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Homology and volume of hyperbolic 3-orbifolds,
and enumeration of arithmetic groups

Peter B. Shalen(1)

RÉSUMÉ. — Selon un théorème de Borel, les volumes d’orbifolds hyper-
boliques arithmétiques de dimension 3 constituent un ensemble discret.
Ce théorème soulève le problème d’énumérer les orbifolds hyperboliques
arithmétiques de dimension 3 dont le volume est majoré par une con-
stante donnée. Une étape cruciale dans ce programme est de majorer le
rang d’un certain 2-groupe abélien élémentaire associé à un tel orbifold
O. Ce rang est majoré par la dimension de H1(O;Z2). Étant donné une
variété hyperbolique M dont le volume est majoré par une constante con-
venable, des résultats que j’ai établis en collaboration avec Marc Culler et
d’autres auteurs donnent des bornes supérieures utiles pour la dimension
de H1(M ;Z2). Dans cet article je décrirai mes progrès sur le problème
d’étendre les résultats de ce genre au cadre des orbifolds.

ABSTRACT. — Borel’s theorem that volumes of arithmetic hyperbolic 3-
orbifolds form a discrete set raises the problem of enumerating those arith-
metic hyperbolic 3-orbifolds whose volume is subject to a given upper
bound. A key step is bounding the rank of a certain elementary abelian
2-group associated with such an orbifold O. This rank is bounded above
by the dimension of H1(O;Z2). Joint work of mine with Marc Culler and
others gives good bounxds for the dimension of H1(M ;Z2), where M is
a hyperbolic 3-manifold whose volume has a suitable upper bound. I will
report on progress on the problem of extending results of this kind to
orbifolds.
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1. Introduction

It is a great honor to help celebrate Michel Boileau’s 60th birthday.

Nobody has contributed more than Michel to our understanding of 3-
dimensional orbifolds. It is therefore a pleasant coincidence that I have found
something to say about 3-orbifolds in time for this birthday volume.

The motivation for studying arithmetic orbifolds originally came from
number theory. Although I cannot yet call myself a number theorist, I have
devoted Sections 2 and 3 of this paper to explaining the number-theoretic
background of the problem to the best of my understanding. In Section 3
I state Borel’s result that there are only a finite number of arithmetic 3-
orbifolds of at most a given volume V , raise the question of enumerating
these for a given V , and explain why the problem of getting good bounds on
the dimension of H1(O;Z2) for orbifolds O of volume at most V is relevant
to the problem. In Section 4 I review some joint work with Marc Culler and
others that gives good bounds on the dimension of H1(M ;Z2) for manifolds
M of at most a given volume. In Section 5 I report on some progress on the
corresponding problem for orbifolds, and give a few hints on the method of
proof of the tentative results that I have obtained so far.

Bon anniversaire, Michel. Tous mes voeux de bonheur pour les 60 années
à venir!

2. Quaternion algebras and arithmetic groups

2.1. If K is a field of characteristic 0, a quaternion algebra over K is
defined to be an associative algebra over K which is a 4-dimensional K-
vector space, and has a basis {1, i, j, k} such that

i2 = α, j2 = β, ij = k and ji = −k

for some non-zero elements α, b ∈ K. It turns out that every quaternion
algebra either is a division algebra (the interesting case) or is isomorphic to
the algebraM2(K) of 2×2 matrices over K. The basic example of a division
quaternion algebra is of course the algebra H of Hamiltonian quaternions
over K = R.

If B is a quaternion algebra over K, then K is identified with K ·1 ⊂ B,
which is the center of B.

2.2. In the case where K is a number field (i.e. a finite extension of Q),
a division quaternion algebra over K just misses being a field because of
the failure of commutativity. It should be thought of as a non-commutative
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analogue of a number field, and is a natural object of study from the number-
theoretical point of view.

2.3. The analogy becomes complicated from the very beginning, because
there is no canonical analogue for division quaternion algebras of the ring of
integers in a number field. The useful non-canonical analogue is given by the
notion of a maximal order. An order in a finite-dimensional associative Q-
algebra A is a subring of A which, when regarded as an additive subgroup,
is a free abelian group on some Q-basis of A. If E is a number field, the
ring of integers of E is the unique order which is maximal (with respect to
inclusion). In the case where A is a quaternion algebra, a maximal order
exists, but in general it is not unique.

2.4. Another basic object that arises in studying number field, and does
not quite have a canonical analogue in the context of a quaternion algebra
over a number field, is the group of units of the ring of integers. If E is a
number field, it is an easy exercise to show that the group R∗ of units of
the ring of integers R in E cannot be properly contained with finite index
in any other subgroup of E∗. Thus R∗ is maximal within its commensura-
bility class in E∗. (Two subgroups A and B of a given group are said to be
commensurable if A∩B has finite index in both A and B.) In the case of a
quaternion algebra B over a number field K, even if we fix a maximal order
O for B, the group of units O∗ is not in general maximal in its commen-
surability class in B∗. For example, the normalizer NB∗(O

∗) contains O∗

with a finite index which may well be greater than 1.

The group B∗ has center K∗. I will denote by ∆O and ΓO the respective
images of O∗ and NB∗(O

∗) in the quotient group B∗/K∗; the groups ∆O

and ΓO contain almost the same information as O∗ and NB∗(O
∗), and turn

out to be more convenient to work with. Up to isomorphism, the subgroups
of B∗/K∗ commensurable with ∆O (including ΓO) are “arithmetic lattices”
in a sense that I will now explain.

2.5. If K is a number field, there are a finite number of (necessarily
injective) homomorphisms from K to C. Some of these may have images
contained in R; these are called real places of K. Those homomorphisms (if
any) whose images are not contained in R occur in conjugate pairs; each
such pair is called a complex place of K. The degree of K over Q is r1 +2r2,
where r1 and r2 denote the numbers of real and complex places, respectively.

2.6. Now suppose that B is a quaternion algebra over a number field
K, and that P is a real or complex place of K, which we use to identify
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K with a subfield of R or C respectively. Then B ⊗ R or, respectively,
B ⊗ C, is a quaternion algebra over R or C. Any quaternion algebra over
R is isomorphic to H or to M2(R), and any quaternion algebra over C is
isomorphic toM2(C). Hence P defines an injection IP from B to H,M2(R),
or M2(C). When P is a complex place, iP is defined only up to complex
conjugation. In the case where P is a real place and B⊗R is isomorphic to
H, so that iP ⊂ H, the quaternion algebra B is said to ramify at P.

The injective homomorphism iP |B∗ maps B∗ into GL2(C) (if P is com-
plex), GL2(R) (if P is real and B does not ramify at P) or H∗ (if P is
real and B ramiies at P)). Hence, in these respective cases, iP |B∗ defines
a homomorphism from B∗/K∗ to PGL2(C), PGL2(R), or H∗/R∗, which is
also readily seen to be injective.

If a, c, and b denote, respectively, the number of real places of K at which
B does not ramify, the number of real places of K at which B ramifies, and
the number of complex places of K, the construction that I have just de-
scribed gives a injections from B∗/K∗ to PGL2(R), c injections from B∗/K∗

to H∗/R∗, and b injections from B∗/K∗ to PGL2(C). These in turn define
a diagonal injection from B∗/K∗ to PGL2(R)a × (H∗/R∗)c × PGL2(C)b.
It is a fairly elementary matter to show that the image of ∆O under this
diagonal injection is a discrete group; in fact, this can be deduced almost
formally from the fact that the various field homomorphisms from K to C
are C-linearly independent, which is a basic fact from Galois theory.

Since H∗/R∗ is compact, it is not hard to show that the product projec-
tion from PGL2(R)a×(H∗/R∗)c×PGL2(C)b to PGL2(R)a×PGL2(C)b maps
any discrete subgroup of PGL2(R)a× (H∗/R∗)c×PGL2(C)b onto a discrete
subgroup of PGL2(R)a×PGL2(C)b. In particular, this projection maps the
image of ∆O in PGL2(R)a×(H∗/R∗)c×PGL2(C)b onto a discrete subgroup
of PGL2(R)a×PGL2(C)b. The natural map from ∆O on to this discrete sub-
group of PGL2(R)a×PGL2(C)b is injective provided that a+ b > 0. In this
case, one identifies ∆O with a discrete subgroup of PGL2(R)a×PGL2(C)b.
It is a deep number-theoretical fact that ∆O, regarded as a discrete sub-
group of PGL2(R)a × PGL2(C)b, has finite covolume, i.e. is a lattice. Note
that any subgroup of B∗/K∗ which is commensurable with ∆O, such as the
subgroup ΓO defined in subsection 2.4, is also identified with a lattice in
PGL2(R)a × PGL2(C)b.

2.7. Suppose that a and b are non-negative integers, not both 0. An
arithmetic lattice in PGL2(R)a × PGL2(C)b is a lattice Γ in PGL2(R)a ×
PGL2(C)b such that for some number field having exactly b complex places,
some quaternion algebra B over K which fails to ramify at exactly a places
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of K, and some maximal order O of B, the lattice Γ is commensurable with
∆O. The lattice ΓO in in PGL2(R)a × PGL2(C)b is an example.

In the case where a = 0 and b = 1, i.e. the case where K has exactly
one complex case and B ramifies at all real places of K, the arithmetic
lattices associated to B lie in PGL2(C). The quotients of hyperbolic 3-
space by such lattices are orientable hyperbolic 3-orbifolds of finite volume,
called arithmetic 3-orbifolds. In particular, torsion-free arithmetic lattices
in PGL2(C) define arithmetic 3-manifolds.

3. Borel’s theorem and the enumeration problem

A theorem of Borel’s [9] asserts that for any positive real number V ,
and for given a and b, there are at most finitely many arithmetic lattices of
covolume at most V . Determining all of these for given values of V , a and b
is algorithmically possible thanks to work by Chinburg and Friedman [11],
but appears to be impractical except for very small values of V , up to about
V = 0.41. (The smallest covolume of a lattice in PGL(2,C) is about 0.39.)

Borel’s proof of finiteness shows that in order to enumerate all the arith-
metic lattices of covolume at most V , it suffices to enumerate those that have
the form ΓO, where O is a maximal order in a quaternion algebra B. (See
Subsections 2.4 and 2.6.) On the other hand, the arithmetic lattices to which
Borel’s argument applies the most directly are those of the form Γ1

O, where
Γ1

O � ∆O denotes the image in B∗/K∗ of the subgroup O1 of O∗ consisting
of all elements of O whose reduced norm is equal to 1. We may define the
reduced norm of an element of B by identifying the algebra B ⊗ L, where
L is the algebraic closure of K, withM2(L); the reduced norm of x ∈ B is
then the determinant of x⊗ 1 ∈M2(L).

Borel gives a purely number-theoretical formula for the covolume of Γ1
O,

regarded as a lattice in PGL2(C). Using this formula, one can pass from an
upper bound on the covolume of Γ1

O to upper bounds on such quantities as
the root discriminant of the field K (defined to be |dK |1/nK , where dK and
nK denote respectively the discriminant and degree of K), and on number-
theoretic data that determine the quaternion algebra K. This makes it fairly
practical to enumerate the lattices of the form Γ1

O having at most a given
covolume.

In order to enumerate lattices of the form ΓO whose covolume is bounded
above by a given V , one shows that Γ1

O is a finite-index normal subgroup of
ΓO, and that ΓO/Γ1

O is an elementary abelian 2-group, i.e. a direct product
of groups of order 2. If r denotes the rank of ΓO/Γ1

O, then |ΓO/Γ1
O| = 2r,

so that covol Γ1
O = 2r covol ΓO � 2rV . Hence if one has a good bound
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on r one can enumerate the possibilities for Γ1
O; as ΓO contains Γ1

O with
index 2r, one can then enumerate the possibilities for ΓO as well. This makes
finding a good bound on r the biggest difficulty in the enumeration problem.
Chinburg and Friedman found a purely number-theoretical way to give a
bound, but it quickly becomes impractical as V increases beyond 0.41.

The elementary abelian 2-group ΓO/Γ1
O may be regarded as a Z2-vector

space of dimension r. Hence r is bounded above by dimH1(ΓO,Z/2Z). This
suggests a topological approach to the most difficult step in the enumeration
problem: find an upper bound for dimH1(ΓO,Z/2Z) in terms of an upper
bound for covolM .

4. Homology and volume: the torsion-free case

In the case of a torsion-free lattice Γ, not necessarily arithmetic, joint
work of mine with Marc Culler and others [2], [13], [14], gives good bounds
on the dimension of H1(Γ,Z/2Z) in the presence of a suitable bound on the
volume of Γ. The results are stated in terms of hyperbolic 3-manifolds: if
Γ is a torsion-free lattice in PGL(2,C) then M = H3/Γ is an orientable
hyperbolic 3-manifold, the volume of M is the covolume of Γ, and we have
H1(M,Z/2Z) ∼= H1(Γ,Z/2Z). These results should be seen as belonging to
the realm of quantitative Mostow rigidity, because they relate hyperbolic
volume—which is a topological invariant in view of Mostow rigidity—to
the rank of a homology group, which is a classical and well-understood
topological invariant. (I should mention that there are elementary results
that give linear bounds on the rank of π1(M) in terms of volM , but these
results, and their homological consequences, are quantitatively very weak.)

Given an orientable hyperbolic 3-manifold M , let us set d = dimH1(M,
Z/2Z) and let v denote the volume of M . It was shown in [2], [13], and [14],
respectively, that

• if v � 1.22 then d � 3;

• if v � 3.08 then d � 5; and

• if v � 3.44 then d � 7.

These results are deep, and the proofs represent many years of work.
Some of the ingredients are the “log(2k − 1) theorem” [12], [5], [2], a re-
sult on displacements of points in H3 under elements of a free Kleinian
group, which is based on a study of a Banach-Tarski decomposition of the
Patterson-Sullivan measure, and which, in its final form, requires the Mar-
den Conjecture, proved in [1] and [10]; a topological study of the nerve of a
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covering of H3 by hyperbolic cylinders [5], [14]; the homological group the-
ory methods of [18] and the criteria for freeness of subgroups of 3-manifold
groups developed in [15], [6], and [5]; the results about volumes of Haken
manifolds proved in [4], and involving both Perelman’s work on the Ricci
flow [7] and the work of Kojima and Miyamoto [16], [17] on volumes of
hyperbolic manifolds with totally geodesic boundary; and deep topological
results [3], [13] on desingularization of immersed π1-incompressible surfaces
in 3-manifolds. The results of [3] and [13] use towers of two-sheeted cover-
ings as in Shapiro and Whitehead’s proof of Dehn’s Lemma [19]; this is why
Z2 coefficients are needed for the results of [13] and [14] relating volume to
homology.

It is a pleasant coincidence that the results of [13] and [14] give up-
per bounds specifically for the rank of H1(M,Z2) from upper bounds for
volM , as this is very similar to what is needed for enumeration of arith-
metic lattices. However, they cannot be applied directly to maximal arith-
metic lattices, because the latter typically have torsion. When Γ has torsion,
O = H3/Γ is an orientable hyperbolic 3-orbifold, the volume of O is the co-
volume of Γ, and we have H1(O,Z/2Z) ∼= H1(Γ,Z/2Z). In the next section
I will describe work in progress concerned with finding results qualitatively
similar to the ones given in [2], [13], and [14], which apply to the orbifold
case, and which I hope will be of practical use in enumerating arithmetic
lattices with covolume subject to certain upper bounds.

5. Some results on groups with torsion

I will denote hyperbolic 3-space by H3. Recall that if Γ is a lattice in
PGL2(C), possibly with torsion, then the orbit space M = H3/Γ, equipped
with the quotient topology, is a 3-manifold. The quotient map q : H3 →
H3/Γ maps the set of all fixed points of non-trivial elements of Γ onto a
subset G of M which is topologically a graph. The orbifold O = H3/Γ is
described by specifying the manifold M , the graph G ⊂ M , and a labeling
of each point x ∈ G by a finite group, which is the stabilizer in Γ of an
arbitrary point of q−1(x). (Up to conjugacy this stabilizer is independent of
the choice of a point of q−1(x).) If C is a component of the complement in
G of the set of nodes of G, all points of C are labeled with the same finite
group. I will refer to M as the underlying manifold of O, and to G as its
singular set.

The singular set of the orbifold O = H3/Γ is a link in the underlying
manifold of O, i.e. has no nodes, if and only if every finite subgroup of Γ is
cyclic.
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Here is the result that I have been able to prove so far relating mod 2
homology to hyperbolic volume for orbifolds:

Theorem 5.1.— Let O be an orientable hyperbolic 3-orbifold. Suppose
that the singular set of O is a link and that π1(O) contains no triangle
groups. If O has volume at most 1.72, then

dimH1(Ω;Z2) � 7 + 5

(⌊
10

3
vol(Ω)

⌋
+

⌊
5

3
vol(Ω)

⌋)
.

In particular, dimH1(O,Z/2Z) � 42.

(The bound of 42 appears to be the best one I can obtain so far. I should
mention that although the manuscript is already more than 70 pages long,
it is not yet complete. The bound has fluctuated a bit during the course of
the writing, and may be slightly different when the paper is finished.)

The assumption that π1(O) contains no triangle groups is a harmless one
from the point of view of applications to maximal arithmetic lattices, be-
cause if an arithmetic lattice Γ in PGL(2,C) contains a triangle group, then
the triangle group is itself isomorphic to an arithmetic lattice in PGL(2,R),
and the field that defines Γ is a degree-2 extension of the field that defines
the triangle group as an arithmetic lattice. The arithmetic lattices in Γ in
PGL(2,C) that are isomorphic to triangle groups are finite in number and
are classified; using these facts and the arguments involving discriminants
and Borel’s volume formula that I have described above, it is possible (in
a practical sense) to list all arithmetic lattices in Γ in PGL(2,C) that do
contain triangle groups.

The assumption that the singular set of O is a link—or equivalently that
the finite subgroups of the corresponding lattice are cyclic—is a natural
one from the topological point of view; however, it is too restrictive for
applications to maximal arithmetic lattices, because maximal arithmetic
lattices typically contain dihedral groups (or, at the very least, copies of Z2×
Z2, which are dihedral groups of order 4). Thus the projected application
will depend on relaxing this assumption. At present I am attempting to
remove this hypothesis, and to improve the bound of 42 in the conclusion.

Theorem 5.1 follows formally from two propositions:

Proposition 5.2.— Let O = H3/Γ be an orientable hyperbolic 3-orbifold,
and let M denote the underlying manifold of O. Suppose that the singular
set of O is a link, and that the underlying manifold of O has no connected
summand homeomorphic to S2 × S1 or a (nontrivial) lens space. If O has

– 1154 –



Homology and volume of hyperbolic 3-orbifolds, and enumeration of arithmetic groups

volume at most 3.44, then

dimH1(|Ω|;Z/2Z) � 3 + 5

⌊
5

3
vol(Ω)

⌋
.

In particular, dimH1(|Ω|;Z/2Z) � 28. dimH1(M,Z/2Z) � 15.

Proposition 5.3.— Let O = H3/Γ be an orientable hyperbolic 3-orbifold.
Suppose that the singular set of O is a link. Then O has a two-sheeted orbi-
fold cover O′ such that the underlying manifold M ′ of O′ satisfies
2 dimH1(M

′,Z/2Z) � dimH1(O,Z/2Z)− 1.

The proof of Proposition 5.3 is an elementary application of Smith
Theory.

In the special case where M is hyperbolic, Proposition 5.2 can be de-
duced from the result that I quoted above from [14]. When M is not hy-
perbolic, if dimH1(M,Z/2Z) � 4, there always exists an essential sphere or
torus in M by Perelman’s geometrization theorem [8]. Such a sphere or torus
gives rise to an incompressible suborbifold of O. The results of [4], which are
stated for manifolds but are easily adapted to orbifolds, give lower volumes
for the volume of O in terms of data involving incompressible suborbifolds
of O. These estimates are used in the proof of Proposition 5.3. The details
are rather involved.

It appears that if one removes the hypothesis that the singular set is
a link, one can prove a result similar to Proposition 5.2, but with a larger
bound in the conclusion. On the other hand, I do not yet know how to prove
a result qualitatively similar to Proposition 5.3 without the hypothesis that
the singular set is a link.
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