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Vertex algebroids à la Beilinson-Drinfeld

Fyodor Malikov(1)

To Vadik Schechtman on his 60th birthday

RÉSUMÉ. — Ces notes informelles sont une introduction aux algébröıdes
vertex en suivant les lignes suggérées par Beilinson et Drinfeld.

ABSTRACT. — These informal notes are an introduction to vertex alge-
broids along the lines suggested by Beilinson and Drinfeld.

1. Introduction

The definition of a vertex algebra is bad enough, [7, 8, 13], but the
definition of a vertex algebroid, an apparently simpler object as suggested
in [9], is worse. The Borcherds identity [7], admittedly an infinite family of
identities, can at least be written as a single formula, albeit depending on
parameters. A vertex algebroid is a vector space with 3 partially defined
operations satisfying a number of disparate identities that make some sense
only if one discerns the Borcherds identity lurking behind.

To cite one problematic issue, the skew-symmetry, a fundamental prop-
erty of a vertex algebra, usually is not part of the definition of a vertex
algebra, but is indispensable when defining a vertex algebroid, where it
appears in the form:

ξ(0)η = −η(0)ξ + ∂(η(1)ξ).

It has always been clear that the prototype of the notion of a vertex algebroid
is that of a Picard-Lie algebroid. The latter is a Lie A-algebroid that fits

(1) Department of Mathematics, University of Southern California, Los Angeles, CA
90089, USA
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into an exact sequence

0 −→ A −→ L −→ TA −→ 0,

where A is a ring, TA is the tangent Lie algebroid and arrows respect all
the structures involved. The isomorphism classes of such sequences are in
1-1 correspondence with the De Rham cohomology group Ω2,cl/dDRΩ

1
A; 2-

forms enter this classification as deformations of the Lie bracket restricted
to TA: TA ⊗ TA −→ TA ⊕A.

The vertex analogue, [9], is as follows:

0 −→ ΩA −→ V −→ TA −→ 0.

The corresponding vertex algebroids may or may not exist, but if they
do, the isomorphism classes are a torsor over Ω3,cl/dDRΩ

2
A. 2-forms enter

this classification as deformations of the (0)-product restricted to TA: TA ⊗
TA −→ TA ⊕ ΩA; other products are treated separately.

While the former exact sequence brings one to the heart of the matter,
the latter does not, not quite at least; for example, it does not contain
the ring A, which is an integral part of the corresponding algebra of chiral
differential operators.

A much more reasonable point of view was suggested by Beilinson and
Drinfeld [5]. In the situation at hand this approach amounts to replacing all
objects with their “jet” versions; the result is this:

0 −→ J∞A −→ Lch −→ J∞TA −→ 0,

Defining the structure encoded by this exact sequence is straightforward
and more or less parallel to the discussion of Picard-Lie algebroids, except
that one has to work inside appropriate pseudo-tensor categories introduced
in [5]; for example, J∞A is a commutative! algebra (i.e., a commutative
associative algebra with derivation), J∞TA is a Lie* (as opposed to ordinary
Lie) algebra, etc. A chiral algebroid may or may not exist, but if it exists
the isomorphism classes thereof are again, as in the Picard-Lie case, labeled
by “the 2nd De Rham cohomology group,” except that the latter has to
be properly understood; “2-forms” enter this classification as deformations
of the single Lie*-bracket. The results of [9] are then singled out by the
requirement that the algebroid be Z+-graded. The clarity thus achieved by
adopting the Beilinson-Drinfeld point of view is impressive.

This note is essentially an exposition of a tiny part of [5] that is needed to
recover the results of [9]. The reader is advised having leafed through sect. 2,
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which is a quick reminder about algebras of twisted differential operators
(TDO), to move directly to sect. 4, where algebras of chiral differential
operators (CDO) are discussed, and return to sect. 3 only when needed.
The Beilinson-Drinfeld theory is not only tremendously illuminating but is
much more general than the conventional vertex algebra theory. We hope,
however, that the relentless emphasis on the simplest case adopted here
may serve the beginner well. Some other sources dealing with elementary
aspects of [5] are [8], ch.19, 20, and [12]; an important example of a CDO
is analyzed in [3].

A few points may be worth mentioning.

(i) In sect. 4.11 we show how a slight deviation from the graded case
allows to obtain a family of CDOs labeled by the product of the De Rham
cohomology groups Ω2,cl

A /dDRΩ
1
A×Ω3,cl

A /dDRΩ
2
A thereby producing a cross

between a TDO and a graded CDO. This is similar but different from from
“twisted” chiral algebroids of [1, 2]. Similar inhomogeneities have some-
what surreptitiously crept into the works such as [10, 15]. I am grateful to
A.Linshaw for pointing this out to me.

(ii) The construction of the universal enveloping algebra of a vertex
algebroid has only appeared in a preprint version of [9]; the construction
suggested here, sect. 4.7, is quite different.

(iii) We introduce, sect. 3.11, the notion of infinity-Lie* algebra, which
seems essential for working with singular algebraic varieties, [11]. We hope
to present the details elsewhere.

***

It is a pleasure and honor to contribute to the celebrations of Vadik’s
birthday, and it is fitting that the subject of these notes owes its existence
to Vadik.

2. TDO

2.1. Let A be a commutative unital C-algebra, TA the Lie algebra of deriva-
tions of A. The graded symmetric algebra S•

ATA is naturally a Poisson al-
gebra. An algebra Dtw

A is called an algebra of twisted differential operators
over A, TDO for brevity, if it carries a filtration F0(Dtw

A ) = A ⊂ · · · ⊂
Fn(Dtw

A ) ⊂ · · · , ⋃n Fn(Dtw
A ) = Dtw

A , s.t. the corresponding graded object is
isomorphic to S•

ATA is a Poisson algebra.

In a word, a TDO is a quantization of S•
ATA.
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2.2. The key to classification of TDOs is the concept of a Picard-Lie A-
algebroid. L is called a Lie A-algebroid if it is a Lie algebra, an A-module,
and is equipped with anchor, i.e., a Lie algebra and an A-module map
σ : L → TA s.t. the A-module structure map

A⊗ L −→ L (2.1)

is an L-module morphisms. Explicitly,

[ξ, aτ ] = σ(ξ)(a)τ + a[ξ, τ ], a ∈ A, ξ, τ ∈ L. (2.2)

A Picard-Lie A-algebroid is a Lie A-algebroid L s.t. the anchor fits in an
exact sequence

0 −→ A
ι−→ L σ−→ TA −→ 0, (2.3)

where the arrows respect all the structures involved; in particular, A is
regarded as an A-module and an abelian Lie algebra, and ι makes it an
A-submodule and an abelian Lie ideal of L.

Morphisms of Picard-Lie A-algebroids are defined in an obvious way
to be morphisms of exact sequences (2.3) that preserve all the structure
involved. Each such morphism is automatically an isomorphism and we
obtain a groupoid PLA.

2.3. Classification of Picard-Lie A-algebroids that split as A-modules is as
follows. We have a canonical such algebroid, A⊕ TA with bracket

[a+ ξ, b+ τ ] = ξ(b)− τ(a) + [ξ, τ ].

Any other bracket must have the form

[ξ, τ ]new = [ξ, τ ] + β(ξ, τ), β(ξ, τ) ∈ A.

The A-module structure axioms imply that β(., .) is A-bilinear, the Lie alge-

bra axioms imply that, in fact, β ∈ Ω2,cl
A . Denote this Picard-Lie algebroid

by TA(β). Clearly, any Picard-Lie A-algebroid is isomorphic to TA(β) for
some β.

A morphism TA(β) → TA(γ) must have the form ξ → ξ +α(ξ) for some
α ∈ Ω1

A. A quick computation will show that

Hom(TA(β), TA(γ)) = {α ∈ Ω1
A s.t. dα = β − γ}.

This can be rephrased as follows. Let Ω
[1,2>
A be a category with objects

β ∈ Ω2,cl
A , morphisms Hom(β, γ) = {α ∈ Ω1

A s.t. dα = β − γ}. Then the
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assignment (γ, TA(β) �→ TA(β + γ) defines a categorical action of Ω
[1,2>
A

on PLA which makes PLA into an Ω
[1,2>
A -torsor. The isomorphism classes

of this catetgory are in 1-1 correspondence with the De Rham cohomology
Ω2,cl

A /dΩ1
A, and the automorphism group of an object is Ω1,cl

A .

2.4. If X is a smooth algebraic variety, then the above considerations give
the category of Picard-Lie algebroids over X, PLX , which is a torsor over

Ω
[1,2>
X or, perhaps, a gerbe bound by the sheaf complex Ω1

X → Ω2,cl
X . This

gerbe has a global section, the standardOX⊕TX . The isomorphism of classes
of such algebroids are in 1-1 correspondence with the cohomology group
H1(X,Ω1

X ,→ Ω2,cl
X ) (Ω1

X being placed in degree 0), and the automorphism

group of an object is H0(X,Ω1,cl
X ).

2.5. The concept of the universal enveloping algebra of a Lie algebra has a
Lie algebroid version, which reflects a partially defined multiplicative struc-
ture on L.

Let F (L) be a free unital associative C-algebra generated be the Picard-
Lie A-algebroid L regarded as a vector space over C. We denote by ∗ its
multiplication and by 1 its unit. Define the universal enveloping algebra
UA(L) to be the quotient of F (L) be the ideal generated by the elements
ξ ∗ τ − τ ∗ ξ − [ξ, τ ], a ∗ ξ − aξ, 1− 1A, where 1A is the unit of A.

It is rather clear that UA(L) is a TDO (sect. 2.1), and the assignemnt
L �→ UA(L) is an equivalence of categories ifA is smooth, i.e., ifMaxSpec(A)
is a smooth affine variety.

3. Beilinson-Drinfeld

3.1. Let R = C[∂] be a polinomial ring regarded as a Hopf algebra with
comultiplication Δ : R → R⊗R, ∂ �→ ∂ ⊗ 1 + 1⊗ ∂, and counit ε : R → C,
∂ �→ 0.

We let M be the category of R-modules, and we choose to think of
them as right R-modules. If I is a finite set, and {Ai} is an I-family of
objects, then the tensor product ⊗i∈IAi is best understood as a system of
“usual” products Aσ1

⊗Aσ2
⊗· · · defined for all orderings σ of I and obvious

isomorphisms among them.

The symbol RJ stands for the tensor product ⊗JR of algebras; the iter-
ated comultiplication gives an algebra morphism R → RJ . Similarly, given a
surjection π : J � I the repeated comultiplication defines a homomorphism
RI → RJ . The former construction is a particular case of the latter one
when I is a point; on the other hand, the latter construction is the tensor
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product of a number of former ones as follows: if we let Ji = π−1(i) and fi
be the map R → RJi , then the map RI → RJ is ⊗Ifi.

For a finite set I and a collection of R-modules Mi, i ∈ I and N , define

P ∗
I ({Mi}, N) = HomRI (⊗i∈IMi, N ⊗R RI).

Elements of P ∗
I ({Mi}, N), often called *-operations, can be composed as

follows: for a surjection π : J � I define a map

P ∗
I ({Mi}, N)⊗ (⊗IP

∗
Ji
({Lj},Mi)) −→ P ∗

J ({Lj}, N), where Ji = π−1(i),
(3.1)

to send a collection of operations ψi ∈ P ∗
Ji
({Lj},Mi), i ∈ I, and φ ∈

P ∗
I ({Mi}, N) to the composite map:

⊗JLj = ⊗I ⊗Ji Lj
⊗ψi−→ ⊗I(Mi ⊗R RJi) = (⊗IMi)⊗RI RJ

φ−→ N ⊗R RI ⊗RI RJ = N ⊗R RJ .

Denote this composition by φ(ψi) ∈ P ∗
J ({Lj}, N).

An associativity property holds: if, in addition, there is a surjection K �
J and operations χj ∈ P ∗

Hj
({Ak}, Lj), j ∈ J , then (φ(ψi))(χ) = φ(ψi(χj)).

This defines a pseudo-tensor category, to be denoted by M∗.

We shall often encounter the situation when the I-family is constant,
Mi = M , J = I and π is a bijection. In this case, the composition φ(idM , idM , ...)
also belongs to PI({M}, N) and will be denoted πφ. For example, if φ(a, b) =∑

i,j〈a, b〉ij∂i
1∂

j
2 for some 〈a, b〉ij ∈ N and σ = (1, 2) is the transposition,

then

σφ(a, b) =
∑

i,j

〈b, a〉ij∂i
2∂

j
1.

This defines an action of the permutation group on each PI({M}, N).

3.2. If a choice is made, then explicit formulas can be written down. If I =
{1, 2, 3, ..., n}, then N⊗RRI can be identified with N [∂1, ∂2, ..., ∂n−1], where
∂i stands for 1⊗ · · · ⊗ ∂︸ ︷︷ ︸

i

⊗ · · ·⊗1. A binary operation μ ∈ P ∗
{1,2}({M,M}, N)

can then be written as follows

μ(a, b) =
∑

n

a(n)b⊗
∂n
1

n!
for some a(n)b ∈ N.
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One has for the transposition σ = (1, 2)

σμ(a, b) =
∑

n

b(n)a⊗ ∂n
2

n!
=

∑

n

b(n)a⊗ (∂1 + ∂2 − ∂1)
n

n!

=
∑

n�j
(−1)j(b(n)a)

∂n−j

(n− j)!
⊗ ∂j

1

j!

Similarly,

μ(a, μ(b, c)) =
∑

n

μ(a, b(n)c)⊗
∂n
2

n!
=

∑

m,n

a(m)(b(n)c)⊗
∂m
1

m!

∂n
2

n!
,

but

μ(μ(a, b), c) =
∑

m

μ(a(m)b, c)⊗
∂m
1

m!
=

∑

m,n

(a(m)b)(n)c⊗
∂m
1

m!

Δ(∂)n

n!

=
∑

m,n

(a(m)b)(n)c⊗
∂m
1

m!

(∂1 + ∂2)
n

n!

3.3. Along with M∗ consider Vect, the tensor category of vector spaces,
hence a pseudo-tensor category where PI({Vi}, V ) = HomC(⊗IVi, V ). The

assignment M∗ �→ h(M)
def
= M/∂M defines a pseudo-tensor functor, called

an augmentation functor in [5], 1.2.4, 1.2.9-11,

h : M∗ −→ Vect,

as h defines, in an obvious manner, a map

hI : P ∗
I ({Mi}, N) −→ HomC(⊗Ih(Mi), h(N)),

which is functorial in {Mi} and N .

3.4. A pseudo-tensor category structure, i.e., a family of well-behaved spaces
of “operations” P ∗

I ({Li}, N), is what is needed to define various algebraic
structures. For example, a Lie* or associative* algebra is a pseudo-tensor
functor

Lie −→ M∗ or Ass −→ M∗,

where Lie or Ass (resp.) is the corresponding operad (an operad being a
pseudo-tensor category with a single object.) Explicitly, this means a choice
of an R-module V and an operation μ(., .) ∈ P ∗

{1,2}({V, V }, V ) that satisfies
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appropriate identities written by means of the above defined composition.
For example, V is an associative* if μ(μ(., .), id) = μ(id, μ(., .)) as elements
of P ∗

{1,2,3}({V, V, V }, V ). Likewise, V is Lie* if

(1, 2)μ(., .) = −μ(., .))

and μ(μ(., .), id) + (1, 2, 3)μ(μ(., .), id) + (1, 2, 3)2μ(μ(., .), id) = 0.

It is easy to verify, using 3.2, that a Lie* algebra is an R-module with a
family of multiplications (n) s.t. a(n)b = 0 if n � 0 and

a(n)b = (−1)n+1
∑

j�0
(b(n+j)a)

∂j

j!
: anti-symmetry (3.2)

a(n)b(m)c− b(m)a(n)c =
∑

j�0

(
n

j

)
(a(j)b)(n+m−j)c: Jacobi (3.3)

The last equality is known as the Borcherds commutator formula

It is convenient to denote by a(∂) the formal sum
∑

n a(n)∂
n/n!. We

have

(i) the just written Jacobi identity is equivalent to

a(∂1)b(∂2)c− b(∂2)a(∂1)c = (a(∂1)b)(∂1 + ∂2)c.

(ii) the associativity condition μ(μ(., .), id) = μ(id, μ(., .)) is equivalent to

a(∂1)b(∂2)c = (a(∂1)b)(∂1 + ∂2)c.

This point of view has been introduced and developed by V.Kac and his
collaborators, see [13] and references therein, especially [4], sect. 12.

3.5. Let L be a Lie* algebra with bracket [., .] ∈ P ∗
{1,2}({L,L}, L). An R-

moduleM is called an L-module if there is an operation μ ∈ P ∗
{1,2}({L,M},M)

s.t.

μ(., μ(., .))− (1, 2)μ(., μ(., .)) = μ([., .], .).

The untiring reader will have no trouble verifying that in terms of (n)-
products this is nothing but an obvious version of (3.3).

The Chevalley complex is defined as follows. Denote by Cn(L,M) the
subspace of P ∗

[n]({L},M), [n] = {1, 2, ..., n}, of skew-invariants of the sym-
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Vertex algebroids à la Beilinson-Drinfeld

metric group action. Set, mimicking the usual definition,

d : Cn(L,M) −→ Cn+1(L,M), dφ(l1, l2, . . . , ln+1)

=
∑

1�i�n+1

(−1)i+1μ(li, φ(l1, ..., l̂i, ..., ln+1))

+
∑

1�i<j�n+1

(−1)i+jφ([li, lj ], l1, ..., l̂i, ..., l̂j , ...., ln+1).

The last formula is somewhat symbolical and needs to be interpreted as
follows: if I = {1, 2, ..., n} and {xi, i ∈ I} is an I-family of elements of L,
then we define φ(xi1 , xi2 , . . . , xin) to be σφ(x1, x2, . . . , xn), where σ is a
permutation such that σ(j) = ij and the action of the symmetric group on
operations is the one defined in sect. 3.1; it is not simply the permutation
of the variables. Essentially the familiar (from ordinary Lie theory) proof
shows that d2 = 0.

Various computations involving this complex, called there reduced, can
be found in [4].

3.6. If L is a Lie* algebra and M an L-module, then h(L) is an ordinary
Lie algebra and h(M), as well as M itself is an h(L)-module. This is true
on general grounds, see sect. 3.3, but also easily follows from the explicit
formulas of sect. 3.4.

3.7. In order to define a Poisson algebra object in M∗ one needs, in ad-
dition to Lie*, another structure, associative commutative multiplication,
and another constraint, the Leibniz rule. This is taken care of by another
pseudo-tensor structure on M, in fact, a genuine tensor category structure
engendered by the fact that R is a Hopf algebra. Given A,B ∈ M, let A⊗!B
be A⊗B acted upon by R via Δ : R → R⊗R. The category M with this
tensor structure will be denoted by M!.

The 2 pseudo-tensor structures are related in that operations can some-
times be multiplied. Let us describe this product in the simplest possible
case. Assume given P ∗

I ({Mi}, N1), P
∗
J ({Lj}, N1), where I and J are dis-

joint, and fix i0 ∈ I, j0 ∈ J . Denote by I ∨ J (or rather I ∨i0j0 J) the union
I 
 J modulo the relation i0 = j0. There is a natural map

P ∗
I ({Mi}, N1)⊗ P ∗

J ({Lj}, N1)

−→ P ∗
I∨J({Mi, Lj ,Mi0 ⊗! Lj0}i �=i0,j �=j0 , N1 ⊗! N2), (3.4)
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It is defined to be the following composition

P ∗
I ({Mi}, N1)⊗ P ∗

J ({Lj}, N1)

= HomRI (⊗IMi, N1 ⊗R RI)⊗HomRJ (⊗ILj , N1 ⊗R RJ)

⊗−→ HomRI�J (⊗IMi ⊗⊗JLj , (N1 ⊗N2)⊗R2 (RI ⊗RJ))
c©−→ HomRI∨J (⊗i �=i0Mi⊗⊗j �=j0Lj⊗(Mi0⊗!Nj0), (N1⊗N2)⊗R2(R2⊗RR

I∨J))

= HomRI∨J (⊗i �=i0Mi ⊗⊗j �=j0Lj ⊗ (Mi0 ⊗! Nj0), (N1 ⊗! N2)⊗R RI∨J))

= P ∗
I∨J({Mi, Lj ,Mi0 ⊗! Lj0}i �=i0,j �=j0 , N1 ⊗! N2).

Of these arrows only the one marked by c© needs an explanation. Consider
the map

R2 ⊗R RI∨J −→ RI ⊗RJ (3.5)

defined on the generators to be the following two:

R2 −→ RI ⊗RJ and RI∨J −→ RI ⊗RJ .

The former is the tensor product of the iterated coproduct maps R → RI

and R → RJ . The latter is defined to be ∂α �→ ∂α if α is different from
the equivalence class {i0, j0} and ∂α �→ ∂i0 + ∂j0 if α is the equivalence
class {i0, j0}. The map (3.5) is an isomorphism as it simply is a coordinate
system change in a polynomial ring. The arrow c© is induced by its inverse.

Informally speaking, map (3.4) is essentially the conventional tensor
product of 2 maps:

⊗ : HomRI (⊗IMi, N1 ⊗R RI)⊗HomRJ (⊗ILj , N1 ⊗R RJ)

−→ HomRI�J (⊗IMi ⊗⊗JLj , (N1 ⊗N2)⊗R2 (RI ⊗RJ))

except that the result must be reinterpreted. To indicate this denote by
φ⊗! ψ the tensor product of 2 operations defined by (3.4).

The tensor product (3.4) is commutative, associative, and natural w.r.t.
the composition (3.1); the reader can either figure out what this means on
his own or read [5], 1.3.15. The structure so obtained is called compound
pseudo-tensor category; if we want to emphasize this, we shall write M∗!.

3.8. If index sets are ordered and operations are written in terms of (n)-
products, sect. 3.2, then the inherent symmetry of the definition is destroyed.

For example, given φ ∈ P ∗
{1,2}({M1,M2}, N), with φ(a, b) =

∑
n(a(n)b)⊗

∂n
1

n!
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and id ∈ P ∗
{1}(L,L) one easily computes φ⊗!id ∈ P ∗

{1,2}({M1,M2⊗!L}, N⊗!

L) to be

φ⊗! id(a, b⊗! c) =
∑

n

(a(n)b)⊗! c⊗ ∂n
1

n!
. (3.6)

On the other hand, id⊗! φ ∈ P ∗
{1,2}({L⊗! M1,M2}, L⊗! N) is as follows

id⊗! φ(c⊗! a, b) =
∑

n�j
(−1)n−j(c

∂n−j

(n− j)!
)⊗! a(n)b)⊗

∂j
1

j!
. (3.7)

Indeed, if we consider L ⊗M1 ⊗M2 as an R3-module, denoting ∂x, ∂y, ∂z
the copy of ∂ operating on L, M1, M2 resp., then the construction of map
(3.4) gives the composition

c⊗! a⊗ b �→
∑

n

c⊗ a(n)b⊗
∂n
y

n!
�→

∑

n

c⊗ a(n)b⊗
(∂1 − ∂x)

n

n!

=
∑

n�j
(−1)n−jc⊗a(n)b⊗

∂j
1∂

n−j
x

j!(n− j)!
=

∑

n�j
(−1)n−j(c

∂n−j

(n− j)!
)⊗!a(n)b⊗

∂j
1

j!
,

as desired. In this computation, the 2nd arrow uses the fact that Δ(∂1) =
∂x + ∂y and the last equality follows from the fact that id ∈ P ∗

{1}(L,L) =
HomR(L,L⊗R R), which is identified with HomR(L,L) by c⊗ ∂m �→ c∂m.

3.9. A commutative! algebra is defined to be a commutative (associative
unital) algebra in M!. In the present context, this is the same thing as
the conventional commutative (associative unital) algebra with derivation.
Modules over a commutative! algebra are defined (and described) similarly.

If (L, [, .]) is a Lie* algebra and (M1, μ1), (M2, μ2) are L-modules, μj ∈
P ∗
{1,2}({L,Mj},Mj) being the action, j = 1, 2, then M1 ⊗! M2 carries an

L-module structure defined via the Leibniz rule. Namely, one defines μ =
μ1⊗! idM2

+μ2⊗! idM1
∈ P ∗

{1,2}({L,M1⊗!M2},M1⊗!M2) and verifies, just

as in the ordinary Lie algebra case, that this is a Lie* action.

If A is a commutative! algebra, then we say that L acts on A (or L acts
on it by derivations) if A is an L-module s.t. the multiplication morphism

A⊗! A −→ A

is a morphism of L-modules.

In a similar vein, L is a Lie* A-algebroid if it is a Lie* algebra, an
A-module, and it acts on A (by derivations) s.t.
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(1) the action μ ∈ P ∗
{1,2}({L, A}, A) is A-linear w.r.t. the L-argument;

(2) the A-module morphism

A⊗! L −→ L

is an L-module morphism, cf. (2.1).

A coisson algebra P is a Lie* algebra and a commutative! algebra s.t.
the commutative!-product map

P ⊗! P −→ P

is a Lie* algebra module morphism.

3.10. Let A be a conventional commutative associative unital algebra. De-
note by J∞A the universal commutative associative algebra with derivation
generated by A. More formally, J∞ is the left adjoint of the forgetful functor
from the category of commutative algebras with derivation to the category
of commutative algebras.

Lemma 3.1.— If A is a Poisson algebra, then J∞A is canonically a
coisson algebra.

Proof. — If {., .} is the Poisson bracket on A, then define {a∂l, b∂k} =
{a, b} ⊗ ∂l

1∂
k
2 , then extend to all of J∞A using the Leibniz property; this

makes perfect sense thanks to the universal property of J∞A. The relation
{a, (bc)∂} = {a, (b∂)c+ b(c∂)} is almost tautological.

In hindsight, this simple assertion appears to be this theory’s raison
d’être.

To see an example, let A be a commutative algebra and consider the sym-
metric algebra S•

ATA, which is canonically Poisson, sect. 2.1. It is graded,
by assigning degree 1 to TA, and so is the coisson algebra J∞S•

ATA. Con-
sider its degree 1 component, J∞TA, which, by the way, can be equivalently
described as the universal J∞A-module with derivation generated by TA.
The Lie* bracket on J∞S•

ATA restricts to J∞TA and makes it a Lie* al-
gebra. Furthermore, J∞S•

ATA is a J∞TA-module and J∞A ⊂ J∞S•
ATA is

a submodule. Hence J∞TA acts on J∞A be derivations. One easily verifies
that, in fact, J∞TA is a Lie* J∞A-algebroid, sect. 3.9. Furthermore, it is
not hard to prove that if a Lie* algebra L acts on J∞A by derivations, then
this action factors through a Lie* algebra morphism L → J∞TA.

A much more general discussion of tangent algebroids can be found in
[5], 1.4.16.
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3.11. The context of Lie* brackets makes it straightforward to suggest the
definition of a Lie∗∞ algebra, cf. [14], sect. 2. To begin with, let V be a
graded vector space with homogeneous basis {xi}. Denote by ΛV the graded
symmetric algebra of this space, i.e., the associative algebra on generators

{xi} and relations xixj = (−1)degxi·degxjxjxi. Given a permutation σ ∈
Sn, define the sign ε(σ, �x) s.t.

x1x2 . . . xn = ε(σ, �x)xσ1xσ2 · · ·xσn ∈ S(V ).

For the purposes of this section, we shall say that an R-module V is graded
if V = ⊕i∈ZVi and R(Vi) ⊂ Vi. Similarly, if {Vi} and W are graded R-
modules, we shall say that an operation μ ∈ P ∗

I ({Vi},W ) has degree k
if

μ(v1, v2 . . . ) ∈ VN ⊗R RI , where
∑

i

degvi + k = N.

Similarly, if V is a graded R-module, we shall say that an operation μ ∈
P ∗
[n]({V },W ) is antisymmetric if

μ(vσ1
, vσ2

. . . vσn
) = sgn(σ)ε(σ, �x)μ(v1, v2 . . . vn),

where the indices are used with the same reservations as in sect. 3.5 so that
μ(vσ1 , vσ2 . . . vσn) means σμ(v1, v2 . . . vn) rather than a mere permutation
of variables.

Definition. — A Lie∗∞ algebra is a graded R-module L and a collection
of antisymmetric [n]-operations ln ∈ P ∗

[n]({L}, L), degln = 2 − n, that for
each k = 1, 2 . . . satisfy the following identity

∑

i+j=k+1

∑

σ

sgn(σ)ε(σ, �x)(−1)i(j−1)lj(li(xσ1
. . . xσi

), xσi+1
. . . xσn

) = 0,

(3.8)

where σ runs through the set of all (i, n − i) unshuffles, i.e., σ ∈ Sn s.t.
σ1 < σ2 < · · · < σi and σi+1 < σi+2 < · · · < σn.

By definition, l1 is simply a degree 1 linear map L −→ L, and (3.8) with
n = 1 says that l21 = 0; in other words, (L, l1) is a complex.

Let us denote l2(., .) by [., .]. One has [x1, x2] = −(−1)x1x2 [x2, x1], and
(3.8) with n = 2 reads, after an obvious re-arrangement,

l1[x1, x2] = [l1(x1), x2] + (−1)x1 [x1, l(x2)].

– 217 –



Fyodor Malikov

We conclude that [., .] is an antisymmetric super-star-bracket of degree 0,
and l1 is its derivation. More explicitly, if we write [x, y] =

∑
i x(i)y⊗ ∂i

1/i!,
then

l1(x(i)y) = l1(x)(i)y + (−1)xx(i)l1(y),

hence l1 is a derivation of all products (i).

The n = 3 case of (3.8) involves terms such as [[., .], .], l3 ◦ l1, and l1 ◦ l3.
The first one will give the “jacobiator,” the last two will show that the
super-Jacobi identity holds up to homotopy, l3:

[[x1, x2], x3] + (−1)x3(x1+x2)[[x3, x1], x2] + (−1)x1(x2+x3)[[x2, x3], x1] =

− (l1l3(x1, x2, x3) + l3(l1(x1), x2, x3) + (−1)x1 l3(x1, l1(x2), x3)

+ (−1)x1+x2 l3(x1, x2, l1(x3))

Writing l3(x1, x2, x3) =
∑

m,n(x1, x2, x3)mn⊗∂m
1 ∂n

2 /m!n! and equating the
terms in front of ∂m

1 ∂n
2 in the last equality, we obtain, cf. (3.3),

a(n)b(m)c− (−1)abb(m)a(n)c−
∑

j�0

(
n

j

)
(a(j)b)(n+m−j)c =

l1((a, b, c)mn)+(l1(a), b, c)mn+(−1)a(a, l1(b), c)mn+(−1)a+b(a, b, l1(c))mn,

where we took the liberty of using a, b, c in place of x1, x2, x3 (resp.) so as
to avoid being flooded by indices.

It is clear, of course, how the concept of a differential Lie* superalgebra
is defined and how that of a Lie∗∞ algebra generalizes it.

To push the analogy with the ordinary Lie∞ algebras a little further,
introduce, given a Lie∗∞ algebra (L, {ln}), the graded symmetric algebra
with shifted grading ΛL[1]. Then each ln can be extended to a degree 1
“coderivation” by mimicking the standard formula, [14, 16],

l̂n(x1, . . . , xk) =
∑

σ

±ln(xσ1
, . . . , xσn

)xσn+1
· · ·xσk

,

with summation extended to the set of all (n, k−n)-unshuffles. There are a

few reasons to write “coderivation,” one of them being that the target of l̂n
is neither ΛL[1] nor even the tensor algebra T (L[1]), but the direct sum of
spaces LJ�I , which are defined for each surjection of finite sets J � I to be
L⊗I ⊗RI RJ , cf. sect. 3.1. Nevertheless, such operations can be composed
and one can verify that (

∑
n l̂n)

2 = 0; in fact, the proof in the ordinary
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Lie∞ algebra case, [16], goes through word for word thanks to its purely
combinatorial nature. As they say, we are planning to return to this topic
in future publications.

3.12. The discussion above is but a shadow of the genuine Beilinson-Drinfeld
category [5], 2.2. Given a smooth algebraic curve X, their category is one
of right DX -modules with the pseudo-tensor structure defined by

P ∗
I ({Mi},N ) = HomDXI

(�IMi −→ Δ∗N ),

where Δ : X −→ XI is the diagonal embedding.

Seeking to spell out everything in the simplest possible case, let from
now on X be C, XI = ×IX, C[XI ] the corresponding polynomial ring DXI

the corresponding algebra of globally defined differential operators; we let
x be the coordinate on X, ∂x = ∂/∂x..

Given a surjection π : J � I, there arise an embedding XI ↪→ XJ and
the corresponding algebra homomorphism C[XJ ] � C[XI ], xj �→ xπ(j). De-
fine DXI→XJ = C[XI ] ⊗C[XJ ] DXJ , which is operated on by DXJ on the
right – obviously, and by DXI on the left via ∂xi �→ ∑

j∈π−1(i) ∂xj ; this
makes DXI→XJ into a DXI − DXJ -bimodule. There are obvious isomor-
phisms:

⊗IDX
∼−→ DXI , ⊗IDX→XJi

∼−→ DXI→XJ ,

DXI→XJ ⊗DXJ
DXJ→XK

∼−→ DXI→XJ ;

Ji stands for π
−1(i) in the 2nd isomorphism.

For a collection of right DX -modules, Mi, i ∈ I, N , define

P ∗
I ({Mi},N ) = HomDXI

(⊗IMi −→ N ⊗DX
DX→XI ),

The composition is defined as follows: for a surjection π : J � I, and
a collection of operations ψi ∈ P ∗

Ji
({Lj},Mi), i ∈ I, Ji = π−1(i), and

φ ∈ P ∗
I ({Mi},N ), define φ(ψi) ∈ P ∗

J ({Lj},N ) to be the composite map,
cf. sect. 3.1:

⊗J Lj = ⊗I ⊗Ji
Lj

⊗ψi−→ ⊗I(Mi⊗DX
DX→XJi ) = (⊗IMi)⊗DXI

DXI→XJ

φ−→ (N ⊗DX
DX→XI )⊗DXI

DXI→XJ
∼−→ N ⊗DX

DX→XJ .

The associativity follows from the isomorphismsDXI→XJ⊗DXJ
DXJ→XK

∼−→
DXI→XJ .
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3.13. Denote by M∗
D the pseudo-tensor category just defined. The category

of the right DX -modules also carries a tensor category structure, which gives
us a compound pseudo-tensor category, M∗!

D, cf. sect. 3.7, and so one can
still talk about commutative associative, Lie, Poisson, etc. objects of M∗!

D,
which we will still be calling commutative!, Lie, coisson, etc., algebras.

The obvious similarity between M∗
D and M∗ is easily made into an

assertion as follows. Given an R-module M , M [x] is naturally a DX -module
if we stipulate m∂x = m∂, m ∈ M . This defines a functor

Φ : M∗! −→ M∗!
D, M �→ M [x],

which is clearly compound pseudo-tensor and faithful. In fact, it identi-
fies M∗! with the translation-invariant subcategory of M∗!

D, i.e., L is iso-
morphic to Φ(M) for M ∈ M∗! precisely when L is translation-invariant,
and φ ∈ P ∗

I ({Mi[x]}, N [x]) belongs to ΦP ∗
I ({Mi}, N) if and only if φ is

translation-invariant. Therefore, an object of some type of M∗! is the same
as a translation-invariant object of the same type in M∗!

D.

3.14. We are exclusively interested in the translation invariant objects, but
even then this more general point of view is helpful. The assignment M∗

D �
L �→ h(L) def= L/L∂x ∈ Vect is still an augmentation functor, sect. 3.3, and
if L is a Lie* algebra, then h(L[x]) is a Lie algebra, just as h(L), sect. 3.6.

Likewise, since our discussion easily localizes, if L is a Lie* algebra, then
h(L[x, x−1]) is a Lie algebra. If we let a[n] denote the class of a ⊗ xn in
h(L[x, x−1]), then it is immediate to derive from (3.3) a formula for the
bracket:

[a[n], b[m]] =
∑

j�0

(
n

j

)
(a(j)b)[n+m−j], (3.9)

also called the Borcherds identity. Denote this Lie algebra Lie(L); cf. [13],
pp.41-42, [8], 16.1.16.

3.15. Similarly, the concept of a chiral algebra, even in the translation-
invariant setting, is most naturally introduced in the framework of DX -
modules. For an I-family {Ai} ⊂ MD denote by ⊗IAi[∪Δαβ ] ∈ MD the
localization at the union of the diagonals, Δαβ standing for (xα − xβ)

−1,
α, β ∈ I. Define

P ch
I ({Ai},N ) = HomDXI

(⊗IAi[∪Δαβ ],N ⊗DX
DX→XI ).

Elements of such sets are called chiral operations. They are composed in
the same way as the *-operations of sect. 3.12, except that now one has to
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deal with the poles, and these are handled by expanding rational functions
in appropriate domains. Let us examine the simplest and most important
such composition; the pattern will then become clear.

Fix φ ∈ HomDX2 (L ⊗ L[Δ],L). The composition φ(φ, id) is defined as
follows:

L ⊗ L⊗ L[Δ12,Δ13,Δ23]
∼−→ (L ⊗ L[Δ12])⊗ L[Δ13,Δ23]

φ⊗id−→ (L ⊗DX
DX→X2)⊗ L[Δ13,Δ23]

∼−→ (L ⊗ L[Δ])⊗DX2 DX2→X3

φ⊗id−→ (L ⊗DX
DX→X2)⊗DX2 DX2→X3

∼−→ L⊗DX
DX→X3 .

Here the isomorphism

(L ⊗DX
DX→X2)⊗ L[Δ13,Δ23]

∼−→ (L ⊗ L[Δ])⊗DX2 DX2→X3 ,

the only not so evident step, is made as follows: if we let t be the coordinate
on the diagonal X ↪→ X2, then t− x1 and t− x2 act nilpotently on L⊗DX

DX→X2 and we use the geometric series to replace

Δ13 =
1

x1 − x3
with −

∞∑

n=0

(x1 − t)n

(x3 − t)n+1
,

Δ23 =
1

x2 − x3
with −

∞∑

n=0

(x2 − t)n

(x3 − t)n+1
. (3.10)

This gives the category of right DX -modules another pseudo-tensor struc-
ture, to be denoted Mch

D .

3.16. It is often useful to use an isomorphism of right DX2-modules

L ⊗DX
DX→X2

∼−→ Ω1
X ⊗ L[Δ]/Ω1

X ⊗ L, l ⊗ 1 �→ dx⊗ l

x1 − x2
mod Ω1

X ⊗ L,

which is a manifestation of the Kashiwara lemma, [6], 7.1. Notice that from
this point of view, the composite map

L ⊗DX
DX→X2 � L ⊗DX

DX→X2/(L ⊗DX
DX→X2)∂1

∼−→ L

is defined by the residue

Ω1
X ⊗ L[Δ] −→ L, ω ⊗ l �→ (

∫

x1:|x1−x2|=r

ω)l.
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3.17. A Liech algebra (on X) is a Lie object in Mch
D ; explicitly, it is a

right DX -module L with chiral bracket [., .]ch ∈ P ch
2 ({L,L},L) that is anti-

commutative and satisfies the Jacobi identity. The simplest example is Ω1
X

with the canonical right DX -module structure (given by the negative Lie
derivative) and the chiral Lie bracket

Ω1
X ⊗ Ω1

X [Δ] � Ω1
X ⊗ Ω1

X [Δ]/Ω1
X ⊗ Ω1

X
∼−→ Ω1

X ⊗DX
DX→X2 ,

where the rightmost isomorphism has just been discussed, sect. 3.16.

The chiral algebra is a Liech algebra L with a unit, i.e., a morphism
ι : Ω1

X −→ L s.t. the composition [ι(.), .] coincides with the map

Ω1
X ⊗ L[Δ] � Ω1

X ⊗ L[Δ]/Ω1
X ⊗ L ∼−→ L⊗DX

DX→X2 ,

The obvious map ⊗IAi −→ ⊗IAi[∪Δαβ ] defines, by restriction, a map

P ch
I ({Ai},N ) −→ P ∗

I ({Ai},N ),

hence a forgetful functor Mch
D −→ M∗

D. It follows that each Liech algebra
can be regarded as a Lie* algebra. Further composing with h : M∗

D → Vect,
sect. 3.14, will attach an ordinary Lie algebra h(L) to each chiral algebra L.

A chiral algebra is called commutative if the corresponding Lie* algebra is
abelian, i.e., the corresponding Lie* bracket is 0. In the translation-invariant
setting, a commutative chiral algebra is the same thing as an ordinary unital
commutative associative algebra with derivation; we shall have more to say
on this in sect. 3.20.

The definition of a chiral algebra module should be evident; any chi-
ral algebra module is automatically a module over the corresponding Lie*
algebra. If L is a chiral algebra and M an L-module, then h(L) is a Lie
algebra, and both M and h(M) are h(L)-modules. If the structure involved
is translation invariant, in particular, L = L[x], M = M [x], then the fiber
M is also an h(L)-module, as well as Lie(L)-module, see sect. 3.14.

3.18. M, a module over a chiral algebra L, is called central if it is trivial
over the corresponding Lie* algebra h(L), [5], 3.3.7.

In view of what is said at the end of sect. 3.17 it may sound as a surprise
that a module over a commutative chiral algebra L = L[x] is not the same
thing as a module over L regarded as a commutative associative algebra
with derivation. However, if the module in question is central, then the two
notions coincide; we shall explain this in sect. 3.20 and show an example in
sect. 4.4.
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3.19. An explicit description of a chiral algebra usually arises in the fol-
lowing situation. Let V be a translation-invariant left DX -module, which

amounts to having V = V [x], V being a left R-module. Let Vr def
= V⊗C[x]Ω

1
X

be the corresponding right DX -module; we shall sometimes write simply
V [x]dx for Vr.

Notice canonical isomorphisms of right DX2-modules

Vr ⊗DX
DX→X2 −→ C[x]⊗ V [y][(x− y)−1]dx ∧ dy/C[x]⊗ V [y]dx ∧ dy

←− V [x]⊗ C[y][(x− y)−1]dx ∧ dy/V [x]⊗ C[y]dx ∧ dy; (3.11)

the first is discussed in sect. 3.16, the second is the result of a formal Taylor
series expansion

v(x) �→
∞∑

n=0

1

n!
∂nv(y)(x− y)n,

which is essentially Grothendieck’s definition of a connection.

In this setting, the translation-invariant chiral bracket [., .] ∈ P ch
2 ({Vr,Vr},

Vr) is conveniently encoded by a map, usually referred to as an OPE:

V ⊗ V −→ V ((x− y)), a⊗ b �→
∑

n∈Z
a(n)b⊗ (x− y)−n−1. (3.12)

Given an OPE, one recovers the chiral bracket

(V [x]dx⊗ V [y]dy)[(x− y)−1]

−→ C[x]⊗ V [y][(x− y)−1]dx ∧ dy/C[x]⊗ V [y]dx ∧ dy

by defining

1

(x− y)N
(a⊗ f(x))⊗ (b⊗ g(y)) �→

∑

n∈Z
a(n)b

f(x)g(y)

(x− y)N+n+1
dx ∧ dy mod reg,

“mod reg.” meaning, of course, “modulo C[x] ⊗ V [y]dx ∧ dy.” In fact, this
sets up a 1-1 correspondence between binary chiral operations and OPEs,
[8], 19.2.11, or [5], 3.5.10.

In this vein, the Jacobi identity can also be made explicit. The diagonal
in X3 being of codimension 2, Vr ⊗DX

DX→X3 does not allow a description
as simple as (3.11), and one relies instead on iterations of (3.11). Writing
Vr ⊗DX

DX→X3 as (Vr ⊗DX
DX→X2) ⊗DX2 DX2→X3 , which requires a
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choice of an embedding X2 → X3, such as (u, v) �→ (u, v, u), one obtains
identifications, such as

Vr⊗DX
DX→X3 −→C[x]⊗(C[y]⊗V [z][(y−z)−1] mod reg. )[(x−z)−1] mod reg.;

we omit differentials, dx ∧ dy ∧ dz, for typographical reasons.

Write a(x − y)b for OPE (3.12). Various compositions that enter the
Jacobi identity involve expressions such as

[a[, b, c]] = (a(x− z)(b(y − z)c mod reg.) mod reg. )dx ∧ dy ∧ dz,

[[a, b]c] = ((a(x− y)b mod reg.)(y − z)c mod reg. ) dx ∧ dy ∧ dz, etc..

The Jacobi identity,

[a, [b, c]]− (1, 2)[a, [b, c]]− [[a, b], c] = 0,

implies, as above, that for any F (x, y, z) = (x−y)r(x−z)s(y−z)t, r, s, t ∈ Z,

∮

x:|x−z|=R

dx

∮

y:|y−z|=r

dyF (x, y, z)a(x− z)b(y − z)c dz

−
∮

y:|y−z|=R

dy

∮

x:|x−z|=r

dxF (x, y, z)b(y − z)a(x− z)c dz

−
∮

y:|x−z|=R

dy

∮

x:|x−y|=r

dxF (x, y, z)(a(x− y)b)(y − z)c dz = 0, (3.13)

where R > r. Let us explain this.

Denote by Jac ∈ P ch
2 ({L,L},L) the left hand side of the Jacobi identity;

it is a map

Jac : (V [x]⊗ V [y]⊗ V [z])[(x− y)−1, (x− z)−1, (y − z)−1]dx ∧ dy ∧ dz

−→ V [t]dt⊗DX
DX→X3 .

Written down it gives the left hand side of (3.13) without the
∫

signs
but with the function F (x, y, z) expanded in powers of appropriate variabes,
(x − z) and (y − z) for the 1st and 3rd term, (x − y) and (y − z) for the
2nd one, in domains prescribed by (3.10). For example, in the case of the
1st integral, one has

F (x, y, z) = (x− y)r(x− z)s(y − z)t = (x− z)s+r(y − z)t
∞∑

j=0

(−1)j
(
r

j

)(
y − z

x− z

)j

.
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Notice that the choice of the domain coincides with the one determined by
the contour of integration.

Treating the arising 3 expressions requires an effort as they belong to 3
different realizations of the same space, V [t]dt⊗DX

DX→X3 . However, part
of this computation is easy: the composition

(V [x]⊗V [y]⊗V [z])[(x−y)−1, (x−z)−1, (y−z)−1]dx∧dy∧dz Jac−→ V [t]dt⊗DX
DX→X3

� V [t]dt = V [t]dt⊗DX
DX→X3/(V [t]dt⊗DX

DX→X3)C[∂x, ∂y]

is defined simply by taking the residues, just as in sect. 3.16, hence it equals
the left hand side of (3.13).

Formula (3.13) is the Borcherds identity [7] in the form suggested in [13],
4.8. Therefore, a translation invariant chiral algebra on C defines a vertex
algebra. A passage in the opposite direction is carefully explained in [8],
Ch.15.

3.20. The case F (x, y, z) = (x − z)m(y − z)n of (3.13) reproduces the
Borcherds commutator formula (3.3)

a(n)b(m)c− b(m)a(n)c =
∑

j�0

(
n

j

)
(a(j)b)(n+m−j)c. (3.14)

The case F (x, y, z) = (x − y)−1(y − z)−1 becomes the celebrated normal
ordering formula

(a(−1)b)(−1)c =

∞∑

j=0

b(−j−2)a(j)c+ a(−1)b(−1)c+

∞∑

j=0

a(−j−2)b(j)c (3.15)

In fact, these particular cases suffice to reproduce the entire (3.13), [13], 4.8.

One sees at once that in the language where a chiral algebra is a vector
space V with a family of multiplications, (n), n ∈ Z, “V is commutative” (see
sect. 3.17) means the “nth product is 0 if n � 0.” Borcherds commutator
formula (3.14) implies then that (V,(−1) ) is a commutative algebra; in fact,
[a(m), b(n)] = 0 for all m,n. Further, (3.15) shows that the product (−1)

is associative, and so (V(−1)) is an associative, commutative algebra with
derivation. The passage in the opposite direction is explained in [13, 8].

Similarly, the conceptual definition of a chiral algebra module, reviewed
in sect. 3.17, boils down to a vector space M with multiplications

M
(n) : V ⊗M −→ M, a⊗m �→ aM(n)m
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so that

aM(n)b
M
(m)c− bM(m)a

M
(n)m =

∑

j�0

(
n

j

)
(a(j)b)

M
(n+m−j)m, (3.16)

(a(−1)b)
M
(−1)c =

∞∑

j=0

bM(−j−2)a
M
(j)c+ aM(−1)b

M
(−1)c

+

∞∑

j=0

aM(−j−2)b
M
(j)m; (3.17)

we are deliberately omitting some of the obvious axioms.

One sees clearly how the concept of a module over a commutative chiral
algebra is different from one over a commutative associative algebra with
derivation: the associativity condition (ab)m = a(bm) in the latter is re-
placed by the more cumbersome (3.17) in the former. If, however, M is
central, sect. 3.17, which means that aM(n)m = 0, n � 0, then the “correction

terms” in (3.17) vanish, and the two concepts become equivalent.

3.21. We have seen, sect. 3.17, that there is a forgetful functor that makes
a chiral algebra into a Lie* algebra. This functor admits the left adjoint
called the chiral enveloping algebra. Let us sketch its construction, cf. [8],
16.1.11, [5], 3.7.1. (We work in the translation-invariant setting, this goes
without saying.)

Given a Lie* algebra L, consider the Lie algebra Lie(L), sect. 3.14. For-
mula (3.9) implies that Lie(L)+ defined to be spanned by a[n], a ∈ L, n � 0,

is a Lie subalgebra. Define U chL to be U(Lie(L))/U(Lie(L)+). Here U(.) is
the ordinary universal enveloping of a Lie algebra.

It is easy to see that the map L −→ Lie(L), a �→ a[−1], is injective, and
so is the composition

L −→ Lie(L) ↪→ U(Lie(L)) � U(Lie(L))/U(Lie(L)+)

The Reconstruction Theorem, [8], 2.3.11 or [13], 4.5, implies that U chL
carries a chiral algebra structure defined, in terms of (n)-products, by a
slightly tautological formula

(a[−1])(n)v = a[n] · v;

here a[−1] is the image of a[−1] under the above composition, and · on the
right means the action of Lie(L) on U(Lie(L))/U(Lie(L)+).
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4. CDO

4.1. We shall work exclusively in the translation-invariant situation, al-
though much of what we are about to say does not require this assump-
tion, and so we shall typically deal with fibers of the actual objects, cf.
sect. 3.13, 3.20. Thus, for example, the phrase “ a chiral (Lie*, etc.) alge-
bra V ” means the fiber of a translation-invariant chiral (Lie*, etc.) algebra
V [x], and a chiral (Lie*, etc.) algebra morphism f : V −→ W means
f ⊗ id : V [x] −→ W [x].

4.2. Let A be a commutative associative unital algebra. A chiral algebra
Dch

A is called an algebra of chiral differential operators over A if it carries a
filtration F−1Dch

A = {0} ⊂ F0Dch
A ⊂ F1Dch

A ⊂ · · · , ∪nFnDch
A = Dch

A , s.t. the
graded object

grDch
A =

∞⊕

n=0

FnDch
A /Fn−1Dch

A

is a coisson algebra, sect. 3.9, which is isomorphic, as a coisson algebra, to
J∞S•

ATA, sect 3.10, 3.13.

By definition, F0Dch
A = J∞A and F1Dch

A fits in the short exact sequence

0 −→ J∞A −→ F1Dch
A −→ J∞TA −→ 0, (4.1)

loc. cit. Notice that both F1Dch
A and J∞TA are Lie* algebras and chiral

J∞A-modules, but while J∞TA is a Lie* J∞A-algebroid, see sect 3.10,
F1Dch

A is not. This has to do with the fact that J∞A being a commuta-
tive algebra with derivation is both a commutative! algebra, sect. 3.9, and
a commutative chiral algebra, sect. 3.17; in its former capacity it operates
on J∞TA, but it acts on F1Dch

A only as a chiral algebra, sect. 3.18.

This prompts the following definition.

4.3. A chiral algebroid (A-algebroid)1 is a short exact sequence

0 −→ J∞A
ι−→ Lch

A
σ−→ J∞TA −→ 0, (4.2)

where Lch
A is a Lie* algebra and a chiral module over J∞A, and the arrows

respect all the structures. Here is what this amounts to.

Denote by μ ∈ P ch
{1,2}({J∞A,Lch

A },Lch
A ) the chiral J∞A-module struc-

ture on Lch
A and by [., .] ∈ P ∗

{1,2}({Lch
A ,Lch

A },Lch
A ) the Lie* algebra bracket.

(1) we should have said “ a translation-invariant chiral algebroid on C in the case of a
jet-scheme”
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There arises μ∗ ∈ P ∗
{1,2}({J∞A,Lch

A },Lch
A ), the Lie* algebra action corre-

sponding to μ, sect. 3.17. We demand the following.

(i) Lch
A

σ−→ J∞TA is a Lie* algebra morphism.

(ii) Point (i) implies that J∞A ⊂ Lch
A is a Lie* ideal and, therefore, the

Lie* algebra J∞TA operates on J∞A. We require that this action be equal
to the canonical action of J∞TA on J∞A, sect. 3.10.

(iii) J∞A −→ Lch
A is simultaneously a chiral J∞A-module morphism

and a Lie* algebra morphism; furthermore, μ∗(., .) = [ι, .], which means
that the two Lie* actions of J∞A on Lch

A , one defined by μ∗ another by the
embedding ι, coincide.

(iv) Points (i) and (iii) imply that the Lie* action of J∞A on the quo-
tient Lch

A /J∞A is trivial; in other words, Lch
A /J∞A is a central chiral J∞A-

module, sect. 3.18. Therefore Lch
A /J∞A is a module over J∞A regarded

as an ordinary associative commutative algebra, loc. cit.. We demand that
the induced by (4.2) vector space isomorphism Lch

A /J∞A
∼−→ J∞TA be a

J∞A-module morphism.

(v) The chiral action μ is Lch
A -linear, cf. (2.1).

Remarks. — (1) Point (v) is self-explanatory: μ ∈ P ch
{1,2}({J∞A,Lch

A },Lch
A )

is called Lch
A -linear if the composition

[., μ(., .)] ∈ HomDX3 ((Lch
A [x]⊗ J∞A[y]⊗ Lch

A [z])[(y − z)−1],Lch
A [t]⊗DX

DX→X3)

equals the sum of the compositions μ([., .], .) + μ(., [., .]), where [., .] ∈
P ∗
{1,2}({Lch

A ,Lch
A },Lch

A ) is the Lie*-bracket. In terms of (n)-products this
amounts to the fact that the commutator formula, cf. sect. 3.20,

a(n)b(m)c− b(m)a(n)c =
∑

j�0

(
n

j

)
(a(j)b)(n+m−j)c, (4.3)

whose validity for m,n � 0 is the consequence of Lch
A being a Lie* algebra,

is also valid for m < 0 if b ∈ J∞A. This is an analogue of (2.2).

(2) Item (iv) is the only point where this definition is conceptually dif-
ferent from the one in sect. 2.2 and it is ultimately responsible for there
being an obstruction to the existence of a chiral algebroid.

4.4. A well-known example arises when A = C[x1, ..., xN ]. Introduce », a Lie
algebra with generators xij , ∂mn, 1 ∈ C and relations [∂mn, xij ] = δmiδn,−j .
There is a subalgebra, »−, defined to be the linear span of xij , ∂mn, j > 0,
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m � 0. The induced representation Ind»
»−C, which is naturally identified

with C[xij , ∂mn; j � 0, n < 0], is well known to carry a vertex algebra
structure; it is often referred to as a “β-γ-system. Explicit formulas can be
found in [17]. For example, one has

(∂i,−1)(0)(xj,0) = δij ,

(∂i,−1)(n+1)(xj,0) = (∂i,−1)(n)(∂j,−1) = (xi,0)(n)(xj,0) = 0 if n � 0. (4.4)

Fix C[x1, ..., xn] ↪→ C[xij , ∂mn; j � 0, n < 0], xi �→ xi0. For any étale
localization C[x1, ..., xN ] ⊂ A, the space

A[xij , ∂mn; j, n < 0]
def
= A⊗C[x1,...,xN ] C[xij , ∂mn; j � 0, n < 0]

inherits a vertex algebra structure from C[xij , ∂mn; j � 0, n < 0].

The increasing filtration {FrA[xij , ∂mn; j, n < 0]}, r � 0, is defined
by counting the letters ∂mn, n < 0. The graded object is identified with
J∞S•

ATA, and so A[xij , ∂mn; j, n < 0]} is a CDO, sect. 4.2.

The space F1A[xij , ∂mn; j, n < 0] is a chiral algebroid. Exact sequence
(4.2) in this case becomes

0 −→ A[xij ; j < 0] −→ F1A[xij , ∂mn; j, n < 0]

−→ ⊕m ⊕n<0 A[xij ; j < 0]∂mn −→ 0.

It is easy to see exactly how F1A[xij , ∂mn; j, n < 0] fails to be a central
chiral J∞A-module and J∞TA = F1A[xij , ∂mn; j, n < 0]/J∞A does not:
suppressing extraneous indices we derive using (4.4, 3.17)

((x0)
2)(−1)∂−1 = x2

0∂−1 − 2x−1.

4.5. Classification of chiral algebroids is delightfully similar to that of Picard-
Lie algebroids, sect. 2.3.

To begin with, assume that the tangent Lie algebroid TA is a free A-
module with basis {ξi}. Then it is easy to see that the chiral module
structure on Lch

A cannot be deformed. Indeed, we have Lch
A = J∞A ⊕

{∑i fi,(−1)∂
jiξi}, with coefficients fi,(−1), fi ∈ J∞A, determined uniquely;

this uses requirement (iv) of the definition in sect. 4.3. Elements f(n)ξ,
n � 0, are then completely determined: these elements form the Lie* action
of J∞A on Lch

A , which by (iii) is the same as minus the adjoint action of Lch
A
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restricted to J∞A, which by (ii) is the pull-back via Lch
A −→ J∞TA of the

canonical action of J∞TA on J∞A. Along with the designation f(−n−1) =
1/n!(∂nf)(−1), which is imposed by the definition of a chiral module, this
determines f(n) with n < 0. Indeed, the expression of the type f(−1)(g(−1)ξ)
can be computed by reading (3.17) backwards:

f(−1)(g(−1)ξ) = (fg)(−1)ξ −
∞∑

j=0

g(−2−j)(f(j)ξ)−
∞∑

j=0

f(−2−j)(g(j)ξ).

Therefore, the room for maneuver is only provided by the Lie* bracket
on Lch

A . If [., .] is one such bracket, then any bracket is

[ξ., .τ ]α = [ξ, τ ] + α(ξ, τ) for some α ∈ P ∗
{1,2}({J∞TA, J∞TA}, J∞A).

It easily follows from (4.3) that α must be J∞A-linear. The antisym-
metry of a Lie* bracket implies that α must be antisymmetric. The Jacobi
identity,

[ξ1[ξ2, ξ3]α]α − [ξ2[ξ1, ξ3]α]α − [[ξ1, ξ2]α, ξ3]α = 0,

implies

[ξ1, α(ξ2, ξ3)]− [ξ2, α(ξ1, ξ3)] + [ξ3, α(ξ1, ξ2)]−
α(σ[ξ1, ξ2], ξ3) + α(σ[ξ1, ξ3], ξ2)− α(σ[ξ2, ξ3], ξ1) = 0

Since the Lie* bracket [., .] restricted to J∞A is the pull-back of the canonical
action of J∞TA on J∞A (item (ii) of the definition in sect. 4.2), this means
that α is a closed 2-cochain of J∞TA with coefficients in J∞A, which satisfies
an extra condition of being J∞A-linear, see the definition of the Chevalley
complex in sect. 3.5.

More generally, define Cn
J∞A(J∞TA, J∞A) ⊂ Cn(J∞TA, J∞A) to be the

subspace of J∞A-linear operations. It is easy to see that C•
J∞A(J∞TA, J∞A)

⊂ C•(J∞TA, J∞A) is a subcomplex, and as such it is called the Chevalley–
De Rham complex; this definition makes sense for any Lie* algebroid, [5],
1.4.14.

To conclude, given a chiral algebroid Lch
A and α ∈ C2,cl

J∞A(J∞TA, J∞A)

we have defined another chiral algebroid, to be denoted Lch
A (α); furthermore,

any chiral algebroid is isomorphic to Lch
A (α) for some α.

The description of morphisms is also similar to sect. 2.3. By definition,
each morphism must have the form

ξ �→ ξ + β(ξ), β ∈ C1
J∞A(J∞TA, J∞A) = HomJ∞A(J∞TA, J∞A).
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A quick computation, no different from the ordinary case, will show

HomCh−Alg(Lch
A (α1),Lch

A (α2)) = {β ∈ C1
J∞A(J∞TA, J∞A) s.t. dβ = α1 − α2}.

This can be rephrased as follows. Let C [1,2>(J∞TA) be the category with ob-

jects C2,cl
J∞A(J∞TA, J∞A) and morphisms Hom(α1, α2) = {β ∈ C1

J∞A(J∞TA,
J∞A) s.t. dβ = α1 − α2}. Then the category of chiral A-algebroids, if non-
empty, is a C [1,2>(J∞TA)-torsor. It is non-empty if TA has a finite abelian
basis; this follows from sect. 4.4.

4.6. These considerations can be localized in an obvious manner. For any
smooth X, one obtains a tangent Lie* algebroid T ch

X and a gerbe of chi-
ral algebroids over J∞X, bound by the complex C1

J∞X(T ch
X ,OJ∞X) →

C2,cl
J∞X(T ch

X ,OJ∞X). This gerbe is locally non-empty, as follows from sect. 4.4.
The calculation of its characteristic class, in this and much greater general-
ity, can be found in [5], 3.9.22. We shall review below (sect. 4.9) the case of
a graded chiral agebroid.

4.7. The chiral enveloping algebra U ch(Lch
A ) attached to Lch

A if the latter
is regarded as a Lie* algebra, sect. 3.21, does not “know” about the chiral
structure that LA carries. This leads to the existence of a canonical ideal
as follows. Consider two elements a(−n)ξ ∈ Lch

A and a[−n]ξ ∈ LA ·U ch(Lch
A ),

n > 0, where a ∈ J∞A ⊂ U ch(Lch
A ) and ξ ∈ Lch

A ⊂ U ch(Lch
A ). Since both

these products, (−n), reflecting the chiral J∞A-module structure of Lch
A , and

[n], reflecting the chiral algebra structure of U ch(Lch
A ), sect. 3.21, satisfy the

same Borcherds commutator formula, cf. (3.9) and (4.3), their difference
satisfies

τ[m](a(−n)ξ − a[−n])ξ ∈ Lch
A · U ch(Lch

A )) = 0 if m � 0.

This is a familiar singular vector condition. Denote by J the maximal chiral
ideal of U ch(Lch

A ) generated by all such elements along with the difference
1A−1Uch , where 1A ∈ J∞A and 1Uch ∈ U ch(Lch

A ) are units. It is practically
obvious that Dch

Lch
A

defined to be the quotient U ch(Lch
A )/J is a CDO over A,

sect. 4.2, at least if the tangent algebroid TA is a (locally) free A-module.
In fact, the assignment LA �→ Dch

Lch
A

is an equivalence of categories.

All of this is, of course, parallel to sect. 2.5.

Example. — If Lch
A is F1A[xij , ∂mn; j, n < 0] introduced in sect. 4.4,

then Dch
Lch

A
= A[xij , ∂mn; j, n < 0]}.

4.8. We shall say that a chiral algebra V is Z-graded if V = ⊕n∈ZVn s.t.
Vn(j)Vm ⊂ Vm+n−j−1 and ∂(Vn) ⊂ Vn+1. A similar definition also applies
to coisson algebras, sect. 3.9. Here is the origin of this concept.
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Let L be a Lie* algebra. We say that L acts on a chiral algebra V if V is
an L-module such that the chiral bracket μ ∈ P ch

{1,2}({V,V},V) is L-linear,
cf. sect. 4.3 (v) and Remark (1).

Let Vec be a free R = C[∂]-module on 1 generator l. Make it into a Lie*
algebra by defining a Lie* bracket so that

l ⊗ l �→ −l∂ ⊗ 1 + 2l ⊗ ∂1.

This is equivalent to saying that l(0)l = −l∂, l(1)l = 2l. Call an action of
Vec on V nice if lV(−1)v = −v∂. For example, the adjoint action of L on itself
is nice.

One readily verifies that V is Z-graded iff V carries a nice action of Vec
such that the operator lV(1) is diagonalizable. The equivalence is established

by stipulating Vn = {v s.t. lV(1)v = nv}.

Notice the (easy to verify) isomorphism h(Vec[x]) ∼−→ TC[x] defined by
l⊗xn �→ −xn∂/∂x, sect. 3.14, and so the grading operator has the meaning
of −x∂/∂x.

4.9. Now it should be clear what a Z-graded chiral algebroid is; we call
it Z+-graded if (Lch

A )n = {0} provided n < 0. Classification of Z+-graded
chiral algebroids is simpler and more explicit, [9]. We continue under the
assumption that TA is a free A-module with a finite abelian basis {τi}.
Denote by {ωi} ⊂ ΩA the dual basis: ωi(τj) = δij . In this case there is
always an Lch

A determined by the requirements τi(n)τj = 0 if n � 0, see
sect. 4.4.

Notice that the quasiclassical object J∞A ⊕ J∞TA is naturally Z+-
graded: place A ⊂ J∞A in degree 0, TA ⊂ J∞TA in degree 1, and use
the fact that ∂ has degree 1. We seek, therefore, a classification of those
Z+-graded chiral algebroids whose grading induces the indicated one on the
quasiclassical object.

Having split Lch
A into the direct sum J∞A ⊕ J∞TA as in sect. 4.5,

we obtain that a variation of the Lie* bracket is an operation α(., .) ∈
P ∗
{1,2}({J∞TA, J∞TA}, J∞A), which is J∞A-bilinear. Since J∞TA is a free

C[∂] module, it is determined by its values on TA ⊂ J∞TA:

α(ξ, η) =
∞∑

n=0

αn(ξ, η)⊗
∂n
1

n!
, ξ, η ∈ TA.

The grading condition demands that at most 2 components may be nonzero:

α(ξ, η) = α0(ξ, η)⊗ 1 + α1(ξ, η)⊗ ∂1,
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where α0(ξ, η) ∈ ΩA = (J∞A)1, α1(ξ, η) ∈ A = (J∞A)0. Furthermore, vary-
ing the splitting J∞TA ↪→ (Lch

A )1 by sending τi �→ τi − 1/2
∑

j α1(τi, τj)ωj

ensures that α1 is 0.

Component α0, as it stands, is an antisymmetric A-bilinear map from
TA to ΩA, hence α0 ∈ Ω2

A ⊗A ΩA. The relation ξ(0)(η(1)γ) = (ξ(0)η)(1)γ +
η(1)(ξ(0)γ), which is (3.3) with n = 0, m = 1, shows that in fact α0 is totally
antisymmetric and so belongs to Ω3

A. Finally, the relation ξ(0)(η(0)γ) =
(ξ(0)η)(0)γ + η(0)(ξ(0)γ), which is (3.3) with n = m = 0, shows that α0 is,
moreover, a closed 3-form.

Similarly, a change of splitting ξ �→ ξ + β(ξ) preserves the grading pre-
cisely when β ∈ ΩA ⊗A ΩA and the normalization we chose (τi(1)τj = 0)
requires that β ∈ Ω2

A. The effect of this on α1 is α1 �→ α1 − dDRβ.

More formally, the meaning of these computations is as follows.
The truncated Chevalley–De Rham complex C1

J∞A(J∞TA, J∞A) −→
C2,cl

J∞A(J∞TA, J∞A), introduced in sect. 4.5, is graded, and its degree 0

component, C1
J∞A(J∞TA, J∞A)[0] −→ C2,cl

J∞A(J∞TA, J∞A)[0], describes the
category of Z+-graded chiral algebroids. Described above is a map of the
truncated De Rham complex Ω2

A −→ Ω3,cl
A to C1

J∞A(J∞TA, J∞A)[0] −→
C2,cl

J∞A(J∞TA, J∞A)[0]; e.g., this map sends

Ω3,cl
A � α0 �→ α ∈ C2,cl

J∞A(J∞TA, J∞A)[0] s.t. α(ξ, η) = α0(ξ, η, .)⊗ 1,

Ω2
A � β0 �→ β ∈ C1

J∞A(J∞TA, J∞A)[0] s.t. α(ξ) = α0(ξ, .)⊗ 1.

Analogously to C [1,2>(J∞TA), sect. 4.5, introduce Ω
[2,3>
A , the category with

objects Ω3,cl
A and morphisms Hom(α1, α2) = {β ∈ Ω2

A s.t. α1−α2 = dDRβ}.
The map of complexes just defined gives a functor Ω

[2,3>
A −→ C [1,2>(J∞TA)[0].

The point is: this functor is an equivalence of categories.

To summarize: if A is such that TA is a free A-module with a finite

abelian basis, then the category of chiral A-algebroids is a Ω
[2,3>
A -torsor.

4.10. These considerations can be localized so as to obtain, over any smooth
X, a gerbe of Z+-graded CDOs bound by the complex Ω2

X −→ Ω3,cl
X ; this

gerbe is locally non-empty. Its characteristic class is ch2(TX). The details
of this computation can be found in [9]; cf. [5], 3.9.23.

4.11. One can slightly relax the Z+-graded condition by demanding that a
CDO be filtered, i.e., that

[TA, TA] ⊂ TA ⊗ 1⊕ ΩA ⊗ 1⊕A⊗ 1⊕A⊗ ∂1,

– 233 –



Fyodor Malikov

here the summand A⊗1 is the one that was prohibited in sect. 4.9. In other
words, we allow variations of the form

[ξ, η]α,β = [ξ, η] + α(ξ, η) + β(ξ, η), α(ξ, η) ∈ ΩA, β(ξ, η) ∈ A.

Just as before, one obtains α(., .) ∈ Ω3,cl
A , β(., .) ∈ Ω2,cl, and (provided TA

has an abelian basis) the category of filtered CDOs is an Ω
[2,3>
A × Ω

[1,2>
A -

torsor, thereby getting a cross between the Picard-Lie (sect. 2.2 and graded
chiral algebroid. This is similar to but different from the concept of a twisted
CDO introduced (and used) in [1, 2].
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