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Some examples toward a Manin-Mumford conjecture
for abelian uniformizable T−modules

Luca Demangos(1)

RÉSUMÉ. — Le but de ce travail est d’étudier une possibilité éventuelle
d’adapter la conjecture de Manin-Mumford au cadre des T−modules, des
objets algébriques qui ont eté introduits par G. Anderson dans les années
1980 et qui constituent l’analogue naturel des variétés abéliennes dans
le contexte des modules sur anneaux des fonctions regulières (hors de
l’infini) d’une variété projective lisse et géométriquement connexe définie
sur un corps fini (voir par exemple [13]). Nous utilisons nos conclusions
pour proposer également une version générale modifiée de la conjecture
de Mordell-Lang pour les T−modules, qui puisse corriger celle proposée
par L. Denis mais incompatible avec les présents résultats.

ABSTRACT. — The aim of this work is to investigate a possible adapta-
tion of the Manin-Mumford conjecture to the T−modules, mathematical
objects which have been introduced in the 1980’s by G. Anderson as the
natural analogue of the abelian varieties in the context of modules over
rings of regular functions (outside ∞) over a smooth, projective and ge-
ometrically connected curve over a finite field (see for example [13]). We
use our conclusions to propose also a modified general version of Mordell-
Lang conjecture for T−modules which might correct the one proposed
for the first time by L. Denis but no longer compatible with the present
results.

We will remind in our first preliminary section the classic formulation of
the Mordell-Lang and the Manin-Mumford conjectures and the definition
of T−modules and sub-T−modules, listing nothing more than the basic
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definitions and properties which are essential in order to state and prove our
theorems. We then trace a brief history of the recent results, mainly due to
the work of L. Denis, D. Ghioca and T. Scanlon, over an adaptation of such
conjectures to a very special case of T−module: the power of a Drinfeld
module. It turned out that in this case the Manin-Mumford conjecture and,
up to some restriction to the hypotheses, the Mordell-Lang conjecture are
true. In the second section we will present some examples which prove that
a naif adaptation of the Manin-Mumford conjecture to the T−modules in
general is no longer true, even extending the notion of sub-T−module in a
way which encode the deeper structure of the involved rings. In one of these
examples we will take the case of a product of different Drinfeld modules,
showing that such an intuitive adaptation of Manin-Mumford conjecture
is no longer true even in this appearently simple case of study. We will
then propose a possible correction of the Mordell-Lang and the Manin-
Mumford conjecture for T−modules which takes into account the emerged
difficulties. We acknowledge the very important contribution of Laurent
Denis, Laboratoire Paul Painlevé, Université Lille 1, whose suggestions and
remarks have been extremely helpful.

1. Preliminaries

G. Faltings proved the Mordell-Lang conjecture (see [11]) in the following
version.

Theorem 1.1.— Let A be an abelian variety defined over a number field.
Let X be a closed subvariety of A and Γ ⊂ A a finitely generated subgroup
of the group of C−points on A. Then X ∩ Γ is a finite union of cosets of
subgroups of Γ.

Such a result contains clear similarities with the Manin-Mumford con-
jecture. The classic version of this conjecture (historically, its first version
has been shown by M. Laurent over Gnm, see [16]), which treats the situation
of an elliptic curve embedded in its Jacobian variety has been proved (see
[21]) and later generalized (see [22]) to the following statement.

We call torsion subvariety of an abelian variety A the translate of
some abelian subvariety of A by a torsion point.

Theorem 1.2. — Let X be an irreducible algebraic subvariety of an
abelian variety A defined over a number field. If X contains a Zariski-dense
set of torsion points, then X is a torsion subvariety of A.

An even stronger evidence of the link existing between these two results
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is given by the following extended formulation of G. Faltings’ result, proved
by M. Hindry and G. Faltings (see [14]):

Theorem 1.3.— Let X be a closed subvariety of an abelian variety A
defined over a number field. Let Γ be a finitely generated subgroup of A(Q)
and let:

Γ := {x ∈ A(Q),∃m > 0, [m]x ∈ Γ}.

Therefore, there exist a finite number r of xi ∈ Γ, Bi abelian subvarieties of
A such that:

X(Q) ∩ Γ =

r⋃

i=1

(xi + Bi ∩ Γ).

In fact, the Manin-Mumford conjecture (proved before such a result was
known) follows if one chooses Γ = 0 in Theorem 1.3. On the other hand,
the study of the Manin-Mumford conjecture still produces relevant ideas,
which might be applied to different aspects of this kind of problems, as we
hope to do.

The weak version of the M. Raynaud’s theorem proved in [19] using
new ideas involving Diophantine Geometry is for example a consequence of
Theorem 1.2:

Theorem 1.4.— Let X be an algebraic subvariety of an abelian variety
A defined over a number field. If X does not contain any torsion subvariety
of A of dimension > 0, then X contains at most finitely many torsion points.

The techniques involved in proving Theorem 1.4 appear to particularly
adapt to the study of a specific class of objects, called T−modules, which
are affine algebraic varieties over function fields provided with a module
structure, which we briefly introduce now. Most of definitions and properties
we list below are taken from [13], chapter 5. We send the reader to such a
reference for more details.

We call A := Fq[T ] the ring of polynomials with coefficient in the finite
field Fq, where q is a power of the prime number p, k := Frac(A) and C is
the completion of an algebraic closure of the completion of k with respect
to the place at infinity. If K is a field and n,m are two positive integers, the
notation Kn,m will indicate the ring of matrices with entries in K, having
n lines and m columns. We use τ to indicate the Frobenius automorphism
in the following form:

τ : z �→ zq, ∀z ∈ C.
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Definition 1.5.— A T -module A = (Gma ,Φ) of degree d̃ and dimension
m defined on the field F ⊂ k is the algebraic group Gma having the structure
of A-module given by the Fq-algebras homomorphism:

Φ : A→ Fm,m{τ}

T �→
d̃∑

i=0

ai(T )τ i;

where a0 (also called dΦ(T ), the differential of Φ(T ), which can be seen
as a linear map acting on Cm) is of the form:

a0 = TIm + N ;

where N is a nilpotent matrix, and ad̃ �= 0. This shows moreover that Φ
is injective, as in the case of a Drinfeld module (which is just a T -module
having dimension 1).

Definition 1.6.— A T−module of dimension 1 is called a Drinfeld
module. A particularly interesting example of a Drinfeld module is the typ-
ical degree 1 case, called the Carlitz module:

C = (Ga,Φ);

where:
Φ(T )(τ) := T + τ.

Definition 1.7.— The set of torsion points of the T−module A is:

Ators. := {x ∈ A,∃a(T ) ∈ A \ {0},Φ(a(T ))(x) = 0}.

Definition 1.8.— A sub-T−module B of a T−module A is a reduced
connected algebraic subgroup of (A,+) such that Φ(T )(B) ⊂ B.

We remark that a sub-T−module of a T−module is not in general a
T−module. This can be seen in the following example.

Proposition 1.9. — Let us consider q = 2. Let D1 = (Ga,Φ1) and
D2 = (Ga,Φ2) be rank-1 Drinfeld modules such that:

Φ1(T )(τ) = T + Tτ and Φ2(T )(τ) = T + T 2τ.

Therefore, the algebraic subgroup:

B := {(x, y) ∈ G2
a, y = x + x2};

is a sub-T−module of D1 × D2.

– 174 –



Some examples toward a Manin-Mumford conjecture for abelian uniformizable T−modules

Proof. — We remark that B is reduced and connected. Now, for each (x, y) ∈
B we have that:

Φ2(T )(y) = Ty+T 2y2 = T (x+x2)+T 2(x2 +x4) = Φ1(T )(x)+Φ1(T )(x)2;

so that:
(Φ1(T )(x),Φ2(T )(y)) ∈ B.

This proves Proposition 1.9. As B is not a power of Ga it constitutes an
example of a sub-T−module which is not a T−module.

Definition 1.10.— Let A = (Gma ,Φ) be a T−module of dimension m.
We say that it is simple if it does not admit any non-trivial sub-T−module
(in other words, a sub-T−module different from A and 0).

Definition 1.11. — Let a(T ) ∈ A \ Fq. We call a reduced, connected
algebraic subgroup B of the T−module A = (Ga,Φ) a sub-a(T )−module if
Φ(a(T ))(B) ⊂ B.

We call from now the dimension of a sub-T−module B of A, the di-
mension of B as an algebraic variety over C. We remark that the dimension
of any non-trivial sub-T−module B < A is strictly less than the dimension
of A.

Let B be any non-trivial sub-T−module of A. We call for the moment
torsion set a subset of A under the form:

x + B, x ∈ Ators..
We will extend later such a definition to the more general one of torsion
subvariety (see Definition 2.6) in order to adapt the statement of Theorem
1.2 and Theorem 1.4 to the T−module context.

Definition 1.12.— By calling F ⊂ k the field generated over k by the
entries of the coefficient matrices of Φ(T ) (which are in k), the rank of
a T−module A is the rank over F [T ] of the F [T ]−module HomF (A,Ga)
(the Fq−additive group homomorphisms from A to Ga). We say that a
T−module A is abelian if HomF (A,Ga) has finite rank.

An easy example of an abelian T−module is given by a product of Drin-
feld modules. It is immediate to see indeed that the rank of a Drinfeld
module coincides with its degree. By taking D1, ...,Dr finitely many Drin-
feld modules of rank, respectively, d1, ..., dr and defined over the field F ⊂ k
one sees that:

HomF (D1 × · · · × Dr,Ga) �
r⊕

i=1

HomF (Di,Ga);
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so that the rank of such a product of Drinfeld modules is
∑r
i=1 di. This

example shows also that the rank of a T−module is not in general the
degree of this one. Indeed, the degree of D1 × · · · × Dr is maxi=1,...,r{di}.

We provide an example of a nonabelian T−module in Proposition 2.15.

One can prove (cfr. [13], Theorem 5.4.10) that ifA is abelian, HomF (A,Ga)
is also free as a F [T ]−module.

Let A be a T−module of dimension m. We call Lie(A) � Cm the tangent
space of A at 0.

Definition 1.13.— Let A be an abelian T−module. The exponential
function of A is the unique morphism:

e : Lie(A)→ A;

such that, for each z ∈ Lie(A), we have that:

e(dΦ(T )z) = Φ(T )(e(z));

as described in [13], Definition 5.9.7.

It is known (see [13], section 5) that such a morphism is Fq−linear, a
local homeomorphism and (see Definition 1.16) F−entire too.

If A is abelian and we write:

Λ := Ker(e);

this kernel is an A−lattice inside Lie(A) and its A−rank is less or equal the
rank of A, cfr. [13], Lemma 5.9.12.

The exponential map associated to A = (Gma ,Φ) projects therefore Cm
in Gma .

Proposition 1.14.— Let B be a sub-a(T )−module of the abelian T−module
A for a given a(T ) ∈ A \ Fq, and Lie(B) its tangent space, contained as a
C−subspace into Lie(A). Therefore:

e(Lie(B)) ⊆ B.

Proof. — By calling:
t := a(T );

and seeing B as a sub-t−module of the t−module A, the statement follows
directly from [13] Remark 5.9.8.
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Lemma 1.15.— Let ρ(ΛA) be the A−rank of the lattice associated to A
as the kernel of the exponential function e : Lie(A)→ A, and let ρ(A) be the
rank of A. The following properties are equivalent for an abelian T−module
A = (Gma ,Φ).

1. ρ(ΛA) = ρ(A);

2. The exponential function e : Lie(A)→ A is surjective.

Proof. — See [13], Theorem 5.9.14.

Definition 1.16.— Let A = (Gma ,Φ) be an abelian T−module. If it re-
spects the two equivalent conditions of Lemma 1.15 it is called uniformiz-
able.

We also say that a sub-T−module B of a given abelian T−module A is
uniformizable if the induced exponential map:

e : Lie(B)→ B;

is surjective.

Remark 1.17. The sub-T−modules of an abelian, uniformizable T−module
are abelian and uniformizable.

Proof. — See [4], Remarque 2.1.8 and Remarque 2.1.19.

We also remark (see [5], Remark 3) that if A is an abelian, uniformizable
T−module of rank d, then Lie(A) can be written as a direct sum of a
k∞−vector space of dimension d, into which the associated lattice Λ =
Ker(eA) is cocompact (this is called the torsion part of Lie(A)), and a
k∞−vector space of infinite dimension (the free part of Lie(A)). In other
words, by calling {ω1, ..., ωd} a generating set of periods of:

Λ =< ω1, ..., ωd >A;

we have that:

Lie(A) � (

d⊕

i=1

k∞ωi)⊕ Freek∞ ;

where Freek∞ is an infinite-dimensional k∞−vector space. Up to the auto-
morphism φ of Lie(A) which sends {ω1, ..., ωd} to the canonical basis of kd∞
and leaves unchanged the free part of Lie(A), so that it moves Λ to Ad, we
have then that:

Lie(A) � (k∞/A)d ⊕ Freek∞ ;
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so that e put in bijection the set Ators. of the torsion points of A with the
set (k/A)d × 0.

By the discussion above it is now easy to see that the torsion points of B
with respect to its structure of sub-a(T )−module of A (in other words,
the a(T )−torsion points of A which belong to B) shall correspond via
the exponential map e associated to A to the Fq(a(T ))−rational points
of φ(Lie(B)) ∩ ((k∞/A)d × 0).

As one can rapidly check a T−module which is abelian and uniformiz-
able can be interpreted therefore by analyzing its associated finite-rank lat-
tice in an analogous fashion as for an abelian variety. The new techniques
recently introduced by U. Zannier and J. Pila in [19] which provided an
elegant alternative proof of Theorem 1.4 involving Diophantine Geometry,
are specifically based on such an interpretation and this is the reason why
we focus on this particular class of T−modules.

2. A new conjecture

In this section we will study the possibility to adapt the Manin-Mumford
conjecture to the T−modules.

Results about a connection between the Mordell-Lang and the Manin-
Mumford conjectures for T−modules have been worked out firstly by L.
Denis (see [7]), who proposed the following unified conjecture.

Statement 2.1. — Let A = (Gma ,Φ) be a T−module of rank d and
dimension m > 1. Let Γ be a finitely generated submodule of A(k) and let
X be a closed subvariety of Gma . Let:

Γ := {x ∈ A(k),∃a(T ) ∈ A \ {0},Φ(a(T ))(x) ∈ Γ}.
Therefore, there exist finitely many translates of sub-T−modules of A in the
form γ1 + B1, ..., γs + Bs such that:

X ∩ Γ =
⋃

1�i�s
(γi + Bi ∩ Γ).

As we have seen in the previous section, such a statement would imply
an intuitive adaptation of Mordell-Lang and Manin-Mumford conjectures
to the T−modules context. We will see anyway in the present section that
Statement 2.1 is unfortunately false.

L. Denis proved on the other hand in the same paper, under some tech-
nical restriction on the hypotheses, an adapted formulation of the Manin-
Mumford conjecture for finite powers of Drinfeld modules (see [7], Théorème
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1). Such a result has been subsequently extended into a completely analo-
gous formulation of Theorem 1.2 for finite powers of Drinfeld modules by T.
Scanlon in [24], removing so the restriction on the hypotheses in L. Denis’
result summarized above. T. Scanlon’s result is the following one.

Theorem 2.2.— Let A = Dm := (Gma ,Φm) be a power of some given
Drinfeld module D = (Ga,Φ) defined over a field F , so that Φm(T ) =
Φ(T )Im (in other words, Φ acts diagonally on Gma ). Let X be an irreducible
algebraic subvariety of A. If X(F)tors. is Zariski-dense in X, then X is the
translate of some sub-T−module of A by a torsion point.

T. Scanlon proved also (see [25]) an adapted version of the Mordell-Lang
conjecture to powers of Drinfeld modules of finite characteristic (see [13],
chapter 4), analogous to Theorem 1.1:

Theorem 2.3. — Let D be a Drinfeld module of finite characteristic
and modular trascendence degree (see the referred paper for the complete
definition) at least 1. Let Γ be a finitely generated submodule of Dm(k) for
some m > 1 and let X be a closed k−subvariety of Gma . Then X(k) ∩ Γ is
a finite union of translates of subgroups of Γ.

As we will highlight better later such a specific case of T−module (a
finite power of a Drinfeld module) presents particularly strong properties
which make it one of the best cases of study. A T−module in such a form
is moreover easily abelian and uniformizable and this would appear to be a
first encouraging step for our project to prove a similar result, using the new
techniques introduced in [19] for an abelian and uniformizable T−module A.
We would like therefore to prove a weaker result, analogous to Theorem 1.4,
but for a general abelian and uniformizable T−module, as in the following
formulation.

Formulation 2.4. — Let X be an algebraic subvariety of an abelian
uniformizable T−module A defined over k. If X does not contain any torsion
set of A, then X contains at most finitely many torsion points.

Such a statement turns out to be unfortunately false. This is an imme-
diate consequence of the following proposition.

Proposition 2.5.— We consider the T−module of dimension 2 defined
by the tensor power C⊗2 = (G2

a,Φ) of the Carlitz module C, introduced by
G. Anderson and D. Thakur in [2]. We suppose that q = 2. There exists
then a non-trivial algebraic subvariety of C⊗2 which contains infinitely many
torsion points but no torsion sets of A.
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Proof. — The T−module C⊗2 = (G2
a,Φ) is such that:

Φ(T )(τ) =

(
T 1
0 T

)
+

(
0 0
1 0

)
τ.

We can then show that for each

(
X
Y

)
∈ C⊗2:

Φ(T 2)

(
X
Y

)
=

(
T 2X + X2

T 2Y + (T + T 2)X2 + Y 2

)
.

The algebraic subgroup 0 × Ga of C⊗2 is then easily a sub-T 2−module,
but not a sub-T−module. Indeed, any tensor power C⊗m, for any power
m ∈ N \ {0}, of the Carlitz module C is always a simple, abelian (see [13],
Corollary 5.9.38) and uniformizable T−module (see [31], Proposition 1.2),
but one can prove that it possesses sometimes (as in the present case) non-
trivial sub-T j−modules for some j depending on m and q. By choosing 0×
Ga as an algebraic subvariety of C⊗2, we now see that it contains infinitely
many torsion points, which correspond, by Proposition 1.14 and discussion
subsequent to Remark 1.17, to the F2(T

2)−rational points of the torsion
part of:

Lie(0×Ga)/(Ker(eC⊗2) ∩ Lie(0×Ga)).
As C⊗2 is simple as a T−module, 0×Ga cannot contain on the other hand
any torsion set of positive dimension, which finally prove our statement.

Proposition 2.5 put in light how the structure of the generic polynomial
ring Fq[T ], which contains infinitely many subrings isomorphic to Fq[T ]
itself, determines the failure of any attempt to adapt the Manin-Mumford
conjecture (even in its weaker formulation stated in Theorem 1.4) to abelian
uniformizable T−modules, while the same conjecture is on the contrary true
for abelian varieties over number fields because their algebraic structure is
that of a group, which is a Z−module and Z do not contain as a ring non-
trivial subrings.

A similar phenomenon has been observed already studying Mordell-Lang
conjecture for powers of Drinfeld modules of finite characteristic. More pre-
cisely, given a finitely generated submodule Γ of Dm for some Drinfeld mod-
ule D = (Ga,Φ) and m > 1, if X is an algebraic subvariety of Dm then
X(k) ∩ Γ might not be stabilized by the action of Φ(T ) but it can be in-
variant anyway under the action of Φ(Tn) for a suitable n > 1. A detailed
example can be found in [12], Remark 4.8. This leads to a formulation of
Mordell-Lang conjecture for powers of some convenient cases of Drinfeld
modules which extends in some sense the notion of submodule of Dm to
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that of sub-Φ(Tn)−module for n ∈ N \ {0} depending on the chosen Φ, Γ
and X (see [12], Theorem 1.4.5).

We extend therefore the class of algebraic submodules of A in order to
avoid counter-examples produced, as we showed in the proof of Proposition
2.5, by the abundance of subrings of Fq[T ].

We start by giving the following definition.

Definition 2.6.— Let A = (Gma ,Φ) be a general T−module. Let B be a
subring of A. We call sub-B−module of A any reduced connected algebraic
subgroup B of Gma such that:

Φ(a(T ))(B) ⊆ B, ∀a(T ) ∈ B.

We say that a subset of A is a torsion subvariety if it is under the fol-
lowing form:

x + B;

where x ∈ Ators. and there exists B a subring of A such that B is a sub-
B−module of A.

The following result will allow us to ease the study of the sub-B−modules
of A for each B subring of A, reducing all of them to sub-T j−modules for
a convenient index j ∈ N \ {0} only depending on A.

Theorem 2.7.— Let A = (Gma ,Φ) be an abelian uniformizable T−module
of dimension m. There exists then a number j(A) ∈ N \ {0} only depending
on A such that for each B subring of A, every sub-B−module of A is a
sub-T j(A)−module).

Proof. — Let N be the nilpotent matrix associated to the differential dΦ(T )
of A introduced in Definition 1.5. Let n(A) ∈ N\{0} be its order. Let B be a
sub-B−module of A for some B subring of A. It is then a sub-a(T )−module
for each a(T ) ∈ B \ Fq and in particular a reduced connected algebraic
subgroup of Gma . In order to prove the statement it will be sufficient to show
that Lie(B) is stabilized by the action of dΦ(T j(A)) for some convenient
j(A) ∈ N \ {0}. The reason of this easily comes from Proposition 1.14. We
choose therefore:

j(A) = pr(A);

by calling pr(A) the smallest power of p to be greater or equal to n(A) (in
other words, r(A) = [logp(n(A))] + 1, where we mean by [logp(n(A))] the
integer part of logp(n(A))). It is easy to see then that:

dΦ(T j(A)) = T j(A)Im;
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which stabilizes every vector subspace of Lie(A) over C. So in particular, it
stabilizes Lie(B) too.

Remark 2.8.— We remark that we just proved the existence of such a
number j(A) ∈ N \ {0}, but we did not found actually its minimal possible
value in principle. We will anyway show (see Proposition 2.10) that such
a value is 1 in the case where A is a power of a Drinfeld module. This
shows that for each subring B of A every sub-B−module of A is actually
a sub-T−module. This is precisely the reason why examples like the one
presented in the proof of Proposition 2.5 would not work for some finite
power of a Drinfeld module, being so another confirmation of Scanlon’s
result (Theorem 2.2).

We show now this property using the following Thiery’s Theorem (see
[27]).

Theorem 2.9. — Let Dm = (Gma ,Φm) the m−th power of a Drinfeld
module D = (Ga,Φ) and let F be its coefficients field. There exists therefore
a bijective correspondence between the family of all sub-T−modules of Dm
and the family of the vector subspaces of Lie(Dm) which are EndF (Φ)−rational.
This correspondence is given by the exponential function:

e : Lie(Dm)→ Dm;

V �→ e(V ).

Moreover, we have that the dimension of any sub-T−module of Dm and of
the EndF (Φ)−rational vector subspace of Lie(Dm) corresponding to it are
the same.

Proof. — See [27], Theorem at page 33.

Proposition 2.10.— Let Dm be as in Theorem 2.2. Then:

j(Dm) = 1.

Proof. — Let B be a sub-B−module of Dm for a non-trivial subring B of A.
It is therefore a sub-a(T )−module of A for any a(T ) ∈ B \ Fq. We assume
that the Drinfeld module D has rank d. We define:

T ′ := a(T );

and:

Ψ(T ′) := Φ(a(T ));
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B is therefore a T ′−module which is the m−th power of some Fq[T ′]−Drinfeld
module. By Theorem 2.9 B is the zero locus of s = m−dim(B) linear equa-
tions under the following form:

m∑

j=1

Pij(τ)Xj = 0;

where Pij(τ) ∈ EndF (Ψ) for each i = 1, ..., s and each j = 1, ...,m. Now, it
is well known that Φ(T ) ∈ EndF (Ψ). Moreover, EndF (Ψ) is a commutative
ring because D has characteristic 0 (see [13], Definition 4.4.1). Therefore,
one sees that B is actually a sub-T−module of Dm as it is stabilized by the
action of Φ(T ).

If A is absolutely simple (this means that it does not contain any
non-trivial sub-T j−module for each j ∈ N \ {0}) we fix j(A) = 1.

We also remark that this study of powers of some Drinfeld module pro-
vides an example of a class of T−modules A such that for each i ∈ N\{0} we
have that j(Ai) = j(A) and one may wonder if it is a general phenomenon.

This would lead us to a more general formulation of Manin-Mumford
conjecture on abelian and uniformizable T−modules, where we propose to
show that, up to a finite number, the torsion points of A could be shared in
finitely many sub-T j(A)−modules. We would like then to state an analogue
of Theorem 1.4 as in the following formulation.

Formulation 2.11.— Let X be an algebraic subvariety of an abelian
uniformizable T−module A. If X does not contain any torsion subvariety of
A of dimension > 0, then X contains at most finitely many torsion points.

Such a new formulation is however false again and not yet sufficient
to completely exclude other counter-examples. The nice one which follows
has been suggested by Laurent Denis and involves the appearently simple
situation of a product of two Drinfeld modules.

Proposition 2.12.— Let q = 2. Let D1 = (Ga, C) be the Carlitz module,
so that C(T )(τ) = T + τ , being τ the Frobenius automorphism over F2. We
define the Drinfeld module D2 = (Ga, C(2)) as follows:

C(2)(T )(τ) := T + (T 1/2 + T )τ + τ2.

There exists an algebraic subvariety X of the abelian uniformizable T−module
A = (D1 ×D2,Φ1 ×Φ2) which does not contain non-trivial torsion subvari-
eties of A but it contains infinitely many torsion points.

– 183 –



Luca Demangos

Proof. — One can see that for each z ∈ C we have that:

C(2)(T )(
√
z) =

√
C(T 2)(z).

The product D1 × D2 = (G2
a,Φ) such that:

Φ(T )

(
X
Y

)
:=

(
C(T )(X)
C(2)(T )(Y )

)
;

is then a T−module as in Definition 1.5 and for each z ∈ Ctors. we have
that (z, z1/2) ∈ (D1 ×D2)tors.. The algebraic variety X = Y 2 contains then
all these infinitely many torsion points and, as C(T j)(Y 2) �= (C(2)(T

j)(Y ))2

for each j ∈ N\{0}, it is not stabilized by the action of Φ(T j). It can not be
then a sub-T j−module of D1 × D2 for any j ∈ N \ {0}. As this variety has
C−dimension 1, it can not admit non-trivial sub-T j−modules either.

We remark that the same counter-example may be repeated identically
for any q, replacing the Carlitz module C by a generic Drinfeld module
D1 = (Ga,Φ1) and C(2) by the Drinfeld module D2 = (Ga,Φ2) obtained

as the 1/qs−th root of the coefficients of Φ1(T
qs), which would define an

infinite class of bad cases

The study of the arithmetic of T−modules turns out to be therefore
much more delicate than one could expect. Even taking count of the exis-
tence of non-trivial subrings of A by extending the notion of torsion subvari-
ety to all the possible sub-B−modules for every B non-trivial subring of A,
the structure of the T−modules still allows the construction of counter-
examples to an analogue of a (even weaker) formulation of the Manin-
Mumford conjecture as stated in Theorem 1.4 for abelian varieties defined
over a number field.

We would like to stress again the fact that the example we provided in the
above proof of Proposition 2.12 just involves a product of Drinfeld modules.
Therefore, T. Scanlon’s proof of an analogue of Manin-Mumford conjecture
for finite powers of a given Drinfeld module, given in [24], cannot be repeated
in general for a product of different Drinfeld modules. We believe anyway
that such an argument may still hold for a product of different Drinfeld
modules having all the same degree. This would be actually a consequence
of the new condition we are going to add below to the hypotheses and which
is suggested precisely by the above argument.

We consider again a T−module which is a product of m Drinfeld mod-
ules, non-isogeneous to each other. So we take A := D1×...×Dm = (Gma ,Φ).
By Definition 1.5, we remark that if the coefficient matrix ad is invertible,
all these Drinfeld modules necessarily have the same rank d. As one can
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easily see, this makes impossible to produce situations as the one showed in
the proof of Proposition 2.12, for any possible choice of Φ and q.

Finally, when we consider a T−module whose associated leading matrix
is invertible, nothing seems to be an obstacle to a result of Manin-Mumford
type. As such a direct hypothesis would exclude a lot of good cases, as
for example a tensor power of the Carlitz module, we ask more generally
that, given an abelian uniformizable T−module A = (Gma ,Φ), there exists
a number i ∈ N \ {0} such that the leading coefficient matrix a′id of the i−th
iterated Φ(T i)(τ) of Φ(T )(τ) is invertible.

As it is easy to see, such a more general hypothesis on the T−module
A does not change in any significant way our previous argument and still
implies that if A is a product of Drinfeld modules, they have all to have
the same rank. On the other hand, we see for example that a tensor power
of the Carlitz module respects such an hypothesis on the leading coefficient
matrix. We can also remark that this hypothesis does actually imply already
the condition on the T−module to be abelian, as we show in the following
Theorem.

Theorem 2.13. — Let A = (Gma ,Φ) be a T−module defined over the
field F ⊂ k, such that there exists a number i ∈ N \ {0} such that the
leading coefficient of Φ(T i) ∈ Fm,m{τ} is an invertible matrix. Therefore,
A is abelian.

Proof. — By the canonical isomorphism:

HomF (A,Ga) � F{τ}m;

we consider a morphism f ∈ HomF (A,Ga) as an element f(τ) ∈ F{τ}m.
As the leading coefficient of Φ(T i) is invertible and the Ore algebra F{τ} is
a (non commutative) ring endowed of the right division algorithm (see [13],
Proposition 1.6.2), it is possible to divide on right by Φ(T i) each element of
F{τ}m, knowing that the coefficients of such an object are vectors in Fm
while those of Φ(T i) are matrices in Fm,m. In fact, an invertible matrix in
Fm,m also divide (on right) each element of Fm, and this fact allows the

euclidean division. The algebra F{τ}m could then be shared in md̃(i) (where

d̃(i) is the degree of Φ(T i) as an additive polynomial in τ) division classes
modulo Φ(T i), which is equivalent to say that HomF (A,Ga) � F{τ}m is

generated by md̃(i) elements as a F [T ]−module.

We remark that the proof of the above Theorem 2.13 may be used as well
to compute the rank of an abelian uniformizable T−module which respects
the condition on its leading coefficient matrix that we discussed above. We
show this in the following proposition.
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Proposition 2.14.— Given the T−module C⊗2 = (G2
a,Φ) as in Propo-

sition 2.5, so that q = 2, the T 2−module (G2
a,Φ

2) has rank 2 and its sub-
T 2−module 0×Ga has rank 1.

Proof. — The tensor square C⊗2 of a Carlitz module presented in the proof
of Proposition 2.5 does not respect the condition on its leading coefficient
matrix to be invertible, but we remarked in such a proof that it can be seen
as well as a t−module, by calling t := T 2. Now, the new t−module (G2

a,Ψ),
where Ψ(t) = Φ(T 2), so that:

Ψ(t)(τ) =

(
t 0
0 t

)
+

(
1 0

(
√
t + t) 1

)
τ ;

respects all the required hypotheses being its leading matrix invertible. We
see therefore by the proof of Theorem 2.13 that it has rank 2 being its
dimension 2 and its degree 1. Such a degree remains the same for 0 × Ga,
which is a sub-t−module of dimension 1 of (G2

a,Ψ). Its rank will be therefore
1.

The methods we used in the proof of Theorem 2.13 also suggest an entire
class of examples of nonabelian T−modules. We present a typical case of
such T−modules in the following proposition.

Proposition 2.15.— Let q = 2. Let A = (G2
a,Φ) the T−module defined

by the following action of Φ:

Φ(T )(τ) = TI2 +

(
0 0
1 0

)
τ.

Therefore, A is nonabelian.

Proof. — We see that:

Φ(T 2)(τ) = T 2I2 +

(
0 0

T + T 2 0

)
τ.

More specifically, the form of the leading coefficient matrix (which is nilpo-
tent of order 2) is such that the degree in τ of Φ(T j)(τ) is 1 for every
j ∈ N \ {0}. Indeed, if one carries on taking iterates of Φ(T )(τ) it is easy to
see that for every j ∈ N \ {0} they will take the following shape:

Φ(T j)(τ) = T jI2 +

(
0 0

bj(T ) 0

)
τ ;

for some bj(T ) ∈ A. In other words, for each j ∈ N \ {0} the additive form
Φ(T j)(τ) will always have degree 1 in τ . As we know that:

Homk(A,Ga) � k{τ}2;
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ifA was abelian there would be a finite set of generating elements f1(τ), ..., fr(τ)
of k{τ}2 such that for each f(τ) ∈ k{τ}2, there would exist a1(T ), ..., a2(T ) ∈
k[T ] such that:

f(τ) = a1(T ) · f1(τ) + · · ·+ ar(T ) · fr(τ);

where the action:
h(T ) · g(τ);

for h(T ) = h0 + h1T + ... + hsT
s ∈ k[T ] and g(τ) ∈ k{τ}2 comes from the

following one:
hiT

i · g(τ) := hig(τ) ◦ Φ(T i);

as described in [13], page 146. By fixing the notation, for i = 1, ..., r:

f i(τ) =

(
fi,X(τ)
fi,Y (τ)

)
;

one sees that, for each j ∈ N \ {0}:

f i(τ) ◦ Φ(T j) =

(
T jfi,X(τ) + bj(T )fi,Y (τ)τ

T jfi,Y (τ)

)
.

Therefore, as the multiplication by the coefficients of a1(T ), ..., ar(T ) (which
are in k) does not change the degree in τ , it is now possible to see that the
degree in τ of the expression a1(T ) ·f1(τ)+ · · ·+ar(T ) ·fr(τ) cannot exceed
the value:

max
i=1,...,r

{degτ (fi,X(τ)),degτ (fi,Y (τ)) + 1}.

This clearly contradicts the arbitrary choice of f(τ) and it is a direct con-
sequence of the bounded degree in τ of all the possible iterates of Φ(T )(τ).
Therefore, A cannot be abelian as a T−module.

The example we gave in Proposition 2.15 might be extended to the
general class of all T−modules A = (Gma ,Φ) such that there exists a positive
integer NA > 0 such that for each i ∈ N \ {0} one has that the degree in τ
of Φ(T i)(τ) is at most NA. This implies the following corollary.

Corollary 2.16.— A T−module A = (Gma ,Φ) such that there exists
MA ∈ N \ {0} such that for each i ∈ N \ {0} the leading coefficient matrix
of the additive form Φ(T i)(τ) is nilpotent of order �MA, is nonabelian.

Corollary 2.16 suggests therefore that the new condition on the leading
coefficient matrix of the iterates of Φ(T ) that we added in order to avoid the
kind of counter-example presented in Proposition 2.12 may be interpreted,
in some sense, as a ”stronger abelianity” of the T−module.
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We state then a T−modules version of Manin-Mumford conjecture in
the spirit of U. Zannier’s and J. Pila’s weak formulation as follows.

Conjecture 2.17.— Let A = (Gma ,Φ) be a uniformizable T−module
of dimension m > 1 such that there exists i ∈ N \ {0} such that the leading
coefficient matrix of Φ(T i) is invertible. Let X be a non-trivial irreducible
algebraic subvariety of A, defined over k. If X does not contain torsion
subvarieties of dimension > 0, X contains at most finitely many torsion
points of A.

We notice that a general class of cases on which Conjecture 2.17 is
verified, and where the new conditions we added are crucial, is already
given by the T. Scanlon’s Theorem 2.2. We remind indeed that the new
condition on the invertibility of the leading matrix of the iterates of Φ(T ) is
essential to avoid critical situation as the relatively simple one we presented
in Proposition 2.12, while Proposition 2.10 guarantees that in this specifical
situation all the torsion subvarieties are torsion subsets too.

Our strategy to prove Conjecture 2.17 is based on the techniques devel-
opped by U. Zannier and J. Pila in [19]. We refer to [5], section 1, for a
complete discussion. Roughly speaking, we essentially work on the decom-
position briefly described after Remark 1 of the tangent space Lie(A) of
an abelian uniformizable T−module A in its torsion part and in its free
part. This allows to translate the computation of the torsion points of A
contained in some algebraic subvariety X of A into a Diophantine Geome-
try problem of finding out the k−rational points of the torsion part of the
analytic set Y := e−1(X) contained in Lie(A).

Always considering the particular class of abelian and uniformizable
T−modules which present so many relevant analogies with classical abelian
varieties we might propose the analogue of the stronger version of Manin-
Mumford conjecture as follows.

Conjecture 2.18.— Let A = (Gma ,Φ) be a uniformizable T−module
of dimension m > 1 such that there exists i ∈ N \ {0} such that the leading
coefficient matrix of Φ(T i) is invertible. Let X be a non-trivial irreducible
algebraic subvariety of A, defined over k. If X contains a Zariski-dense set
of torsion points of A, then X is a torsion subvariety of A.

We conclude by remarking that our examples show not only that our For-
mulation 2.4 and Formulation 2.11 are false, but also that L. Denis’ State-
ment 2.1 cannot be true either, as it would obviously imply Formulation 2.4
and Formulation 2.11. We would like therefore to propose a modification of
Statement 2.1 into the following unified conjecture.
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Conjecture 2.19.— Let A = (Gma ,Φ) be a uniformizable T−module
of dimension m such that there exists i ∈ N \ {0} such that the leading
coefficient matrix of Φ(T i) is invertible. Let X be an algebraic subvariety of
Gma , Γ be a finitely generated subgroup of A(k) and Γ be like in Statement
2.1. Therefore, there exist finitely many sets under the form γ1+B1, ..., γs+
Bs, where γ1, ..., γs ∈ Γ and B1, ...,Bs are sub-B-modules of A for some B
subring of A, such that:

X ∩ Γ =
⋃

1�i�s
(γi + Bi ∩ Γ).

Our Conjecture 2.19 would imply in particular (again by Proposition
2.10) D. Ghioca’s one (see [12]) for powers of Drinfeld modules (proved in
the finite characteristic case by T. Scanlon (see [25]) and under different
technical restriction by D. Ghioca in the same paper):

Conjecture 2.20.— Let D be a Drinfeld module. If Γ is a finitely gen-
erated submodule of Gma (k) for some m > 0 and if X is an algebraic subva-
riety of Gma , then there are finitely many sub-T−modules B1, ...,Bs of Dm
and elements γ1, ..., γs ∈ Gma (k) such that:

X(k) ∩ Γ =
⋃

1�i�s
(γi + Bi(k) ∩ Γ).
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