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Regularization in L1 for the Ornstein-Uhlenbeck
semigroup

Joseph Lehec(1)

RÉSUMÉ. — Soit γn la mesure Gaussienne standard sur Rn et soit (Qt) le
semi-groupe d’Ornstein-Uhlenbeck. Eldan et Lee ont montré récemment
que pour toute fonction positive f d’intégrale 1 et pour temps t la queue
de distribution de Qtf vérifie

γn({Qtf > r}) � Ct
(log log r)4

r
√

log r
, ∀r > 1

où Ct est une constante dépendant seulement de t et pas de la dimension.
L’objet de cet article est de simplifier en partie leur démonstration et
d’éliminer le facteur (log log r)4.

ABSTRACT. — Let γn be the standard Gaussian measure on Rn and
let (Qt) be the Ornstein-Uhlenbeck semigroup. Eldan and Lee recently
established that for every non-negative function f of integral 1 and any
time t the following tail inequality holds true:

γn({Qtf > r}) � Ct
(log log r)4

r
√

log r
, ∀r > 1

where Ct is a constant depending on t but not on the dimension. The
purpose of the present paper is to simplify parts of their argument and to
remove the (log log r)4 factor.

1. Introduction

Let γn be the standard Gaussian measure on Rn and let (Qt) be the
Ornstein-Uhlenbeck semigroup: for every test function f

Qtf(x) =

∫

Rn
f

(
e−tx+

√
1− e−2t y

)
γn(dy). (1.1)
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Nelson [6] established that if p > 1 and t > 0 then Qt is a contraction from
Lp(γn) to Lq(γn) for some q > p, namely for

q = 1 + e2t(p− 1).

The semigroup (Qt) is said to be hypercontractive. This turns out to be
equivalent to the logarithmic Sobolev inequality (see the classical article by
Gross [3]). In this paper we establish a regularity property of Qtf assuming
only that f is in L1(γn).

Let f be a non-negative function satisfying

∫

Rn
f dγn = 1,

and let t > 0. Since Qtf � 0 and

∫

Rn
Qtf dγn =

∫

Rn
f dγn = 1,

Markov inequality gives

γn ({Qtf � r}) �
1

r
,

for all r � 1. Now Markov inequality is only sharp for indicator functions
and Qtf cannot be an indicator function, so it may be the case that this
inequality can be improved. More precisely one might conjecture that for
any fixed t > 0 (or at least for t large enough) there exists a function α
satisfying

lim
r→+∞

α(r) = 0

and

γn ({Qtf � r}) �
α(r)

r
, (1.2)

for every r � 1 and for every non-negative function f of integral 1. The
function α should be independent of the dimension n, just as the hypercon-
tractivity result stated above. Such a phenomenon was actually conjectured
by Talagrand in [7] in a slightly different context. He conjectured that the
same inequality holds true when γn is replaced by the uniform measure on
the discrete cube {−1, 1}n and the Orstein-Uhlenbeck semigroup is replaced
by the semigroup associated to the random walk on the discrete cube. The
Gaussian version of the conjecture would follow from Talagrand’s discrete
version by the central limit theorem. In this paper we will only focus on the
Gaussian case.
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In [1], Ball, Barthe, Bednorz, Oleszkiewicz and Wolff showed that in
dimension 1 the inequality (1.2) holds with decay

α(r) =
C√
log r

,

where the constant C depends on the time parameter t. Moreover the au-
thors provide an example showing that the 1/

√
log r decay is sharp. They

also have a result in higher dimension but they loose a factor log log r and,
more importantly, their constant C then tends to +∞ (actually exponen-
tially fast) with the dimension. The deadlock was broken recently by Eldan
and Lee who showed in [2] that (1.2) holds with function

α(r) = C
(log log r)4√

log r
,

with a constant C that is independent of the dimension. Again up to the
log log factor the result is optimal.

In this article we revisit the argument of Eldan and Lee. We shall simplify
some steps of their proof and short cut some others. As a result, we are able
to remove the extra log log factor. We would like to make clear though that
this note does not really contain any new idea and that the core of our
argument is all Eldan and Lee’s.

2. Main results

Recall that γn is the standard Gaussian measure and that (Qt) is the
Ornstein-Uhlenbeck semigroup, defined by (1.1). Here is our main result.

Theorem 2.1. — Let f be a non-negative function on Rn satisfying∫
Rn f dγn = 1 and let t > 0. Then for every r > 1

γn ({Qtf > r}) � C
max(1, t−1)

r
√

log r
,

where C is a universal constant.

As in Eldan and Lee’s paper, the Ornstein-Uhlenbeck semigroup only
plays a rôle through the following lemma.

Lemma 2.2.— Let f : Rn → R+. For every t > 0, we have

∇2 log(Qtf) � −
1

2t
id,

pointwise.
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Proof. — This is really straightforward: observe that (1.1) can be rewritten
as

Qtf(x) = (f ∗ g1−ρ)(
√
ρ x),

where ρ = e−2t and g1−ρ is the density of the Gaussian measure with mean
0 and covariance (1 − ρ)id. Then differentiate twice and use the Cauchy-
Schwarz inequality. Details are left to the reader.

What we actually prove is the following, where Qt does not appear
anymore.

Theorem 2.3.— Let f be a positive function on Rn satisfying
∫
Rn f dγn =

1. Assume that f is smooth and satisfies

∇2 log f � −β id (2.3)

pointwise, for some β � 0. Then for every r > 1

γn ({f > r}) � C max(β, 1)

r
√

log r
,

where C is a universal constant.

Obviously, Theorem 2.3 and Lemma 2.2 altogether yield Theorem 2.1.

Let us comment on the optimality of Theorem 2.1 and Theorem 2.3. In
dimension 1, consider the function

fα(x) = eαx−α
2/2.

Observe that fα � 0 and that
∫
R fα dγ1 = 1. Note that for every t � 1 we

have

γ1 ([t,+∞)) � c e
−t2/2

t
,

where c is a universal constant. So if α > 0 and r � e then

γ1 ({fα � r}) �
c exp

(
− 1

2

(
log r
α + α

2

)2
)

log r
α + α

2

.

Choosing α =
√

2 log r we get

γ1 ({fα � r}) �
c′

r
√

log r
.
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Since (log fα)′′ = 0 this shows that the dependence in r in Theorem 2.3
is sharp. Actually this example also shows that the dependence in r in
Theorem 2.1 is sharp. Indeed, it is easily seen that

Qtfα = fαe−t ,

for every α ∈ R and t > 0. This implies that fα always belongs to the image
Qt. Of course, this example also works in higher dimension: just replace fα
by

fu(x) = e〈u,x〉−|u|
2/2

where u belongs to Rn.

Theorem 2.4.— Let X be a random vector having density f with respect
to the Gaussian measure, and assume that f satisfies (2.3). Then for every
r > 1

P (f(X) ∈ (r, e r]) � C max(β, 1)√
log r

.

Theorem 2.4 easily yields Theorem 2.3.

Proof of Theorem 2.3. Let G be standard Gaussian vector on Rn and let
X be a random vector having density f with respect to γn. Then using
Theorem 2.4

P[f(G) > r] =

+∞∑

k=0

P
(
f(G) ∈ (ekr, ek+1r]

)

�
+∞∑

k=0

(ekr)−1E
[
f(G)1{f(G)∈(ekr,ek+1r]}

]

=

+∞∑

k=0

(ekr)−1P
(
f(X) ∈ (ekr, ek+1r]

)

�
+∞∑

k=0

(ekr)−1 C
max(β, 1)√

log(ekr)

� C e

e− 1

1

r

max(β, 1)√
log r

,

which is the result.

The rest of the note is devoted to the proof of Theorem 2.4.
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3. Preliminaries: the stochastic construction

Let µ be a probability measure on Rn having density f with respect to
the Gaussian measure. We shall assume that f is bounded away from 0,
that f is C2 and that ∇f and ∇2f are bounded. A simple density argument
shows that we do not lose generality by adding these technical assumptions.

Eldan and Lee’s argument is based on a stochastic construction which
we describe now. Let (Bt) be a standard n-dimensional Brownian motion
and let (Pt) be the associated semigroup:

Pth(x) = E[h(x+Bt)],

for all test functions h. Note that (Pt) is the heat semigroup, not the
Ornstein-Uhlenbeck semigroup. Consider the stochastic differential equa-
tion {

X0 = 0
dXt = dBt +∇ log(P1−tf)(Xt) dt, t ∈ [0, 1].

(3.1)

The technical assumptions made on f insure that the map

x �→ ∇ logP1−tf(x)

is Lipschitz, with a Lipschitz norm that does not depend on t ∈ [0, 1]. So the
equation (3.1) has a strong solution (Xt). In our previous work [4] we study
the process (Xt) in details and we give some applications to functional
inequalities. Let us recap here some of these properties and refer to [4,
section 2.5] for proofs. Recall that if µ1, µ2 are two probability measures,
the relative entropy of µ1 with respect to µ2 is defined by

H(µ1 | µ2) =

∫
log

(
dµ1

dµ2

)
dµ1,

if µ1 is absolutely continuous with respect to µ2 (and H(µ1 | µ2) = +∞
otherwise). Also in the sequel we call drift any process (ut) taking values
in Rn which is adapted to the natural filtration of (Bt) (this means that ut
depends only on (Bs)s�t) and satisfies

∫ 1

0

|ut|2 ds < +∞,

almost surely. Let (vt) be the drift

vt = ∇ logP1−tf(Xt).

Using Itô’s formula it is easily seen that

d logP1−tf(Xt) = 〈vt, dBt〉+
1

2
|vt|2 dt.
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Therefore, for every t ∈ [0, 1]

P1−tf(Xt) = exp

(∫ t

0

〈vs, dBs〉+
1

2

∫ t

0

|vs|2 ds
)
. (3.2)

Combining this with the Girsanov change of measure theorem one can show
that the random vector X1 has law µ (again we refer to [4] for details).
Moreover we have the equality

H(µ | γn) =
1

2
E

[∫ 1

0

|vs|2 ds
]
. (3.3)

Also, if (ut) is any drift and if ν is the law of

B1 +

∫ 1

0

ut dt,

then

H(ν | γn) �
1

2
E

[∫ 1

0

|us|2 ds
]
. (3.4)

So the drift (vt) is in some sense optimal. Lastly, and this will play a crucial
rôle in the sequel, the process (vt) is a martingale.

Eldan and Lee introduce a perturbed version of the process (Xt), which
we now describe. From now on we fix r > 1 and we let

T = inf{t ∈ [0, 1], P1−tf(Xt) > r} ∧ 1

be the first time the process (P1−tf(Xt)) hits the value r, with the conven-
tion that T = 1 if it does not ever reach r (note that our definition of T
differs from the one of Eldan and Lee). Now given δ > 0 we let (Xδ

t ) be the
process defined by

Xδ
t = Xt + δ

∫ T∧t

0

vs ds.

Since T is a stopping time, this perturbed process is still of the form Brow-
nian motion plus drift:

Xδ
t = Bt +

∫ t

0

(1 + δ1{s�T})vs ds.

So letting µδ be the law of Xδ
1 and using (3.4) we get

H(µδ | γn) �
1

2
E

[∫ 1

0

(1 + δ 1{s�T})
2|vs|2 ds

]

=
1

2
E

[∫ 1

0

|vs|2 ds
]

+

(
δ +

δ2

2

)
E

[∫ T

0

|vs|2 ds
]
.

(3.5)
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4. Proof of the main result

The proof can be decomposed into two steps. Recall that r is fixed from
the beginning and that Xδ

1 actually depends on r through the stopping time
T .

The first step is to prove that if δ is small then µ and µδ are not too
different.

Proposition 4.1.— Assuming (2.3), we have

dTV (µ, µδ) � δ
√

(β + 1) log r,

for every δ > 0, where dTV denotes the total variation distance.

The second step is to argue that f(Xδ
1 ) tends to be bigger than f(X1).

An intuition for this property is that the difference between Xδ
1 and X1 is

somehow in the direction of ∇f(X1).

Proposition 4.2.— Assuming (2.3), we have

P
(
f(Xδ

1 ) � r1+2δe−4
)
� P(f(X1) � r) + (β + 4)δ2 log(r),

for all δ > 0.

Remark.— Note that both propositions use the convexity hypothesis (2.3).

It is now very easy to prove Theorem 2.4. Since X1 has law µ, all we
need to prove is

P(f(X1) ∈ (r, er]) � C max(β, 1)√
log r

.

We choose

δ =
5

2 log r
.

For this value of δ, Proposition 4.2 gives

P(f(Xδ
1 ) � e r) � P(f(X1) � r) +

25

4

β + 4

log r
,

whereas Proposition 4.1 yields

P(f(X1) � er) � P(f(Xδ
1 ) � er) + dTV (µ, µδ)

� P(f(Xδ
1 ) � er) +

5

2

(
β + 1

log r

)1/2

.
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Combining the two inequalities we obtain

P(f(X1) � e r) � P(f(X1) � r) + C
max(β, 1)√

log r
,

which is the result.

Remark. We actually prove the slightly stronger statement:

P(f(X1) ∈ (r, er]) � Cmax

(
max(β, 1)

log r
,

(
max(β, 1)

log r

)1/2
)
.

5. Proof of the total variation estimate

We actually bound the relative entropy of µδ with respect to µ. Recall
that log f is assumed to be weakly convex: there exists β � 0 such that

∇2 log f � −β id, (5.6)

pointwise.

Proposition 5.1.— Assuming (5.6), we have

H(µδ | µ) � δ2(β + 1) log r,

for all δ > 0.

This yields Proposition 4.1 by Pinsker’s inequality.

Proof. — Observe that

H(µδ | µ) = H(µδ | γn)−
∫

Rn
log(f) dµδ. (5.7)

Now (5.6) gives

log(f)(Xδ
1 ) � log f(X1) + 〈∇ log f(X1), X

δ
1 −X1〉 −

β

2
|Xδ

1 −X1|2,

� log f(X1) + δ

∫ T

0

〈v1, vs〉 ds−
βδ2

2

∫ T

0

|vs|2 ds,
(5.8)

almost surely. We shall use this inequality several times in the sequel. Recall
that X1 has law µ and that Xδ

1 has law µδ. Taking expectation in the
previous inequality and using (5.7) we get

H(µδ | µ) � H(µδ | γn)−H(µ | γn)

− δ E

[∫ T

0

〈v1, vs〉 ds
]

+
βδ2

2
E

[∫ T

0

|vs|2 ds
]
.
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Together with (3.3) and (3.5) we obtain

H(µδ | µ) � −δ E

[∫ T

0

〈v1 − vs, vs〉 ds
]

+
(1 + β)δ2

2
E

[∫ T

0

|vs|2 ds
]
.

Now since (vt) is a martingale and T a stopping time we have

E
[
〈v1, vs〉1{s�T}

]
= E

[
|vs|21{s�T}

]

for all time s � 1. This shows that the first term in the previous inequality
is 0. To bound the second term, observe that the definition of T and the
equality (3.2) imply that

∫ T

0

〈vs, dBs〉+
1

2

∫ T

0

|vs|2 ds � log r,

almost surely. Since (vt) is a bounded drift, the process (
∫ t
0
〈vs, dBs〉) is a

martingale. Now T is a bounded stopping time, so by the optional stopping
theorem

E

[∫ T

0

〈vs, dBs〉
]

= 0.

Therefore, taking expectation in the previous inequality yields

E

[∫ T

0

|vs|2 ds
]
� 2 log r,

which concludes the proof.

6. Proof of Proposition 4.2

The goal is to prove that

P
(
f(Xδ

1 ) � r1+2δe−4
)
� P(f(X1) � r) + δ2(β + 4) log r.

Obviously

P
(
f(Xδ

1 ) � r1+2δe−4
)
� P(f(X1) � r)+P

(
f(Xδ

1 ) � r1+2δe−4; f(X1) > r
)

Now recall the inequality (5.8) coming for the weak convexity of log f and
rewrite it as

log f(Xδ
1 ) � K1 + 2δKT + Y

where (Kt) is the process defined by

Kt = log(P1−t)(f)(Xt) =

∫ t

0

〈vs, dBs〉+
1

2

∫ t

0

|vs|2 ds,
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and Y is the random variable

Y = −2δ

∫ T

0

〈vs, dBs〉+ δ
∫ T

0

〈v1 − vs, vs〉 ds−
βδ2

2

∫ T

0

|vs|2 ds.

Recall that the stopping time T is the first time the process (Kt) exceeds
the value log r if it ever does, and T = 1 otherwise. In particular, if

K1 = log f(X1) > log r

then KT = log r. So if f(X1) > r then

f(Xδ
1 ) > r1+2δ eY .

Therefore

P
(
f(Xδ

1 ) � r1+2δe−4; f(X1) > r
)
� P(Y � −4).

So we are done if we can prove that

P(Y � −4) � (β + 4)δ2 log r. (6.1)

There are three terms in the definition of Y . The problematic one is

δ

∫ T

0

〈v1 − vs, vs〉 ds.

We know from the previous section that it has expectation 0. A natural way
to get a deviation bound would be to estimate its second moment but it is
not clear to us how to do this. Instead we make a complicated detour.

Lemma 6.1.— Let Z be an integrable random variable satisfying E[eZ ] �
1. Then

P(Z � −2) � −E[Z].

Remark.— Note that E[Z] � 0 by Jensen’s inequality.

Proof. — Simply write

E
[
eZ

]
� E

[
eZ 1{Z>−2}

]

� E
[
(Z + 1)1{Z>−2}

]

= E[Z]− E
[
Z 1{Z�−2}

]
+ 1− P(Z � −2)

� E[Z] + P(Z � −2) + 1.

So if E[eZ ] � 1 then P(Z � −2) � −E[Z].
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Lemma 6.2.— Let Z be the variable

Z = −δ
∫ T

0

〈vs, dBs〉+ δ
∫ T

0

〈v1 − vs, vs〉 ds−
(β + 1)δ2

2

∫ T

0

|vs|2 ds.

Then

P(Z � −2) � δ2(β + 1) log r.

Proof. — As we have seen before the first two terms in the definition of Z
have expectation 0 and

E[Z] = − (β + 1)δ2

2
E

[∫ T

0

|vs|2 ds
]
� −δ2(β + 1) log r.

By Lemma 6.1 it is enough to show that E[eZ ] � 1. To do so, we use
the Girsanov change of measure formula. The process (Xδ

t ) is of the form
Brownian motion plus drift:

Xδ
t = Xt + δ

∫ T∧t

0

vs ds

= Bt +

∫ t

0

(1 + δ1{s�T})vs ds,

Note also that the drift term is bounded. Therefore, Girsanov’s formula
applies, see for instance [5, chapter 6] (beware that the authors oddly use
the letter M to denote expectation). The process (Dδ

t ) defined by

Dδ
t = exp

(
−

∫ t

0

(1 + δ 1{s�T})〈vs, dBs〉 −
1

2

∫ t

0

∣∣(1 + δ 1{s�T})vs
∣∣2 ds

)

is a non-negative martingale of expectation 1 and under the measure Qδ

defined by

dQδ = Dδ
1 dP

the process (Xδ
t ) is a standard Brownian motion. In particular

E[f(Xδ
1 )Dδ

1] = E[f(B1)] = 1.

Now use inequality (5.8) once again and combine it with equality (3.2)
written at time t = 1. This gives exactly

f(Xδ
1 )Dδ

1 � eZ .

Therefore E[eZ ] � 1, which concludes the proof.
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We now prove inequality (6.1). The idea being that the annoying term
in Y is handled by the previous lemma. Observe that

Y = Z − δ
∫ T

0

〈vs, dBs〉 −
δ2

2

∫ T

0

|vs|2 ds.

So

P(Y � −4) � P(Z � −2) + P

(
δ

∫ T

0

〈vs, dBs〉 � 1

)

+ P

(
δ2

2

∫ T

0

|vs|2 ds � 1

)
.

Recall that
∫ T
0
〈vs, dBs〉 has mean 0 and observe that

E




(
δ

∫ T

0

〈vs, dBs〉
)2


 = δ2E

[∫ T

0

|vs|2 ds
]
� 2δ2 log r.

So by Tchebychev inequality

P

(
δ

∫ T

0

〈vs, dBs〉 � 1

)
� 2δ2 log r.

Similarly by Markov inequality

P

(
δ2

2

∫ T

0

|vs|2 ds � 1

)
� δ2 log r.

Putting everything together we get (6.1), which concludes the proof.
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