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Distribution of zeroes of Rademacher Taylor series

Fedor Nazarov(1), Alon Nishry(2), Mikhail Sodin(3)

RÉSUMÉ. — Nous trouvons l’asymptotique de la fonction de comptage
de zéros pour les fonctions entières aléatoires représentées par des séries
de Taylor du type de Rademacher. Nous donnons aussi l’asymptotique
pour la fonction de comptage à poids, qui prend en compte les arguments
des zéros. Ces résultats répondent à certaines questions laissées ouvertes
après le travail novateur de Littlewood et Offord en 1948.
Les preuves sont basées sur notre résultat récent sur l’intégrabilité loga-
rithmique de séries de Fourier du type de Rademacher.

ABSTRACT. — We find the asymptotics of the counting function of ze-
roes of random entire functions represented by Rademacher Taylor series.
We also give the asymptotics of the weighted counting function, which
takes into account the arguments of zeroes. These results answer several
questions left open after the pioneering work of Littlewood and Offord of
1948.
The proofs are based on our recent result on the logarithmic integrability
of Rademacher Fourier series.
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1. Introduction and main results

In this work, we consider the zero distribution of random entire functions
represented by the Rademacher Taylor series

F (z) =
∑

k�0

ξkakz
k ,

where ξk are independent Rademacher (a.k.a. Bernoulli) random variables,
which take the values ±1 with probability 1

2 each, and {ak} is a (non-
random) sequence of complex numbers such that limk |ak|1/k = 0 and
#{k: ak �= 0} =∞.

1.1. Peculiarity of the Rademacher case. Rôle of the logarithmic
integrability

Consider a more general class of random Taylor series with infinite radius
of convergence:

F (z) =
∑

k�0

χkakz
k ,

in which the Rademacher random variables ξk are replaced with general
independent identically distributed mean zero complex-valued random vari-
ables χk normalized by the condition E|χk|2 = 1, and {ak} are as above. Let
ZF be the zero set of F (with multiplicities). Let us try to figure out how the
asymptotics of the random counting function nF (r) = #{ζ ∈ ZF : |ζ| � r}
should look as r →∞.

Put

σF (r)2 = E
{
|F (z)|2

}
=

∑

k�0

|ak|2r2k .

To simplify the exposition, assume that |a0| = 1. Denote by

NF (r) =

∫ r

0

nF (t)

t
dt

the integrated counting function of the zero set ZF . Then, by Jensen’s for-
mula,

NF (r) =

∫ π

−π
log |F (reiθ)| dθ

2π
− log |F (0)|

= log σF (r) +

∫ π

−π
log |F̂r(θ)|

dθ

2π
− log |χ0| ,
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where F̂r(θ)
def
= F (reiθ)/σF (r). Note that F̂r(θ) =

∑
k�0 χkâk(r)e

ikθ is a

random Fourier series satisfying the condition
∑

k�0 |âk(r)|2 = 1.

First, assume that the χk’s are standard complex-valued Gaussian ran-
dom variables. Then for every θ, the random variable F̂r(θ) is again a stan-

dard complex-valued Gaussian random variable, and E
∣∣log |F̂r(θ)|

∣∣ is a pos-
itive numerical constant. Therefore,

sup
r>0
E
∣∣NF (r)− log σF (r)

∣∣ � C . (1.1)

Since both NF (r) and log σF (r) are convex functions of log r, we can derive
from here that the functions

nF (r) =
dNF (r)

d log r
and sF (r) =

d log σF (r)

d log r
=

∑
k�1 k|ak|2r2k∑
k�0 |ak|2r2k

are also close for most values of r. If we are interested in the angular dis-
tribution of zeroes, the same idea works, we only need to replace Jensen’s
formula by its modification for angular sectors.

The same approach works in the Steinhaus case when χk = e2πiγk , where
γk are independent and uniformly distributed on [0, 1]. In this case, one
needs to estimate the expectation of the modulus of the logarithm of the
absolute value of a normalized linear combination of independent Steinhaus
variables. This was done by Offord in [11]; twenty years later, Ullrich [13, 14]
and Favorov [2, 3] independently rediscovered his idea and applied it to
various other problems. See also recent works by Mahola and Filevich [7, 8].

A linear combination of Rademacher random variables x =
∑

k ξkak
can vanish with positive probability. This leaves no hope to get a uniform
lower bound for the logarithmic expectation E

{
log |x|

}
. In [6], Littlewood

and Offord invented ingenious and formidable techniques to circumvent this
obstacle. These techniques were further developed by Offord in [10, 12]. Ap-
parently, the methods of these works were not sufficiently powerful to arrive
at the same conclusions as for the Gaussian and the Steinhaus coefficients.
Still, note that in order to estimate the error term in the Jensen formula we
do not need to estimate E

∣∣log |F̂r(θ)|
∣∣ uniformly in θ. Instead, we will be

using the estimate

E
{∫ π

−π

∣∣log |F̂r(θ)|
∣∣p dθ

2π

}
� (Cp)6p, p � 1 , (1.2)

proven in our recent work on the logarithmic integrability of Rademacher
Fourier series [9, Corollary 1.2]. This will allow us to extend the results
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known for the Gaussian and the Steinhaus coefficients to the Rademacher
case.

Now, we describe the main results of this work. In what follows, we will
use the notation rD = {z: |z| < r}, rD̄ = {z: |z| � r}, and rT = {z: |z| = r}.
By (Ω,P) we always denote our probability space.

1.2. Asymptotics of the number of zeroes in disks of large radii

First, we address the asymptotics of the random counting function nF (r) =
#{ζ ∈ ZF ∩rD̄}. Our asymptotics will hold when r tends to infinity outside
an exceptional set E ⊂ [1,∞) of finite logarithmic length:

m
(E) =

∫

E

dt

t
<∞ .

Note that if the sequence {|ak|} is very irregular, the counting function
nF (r) may exhibit a fast growth on short intervals, so the introduction of
the set E is unavoidable.

Theorem 1.1. — There exists a set E ⊂ [1,∞) (depending on |ak| only)
of finite logarithmic length such that

(i) for almost every ω ∈ Ω, there exists r0(ω) ∈ [1,∞) such that for every
r ∈ [r0(ω),∞) \ E and every γ > 1

2 ,

∣∣nF (r)− sF (r)
∣∣ � C(γ)sF (r)γ ;

(ii) for every r ∈ [1,∞) \ E, and every γ > 1
2 ,

E
∣∣nF (r)− sF (r)

∣∣ � C(γ)sF (r)γ .

1.3. Angular distribution of zeroes

To address the angular distribution of zeroes, we introduce the counting
function

nF (r, ϕ) =
∑

ζ∈(ZF \{0})∩rD̄
ϕ(arg ζ) .

Here and below, ϕ is a 2π-periodic C2-function, 0 � ϕ � 1.

In what follows, we denote by AF various positive constants that may
depend only on the sequence {|ak|} of the absolute values of the Taylor
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coefficients of F . The symbol 〈h〉 will stand for the mean

〈h〉 =

∫ π

−π
h(θ)

dθ

2π
.

Theorem 1.2. — There exists a set E ⊂ [1,∞) (depending on |ak| only)
of finite logarithmic length such that

(i) for almost every ω ∈ Ω, every r ∈ [r0(ω),∞) \ E, every 2π-periodic
C2-smooth function ϕ: [−π, π]→ [0, 1], every γ > 1

2 , and every q > 1,

∣∣nF (r, ϕ)− E
{
nF (r, ϕ)

}∣∣ � C(γ, q) (1 + ‖ϕ′′‖q) (sF (r)γ + logγ r +AF ) ;

(ii) for every r ∈ [1,∞) \ E, every 2π-periodic C2-smooth function
ϕ: [−π, π]→ [0, 1], every γ > 1

2 , and every q > 1,

E
∣∣nF (r, ϕ)− 〈ϕ〉 sF (r)

∣∣ � C(γ, q) (1 + ‖ϕ′′‖q) (sF (r)γ + log r +AF ) .

Theorem 1.2 yields the angular equidistribution of zeroes of F provided
that sF (r) does not grow too slowly:

lim
r→∞

sF (r)

log r
= +∞ .

Taking into account that log σF (r) is a convex function of log r, it is not
difficult to see that this condition is equivalent to

lim
r→∞

log σF (r)

log2 r
= +∞ ,

which in turn is equivalent to a more customary growth condition:

lim
r→∞

logMF (r)

log2 r
= +∞ , MF (r) = max

rD̄
|F | ,

which often occurs in the theory of entire functions, cf. [4, Section 7.2].

It is also worth mentioning that the first statement of Theorem 1.2
remains meaningful as long as sF (r) > logκ r with some κ > 1

2 ; i.e., beyond
the log r-threshold.

1.4. Relation of our results to those by Littlewood and Offord

In [6], Littlewood and Offord studied the distribution of zeroes of ran-
dom entire functions of finite positive order represented by Rademacher
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Taylor series. They used the maximal term µF (r) = maxk�0

(
|ak|rk

)
of the

Rademacher Taylor series F , which is basically equivalent to the quantity
σF (r) we are using here: obviously, µF (r) � σF (r) everywhere, while, for
every γ > 1

2 , σF (r) � µF (r) logγ µF (r) outside an exceptional set of r’s of
finite logarithmic length (this is a classical result of Wiman and Valiron,
see, for example, [4, Section 6.2]). Littlewood and Offord discovered that,
for every ε > 0,

log |F (reiθ)| � logµF (r)−Oε(r
ε) (1.3)

everywhere in the complex plane outside a union of simply connected do-
mains of small diameters. They called these domains “pits”. Littlewood and
Offord provided a very detailed information about the sizes of the pits and
the distribution of their locations. From this, they were able to obtain some
upper and lower a.s. bounds for the random integrated counting functions
NF (r) and NF (r, ϕ). However, these bounds differed by a positive constant
factor and did not yield the leading term of the asymptotics.

Later, Offord [10, 12] extended the main results of [6] to random entire
functions of positive or infinite order of growth represented by random Tay-
lor series with more or less arbitrarily distributed sequence of independent
random coefficients.

1.5. Regularly decaying sequences {|ak|}

If the sequence of absolute values {|ak|} behaves very regularly:

|ak| = (∆ + o(1))ke−αk log k , k →∞ ,

with some positive constants ∆ and α, then combining (1.3) with some
results from the Levin-Pfluger theory of entire functions of completely reg-
ular growth, one can obtain the leading term of the asymptotics provided by
Theorems 1.1 and 1.2. It is also worth mentioning that recently Kabluchko
and Zaporozhets [5, Corollary 2.6] found a new elegant approach to this
special case, which is based on estimates for the concentration function
combined with some tools from potential theory. Their approach works for
a very general class of non-degenerate i.i.d. random variables χk (it needs
only that E

{
log+ |χk|

}
<∞). However, it seems that their approach should

not work when |ak| does not have a very regular behavior.

Yet another approach was recently developed by Borichev, Nishry and
Sodin in [1]. That approach works for certain correlated stationary sequences
χk as well as for some pseudo-random sequences of arithmetic origin, but
still requires a high regularity of the non-random sequence {|ak|}.
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1.6. Series with dominating central terms

We complete this introduction with a brief discussion of (deterministic)
Taylor series

F (z) =
∑

k�0

εkakz
k, εk ∈ {±1}

in which each non-zero term dominates on some circumference centered at
the origin, i.e., series such that for every k with ak �= 0, there exists rk > 0
such that

|ak|rkk > K
∑


:
 
=k

|al|r
k with some K � 1 .

Note that this condition does not depend on the choice of the signs εk, so
the corresponding central term εkakz

k dominates in all series simultaneously
and, by Rouché’s theorem,

nF (rk) = k regardless of {ε
} .

This can be used to check sharpness of our constructions.

1.6.1. First, we can give each power k a possibility to dominate, thus en-
suring that each annulus Ak = {z: rk < |z| < rk+1} contains exactly one
zero of F . If K is sufficiently large, then the sum εkakz

k + εk+1ak+1z
k+1

dominates the rest of the series in the whole annulus Ak except a small
angle where the arguments of the two terms are nearly opposite. So we can
guarantee that the argument of the unique zero of F in Ak is close to that
of

− εk
εk+1

ak
ak+1

.

Since the first factor is just ±1, we can create almost as irregular angular
distribution of arguments of zeroes as we want. For instance, if ak’s are
real, then all zeroes of F will be real as well. This does not contradict
Theorem 1.2 because giving each index a possibility to dominate imposes a
severe restriction on the growth of f and, thereby, on the growth of nF (r).
It turns out that in this “totally irregular angular distribution case”, we
have nF (r) and sF (r) comparable to log r, so the error term in part (ii) of
Theorem 1.2 starts to exceed the main one.

1.6.2. Another possibility is to create a lacunary series

F (z) =
∑

j�0

εjajz
λj , εj ∈ {±1}

in which the positive integer indices {λj}, λ0 < λ1 < . . ., are sufficiently
sparse. In this case, there are sharp jumps in the number of zeroes of F in
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narrow annuli around the circumferences Cj = {z: |z| = ρj} with radii given
by

ρ
λj+1−λj
j =

aj
aj+1

on which the subsequent non-zero terms of the series have equal absolute
value. On the other hand, the function sF (r), being defined by a relatively
nice formula, is necessarily rather smooth near the radii ρj , so it starts
growing somewhat earlier and finishes growing somewhat later than nF (r).
This creates large errors of opposite signs in the formula nF (r) ≈ sF (r)
slightly to the left and slightly to the right of ρj , which shows that, in
general, allowing an exceptional set E in Theorem 1.1 is inevitable.

2. Preliminaries

2.1. Notation

Throughout the paper we use the following notation:

� For a function h: [−π, π]→ C, we write

〈h〉 =

∫ π

−π
h(θ)

dθ

2π
and ‖h‖q =

(∫ π

−π
|h(θ)|q dθ

2π

) 1
q

.

� For a random variable Y with finite first moment, we write Y =
Y − EY .

� By F we denote a random entire function represented by a Rademacher
Taylor series.

� We denote the variance of F (z) by σF (r)2 = E{|F (z)|2}, r = |z|, and

put F̂r(θ) = F (reiθ)/σF (r).

� We often use the notation Xr = Xr(θ) = log |F̂r(θ)|.

� By ZF we denote the zero set of F .

� By C, c we denote various positive numerical constants. Their values
may change from line to line. If κ is a parameter, then C(κ), c(κ) are
positive expressions that depend only on κ.

� By AF we denote various positive expressions that may depend only
on the sequence {|ak|} of the absolute values of the Taylor coefficients
of F .
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2.2. Normalization

When proving Theorems 1.1 and 1.2 we assume that

F (z) = 1 +
∑

k�1

ξkakz
k

with ∑

k�1

|ak| � 1
2

(as before, limk |ak|1/k = 0, #{k: ak �= 0} = ∞, and ξk are indepen-
dent Rademacher random variables). To reduce the arbitrary Rademacher
Taylor series F to this special form, first, we replace F by the function
F1(z) = F (z)/(ξmamz

m), where m is the least index with am �= 0. For this
function, we have nF1

(r) = nF (r) −m, and nF1
(r, ϕ) = nF (r, ϕ). Further-

more, log σF1(r) = log σF (r)−log |am|−m log r, whence, sF1(r) = sF (r)−m.
Therefore, both assumptions and conclusions of Theorems 1.1 and 1.2 re-
main invariant under this normalization.

Then, we put F2(z) = F1(A
−1
F z) with AF = max

{
2

∑
k�1 |ak|, 1

}
. This

function already has the form we need, and both assumptions and conclu-
sions of Theorems 1.1 and 1.2 remain invariant under the scaling z �→ A−1

F z.

2.3. Main tools

Our main tool will be the following lemma:

Lemma 2.1 (Log-integrability). — For any p � 1 and t > 0,

E‖Xt‖pp � (Cp)
6p

.

In particular, for λ � 1,
(
P ×m

)
{(ω, θ) ∈ Ω× [−π, π] : |Xt(θ)| > λ} � C exp(−cλ1/6) ,

where m is the Lebesgue measure on [−π, π].

The first statement of this lemma is our recent result from [9]. The
second statement follows from the first one by Chebyshev’s inequality.

Our second tool is a version of the classical Jensen formula. The standard
version corresponds to the case ϕ ≡ 1.

Lemma 2.2 (Jensen-type formula). — Let F be an entire function with
F (0) �= 0. Then, for any 2π-periodic C2-function ϕ and every R > 0, we
have
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∫ R

0

nF (t, ϕ)

t
dt =

∫ π

−π
ϕ(θ)

[
log |F (Reiθ)| − log |F (0)|

] dθ

2π

+

∫ R

0

dt

t

∫ t

0

ds

s

∫ π

−π
ϕ′′(θ) log |F (seiθ)|dθ

2π
.

Remark. — The repeated integral of the function

s �→
∫ π

−π
ϕ′′(θ) log |F (seiθ)|dθ

2π

on the RHS converges absolutely at s = 0, t = 0, since for s→ 0,
∫ π

−π
ϕ′′(θ) log |F (seiθ)|dθ

2π
=

∫ π

−π
ϕ′′(θ)

[
log |F (seiθ)| − log |F (0)|

] dθ

2π
= O(s) .

Proof of Lemma 2.2. — For C2-functions U, V on a bounded domain G with
smooth boundary, Green’s identity states that

∫∫

G

(U∆V − V∆U) dA =

∫

∂G

(
U
∂V

∂n
− V

∂U

∂n

)
dS ,

where A stands for the planar area measure and S for the length.

We set U(r, θ) = 1
2π log |F (reiθ)| and V (r, θ) = ϕ(θ) log R

r . These func-
tions are not in C2, but their singularities can be handled by a standard
device: first, we exclude from the disk R D̄ ε-neighbourhoods of zeroes of F
and of the origin, then apply Green’s formula and let ε → 0. The rest is a
straightforward computation.

3. Proof of Theorem 1.1

3.1. By Jensen’s formula,
∫ R2

R1

nF (t)

t
dt =

∫ π

−π

[
log |F (R2e

iθ)| − log |F (R1e
iθ)|

] dθ

2π

=
[
log σF (R2)− log σF (R1)

]
+

∫ π

−π

[
XR2

(θ)−XR1
(θ)

] dθ

2π

=

∫ R2

R1

sF (t)

t
dt+

∫ π

−π

[
XR2

(θ)−XR1
(θ)

] dθ

2π
.

We define the sequence rk ↑ ∞ so that sF (rk) = k2 and put δk = k−1 log−2 k,
k � 2. The set

E = [1, r2e
δ2 ] ∪

⋃

k�3

[
rke
−δk−1 , rke

δk
]
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will be the exceptional set of finite logarithmic length. Note that we will
be interested only in the intervals [rk, rk+1] whose logarithmic length is
not small: log(rk+1/rk) � 2δk. Otherwise, the whole interval [rk, rk+1] is
contained in the exceptional set E.

3.2. Given r ∈ [1,∞) \ E, we choose k so that rke
δk � r � rk+1e

−δk . Then

nF (r) � nF (rk+1e
−δk) �

1

δk

∫ rk+1

rk+1e
−δk

nF (t)

t
dt

=
1

δk

∫ rk+1

rk+1e
−δk

sF (t)

t
dt +

1

δk

∫ π

−π

[
Xrk+1

(θ)−Xrk+1e
−δk (θ)

] dθ

2π

� sF (rk+1) +
1

δk

[
‖Xrk+1

‖1 + ‖Xrk+1e
−δk ‖1

]
.

Similarly,

nF (r) � sF (rk)−
1

δk

[
‖Xrk‖1 + ‖Xrke

δk ‖1
]
.

Combining these bounds and using the monotonicity of the function sF , we
get

∣∣nF (r)− sF (r)
∣∣ �

[
sF (rk+1)− sF (rk)

]
(3.1)

+ 1
δk

[
‖Xrk‖1 + ‖Xrke

δk ‖1 + ‖Xrk+1
‖1 + ‖Xrk+1e

−δk ‖1
]
.

Since sF (rk) = k2, we have sF (rk+1)− sF (rk) = 2k + 1. Applying Hölder’s
inequality and then Lemma 2.1, we see that, for any r � 1 and any p <∞,

E
{
‖Xr‖p1

}
� E

{
‖Xr‖pp

}
� (Cp)6p ,

whence
P

{
‖Xr‖1 > t

}
� t−pE

{
‖Xr‖p1

}
�

(
t−1 · Cp6

)p
.

Letting t = e · Cp6 and p = 2 log k, we get

P
{
‖Xr‖1 > C log6 k} � 1

k2
.

Therefore, by the Borel-Cantelli lemma, for almost every ω ∈ Ω, there exists
k0(ω) such that, for k � k0(ω),

1

δk

[
‖Xrk‖1 + ‖Xrke

δk ‖1 + ‖Xrk+1
‖1 + ‖Xrk+1e

−δk ‖1
]

= k log2 k ·O(log6 k) = O(k log8 k).
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Hence, ∣∣nF (r)− sF (r)
∣∣ � O(k log8 k) = Oγ(sF (r)γ) .

This proves the first part of Theorem 1.1.

3.3. The proof of the second part (that is, the estimate for E|nF (r)−sF (r)|)
is simlar. Averaging the upper bound (3.1) and then using Lemma 2.1, we
get

E
∣∣nF (r)− sF (r)

∣∣ �
[
sF (rk+1)− sF (rk)

]

+
1

δk
E
[
‖Xrk‖1 + ‖Xrke

δk ‖1 + ‖Xrk+1
‖1 + ‖Xrk+1e

−δk ‖1
]

� 2k + 1 + Ck log2 k = Oγ

(
sF (r)γ

)
.

This completes the proof of Theorem 1.1 �

3.4. Remark on the notion of “smallness” of an exceptional set E

While the notion of smallness we used (finite logarithmic measure) is
standard and convenient for most applications, the proof shows a bit more.
Namely, our exceptional set E can be covered by intervals whose logarithmic
lengths form a fixed decreasing sequence with a finite sum ((k log2 k)−1 in
our case). Replacing the particular choice of parameters used in the proof
of Theorem 1.1 by a free one, we can fix an arbitrary increasing convex
sequence (λk), λ1 > 1, and take the points rk so that sF (rk) = λk. Put

δk =
log6(k + 1)

λk+1 − λk
.

Then, with probability 1, we get
∣∣nF (r)−sF (r)

∣∣ � C(λk+1−λk) for rke
δk � r � rk+1e

−δk and large enough k .

Choosing various sequences λk, we get statements similar to Theorem 1.1
in which better control of the exceptional set E can be achieved at the cost
of worse control of the error term. Note that since we cannot control the
sequence rk without any a priori knowledge about the growth of F , a result
of this type is meaningful only when

∑
k δk <∞ (otherwise, the exceptional

intervals [rke
−δk−1 , rke

δk ] may cover the whole ray [r1,+∞)). This forces us
to take λk of order k2 at the very least. So, Theorem 1.1, as stated, is, in a
sense, an extremal case.

Also note that the considerations of Section 1.6 show that each result of
this type is essentially sharp up to a factor log6(k + 1) in the definition of
δk, which comes from the Borel-Cantelli estimate.
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4. Several lemmas

Here, we collect several lemmas needed for the proof of Theorem 1.2.
The first lemma is a straightforward corollary to the Jensen-type formula
given in Lemma 2.2.

Lemma 4.1. — Let F be a random entire function represented by Rademacher
Taylor series with F (0) �= 0. Then, for any 2π-periodic C2-function ϕ and
every 0 < R1 < R2 <∞, we have

∫ R2

R1

EnF (t, ϕ)

t
dt =

〈ϕ〉
∫ R2

R1

sF (t)

t
dt+ E 〈ϕ · (XR2

−XR1
)〉+

∫ R2

R1

dt

t

∫ t

0

E 〈ϕ′′Xs〉ds
s

, (4.1)

and ∫ R2

R1

nF (t, ϕ)

t
dt =

∫ R2

R1

EnF (t, ϕ)

t
dt+

〈
ϕ ·

(
XR2 −XR1

)〉
+

∫ R2

R1

dt

t

∫ t

0

〈
ϕ′′Xs

〉
ds

s
. (4.2)

The next lemma gives an approximation of the Taylor series F by “the
central group” of its terms. We recall that the maximal term and the central
index of the Taylor series F are defined as

µF (r) = max
k�0

{
|ak|rk

}
and νF (r) = max

{
k: |ak|rk = µF (r)

}
.

Lemma 4.2. — Given r � 1 and τ > 0, we write ν− = νF (re−τ ),
ν+ = νF (reτ ). Then

∣∣∣F (z)−
∑

ν−�k�ν+

ξkakz
k
∣∣∣ � 2σF (r)

eτ − 1
, r = |z| .

Proof. — By the definition of the indices ν±, we have

|ak|rk = |ak|(re−τ )keτk � |aν− |(re−τ )ν−eτk = |aν− |rν−e−τ(ν−−k)

for 0 � k � ν−, and similarly, |ak|rk � |aν+ |rν+e−τ(k−ν+) for k � ν+.
Therefore,
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( ∑

0�k<ν−

+
∑

k>ν+

)
|ak|rk �

(
|aν− |rν− + |aν+

|rν+
) 1

eτ − 1

�
√

2

eτ − 1

(
|aν− |2r2ν− + |aν+

|2r2ν+
) 1

2 �
2σF (r)

eτ − 1

proving the lemma. �

Our last lemma is a simple application of the Borel-Cantelli Lemma.

Lemma 4.3. — Let Yk be a sequence of random variables such that, for
every p � p0,

E |Yk|p � (Gk(p))
p
, (4.3)

where p �→ Gk(p) is a sequence of increasing functions on [1,∞). Then,
almost surely,

lim sup
k→∞

|Yk|
Gk(log k)

� e .

Proof. — Let η > 1, t > 0. By Chebyshev’s inequality,

P{|Yk| > t} � E |Yk|
p

tp
�

(
Gk(p)

t

)p

.

Choosing t = eηGk(p) and p = log k, we see that

P{|Yk| > eηGk(log k)} � k−η .

Then, by the Borel-Cantelli Lemma, almost surely,

lim sup
k→∞

|Yk|
Gk(log k)

� eη .

Letting η → 1, we get the result. �

5. Proof of Theorem 1.2

The idea of the proof is similar to the one for Theorem 1.1: we need
to find a sufficiently dense sequence of “interpolation points” rk where
nF (rk, ϕ) is well approximated by 〈ϕ〉 sF (rk). The proof of the almost sure
bound is significantly more complicated since we have to control the error
term ∫ r

1

〈
ϕ′′Xs

〉
ds

s
,

which requires a new idea when the value sF (r) is comparable to or less
than log r.
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We start by introducing two sequences rk ↑ ∞, k � 3 and δk ↓ 0,
∑

k δk <
∞, to be chosen later. The set

E = [1, r3] ∪
⋃

k�3

[
rke
−δk−1 , rke

δk
]

will serve as our exceptional set of finite logarithmic length. Below, we
always assume that log rk+1

rk
> 2δk; otherwise, the whole interval [rk, rk+1]

is contained in the exceptional set E.

Till the end of the proof, we fix some q0 > 1 and put p0 = q0
q0−1 .

5.1. Preliminary estimates

We use the following notation:

Q(t) = Q(t;ϕ)
def
=

∫ t

1

〈ϕ′′Xs〉
ds

s
, Q(t) = Q(t)− EQ(t) =

∫ t

1

〈
ϕ′′Xs

〉 ds

s
.

The next two claims approximate the functions nF and EnF outside the
exceptional set.

Claim 5.1. — Suppose that r ∈ [r3,∞] \ E. Choose k so that rke
δk �

r � rk+1e
−δk . Then

|nF (r, ϕ)−EnF (r, ϕ)| � [sF (rk+1)− sF (rk)]+
∣∣Q(rk)

∣∣+
∣∣Q(rk+1)

∣∣+ET1+ET2 ,

where the error terms ET1 and ET2 are given by

ET1 =
1

δk

[
‖Xrk‖1 + ‖Xrke

δk ‖1 + ‖Xrk+1e
−δk ‖1 + ‖Xrk+1

‖1
]

+‖ϕ′′‖q0
(∫ rke

δk

rk

+

∫ rk+1

rk+1e
−δk

)
‖Xs‖p0

ds

s
,

and

ET2 = C
(

1
δk

+ ‖ϕ′′‖1
)
.

Claim 5.2. — Under the assumptions of Claim 5.1, we have

E
∣∣nF (r, ϕ)−〈ϕ〉 sF (r)

∣∣ �
[
sF (rk+1)− sF (rk)

]
+C(q0)‖ϕ′′‖q0 log rk+1 +

C

δk
.
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Proof of Claim 5.1. — By the monotonicity of the function nF (r, ϕ),

nF (r, ϕ) � nF (rk+1e
−δk , ϕ) �

1

δk

∫ rk+1

rk+1e
−δk

nF (t, ϕ)

t
dt

(4.2)
=

1

δk

∫ rk+1

rk+1e
−δk

EnF (t, ϕ)

t
dt+

1

δk

〈
ϕ ·

(
Xrk+1

−Xrk+1e
−δk

)〉

+
1

δk

∫ rk+1

rk+1e
−δk

dt

t

∫ t

0

ds

s

〈
ϕ′′Xs

〉
.

Since 0 � ϕ � 1, the second term on the RHS does not exceed

1

δk

(
‖Xrk+1

‖1 + ‖Xrk+1e
−δk ‖1

)
.

The third term can be written as

(∫ 1

0

+

∫ rk+1

1

) 〈
ϕ′′Xs

〉 ds

s
− 1

δk

∫ rk+1

rk+1e
−δk

dt

t

∫ rk+1

t

〈
ϕ′′Xs

〉 ds

s

� |Q(rk+1)|+
∫ 1

0

‖ϕ′′Xs‖1
ds

s
+

1

δk

∫ rk+1

rk+1e
−δk

dt

t

∫ rk+1

t

‖ϕ′′Xs‖1
ds

s

� |Q(rk+1)|+ ‖ϕ′′‖1
∫ 1

0

‖Xs‖∞
ds

s
+ ‖ϕ′′‖q0

∫ rk+1

rk+1e
−δk
‖Xs‖p0

ds

s

Due to our normalization of F , for |z| � 1, we have 1 − 1
2 |z| � |F (z)| �

1 + 1
2 |z|, whence, −|z| � log |F (z)| � 1

2 |z|. We also have 1 � σF (r) � 1 + r,
whence, 0 � log σF (r) � r. Thus, for r = |z| � 1, we get −2r � Xr =
log |F | − log σF � 1

2r, whence, |Xr| � 2.5r. Therefore,

∫ 1

0

‖Xs‖∞
ds

s
� 2.5 .

Putting these estimates together, we obtain

nF (r, ϕ) �
1

δk

∫ rk+1

rk+1e
−δk

EnF (t, ϕ)

t
dt+ |Q(rk+1)| (5.3)

+
1

δk

(
‖Xrk+1

‖1 + ‖Xrk+1e
−δk ‖1

)
+ ‖ϕ′′‖q0

∫ rk+1

rk+1e
−δk
‖Xs‖p0

ds

s
+ 2.5‖ϕ′′‖1 .

Next,

nF (r, ϕ)− EnF (r, ϕ) �
1

δk

∫ rk+1

rk+1e
−δk

E
[
nF (t, ϕ)− nF (r, ϕ)

]

t
dt+ |Q(rk+1)|
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+
1

δk

(
‖Xrk+1

‖1 + ‖Xrk+1e
−δk ‖1

)
+ ‖ϕ′′‖q0

∫ rk+1

rk+1e
−δk
‖Xs‖p0

ds

s
+ 2.5‖ϕ′′‖1 .

Since 0 � ϕ � 1, we have for t � r, nF (t, ϕ) − nF (r, ϕ) � nF (t) − nF (r).
Therefore,

1

δk

∫ rk+1

rk+1e
−δk

E
[
nF (t, ϕ)− nF (r, ϕ)

]

t
dt �

1

δk

∫ rk+1

rk+1e
−δk

E
[
nF (t)− nF (r)

]

t
dt

r�rkeδk
�

1

δk

[∫ rk+1

rk+1e
−δk

EnF (t)

t
dt−

∫ rke
δk

rk

EnF (t)

t
dt

]
.

Applying relation (4.2) in Lemma 4.1 (with ϕ = 1) and then Lemma 2.1,
we see that the RHS equals

1

δk

[∫ rk+1

rk+1e
−δk
−

∫ rke
δk

rk

] sF (t)

t
dt+

1

δk
E
[
〈Xrk+1

−Xrk+1e
−δk 〉 − 〈Xrke

δk −Xrk〉
]

�
[
sF (rk+1)− sF (rk)

]
+

1

δk
E
[
‖Xrk+1

‖1 + ‖Xrk+1e
−δk ‖1 + ‖Xrke

δk ‖1 + ‖Xrk‖1
]

�
[
sF (rk+1)− sF (rk)

]
+

C

δk
,

whence

nF (r, ϕ)− EnF (r, ϕ) �
[
sF (rk+1)− sF (rk)

]
+ |Q(rk+1)|

+
1

δk

(
‖Xrk+1

‖1 + ‖Xrk+1e
−δk ‖1

)
+ ‖ϕ′′‖q0

∫ rk+1

rk+1e
−δk
‖Xs‖p0

ds

s
+ 2.5‖ϕ′′‖1

+
C

δk
.

The proof of the matching lower bound

nF (r, ϕ)− EnF (r, ϕ) � −
[
sF (rk+1)− sF (rk)

]
− |Q(rk)|

− 1

δk

(
‖Xrk‖1 + ‖Xrke

δk ‖1
)
− ‖ϕ′′‖q0

∫ rke
δk

rk

‖Xs‖p0

ds

s
− 2.5‖ϕ′′‖1 −

C

δk

is very similar and we skip it. �

Proof of Claim 5.2. — The proof is similar to the previous one. We es-
timate the first term on the RHS of the upper bound (5.3) applying Lem-
mas 4.1 and 2.1:

1

δk

∫ rk+1

rk+1e
−δk

EnF (t, ϕ)

t
dt � 〈ϕ〉 1

δk

∫ rk+1

rk+1e
−δk

sF (t)

t
dt
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+
1

δk
E
[
‖Xrk+1e

−δk ‖1 + ‖Xrk+1
‖1

]
+

1

δk

∫ rk+1

rk+1e
−δk

dt

t

∫ t

0

E‖ϕ′′Xs‖1
ds

s

� 〈ϕ〉 sF (rk+1) +
C

δk
+ ‖ϕ′′‖q0

[∫ 1

0

+

∫ rk+1

1

]
E‖Xs‖p0

ds

s

� 〈ϕ〉 sF (rk+1) +
C

δk
+ C(q0)‖ϕ′′‖q0 log rk+1 .

Plugging this estimate into (5.3), we obtain

nF (r, ϕ)− 〈ϕ〉sF (r) �
[
sF (rk+1)− sF (rk)

]
+

C

δk
+ ‖ϕ′′‖q0C(q0) log rk+1

+|Q(rk+1)|+
1

δk

(
‖Xrk+1

‖1 + ‖Xrk+1e
−δk ‖1

)

+‖ϕ′′‖q0
∫ rk+1

rk+1e
−δk
‖Xs‖p0

ds

s
+ 2.5‖ϕ′′‖1 .

Combining with the matching lower bound and taking the expectation, we
get

E
∣∣nF (r, ϕ)− 〈ϕ〉sF (r)

∣∣ �
[
sF (rk+1)− sF (rk)

]
+

C

δk
+C(q0)‖ϕ′′‖q0 log rk+1 ,

proving Claim 5.2. �

5.2. Estimate of E|nF (r, ϕ)− 〈ϕ〉sF (r)|

Using Claim 5.2, we readily prove assertion (ii) of Theorem 1.2.

Proof. — We need to estimate the expression

[sF (rk+1)− sF (rk)] + C(q0)‖ϕ′′‖q0 log rk+1 +
C

δk
,

which appears on the RHS of the bound given in Claim 5.2. We choose the
sequence rk so that sF (rk) + log rk = k2. Then

sF (rk+1)− sF (rk) � 3k � 3
(
sF (rk)

1
2 + log

1
2 rk

)
< 3

(
sF (r)

1
2 + log

1
2 r

)
,

and
log rk+1 < 3k + log rk < 3sF (r)

1
2 + 4 log r + 3 .

Put δk =
(
k log2 k

)−1
. Then for γ > 1

2 , we have

δ−1
k = k log2 k < C(γ)

(
sF (rk)

γ + logγ rk
)
< C(γ)

(
sF (r)γ + log r

)
,
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whence

E
∣∣nF (r, ϕ)− 〈ϕ〉 sF (r)

∣∣ < C(q0, γ)(1 + ‖ϕ′′‖q0)
(
sF (r)γ + log r

)
,

completing the proof. �

Now, we start proving the more difficult part (i) of Theorem 1.2, that
is, the almost sure estimate for |nF (r, ϕ)− EnF (r, ϕ)|. For this, we need to
estimate the RHS of the bound given in Claim 5.1.

5.3. Easy error terms

Here we give an almost sure bound for the error terms ET1 in Claim 5.1.
Recall that

ET1 =
1

δk

(
‖Xrk‖1 + ‖Xrke

δk ‖1 + ‖Xrk+1e
−δk ‖1 + ‖Xrk+1

‖1
)

+‖ϕ′′‖q0
(∫ rke

δk

rk

+

∫ rk+1

rk+1e
−δk

)
‖Xs‖p0

ds

s
.

Claim 5.4. — For almost every ω ∈ Ω, there exists k0 = k0(ω) such
that

ET1 �
C

δk
log6 k + C(q0)‖ϕ′′‖q0 for all k � k0 .

Proof. — Let ρk be one of the values rk, rke
δk , rk+1e

−δk , rk+1. Then, by
Lemma 2.1,

E‖Xρk‖p1 � 2pE‖Xρk‖pp � (Cp)6p .

Hence, by Lemma 4.3, for almost every ω ∈ Ω and for every k � k0(ω),
‖Xρk‖1 � C log6 k. Next, by Lemma 2.1,

E
{(∫ rke

δk

rk

+

∫ rk+1

rk+1e
−δk

)
‖Xs‖p0

ds

s

}
� C(q0)δk .

Recalling that
∑

k δk < ∞ and applying Chebyshev’s inequality and the
Borel-Cantelli Lemma, we see that for almost every ω ∈ Ω, these two inte-
grals do not exceed C(q0) for every k � k0(ω). This proves the
claim. �
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5.4. Crude estimate of the integral Q(rk+1)

It remains to estimate the integral

Q = Q(rk+1) =

∫ rk+1

1

〈ϕ′′Xt〉
t

dt .

We start with a crude bound.

Claim 5.5. — For almost every ω ∈ Ω, there exists k0 = k0(q0, ω) such
that ∣∣Q(rk+1)

∣∣ � C‖ϕ′′‖q0 log6 k · log rk+1 , k � k0 .

Proof. — For any p � p0 we have |〈ϕ′′Xt〉| � ‖ϕ′′‖q0‖Xt‖p. Thus, apply-
ing first Hölder’s inequality and then Lemma 2.1, we get

E
∣∣Q

∣∣p � ‖ϕ′′‖pq0 ·
∫ rk+1

1

E‖Xt‖pp
dt

t
·(log rk+1)

p−1 � ‖ϕ′′‖pq0 ·
(
Cp

)6p·logp rk+1 .

Now Lemma 4.3 yields the required result. �

5.5. Refined estimate of the integral Q(rk+1)

Here, we will present a more delicate estimate for Q, which refines the
previous one. The idea is to partition the interval [1, rk+1] into intervals of
equal logarithmic length τk with 1 � τk � log rk+1 and represent Q as a
sum of integrals over these intervals. It turns out that these integrals can
be well approximated by independent bounded random variables with zero
mean. Then the natural cancellation in their sum yields an improved bound
for Q(rk+1).

Put Z = Z(t)
def
= 〈ϕ′′Xt〉 and Z = Z − EZ. Then

Q = Q(rk+1) =

∫ rk+1

1

Z(t)

t
dt .

We are going to estimate E
∣∣Q

∣∣p. This will be done in several steps.

5.5.1. Truncation of the logarithm. Fix k and Λ = Λ(k, rk+1), and put

logΛ x =





log x, | log x| � Λ6 ,
−Λ6, log x < −Λ6 ,
Λ6, log x > Λ6 ,
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and ZΛ(t) =
〈
ϕ′′ logΛ |F̂t|

〉
. Then,

|Z(t)− ZΛ(t)| � ‖ϕ′′‖q0 ·
∥∥log |F̂t| − logΛ |F̂t|

∥∥
p0
,

and, for p � p0,

E
{
|Z(t)− ZΛ(t)|p

}
� ‖ϕ′′‖pq0 E

{∥∥log |F̂t| − logΛ |F̂t|
∥∥p
p

}

� ‖ϕ′′‖pq0 E
{〈

1lEΛ(t)|Xt|p
〉}

,

where EΛ(t) =
{
θ ∈ [−π, π] : |Xt(θ)| > Λ6

}
, and 1lEΛ(t) is the indicator

function of the setEΛ(t). Using the Cauchy-Schwarz inequality and Lemma 2.1,
we get

E
{
|Z(t)− ZΛ(t)|p

}
� E

{
|Z(t)− ZΛ(t)|p

}

� ‖ϕ′′‖pq0
√
E
{
mθ(EΛ(t))

}
· E‖Xt‖2p2p

� ‖ϕ′′‖pq0 · C exp(−cΛ) · (Cp6)p ,

where ZΛ = ZΛ − EZΛ and mθ is Lebesgue measure on [−π, π]. Then

E
{∣∣Q−QΛ

∣∣p} = E
{∣∣∣

∫ rk+1

1

(
Z(t)− ZΛ(t)

) dt

t

∣∣∣
p}

�
(
Cp6‖ϕ′′‖q0 log rk+1

)p
e−cΛ . (5.6)

5.5.2. Replacing the Taylor series F by a group of its central terms. Let
τ = τ(k, rk+1) be a large parameter (to be chosen later). Let

P̂ (z)
def
=

1

σF (r)

νF (reτ )∑


=νF (re−τ )

ξ
a
z

 , r = |z| ,

P̂r(θ) = P̂ (reiθ), Z
c.t.

Λ (t) =
〈
ϕ′′

(
logΛ |P̂t| − E logΛ |P̂t|

)〉
, and

Q
c.t.

Λ = Q
c.t.

Λ (rk+1) =

∫ rk+1

1

Z
c.t.

Λ (t)
dt

t
.

As before, νF (r) denotes the central index of the Taylor series F .

Applying Lemma 4.2 and using the fact that

| logΛ x− logΛ y| � eΛ
6 |x− y| x, y > 0 ,
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we get

sup
t�1

∣∣ZΛ(t)− Z
c.t.

Λ (t)
∣∣ � CeΛ

6−τ‖ϕ′′‖1 ,

whence, for every ω ∈ Ω,

∣∣QΛ−Q
c.t.

Λ

∣∣ =
∣∣∣
∫ rk+1

1

(
ZΛ(t)− Z

c.t.

Λ (t)
) dt

t

∣∣∣ � C‖ϕ′′‖1 exp(Λ6−τ)·log rk+1 .

(5.7)

5.5.3. Fast and slow intervals. From now on, we assume that 1 � τ �
log rk+1 and that L

def
= τ−1 log rk+1 is an integer. For any integer j, con-

sider the intervals Jj =
[
ejτ , e(j+1)τ

]
of equal logarithmic length τ . We call

the interval Jj taken from this collection slow if the central index νF re-
mains constant on Jj as well as on its two neighbouring intervals, that is, if
νF

(
e(j−1)τ

)
= νF

(
e(j+2)τ

)
. Otherwise, the interval Jj is called fast.

On every slow interval Jj the sum P̂ consists of a single term

P̂ (z) =
ξνjaνjz

νj

σF (|z|) ,

where νj is the common value of νF on Jj , and therefore

|P̂t| =
|aνj |tνj
σF (t)

is non-random. Hence, for such t’s, Z
c.t.

Λ (t) = 0; i.e., slow intervals do not

contribute to the integral Q
c.t.

Λ . Thus,

Q
c.t.

Λ =

∫ τ

0

(∑

j∈J

Z
c.t.

Λ (ejτ+s)
)

ds , (5.8)

where J is the set of indices j such that Jj ⊂ [1, log rk+1] and Jj is fast.

5.5.4. Contribution of fast intervals. We split the set J into a bounded
number of disjoint subsets J′ ⊂ J so that, for j1, j2 ∈ J′ and j1 �= j2, the
intervals

[
νF

(
e(j1−1)τ

)
, νF

(
e(j1+2)τ

)]
,

[
νF

(
e(j2−1)τ

)
, νF

(
e(j2+2)τ

)]

are disjoint (it is easy to see that six subsets J′ suffice). Given s ∈ [0, τ ], the

random variable Z
c.t.

Λ (exp(jτ+s)) may depend only on ξ
 with νF (e(j−1)τ ) �
@ � νF (e(j+2)τ ). Therefore, given a subset J′ and a value s ∈ [0, τ ], the ran-

dom variables
{
Z

c.t.

Λ (exp(jτ + s))
}
j∈J′

are independent. This observation
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allows us to estimate E|K(s, J′)|p, where

K(s, J′)
def
=

∑

j∈J′

Z
c.t.

Λ (exp(jτ + s)) .

Indeed, recalling that EZ c.t.

Λ (t) = 0 and that
∣∣Z c.t.

Λ (t)
∣∣ � 2Λ6‖ϕ′′‖1, and

applying the classical Khinchin-Marcinkiewicz–Zygmund inequality, we get

E |K(s, J′)|p � (Cp)p/2
(
2Λ6‖ϕ′′‖1

)p · |J′|p/2 .

Since |J′| � L = τ−1 log rk+1, the RHS does not exceed

(
CΛ6‖ϕ′′‖1

√
p · τ−1 log rk+1

)p
.

At last, using Minkowski’s integral inequality and recalling that we use
only a bounded number of subsets J′, we obtain

E
∣∣Q c.t.

Λ

∣∣p = E
∣∣∣
∫ τ

0

∑

J′

K(s, J′) ds
∣∣∣
p

� Cp
(∫ τ

0

∑

J′

(
E |K(s, J′)|p

)1/p
ds

)p

� (Cτ)p ·
(
CΛ6‖ϕ′′‖1

√
p · τ−1 log rk+1

)p
=

(
C‖ϕ′′‖1 Λ6

√
p · τ log rk+1

)p
.(5.9)

5.5.4. Final estimate of Q. Here, we prove the following estimate:

Claim 5.10. — For a.e. ω ∈ Ω, every k � k0(ω), and every ε > 0, we
have ∣∣Q

∣∣ � C(ε)‖ϕ′′‖q0
(
(log rk+1)

1
2+ε + kε

)
. (5.11)

Proof. — We assume that log rk+1 � log7 k. Otherwise, the crude bound
from Claim 5.5 yields

∣∣Q
∣∣ � C‖ϕ′′‖q0 log13 k ,

which immediately gives us (5.11).

Combining our estimates (5.6), (5.7), and (5.9), we get

(
E|Q|p

)1/p �
[(
E|Q−QΛ|p

)1/p
+

(
E|QΛ −Q

c.t.

Λ |p
)1/p

+
(
E|Q c.t.

Λ |p)1/p
]

� C‖ϕ′′‖q0
[
e−cΛ/p p6 log rk+1 + eΛ

6−τ log rk+1 + Λ6
√
p · τ log rk+1

]
.
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Then, applying Lemma 4.3, we see that, for almost every ω ∈ Ω and every
k � k0(ω),

∣∣Q
∣∣ � C ‖ϕ′′‖q0

[
e−cΛ/ log k·log6 k·log rk+1+e

Λ6−τ ·log rk+1+Λ6
√
τ log rk+1 · log k

]
.

Now it is time to choose the values of the parameters Λ and τ . We put

Λ = C1 log k
(
log log rk+1 + log log k

)
and then τ = Λ6 + log log rk+1

with a sufficiently large constant C1. Recall that our derivation of the bound

for E|Q c.t.

Λ |p used the condition 1 � τ � log rk+1 which is guaranteed by
the assumption log7 k � log rk+1.

The choice of the parameters Λ and τ yields boundedness of the terms

e−cΛ/ log k · log6 k · log rk+1 , eΛ
6−τ · log rk+1 .

Thus, it remains to estimate the term Λ6
√
τ log rk+1 · log k. Observe that,

for sufficiently large k, both Λ6 and τ do not exceed (log k)C+(log log rk+1)
C .

This yields the estimate

Λ6
√
τ log rk+1 · log k � C(ε)

(
(log rk+1)

1
2+ε + (log k)C(ε)

)

� C(ε)
(
(log rk+1)

1
2+ε + kε

)
,

proving the claim. �

5.6. Completing the proof of Theorem 1.2

We need to prove the almost sure part (i) of the theorem. Returning to
Claim 5.1, and plugging in the estimates of all error terms, for rke

δk � r �
rk+1e

−δk , k � k0(ω), we get

|nF (r, ϕ)− EnF (r, ϕ)| �
(
sF (rk+1)− sF (rk)

)
+

C

δk
log6 k +

+C(q0, ε)‖ϕ′′‖q0
(
(log rk+1)

1
2+ε + kε

)
.

It remains to show that with the same choice of the parameters δk and rk as

in Section 5.2, we get the desired result. First, the choice δk =
(
k log2 k

)−1

yields that the RHS of the previous estimate is

�
(
sF (rk+1)− sF (rk)

)
+ C(ε)k1+ε + C(q0, ε) ‖ϕ′′‖q0

(
(log rk+1)

1
2+ε + kε

)
.
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At last, we take rk so that sF (rk) + log rk = k2. Repeating the estimates
from Section 5.2, we have

sF (rk+1)− sF (rk) � 3
(
sF (r)

1
2 + (log r)

1
2

)

and

kε � sF (r)
1
2 ε + (log r)

1
2 ε , k1+ε � sF (r)

1
2 (1+ε) + (log r)

1
2 (1+ε) .

In addition,

(log rk+1)
1
2+ε � (k + 1)1+2ε < 4

(
sF (r)

1
2+ε + (log r)

1
2+ε

)
.

Therefore, for k > k0(ω), we have

|nF (r, ϕ)− EnF (r, ϕ)| � C(q0, ε)
(
1 + ‖ϕ′′‖q0

) (
sF (r)

1
2+ε + (log r)

1
2+ε

)
.

Taking 0 < ε < γ − 1
2 , we finish off the proof of Theorem 1.2. .
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