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Harish-Chandra’s c-function; 50 years later

Simon Gindikin(1)

RÉSUMÉ. — Nous discutons différents aspects de la fonction c de Harish-
Chandra, en soulignant ses interactions avec la transformée horosphérique.

ABSTRACT. — We discuss different aspects of the c-function of Harish-
Chandra with focus on its connection with the horospherical transform.

I have known Vadim Schechtman for many years, but it was only a
few years ago that I found out that we share two strong interests: sur-
prises which it is possible yet to mine in works of great mathematicians and
product-formulas for some special functions on Lie groups. Vadim has col-
lected a very impressive exhibition of such formulas (see unpublished notes
on his webpage). It starts with the product-formula for the c-function which
Karpelevich and I found more than 50 years ago [19] in the beginning of my
mathematical life. Vadim’s anniversary for me is a pleasant reason to talk
about this old subject. Starting at least with Gauss (who continuously pro-
duced new proofs of the Fundamental Theorem of Algebra), old mathemati-
cians like to return to subjects of their first mathematical love. Perhaps it
has a similar nature to criminals, returning to the scene of the crime? What
about the c-function, for the past several years, there were quite a few pop-
ular generalizations of the product-formula on arbitrary fields, but in these
notes we will stay inside old fashioned real or complex considerations.

(1) Departm. of Math., Hill Center, Rutgers University, 110 Frelinghysen Road, Pis-
cataway, NJ 08854
gindikinath.rutgers.edu
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Origin of the c-function

The c-function appeared in the publication of Harish-Chandra of 1958
[22] about the asymptotic of zonal spherical functions on Riemannian sym-
metric spaces of non compact type and its applications to the Plancherel
formula on these spaces. So it appeared as an important, but intermediate
object. Let us start from a discussion if it has an independent conceptual
nature. Often such kind of questions are artificial, but I believe that here it
is a perfectly legitimate. Let us remind of the definitions.

Let G be a simple connected semisimple Lie group; K be its maxi-
mal compact subgroup; A,N be complimentary Cartanian and maximal
unipotent subgroups; G = KAN be the Iwasawa decomposition; N̄ be the
unipotent subgroup opposite to N and

X = G/K

be the Riemannian symmetric space. Let a(g) be the projection on the
factor A at the Iwasawa decomposition, a be the Lie algebra Lie of A, a∗

be the dual space, Σ,Π be the system of positive and simple roots, ρ be the
half-sum of positive roots;

aξ = exp(ξ, log a), ξ ∈ a, a ∈ A.

We can extend this definition on ξ ∈ Ca. Let μ(dn̄) be the invariant measure
on N̄ . Now we can define the c-function

c(λ) =

∫

N̄

a(n̄)−ρ−iλμ(dn̄).

It is possible to prove that this integral is absolutely convergent if Re(iλ)
lies in the positive Weyl chamber W+.

Let M be the centralizer of A at K and we call

Ξ = G/MN̄

the horospherical space. Points of Ξ parameterize non degenerate orbits E(ξ)
of unipotent subgroups conjugated to N which are called the horospheres.
On Ξ we have a “left” action of A commutating with the action G, since A
normalizes MN̄ . Then the horospherical space Ξ fibers on A-fibers over the
flag manifold

F = Ξ/A = G/AMN̄.

So the isotropy subgroup of F is parabolic.
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In E.Cartan’s conception the irreducible finite dimensional spherical rep-
resentations on X are characterized by unique K-invariant elements - zonal
spherical functions. Another possibility is to connect with them N -invariant
elements - highest weight vectors. This duality for spherical representations
extends from finite dimensional representations on some infinite dimensional
representations. It requires some analytical justifications which we will not
discuss here.

At Borel-Weil modification of highest weight method the irreducible rep-
resentations are realized at sections of line bundles on the flag spaces F .
Gelfand-Graev’s conception of integral geometry suggests realizing of ir-
reducible representations at functions on the horospherical space Ξ. If we
decompose the representation at functions on Ξ relative to the “left” ac-
tion of A we will obtain Borel-Weil realizations of irreducible components
on F , which are parameterized by characters of A. This looks as a small
modification, but since points of Ξ admit a geometrical realization at X,
it opens a possibility for a new construction of geometric analysis. Gelfand
and Graev considered the integral geometry corresponding to infinite di-
mensional representations [6]. We will discuss later a similar approach to
finite dimensional representations.

So irreducible spherical representations can be realized either on X or
on Ξ. The principal moment of Gelfand-Graev’s approach was that since
spectrums on X and Ξ coincide it must be an invariant intertwining oper-
ator between functions on X and Ξ. This is Radon’s type operator - the
integration along horospheres - the horospherical transform:

Hf(ξ) =

∫

E(ξ)

f(x)μ(dn), ξ ∈ Ξ,

where μ(dn) is the invariant measure on N̄ translated on the horospheres.
The first area of applications was the Plancherel formula on complex semisim-
ple Lie groups and some homogeneous spaces: since the decomposition on
irreducible ones is reduced to commutative Fourier transform on A, we will
have the decomposition as soon as we can invert the horospherical trans-
form. Later we will return to this possibility.

Heuristically, the horospherical transform is scalar on irreducible con-
stituents if we identify them on X and Ξ. Modulo all complications con-
nected with the continuous spectrum and non L2 eigenfunctions the c-
function represents the eigenvalues of the horospherical transform under
a natural normalization. I believe that this heuristic view is crucial for the
understanding of the nature of the c-function. Its appearance at the asymp-
totic of the zonal spherical function is already a secondary event.
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As test functions for the definition of eigenvalues let us consider the
“highest weight vectors” on X and Ξ:

χ(x|λ) = a(x)−ρ−iλ, x ∈ X;χ(ξ|λ) = a(ξ)−ρ−iλ, ξ ∈ Ξ;

Here a(ξ) is the projection on A in the decomposition N̄MAN at the open
part of G and, as a consequence, of Ξ. Then χ(ξ|λ) can be interpreted as
boundary values of χ(x|λ).

The direct computation shows that

Hχ(x|λ) = c(−λ)χ(ξ|λ)

if Re(−iλ) is in the positive Weyl chamberW+ and we take boundary values
for real λ.

There is a natural intertwining operator acting from Ξ to X - the dual
horospherical transform

PF (x) =

∫

S(x)

F (ξ)μ(dξ).

Here S(x) is the set of parameters of horospheres passing through x ∈ X.
We have S(x) = K/M and μ(dξ) is the invariant measure. So in the dual
horospherical transform we have the integration on the compact manifold
K/M . Let us remark that χ(ξ|λ) is defined only on an open set of Ξ and
the integral converges only for Re(iλ) ∈ W+. On the highest weight vectors
it is scalar:

Pχ(ξ|λ) = d(λ)χ(x|λ).
The direct computation shows that

d(λ) = c(λ), Re(iλ) ∈ W+.

We need just to apply the Harish-Chandra’s trick of the replacement of
integrations along compact orbits by integrations along unipotent ones [23].
He applied it for the integral representation of zonal spherical functions
on the unipotent subgroup. It corresponds to the appearance of the factor
c(λ) at the Poisson formula for reconstructing eigenfunctions of invariant
differential operators on X through the boundary values on the boundary
F ([23, 24] .

The integrals defining the direct and dual horospherical transforms P,H
have no joint convergence area, but we can in both cases consider the bound-
ary values for real λ and then their composition will have the eigenvalues

c(λ)c(−λ) = |c(λ)|2.
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So if we add the operator L with the eigenvalues

p(λ) = 1/|c(λ)|2

we have the identical operator LPH and the operator LP inverts H. It illus-
trates the principal Harish-Chandra’s observation that p(λ) is the density
in the Plancherel formula and is the reason why in the Plancherel density
appears the square of modulus of the c-function.

It would be interesting to transform these heuristic discussions into rig-
orous statements. It has two sides. Firstly, to make exact the connections
between the horospherical transform and the c-functions, as its eigenvalues,
without an appeal to zonal spherical functions. It must not go too far from
a standard technology with generalized eigenfunctions for the continuous
spectrum. Another direction is to define a horospherical transform in such
a way that it would make sense for eigen functions of invariant differential
operators which grow and an integral definition does not work for them.

Such a way was suggested in [14, 15]. All eigen functions can be holomor-
phically extended to some complex neighborhood (the crown) Crown(X) of
X at its complexification Z ⊂ X. The crown was constructed in my paper
with Akhiezer [1]. It is possible to define a version of the horospherical trans-
form for holomorphic functions at the crown with values at ∂̄-cohomology
at CΞ\Ξ. If for holomorphic functions the integral in the definition of horo-
spherical transform converges then the two definitions are compatible. On
other side, the eigenfunctions have hyperfunctional boundary values on the
boundary so that also ∂̄-cohomology at CΞ\Ξ. To finish the picture we
need to verify that these two cohomology classes are proportional and the
coefficients are the c-function.

Intermediate horospherical transforms
and the wonderful boundary

The principal fact about the c-functions is their decomposition in a prod-
uct of Euler’s beta-functions corresponding to the decomposition of X on
symmetric spaces of rank 1 [19, 21]. In [19] it is the result of a direct trans-
formation of the integral representation of the c-function. In [21] it was
developed in a more conceptual approach when the c-function is embedded
in a more general family of special functions which are parameterized by
elements of the Weyl group and relative to this parameter they satisfy a
functional equation which gives as a consequence the decomposition. This
approach is parallel to the intertwining operators of Knapp-Stein [25].
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I believe that this conception can be more complete expressed in the
language of horospherical transforms [17] when we can connect in one knot
the triad {wonderful boundary, horospherical transforms, c-functions}. Let
Π be a subsystem of prime roots, π ⊂ Π and π̄ be the supplement to π at
Π. Let Aπ, Aπ̄ be subgroups of A corresponding to π,π̄. Let Σ(π) be the
result of removing from Σ all roots which are decomposed only on prime
roots from π. Let N̄(π) be the unipotent subgroup generated by such roots
α that (−α) ∈ Σ(π). Let Mπ be the centralizer of Aπ̄ at H. Define

Ξπ = G/MπN̄(π), Fπ = Ξπ/Aπ̄ = G/P (π), P (π) = Aπ̄MπN̄(π)

and call them correspondingly π-horospherical and π-flag spaces. We have
Ξ∅ = Ξ,ΞΠ = FΠ = Z. Then Fπ are components of wonderful boundary of
X [28, 5]. The dimensions of Fπ are decreased if π decreases and Fπ′ lies on
the boundary of Fπ if π′ ⊂ π.

The π-horospherical spaces Ξπ all have the same dimension as X = ΞΠ.
They were defined in the case when X is a group in [29]. It is an impor-
tant technical moment to extend the horospherical transform on the whole
system of the homogeneous spaces Ξπ. The crucial moment is a geometrical
duality between any pair of these spaces. Points ξ ∈ Ξ = Ξ∅ parameterize
horospheres E(ξ). Let us connect with points η ∈ Ξπ the non generate or-
bits Eπ(η), η ∈ Ξπ, of the subgroup N̄(π) and its conjugated ones. Let us
call them the intermediate horospheres or more specifically π-horospheres.
We will see that the integral geometry “lives” on Ξπ rather than on the
components Fπ of the wonderful boundary (cf. the discussion above of the
importance in the Gelfand-Graev construction of the jump from F on Ξ).
Horospheres E(ξ) can be considered as E∅(ξ).

Dimensions of Eπ increase when sizes of π decrease. Let π′ ⊂ π; then each
π′-horosphere Eπ′(η′) is fibered on π-horospheres Eπ(η). The set eπ′|π(η′) ⊂
Ξπ of their parameters we call the small horospheres. The small horospheres
eπ′|π on Ξπ are orbits of minimal dimension of the subgroup N̄(π′) and the
conjugated subgroups. We can interpret Eπ as eπ|Π and small horospheres
e∅|π are orbits of the subgroup N̄ and conjugated subgroups. So e∅|Π corre-
spond to the usual horospheres E(ξ).

Let us supply all intermediate and small horospheres by the invariant
collection of measures μπ(dn), μπ′|π(dn) and define the intermediate horo-
spherical transforms

Hπf(η) =

∫

Eπ(η)

f(x)μπ(dn), η ∈ Ξπ

or, more generally,
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Hπ′|πf(η
′) =

∫

eπ′|π(η′)
f(η)μπ′|π(dn), η

′ ∈ Ξ′
π.

The principal fact is the composition law for the intermediate horospher-
ical transforms. If π′ ⊂ π then

Hπ′ = Hπ′|π ◦ Hπ.

It is just a corollary of the computation with invariant measures in [21] and
reformulation of the functional equation from there. Using this relation we
can decompose the horospherical transform H on the intermediate factors
for cases when π differs from π′ on just one simple root. It is the way to
compute the c-function.

Similarly we define dual intermediate horospheres: cycles Sπ(x) ⊂ Ξπ, x ∈
X, are sets of parameters of π-horospheres passing through x. They are iso-
morphic to K/Mπ. More generally, for π′ ⊂ π we define the small dual
intermediate horospheres sπ′|π(η) ⊂ Ξπ′ , η ∈ Ξπ, which are isomorphic to
Mπ/Mπ′ . We define compatible invariant measures μπ′|π(dk) on Sπ′|π and
dual intermediate horospherical transforms:

Pπf(x) =

∫

Sπ(η)

f(η)μπ(dk), x ∈ X

or, more generally,

Pπ′|πf(η) =
∫

sπ′|π(η)
f(η′)μπ′|π(dη

′), η ∈ Ξπ.

So relative to the operators H the dual operators P act in the opposite
direction. Correspondingly, the functional equation is

Pπ = Pπ′|π ◦ Pπ′ .

Now we want to define the functions cπ′|π(λ), including cπ(λ), such that
cπ′|π(−λ) will be the eigen functions of the intermediate horospherical trans-
forms Hπ′|π and cπ′|π(λ) of dual intermediate operators Pπ′|π. For this aim
we take on the open part the decomposition

G0 = N̄(π)MπAN

and let aπ(g) be the projection on A which we will consider on Ξπ. We
define the highest weight functions on Ξπ:

χπ(η|λ) = aπ(η)
−ρ−iλ, η ∈ Ξπ
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and will use them as test eigen functions:

Hπ′|πχπ(η|λ) = cπ′|π(−λ)χπ′(η′|λ),Pπ′|πχπ′(η′|λ) = cπ′|π(λ)χπ(η|λ).

We have

cπ′|π(λ) =
∫

N̄(π′|π)
a−ρ−iλ
π (n̄)μ(dn̄)

where the subgroup N̄(π′|π) corresponds to the roots −α with positive roots
α which decompose on simple roots from π excluding roots which decompose
only on roots from π′.

The composition law for H,P gives the basic functional equations for
intermediate c-functions:

cπ(λ) = cπ′|π(λ)cπ′(λ)

which gives the possibility to compute them, including c(λ), by the reduction
to the case when π′, π differ on one root.

The inverse horospherical transform.
Connections with Radon’s transform

We discussed that the operator PH has the eigenvalues p(λ) = 1/|c(λ)|2,
λ ∈ a∗, which coincides with the Plancherel density. It means that the
inverse horospherical transform is the composition of P and the operator L
with the eigen values p(λ):

H−1f(x0) =

∫

S(x0)

∫

a

K(a)Hf(exp a, k))μ(dk)ν(da), a ∈ a.

Using the exponential eigenfunctions χ we can interpret the kernel K(a)
as the inverse Fourier transform of the Plancherel density p(λ) [20]. So the
inverse horospherical transforms have the densities p(λ) as symbols. If all
roots multiplicities mα are even, then functions p(λ) are polynomials and we
apply to H along a the differential operators p(Da). The product formula
for the c-function gives an explicit formula for these polynomial symbols
[13], but they look quite complicated for big multiplicities mα.

In [7, 16] there was suggested a direct way to invert the horospherical
transform in the case of even multiplicities by a simple reduction to the
inversion of the Radon-John transform (the integration over k-planes at
Rn). The inversion formulas under this approach include a much simpler
differential operator, namely the operator for the similar problem in the flat
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model at the tangent space to X, which is just the Radon-John transform.
The operator is ∏

α∈Σ

Dmα
α ,

where we take the composition of differentiations along positive roots α with
multiplicities mα. In this approach we apply this differential operator to a
modified version of the horospherical transform

f̌(a, k) = aρHf(exp a, k)).

Correspondingly, we can rewrite the Plancherel density in a more simple
form as

p(λ) =
∏

α∈Σ

(iα+ ρ, λ).

This phenomenon demonstrates a very important conceptual moment that
from the point of view of the horospherical approach, harmonic analysis on
these symmetric spaces is equivalent in a sense to the flat model.

In the general case we can present the density as a product of a polyno-
mial part pl(λ) which looks similar to the above case of even multiplicities
and which produces in a similar way the differential operator p(Dα) in the
inversion formula and a non polynomial factor pn(λ) which is responsible
for the non local part in the inversion formula and which is (under a small
restriction) the product of

tanh(π
α

(α, α)
)

over all positive roots α ∈ Σ with odd multiplicities [20]. The problem
is that we need to compute the Fourier transform of the product of m
factors which is bigger than the rank l = dimA (the dimension of the
integration). In [20] a trick was suggested, using the addition formula for
tanh, which consequently decreases the number of factors. As the result in
the computations for a broad class of classical symmetric spaces it is possible
to reach a sum of products of not more than l factors. Then it is possible
to write explicitly the inversion of the horospherical transform. Then in [2],
it was proved that for all symmetric spaces it is possible to continue this
process, such that not more than l factors it will be left. In such a way the
explicit inversion is always possible but the choice of reduced root systems is
not unique: in [2] there is a sufficient list of such reduced root systems. The
problem was solved and the consideration of reduced root systems is a nice
combinatoric problem, but the possible inversion formulas were different for
different roots systems. A universal transparent formula which works in the
general case was not found.
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A construction of such a formula was discussed in [16].The problem of
a unification of local and non local inversion formulas of integral geometry
starts from the Radon transform. There the inversion is an averaging of
a differential operator for odd dimensions (local formula) and of a pseu-
dodifferential operator for even dimensions (non local formula). Using the
distribution (x− i0)−k it is possible to unify these two formulas at a unique
formula, independent of the dimension. It turns out that a similar possibil-
ity exists in the case of symmetric spaces. For simplicity let us put a (non
essential) restriction that if a root α/2 exists, its multiplicity is even. Then
we can rewrite the Plancherel density as

p(r) = cpl(r){
∏

α∈Π

(1 + tanh(π
sα

(α, α)
r)}s∈W

where pl(r) is the described above the polynomial and we take the alterna-
tion over the Weyl group W . After the inverse Fourier transform we obtain
the inversion formula

f(x0) = c

∫

S(x0)

μ(dk)

∫

a

∏

α∈Π

[sinh((α, s))−i0]−1pl(D)(exp(ρ, s)Hf(k, exp s)ds.

We keep only one term in the alternated sum since we apply it to the W -
symmetric function. We receive quite a transparent formula operated only
with habitual systems of roots: positive and simple ones. It looks like the
way to compute the Plancherel density through the c-functions, where we
decompose the density through eigenvalues of 2 operators, does not give an
optimal representation. Since the image of the spherical Fourier transform
is symmetric relative to the Weyl group the expression for the Plancherel
measure is not unique, but the possibility to seriously simplify the Harish-
Chandra’s representation was a surprise for me. In the case of the polynomial
factor we found a direct way which gives the formula in a more transparent
form coinciding with the formula in the flat model. Since we removed now
magic roots systems in non local part as well it looks realistic to find a direct
way also for the non local part (again as in the flat model).

It is possible to modify the horospherical transform including in it the
factors

∏
α∈Π[sinh((α, s))− i0]−1. We replace δ-function along horospheres

on a version of Cauchy kernel (cf. our considerations below). Then the in-
version formula will be local.

Horospherical Cauchy transform and c-functions
for finite-dimensional representations

Weyl’s formula for dimensions of irreducible representations is a first
example of a product-formula for root systems. Since there is a natural
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connection of the dimension and the Plancherel density it was natural to
connect these two product-formulas: to connect the dimensions with the
c-functions and in such a way to reproduce such Weyl’s formula. It was
done [23] through analytic extension and a regularization of the c-function
(see subsequent discussions in [27]). Let us follow the above stated view
that each time when a c-function appears, we need to seek an appropriate
version of horospherical transform. In this case we can do it, considering
complex symmetric spaces using tools of complex analysis [11, 15].

Complex symmetric spaces are homogeneous spaces Z = G/H where G
is a simply connected semisimple complex Lie group and H is its involutive
subgroup relative to a holomorphic involution. Let A,N be, transversal to
H, Cartanian and maximal unipotent subgroups and we take the Iwasawa
decomposition on a Zariski open part of G:

G0 = HAN.

Let M be the centralizer of A at H. Then we call

Ξ = G/MN,F = G/AMN

correspondingly the horospherical and flag spaces; Ξ is fibering on A-fibers
over F ; dimZ = dimΞ. There is a natural duality between Z,Ξ corre-
sponding to the double fibering of the homogeneous space G/M over them.
Correspondingly, the points ζ ∈ Ξ parameterize the horospheres E(ζ) at Z
- orbits of subgroups conjugated to N and points z ∈ Z parameterize pseu-
dospheres S(z) - orbits of subgroups, conjugated to H; S(z) are isomorphic
to H/M and they are Stein submanifolds.

The principal fact of the finite-dimensional harmonic analysis is that the
representations on Z and Ξ have the same simple spectrum corresponding
to the spherical constituents. Under the algebraic approach we consider the
representations at regular functions on Z,Ξ, but from the analytical point of
view it is natural to consider the representations at spaces of holomorphic
functions O(Z),O(Ξ). The coincidence of spectrums makes it suspicious
that these spaces are G-isomorphic (let us remark that Z is a Stein manifold,
but Ξ is not). Some version of horospherical transforms -the horospherical
Cauchy transform - realizes this isomorphism.

Since we want to define a horospherical transform on holomorphic func-
tions we, of course, can not integrate them along horospheres. Instead we
will apply a Cauchy kind singular operator with singularities on horospheres
[11, 15]. We need to modify some way aλ(x) for the holomorphic and finite-
dimensional situation. So we take characters of A and extend them using the
Iwasawa decomposition on the open part Z0. Let us consider the semigroup
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of spherical highest weight characters and its generators Δj(z), j � l (l is
the rank of Z). We call them Sylvester’s functions since in the case when
Z is the manifold of non degenerated symmetric matrices they are princi-
pal minors and they participate in the Sylvester condition. It is important
that they can be holomorphically extended from Z0 to the whole Z. So the
highest weights correspond to

Δm(z) = Δm1
1 (z) · · ·Δml

l (z),

where mj are non negative integers. These Sylvester’s functions are asso-
ciated with the subgroup N . Let us connect them with other unipotent
subgroups which are parameterized by points ζ ∈ Ξ. If ζ0 correspond to N
and ζ = g(ζ0) then we put

Δj(ζ|z) = Δ(g−1 · z).

The system of equations for a fixed ζ:

Δj(ζ|z) = 1, 1 � j � l

defines the horosphere E(ζ). Let us fix the holomorphic invariant n-form
ω(dz) (it is unique up to a constant factor).

We can now define the horospherical Cauchy kernel as

K(ζ|z) =
∏

1�j�l

1

1−Δj(ζ|z)

and then the horospherical Cauchy transform as

Hf(ζ) =

∫

Γ

K(ζ|z)f(z)ω(dz), ζ ∈ Ξ, f ∈ O(Z)

where Γ is a cycle of (real) dimension n which avoids the singularities of the
kernel. The manifold Z can be contracted on its compact form X = U/K
where U,K are compact form of G,H for the same involution. Any such
a form we can take as a cycle Γ if it does not have singularities for this
ζ. It is possible to prove that there is a domain of ζ for which K has no
singularities on Γ [11]. Deforming this cycle we can define the transform for
all ζ ∈ Ξ. Apparently it will be an intertwining operator

H : O(Z) → O(Ξ).

We see that the horosphere E(ζ) is the edge of singularities of the kernel,
but the complete singular set is bigger. It is impossible to take the residue
of the integrand on the horosphere (it has a trivial topology).
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The horospherical Cauchy transformH intertwines irreducible constituents
at Z and Ξ. Using the decomposition on an open part G0 = N̂MAN we
can define highest weight vectors δm(ζ) = Δm(z0|ζ). Then

HΔm(z) = c∗(m)δm(ζ)

and this coefficient c∗(m) is the eigen value of H on the corresponding
irreducible constituent. We can see that the heuristic interpretation of c-
functions as eigenvalues in the infinite dimensional case in the finite dimen-
sional case is exact. We have

c∗(2m) =

∫

U/K

Δm(z)ω(dz).

The function c∗(m) can be expressed through the c-function of Harish-
Chandra as in [27]. It would be interesting to produce in this case construc-
tions similar to the ones discussed above: to define intermediate Cauchy
transforms with the similar composition laws and to directly find product-
formulas.

Let us define the dual horospherical Cauchy transform. It would be pos-
sible to define it as an integral along some cycles similar to the integral for
H using the same kernel, but for fixed z ∈ Z with the edge of singularities
on the pseudospheres S(z). However the geometry of Ξ is dramatically dif-
ferent from the geometry of Z. This time we can take the residue on S(Z)
and consider nonsingular integrals. Pseudospheres S(z) are Stein manifolds
and they are isomorphic to U/K. Define on them invariant system of holo-
morphic forms μz(dζ) of maximal dimension n-l. Then we define the dual
horospherical transform as

PF (z) =

∫

γ⊂S(z)

F (ζ)μz(dζ), z ∈ Z,F (ζ) ∈ O(Ξ).

Here the cycle γ is any generating cycle of the Stein submanifold S(z); it
can be any flag manifold which is a real form of S(z). Again we can define
the dual c- functions as the eigenvalues

Pδm(z) = c(m)δm(z),

where

c(m) =

∫

K/M

δm(ζ)(μz0(dz).

This coefficient can be express through the c-function of Harish-Chandra
but it would be interesting to define intermediate dual transforms and to
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find product-formulas on this way. The operator PH has the eigen values
c∗(m)c(m). Then

d(m) =
1

c∗(m)c(m)

is a polynomial and coincides with the dimension of the corresponding finite
dimensional representation. It can be presented using Weyl’s formula. If we
were to develop direct ways to produce the product-formulas for c(m), c∗(m)
we would be have an alternative method to produce Weyl’s formulas for the
dimensions and their specifications for spherical representations. On the
group A we define the differential operatorW (Da) with constant coefficients
(at logarithmic coordinates) with the symbol d(m). Let us translate this
operator on fibers of the fibering Ξ → F . Then

H−1 = PW (Da).

This inversion formula for the horospherical Cauchy transform is a vari-
ant of the multidimensional integral Cauchy formula. Let us clarify this
analogy. Let Π(w) = {(z, ζ), ζ ∈ S(w)}. It is equivalent to w ∈ E(ζ). On
Π(w) we define the Cauchy kernel-form

C(w|z, ζ) = W (Da)(
1∏

1≤j≤l(Δj(z|ζ)− 1)
)ω(z; dz) ∧ μw(ζ; dζ).

This form is closed and
∫

δ⊂Π(w)

C(w|z, ζ)f(z) = cf(w), f ∈ O(Z).

Here the constant depends on the homology class of the cycle δ. In the case
of the inversion of the horospherical case, we take a special cycle δ = δ(γ)
which corresponds to a cycle γ ⊂ S(w) and for each ζ ∈ γ we take a cycle
Γ(ζ) at Z which avoids the singularities of the kernel. However since the
kernel C is the closed form the integration over arbitrary cycle δ ⊂ Π(w) of
the dimension 2n − l, avoiding singularities, reconstructs the holomorphic
functions.

In such an approach the Cauchy formula is a result of some consider-
ations in harmonic analysis on complex symmetric spaces but it possible
to move in the opposite direction: to receive directly the Cauchy formula
as a version of the Cauchy-Fantappiè integral formulas and take it as an
initial point of the complex analysis on complex symmetric spaces which
includes the horospherical Cauchy transform and as a consequence the har-
monic analysis [12, 15]. Let us recall that H.Weyl when he made first steps
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in his analytic (transcendental) approach to the harmonic analysis on clas-
sical groups remarked that spherical functions on them are holomorphic
on complex classical groups and can be treated by tools of complex anal-
ysis, but he suggested another way: to restrict representations on compact
groups and then to apply the real analysis (“unitary trick”). I believe one
of the reasons could be that appropriate methods of multidimensional com-
plex analysis did not exist yet (of course, the other reason was the already
existing theory of Peter-Weyl on compact groups). May be the suggested
way to work with the Cauchy formula on symmetric spaces is a realization
of the possibility to apply complex analysis, and this opens new interesting
possibilities.

Other problems and possibilities

The central problem of harmonic analysis on symmetric spaces is the
construction of such analysis on pseudo Riemannian semisimple symmetric
spaces. Such spaces are real forms of complex symmetric spaces. The ana-
logue of Plancherel’s formula is known for such spaces, but the realization
of a horospherical approach met substantial obstructions. The problem is
that we always can consider the real horospherical transform, but it in the
non Riemannian case, as rule, has a kernel which corresponds to discrete
or partly discrete series of representations. So real horospherical transform
corresponds only to the most continuous series.

I believe that the problem of integral geometry is for each series of rep-
resentations to find on the complex horospherical space Ξ appropriate geo-
metrical and analytic objects in which models of series (at first turn discrete
ones) are realized. On each model an appropriate real Cartanian group acts
commutating with the action G. It gives the decomposition of the model
on irreducible representations. Then for each series we need to construct
a horospherical transform on the model and its inversion. It explains the
geometrical structure of the Plancherel formula.

This was realized so far in quite a few cases. We already talked about
the case of Riemannian non compact symmetric spaces. For the compact
symmetric space X we have a domain X̂ ⊂ Z and the space of holomorphic
functions O(X̂) is isomorphic to the space of hyperfunctions on X̂ and there
is a version of the horospherical Cauchy transform which intertwines these
functional spaces [11].

The simplest case where discrete series have appeared is the group
SL(2;R). Correspondingly, in this case, the real horospherical transform has
the kernel corresponding to the holomorphic and antiholomorphic discrete
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series. I suggested [9] to consider not only real horospheres, but also com-
plex horospheres without real points. We connect with them a horospherical
Cauchy transform which have singularities on these horospheres. The im-
ages will be spaces of holomorphic functions at 2 domains at Ξ - models of
holomorphic and anti holomorphic series. This construction works only for
a class of symmetric spaces. It turns out that in the general case we need to
generalize the conception of horospherical Cauchy transform replacing it by
a horospherical transform with values in higher ∂̄-cohomology. In all cases
some c-functions have appeared as eigen values of horospherical transforms.

There is a case where it is natural to have the appearance of the c-
function, but it has not appeared yet. I mean spherical spaces - homogeneous
spaces on which the Borelian subgroup has an open orbit. This class contains
symmetric spaces and many facts of harmonic analysis on symmetric spaces
can be generalized on spherical ones, sometimes under some restrictions.
For spherical spaces there is a horospherical transform, but the concept of
restricted roots can not be transfered on the spherical case in complete form.
Nevertheless, in [18], under some restrictions, a variant of restricted roots
sufficient for a product-formula for dimensions of spherical representations
was developed. It gives a strong hope to obtain a similar product-formula
for the c-functions, beginning with the Riemannian case and spaces with
complex groups.

There are several cases where there exist analogues of the c-functions
together with product-formulas: for buildings [26], for arbitrary fields [3, 4],
Heckman-Opdam’s hypergeometric functions for virtual root multiplicities
[27]. It would be interesting to connect them with analogues of the horo-
spherical transform.
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