prove smoothness of the
invariant densities away from critical points and describe the asymptotics
of the invariant densities at critical points.

The situation is more intricate for higher dimensions.

Example 4.7 (Possible blow up of the density in the interior of the sup-
port). — Consider the process on R2 × {0, 1} associated to the constant
jump rates λ0 and λ1 for the discrete component and the vector fields

F 0(x) = Ax and F 1(x) = A(x− a) where A =

(
−1 −1
1 −1

)
and a =

(
1
0

)
.

(4.5)
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Figure 3. — Path of the process associated to F 0 and F 1 given by (4.5) starting from

the origin. Red (resp. blue) pieces of path correspond to I = 1 (resp. I = 0).

The origin and a are the respective unique critical points of F 0 and F 1.
Thanks to the precise estimates in [3], one can prove the following fact. If
λ0 is small enough then, as for one-dimensional example, the density of the
invariant measure blows up at the origin. This also implies that the density
is infinite on the set

{
ϕ1
t (0) : t � 0

}
.

Open question 4.— What can be said on the smoothness of the density
of the invariant measure of such processes?

4.3. A convergence result

This section sums up the study of the long time behavior of certain
switched flows presented in [8]. See also [61] for another approach. To focus
on the main lines of this paper, the hypotheses below are far from the
optimal ones.

Hypothesis 4.8 (Regularity of the jump rates).— There exist a > 0
and κ > 0 such that, for any x, x̃ ∈ Rd and i, j ∈ E,

a(x, i, j) � a and
∑

j∈E
|a(x, i, j)− a(x̃, i, j)| � κ‖x− x̃‖.

The lower bound condition insures that the second — discrete — coor-
dinate of Z changes often enough (so that the second coordinates of two
independent copies of Z coincide sufficiently often).
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Hypothesis 4.9 (Strong dissipativity of the vector fields).— There ex-
ists α > 0 such that,

〈
x− x̃, F i(x)− F i(x̃)

〉
� −α‖x− x̃‖2, x, x̃ ∈ Rd, i ∈ E. (4.6)

Hypothesis 4.9 ensures that, for any i ∈ E,

∥∥ϕi
t(x)− ϕi

t(x̃)
∥∥ � e−αt‖x− x̃‖, x, x̃ ∈ Rd.

As a consequence, the vector fields F i has exactly one critical point σ(i) ∈
Rd. Moreover it is exponentially stable since, for any x ∈ Rd,

∥∥ϕi
t(x)− σ(i)

∥∥ � e−αt‖x− σ(i)‖.

In particular, X cannot escape from a sufficiently large ball B̄(0,M). Define
the following distance W1 on the probability measures on B(0,M)×E: for
η, η̃ ∈ P(B(0,M)× E),

W1(η, η̃) = inf
{
E|X − X̃|+ P(I �= Ĩ) : (X, I) ∼ η and (X̃, Ĩ) ∼ η̃

}
.

Theorem 4.10 (Long time behavior [8]).— Assume that Hypotheses 4.8
and 4.9 hold.

Then, the process has a unique invariant measure and its support is
included in B̄(0,M)×E. Moreover, let ν0 and ν̃0 be two probability measures
on B̄(0,M) × E. Denote by νt the law of Zt when Z0 is distributed as ν0
Then there exist positive constants c and γ such that

W1(ηt, η̃t) � ce−γt.

The constants c and γ can be explicitly expressed in term of the pa-
rameters of the model (see [8]). The proof relies on the construction of an
explicit coupling. See also [17, 48].

Open question 5. — One can apply Theorem 4.10 to the processes
defined in Examples 4.6 and 4.7. The associated time reversal processes are
associated to unstable vector fields and unbounded jump rates. What can be
said about their convergence to equilibrium?

Section 4.4 presents an application of this theorem to a biological model.
In Section 4.5, we describe a näıve model for the movement of bacteria that
can also be seen as an ergodic telegraph process.
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4.4. Neuron activity

The paper [55] establishes limit theorems for a class of stochastic hybrid
systems (continuous deterministic dynamic coupled with jump Markov pro-
cesses) in the fluid limit (small jumps at high frequency), thus extending
known results for jump Markov processes. The main results are a functional
law of large numbers with exponential convergence speed, a diffusion ap-
proximation, and a functional central limit theorem. These results are then
applied to neuron models with stochastic ion channels, as the number of
channels goes to infinity, estimating the convergence to the deterministic
model. In terms of neural coding, the central limit theorems allows to esti-
mate numerically the impact of channel noise both on frequency and spike
timing coding.

The Morris-Lecar model introduced in [49] describes the evolution in
time of the electric potential V (t) in a neuron. The neuron exchanges differ-
ent ions with its environment via ion channels which may be open or closed.
In the original – deterministic – model, the proportion of open channels
of different types are coded by two functions m(t) and n(t), and the three
quantities m, n and V evolve through the flow of an ordinary differential
equation.

Various stochastic versions of this model exist. Here we focus on a model
described in [63], to which we refer for additional information. This model
is motivated by the fact that m and n, being proportions of open channels,
are better coded as discrete variables. More precisely, we fix a large integer
K (the total number of channels) and define a PDMP (V, u1, u2) with values
in R× {0, 1/K, 2/K . . . , 1}2 as follows.

Firstly, the potential V evolves according to

dV (t)

dt
=

1

C

(
I −

3∑

i=1

giui(t)(V − Vi)
)

(4.7)

where C and I are positive constants (the capacitance and input current),
the gi and Vi are positive constants (representing conductances and equi-
librium potentials for different types of ions), u3(t) is equal to 1 and u1(t),
u2(t) are the (discrete) proportions of open channels for two types of ions.

These two discrete variables follow birth-death processes on
{0, 1/K, . . . , 1} with birth rates α1, α2 and death rates β1, β2 that depend
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on the potential V :

αi(V ) = ci cosh

(
V − V ′i
2V ′′i

) (
1 + tanh

(
V − V ′i
V ′′i

))

βi(V ) = ci cosh

(
V − V ′i
2V ′′i

) (
1− tanh

(
V − V ′i
V ′′i

)) (4.8)

where the ci and V ′i , V
′′
i are constants.

Let us check that Theorem 4.10 can be applied in this example. Formally
the process is a PDMP with d = 1 and the finite set E = {0, 1/K, . . . , 1}2.
The discrete process (u1, u2) plays the role of the index i ∈ E, and the fields
F (u1,u2) are defined (on R) by (4.7) by setting u1(t) = u1, u2(t) = u2.

The constant term u3g3 in (4.7) ensures that the uniform dissipation
property (4.6) is satisfied: for all (u1, u2),

〈
V − Ṽ , F (u1,u2)(V )− F (u1,u2)(Ṽ )

〉
= − 1

C

3∑

i=1

uigi(V − Ṽ )2

� − 1

C
u3g3(V − Ṽ )2.

The Lipschitz character and the bound from below on the rates are not
immediate. Indeed the jump rates (4.8) are not bounded from below if V is
allowed to take values in R.

However, a direct analysis of (4.7) shows that V is essentially bounded :
all the fields F (u1,u2) point inward at the boundary of the (fixed) line seg-
ment S = [0,max(V1, V2, V3 + (I + 1)/g3u3)], so if V (t) starts in this region
it cannot get out. The necessary bounds all follow by compactness, since
αi(V ) and βi(V ) are C1 in S and strictly positive.

4.5. Chemotaxis

Let us briefly describe how bacteria move (see [50, 26, 25] for details).
They alternate two basic behavioral modes: a more or less linear motion,
called a run, and a highly erratic motion, called tumbling, the purpose of
which is to reorient the cell. During a run the bacteria move at approxi-
mately constant speed in the most recently chosen direction. Run times are
typically much longer than the time spent tumbling. In practice, the tum-
bling time is neglected. An appropriate stochastic process for describing the
motion of cells is called the velocity jump process which is deeply studied
in [50]. The velocity belongs to a compact set (the unit sphere for example)
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and changes by random jumps at random instants of time. Then, the posi-
tion is deduced by integration of the velocity. The jump rates may depend
on the position when the medium is not homogeneous: when bacteria move
in a favorable direction i.e. either in the direction of foodstuffs or away
from harmful substances the run times are increased further. Sometimes, a
diffusive approximation is available [50, 60].

In the one-dimensional simple model studied in [27], the particle evolves
in R and its velocity belongs to {−1,+1}. Its infinitesimal generator is given
by:

Af(x, v) = v∂xf(x, v) +
(
a+ (b− a)11{xv>0}

)
(f(x,−v)− f(x, v)), (4.9)

with 0 < a < b. The dynamics of the process is simple: when X goes aways
from 0, (resp. goes to 0), V flips to −V with rate b (resp. a). Since b > a, it
is quite intuitive that this Markov process is ergodic. One could think about
it as an analogue of the diffusion process solution of

dZt = dBt − sign(Zt) dt.

More precisely, under a suitable scaling, one can show that X goes to Z.
Finally, this process is an ergodic version of the so-called telegraph process.
See for example [35, 32].

Of course, this process does not satisfy the hypotheses of Theorem 4.10
since the vector fields have no stable point. It is shown in [27] that the
invariant measure µ of (X,V ) driven by (4.9) is the product measure on
R+ × {−1,+1} given by

µ(dx, dv) = (b− a)e−(b−a)x dx⊗ 1

2
(δ−1 + δ+1)(dv).

One can also construct an explicit coupling to get explicit bounds for the
convergence to the invariant measure in total variation norm [27]. See also
[47] for another approach, linked with functional inequalities.

Open question 6 (More realistic models).— Is it possible to establish
quantitative estimates for the convergence to equilibrium for more realistic
dynamics (especially in R3) as considered in [50, 26, 25]?
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[11] Bertail (P.), S. Clémençon (S.), and Tressou (J.). — A storage model with
random release rate for modeling exposure to food contaminants, Math. Biosci.
Eng. 5, no. 1, p. 35-60 (2008).

[12] Borkovec (M.), Dasgupta (A.), Resnick (S.), and Samorodnitsky (G.). — A
single channel on/off model with TCP-like control, Stoch. Models 18, no. 3, p. 333-
367 (2002).

[13] Boscain (U.),. — Stability of planar switched systems: the linear single input case,
SIAM J. Control Optim. 41 no. 1, p. 89-112 (2002).

[14] Bouguet (F.). — Quantitative exponential rates of convergence for exposure to
food contaminants, To appear in ESAIM PS, arXiv:1310.3948, (2013).

[15] Calvez (V.), Doumic Jauffret (M.), and Gabriel (P.). — Self-similarity in
a general aggregation-fragmentation problem. Application to fitness analysis, J.
Math. Pures Appl. (9) 98, no. 1, p. 1-27 (2012).
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