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Laplacian matrices and spanning trees of tree graphs
Philippe Biane (1) and Guillaume Chapuy (2)

ABSTRACT. — If G is a strongly connected finite directed graph, the
set T G of rooted directed spanning trees of G is naturally equipped with
a structure of directed graph: there is a directed edge from any span-
ning tree to any other obtained by adding an outgoing edge at its root
vertex and deleting the outgoing edge of the endpoint. Any Schrödinger
operator on G, for example the Laplacian, can be lifted canonically to
T G. We show that the determinant of such a lifted Schrödinger operator
admits a remarkable factorization into a product of determinants of the
restrictions of Schrödinger operators on subgraphs of G and we give a
combinatorial description of the multiplicities using an exploration pro-
cedure of the graph. A similar factorization can be obtained from earlier
ideas of C. Athanasiadis, but this leads to a different expression of the
multiplicities, as signed sums on which the nonnegativity is not apparent.
We also provide a description of the block structure associated with this
factorization.

As a simple illustration we reprove a formula of Bernardi enumerating
spanning forests of the hypercube, that is closely related to the graph of
spanning trees of a bouquet. Several combinatorial questions are left open,
such as giving a bijective interpretation of the results.

RÉSUMÉ. — Si G est un graphe fini, orienté et fortement connexe, l’en-
semble T G de ses arbres couvrants enracinés et orientés a une structure
naturelle de graphe orienté: pour chaque arbre couvrant et chaque arête
partant de la racine on construit l’arbre obtenu en rajoutant cette arête à
l’arbre initial et en supprimant l’arête issue du but de l’arête ajoutée. Un
opérateur de Schrödinger sur G (par exemple le Laplacien) peut se rele-
ver canoniquement au graphe T G. Nous montrons que le déterminant de
cet opérateur de Schrödinger se factorise en un produit de déterminants
obtenus en restreignant l’opérateur de Schrödinger sur G à certains sous-
graphes fortement connexes et nous donnons une description combinatoire
des multiplicités, obtenue par un procédé d’exploration du graphe. Une
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factorisation semblable peut se déduire de résultats antérieurs d’Athana-
siadis mais l’expression des multiplicités ainsi obtenue est sous la forme
d’une somme signée, dont la positivité n’est pas apparente. Notre preuve
fait également apparaître la structure en blocs de l’opérateur relevé qui
explique la factorisation.

Nous déduisons de cette factorisation une nouvelle preuve d’une for-
mule de Bernardi qui compte les arbres couvrants d’un hypercube. Nous
laissons toutefois ouvertes plusieurs questions, notamment celle de donner
une preuve bijective de nos résultats.

1. Introduction

Kirchoff’s matrix-tree theorem relates the number of spanning trees of a
graph to the minors of its Laplacian matrix. It has a number of applications
in enumerative combinatorics, including Cayley’s formula:

|TKn| = nn−1, (1.1)

counting rooted spanning trees of the complete graph Kn with n vertices
and Stanley’s formula:

|T {0, 1}n| =
n∏
i=1

(2i)(
n
i), (1.2)

for rooted spanning trees of the hypercube {0, 1}n, see [9]. In probability
theory, a variant of Kirchoff’s theorem, known as the Markov chain tree the-
orem, expresses the invariant measure of a finite irreducible Markov chain
in terms of spanning trees of its underlying graph (see [6, Chap. 4], or (2.3)
below). An instructive proof of this result relies on lifting the Markov chain
to a chain on the set of spanning trees of its underlying graph. In particu-
lar, this construction endows the set T G of spanning trees of any weighted
directed graph G with a structure of weighted directed graph. This con-
struction is recalled in Section 2, (the reader can already have a look at the
example of Figure 1.1). In the recent paper [4], the first author conjectured
that the number of spanning trees of T G is given by a product of minors of
the Laplacian matrix of the original graph G. In this paper, we prove this
conjecture. More generally, given a Schrödinger operator on G, we will show
(Theorem 3.5) that the determinant of a lifted Schrödinger operator on T G
factorizes as a product of determinants of submatrices of the Schrödinger
operator on G. In this factorization, only submatrices indexed by strongly
connected subsets of vertices W ⊂ V (G) appear, and the multiplicity m(W )
with which a given subset appears is described combinatorially via an algo-
rithm of exploration of the graph G.
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The case of the adjacency matrix (another special case of Schrödinger
operator) was already studied by C. Athanasiadis who related the eigenval-
ues in the graph and in the tree graph (see [2], or Section 3.1). As we shall
see, this leads to a similar factorization of the characteristic polynomial as
the one we obtain, and in fact the proof of [2] can easily be extended to any
Schrödinger operator. However the methods of [2], whose proofs are based
on a direct and elegant path-counting approach via inclusion-exclusion, lead
to an expression of the multiplicities as signed sums which are not appar-
ently positive. Our proof is of a different kind and proceeds by constructing
sufficiently many invariant subspaces of the Laplacian matrix of T G. It is
both algebraic and combinatorial in nature, but it leads to a positive descrip-
tion of the multiplicities. As a result our main theorem, or at least its main
corollary, can be given a purely combinatorial formulation, which suggests
the existence of a purely combinatorial proof. This is left as an open problem.
Another combinatorial problem that we leave open concerns the definition of
the multiplicities m(W ): in the way we define them, these numbers depend
both on a total ordering of the vertex set of the graph, and on the choice of
a “base point” in each subset W , but it follows from the algebraic part of
the proof that they actually do not depend on these choices. This property
is mysterious to us and a direct combinatorial understanding of it would
probably shed some light on the previous question.

Finally, we note that there exists a factorization for the Laplacian matrix
of the line graph associated to a directed graph (see [5]) that looks similar to
what we obtain here for the tree graph. The case of the tree graph is actually
more involved.

The paper is structured as follows. In Section 2, we state basic defini-
tions and recall the construction of the tree graph. We also present the
results of Athanasiadis [2] and rephrase them from the viewpoint of the
characteristic polynomial. Then in Section 3 we introduce the algorithm
that defines the multiplicities m(W ), which enables us to state our main re-
sult for the Schrödinger operators (Theorem 3.5). We also state a corollary
(Theorem 3.6) that deals with spanning trees of the tree graph T G, thus
answering directly the question of [4]. In Section 4, we give the proof of the
main result, that works, first, by constructing some invariant subspaces of
the Schrödinger operator of T G, then by checking that we have constructed
sufficiently enough of them using a degree argument. Finally in Section 6 we
illustrate our results by treating a few examples explicitly.

Acknowledgements. When the first version of this paper was
made public, we were not aware of the reference [2]. We thank Christos
Athanasiadis for drawing our attention to it. G.C. also thanks Olivier
Bernardi for an interesting discussion related to the reference [3].
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Figure 1.1. A directed graph G with 4 vertices (Left), and the graph
T G (Right). Each vertex of T G is one of the 14 spanning trees of
G. The weight of an edge in T G only depends on the root vertex of
the two trees it links – only certain edge weights are indicated on this
picture. The subset of vertices indicated next to each spanning tree is
the ψ-value returned by the algorithm of Section 3.2.

2. Directed graphs and tree graphs

In this section we set notations and recall a few basic facts.

2.1. Directed graphs

In this paper all directed graphs are finite and simple. Let G = (E, V ) be
a directed graph, with vertex set V and edge set E. For each edge we denote
s(e) its source and t(e) its target. The graph G is strongly connected if for
any pair of vertices (v, w) there exists an oriented path from v to w.

If W ⊂ V then the graph G induces a graph GW = (W,EW ) where EW
is the set of edges e with s(e), t(e) ∈W . A subset W ⊂ V will be said to be
strongly connected if the graph GW is strongly connected. A cycle in G is a
path which starts and ends at the same vertex. The cycle is simple if each
vertex and each edge in the cycle is traversed exactly once.
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2.2. Laplacian matrix and Schrödinger operators

For a finite directed graph G, let xe, e ∈ E be a set of indeterminates.
The edge-weighted Laplacian of the graph is the matrix (Qvw)v,w∈V given
by Qvw = xe if v 6= w s(e) = v, t(e) = w (this quantity is 0 if there is no
such edge) and Qvv = −

∑
e:s(e)=v xe.

Let yv, v ∈ V be another set of variables and Y be the diagonal matrix
with Yvv = yv. The associated Schrödinger operator with potential Y is the
matrix L = Q + Y . Observe that, if one specializes the variables yv to
a common value −z, then L = Q − zI and det(L) is the characteristic
polynomial of Q evaluated on z.

We will consider the space of functions on V with values in the field of
rational fractions FG = C(xe; e ∈ E, yv; v ∈ V ), and the space of measures
on V (again with with values in FG). These are vector spaces over the field
FG. The Schrödinger operator L acts on functions on the right by

Lφ(v) =
∑
w

Lvwφ(w),

and on measures on the left by

µL(w) =
∑
v

µ(v)Lvw.

The space of measures has a basis given by the δv, v ∈ V where δv is the
measure putting mass 1 on v and 0 elsewhere.

2.3. A Markov chain

If the xe are positive real numbers, the matrix Q is the generator of a con-
tinuous time Markov chain on V , with semigroup of probability transitions
given by etQ. This chain is irreducible if and only if the graph G is strongly
connected. The function 1 is in the kernel of the action of Q on functions,
and this kernel is one-dimensional if and only if the chain is irreducible. Du-
ally, if the chain is irreducible then there is a positive measure in the kernel
of the action of Q on measures (by the Perron–Frobenius theorem), which is
unique up to a multiplicative constant. See for example [8] for more on these
classical results.
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2.4. Spanning trees

Let G be a directed graph, an oriented spanning tree of G (or spanning
tree of G for short) is a subgraph of G, containing all vertices, with no cycle,
in which one vertex, called the root, has outdegree 0 and the other vertices
have outdegree 1. If a is such a tree, with edge set Ea, we denote

πa =
∏
e∈Ea

xe. (2.1)

More generally, if W ⊂ V is a nonempty subset, an oriented forest of G,
rooted in W , is a subgraph of G, containing all vertices, with no cycle and
such that vertices in W have outdegree 0 while the other vertices have out-
degree 1. Again for a forest f , with edge set Ef , we put

πf =
∏
e∈Ef

xe. (2.2)

The matrix-tree theorem states that, if W ⊂ V and QW is the matrix
obtained from Q by deleting rows and columns indexed by elements of W ,
then

det(QW ) =
∑

f∈FW

πf

the sum being over oriented forests rooted inW . In particular, in the Markov
chain interpretation, an explicit formula for an invariant measure is given by

µ(v) =
∑

a∈Tv

πa, (2.3)

where the sum is over spanning oriented trees rooted at v. This statement
is known, in the context of probability theory, as the Markov Chain Tree
theorem, see [6, Chap. 4].

It will be convenient in the following to use the notation QW = QV \W

and LW = LV \W to denote the matrix extracted from the Laplacian or
Schrödinger matrix of G by keeping only lines and columns indexed by ele-
ments of W .

2.5. The tree graph T G

Let G = (E, V ) be a finite directed graph and a an oriented spanning
tree of G with root r. For an edge e ∈ V with s(e) = r, let b be the subgraph
of G obtained by adding edge e to a then deleting the edge coming out of
t(e) in a. See Figure 2.1. It is easy to check that b is an oriented spanning
tree of G, with root t(e).
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r = s(e)

a : b :

e

t(e)
xe

Figure 2.1. An edge a→ b in the tree graph T G. It is associated with
the edge weight xe.

The tree graph of G, denoted T G, is the directed graph whose vertices
are the oriented spanning trees of G and whose edges are obtained by the
previous construction, i.e. for each pair a,b as above we obtain an edge of
T G with source a and target b. We will denote T V the set of vertices of
T G, in other words, T V is the set of oriented spanning trees of G. Figure 1.1
gives a full example of the construction. One can prove that the graph T G
is strongly connected if G is, see for example [1]. Moreover the graph T G is
simple and has no loop. There is a natural map p from T G to G which maps
each vertex of T G, which is an oriented spanning tree of G, to its root, and
maps each edge of T G to the edge e of G used for its construction.

We assign weights to the edges and vertices of T G as follows: we give the
weight xe to any edge e′ of T G such that p(e′) = e and we give the weight
yv to the tree a if its root is v.

This leads to a weighted Laplacian and a Schrödinger operator for T G,
which we denote respectively by Q and L. More precisely, Q is the matrix
with rows and columns indexed by the oriented spanning trees of G such
that

Qac = 0 if a 6= c and ac is not an edge of T G
Qab = xe if ab is an edge of T G

and e is the edge of b going out the root of a.

Qaa = −
∑
b6=a

Qab.

Similarly, Y is the diagonal matrix indexed by T V with Yaa = yroot(a)
and

L = Q+ Y.
See [1] or [6] for more on the matrixQ in a context of probability theory. In [4]
the first author proved that there exists a polynomial ΦG in the variables xe
such that, for any oriented spanning tree a of G, one has

det(Qa) = πaΦG. (2.4)
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In the same reference it was conjectured that ΦG is a product of symmetric
minors of the matrix Q (i.e. a product of polynomials of the form det(QW )).
In this paper we prove this conjecture and provide an explicit formula for
ΦG (Theorem 3.6). Actually we deduce this from a more general result which
computes the determinant of L as a product of determinants of the matrices
LW (Theorem 3.5). These results will be stated in Section 3 and proved in
Section 4. The example of the tree graph of a cycle graph was investigated
in [4] and we will explain in Section 6 how it follows from our general result.

2.6. Structure of the tree graph

Before we state and prove the main theorem of this paper, we give here
some elementary properties of the tree graph, which might be of independent
interest. These properties will not be used in the rest of the paper.

We start with the following simple observation: for any directed path π
in the graph G, starting at some vertex v, and any oriented spanning tree a
rooted at v, there exists a unique path starting at a in T G which projects
onto π. Thus the graph T G is a covering graph of G.

If a → b is an edge of T G, then the union of the edges of a and b is a
graph with a simple cycle C, containing the roots of a and b, and a forest,
with edges disjoint from the edges of C, rooted on the vertices of C. The
cycle C is the union of the path from the root of b to the root of a in the
tree a with the edge from the root of a to the root of b in b. If we lift the
cycle C in G to a path T C in T G, starting from a, we get a cycle in T G,
which projects bijectively onto the simple cycle C. The cycle C, and thus
T C is completely determined by the edge ab in T G, moreover for any edge
in T C, the associated cycle is again T C. Conversely, if C is a simple cycle
of G, and f a forest rooted at the vertices of C, then the trees obtained from
C ∪ f by deleting an edge of C form a simple cycle in T G which lies above
C. We deduce:

Proposition 2.1. — The set of edges of T G can partitionned into edge-
disjoint simple cycles, which project onto simple cycles of G. If C is a simple
cycle of G, with vertex set W , then the number of simple cycles of T G lying
above C is equal to the number of forests rooted in W .

In particular, to any outgoing edge of a in T G one can associate the
incoming edge of the cycle to which it belongs, and this gives a bijection
between incoming and outgoing edges of a. An immediate corollary is

Corollary 2.2. — The graph T G is Eulerian: The number of outgoing
or incoming edges of a vertex a are both equal to the number of outgoing
edges of the root of a in G.
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The previous discussion also implies that the measure on vertices of T G
that gives mass πa to each tree a is an invariant measure on T G, i.e. one
has πR = 0. By using the projection map p, it follows that the measure µ on
V given by (2.3) satisfies µQ = 0, which gives a simple proof of the Markov
Chain tree theorem, see [1].

3. A formula for the determinant of the Schrödinger operator

We use the same notation as in the previous sections, in particular V is
the vertex set of the directed graph G, the weighted Laplacian of G is Q, its
Schrödinger operator is L, the graph of spanning trees is denoted T G and
the weighted Laplacian and Schrödinger operators of T G, as in Section 2.5,
are denoted by Q and L. We assume that G is strongly connected.

3.1. Eigenvalues of the adjacency matrix, according to
Athanasiadis [2]

If the weights yv are set to yv = −Qvv =
∑
e:s(e)=v xe, then the

Schrödinger operator becomes the adjacency matrix of the graph G. We
denote it by M . It is easy to see that in this case the lifted Schrödinger
operatorM is the adjacency matrix of the graph T G. In [2] C. Athanasiadis
proves the following result about eigenvalues of the matrixM.

Proposition 3.1 ([2]). — The eigenvalues of the adjacency matrix M
are eigenvalues of the matrices MX ;X ⊂ V . For such an eigenvalue γ, if
mX(γ) denotes its multiplicity in MX , then its multiplicity inM is∑

X⊂V
mX(γ) det(ΓX − I)

where ΓX is the matrix MX with all variables xe equal to −1.

The previous theorem implies the following equation

det(zI −M) =
∏
X⊂V

det(zI −MX)l(X)

where l(X) = det(ΓX − I). Observe however that the multiplicities l(X) can
be negative in this equation. In order to get nonnegative multiplicities, we
will use the following fact which is easy to check: for any X ⊂ V , if we let
X = ∪iWi be its decomposition into strongly connected components, then
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the graph induces an order relation between the Wi from which one deduces
the factorization

det(zI −MX) =
∏
i

det(zI −MWi).

It follows that

det(zI −M) =
∏
W

det(zI −MW )n(W ) (3.1)

where the product is over strongly connected subsets W ⊂ V and

n(W ) =
∑

X⊃scW

l(X) (3.2)

where X ⊃sc W means that W is a strongly connected component of X. As
we will see later (Lemma 4.1), the polynomials det(zI −MW )n(W ) for W
strongly connected are distinct prime polynomials, therefore the formula 3.1
uniquely defines the multiplicities n(X) which therefore are nonnegative in-
tegers. This property however is not apparent from the formula 3.2.

In this paper, we will generalize this result to the case of Schrödinger
operators and give another expression for the multiplicities, as the cardinality
of a set of combinatorial objects (hence the nonnegativity will be apparent).
We will also explicitly exhibit a block decomposition of the matrix L that
underlies the factorization of the characteristic polynomial.

Although Athanasiadis’s results were stated for adjacency matrices, his
proof actually extends easily to the more general case of Schrödinger opera-
tors which we consider here (with the same multiplicities). However the link
between the two approaches is yet to be understood.

3.2. The exploration algorithm

Our formula for the determinant of L (given in Theorem 3.5) involves
certain combinatorial quantities defined through an algorithmic exploration
of the graph. The exploration algorithm associates to any spanning tree
a of G two subsets of vertices of G, denoted by φ(a) and ψ(a). Roughly
speaking, the algorithm performs a breadth first search on the graph G,
but only the vertices that are discovered along edges belonging to the tree
a are considered as explored. Vertices discovered along edges not in a are
immediately “erased”. This may prevent the algorithm from exploring the
whole vertex set and, at the end, we call φ(a) the set of explored vertices.
The set ψ(a) is the strongly connected component of the root vertex in φ(a).
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We now describe more precisely the algorithm. Because it is based on
breadth first search, our algorithm depends on an ordering of the vertices
of V . This ordering can be arbitrary but it is important to fix it once and
for all:

From now on we fix a total ordering of the vertex set V of G.

In particular on examples and special cases considered in the paper, if the
vertex set is an integer interval, we will equip it with the natural ordering on
integers without further notice (this is the case for example on Figure 1.1).

Exploration algorithm.
Input: A spanning tree a of the directed graph G = (V,E), rooted at v.
Output: A subset of vertices φ(a) ⊂ V ;

A subset of vertices ψ(a) ⊂ φ(a), such that G|ψ(a) is strongly
connected.

Running variables: - a set A of vertices of G;
- an ordered list L of edges of G (first in, first out);
- a set F of edges of G.

Initialization: Set A := {v}, F := {e ∈ E|s(e) 6= v}, and let L be the list
of edges of G with target v, ordered by increasing source.
Iteration: While L is not empty, pick the first edge e in L and let w be its
source:

If e belongs to the tree a:
add w to A;
delete all edges with source w from L;
append at the end of L all the edges in F with target w, by increasing
source.

else
delete from L and F all the edges with source or target w in E.
(in this case we say that the vertex w has been erased)

Termination: We let φ(a) := A be the terminal value of the evolving set
A. The directed graph G induces a directed graph on φ(a), and we let ψ(a)
be the strongly connected component of v in this graph.

Observe that if a vertex w is picked up by the algorithm at some iteration,
it will not appear again, this implies that the algorithm always stops after a
finite number of steps. We refer the reader to Figure 3.1 for an example of
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application of the algorithm. The reader can also look back at Figure 1.1 on
which, for each spanning tree a, the value of the set ψ(a) is indicated.

1

34

2

1

34

2

1

34

2

A = { }3 A = { , , }3 42 φ(a) = { , , }3 42

ψ(a) = { , }3 4

Figure 3.1. Left: in plain edges, a spanning tree a of the graph of Fig-
ure 1.1. We initialize the set A to {3} since 3 is the root of a. Center:
at the first two iterations of the main loop of the algorithm, we con-
sider the edges (2, 3) and (4, 3), that belong to the tree a: the vertices
2 and 4 are thus added to the set A. Right: at the next iteration, we
consider the edge (1, 2) that does not belong to a. The vertex 1 is
thus erased. The set A will not evolve until the termination step, and
we thus get φ(a) = {2, 3, 4}. The strongly connected component of 3
inside {2, 3, 4} in the original graph is {3, 4}, which gives the value of
ψ(a).

With the exploration algorithm, we can now define the multiplicities that
are necessary to state our main theorem.

Definition 3.2. — Let W be a strongly connected subset of V , and w ∈
W . The multiplicity of W at w is the number m(W,w) of oriented spanning
trees a rooted at w such that ψ(a) = W .

For any v ∈ V , there exists a unique tree aV,v rooted at v such that
ψ(aV,v) = V . This tree is obtained by performing a breadth first search on G
starting from v and keeping the edges of first discovery of each vertex. We
thus have:

Lemma 3.3. — For any v ∈ V one has m(V, v) = 1.

More generally, we will prove in Section 4.5 the following fact

Definition-Lemma 3.4. — For any strongly connected subset W ⊂ V ,
the multiplicity m(W,w) depends neither on w ∈ W nor on the ordering of
the elements of V . We will call m(W ) this common value.

Proof. — See Section 4.5. �
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3.3. Main result

Our main result is the following theorem.

Theorem 3.5. — Let G be a strongly connected directed graph. Then
the determinant of the lifted Schrödinger operator on T G is given by:

det(L) =
∏

W⊆V

Ws.c.

det(LW )m(W ) (3.3)

where the product is over all strongly connected subsets W ⊆ V .

From the previous result we will deduce the following formula for ΦG.
Recall that we defined πa in (2.1) as the product over the weights of the
edges of a tree a and similarly πf (2.2) for a forest. Analogously one defines
the weight of a spanning tree of T G as the product of the weights of its
edges. We define the polynomials FG, FTG and ΨW as the sums of these
weights over, respectively, spanning trees of G, of T G, and of forests of G
rooted in W . The Markov chain tree theorem implies that the generating
function of the spanning trees of a graph is the coefficient of the term of
degree 1 in the characteristic polynomial of the Laplacian matrix. Using this
fact and Theorem 3.5 we obtain the following result.

Theorem 3.6 (Spanning trees of the tree graph). — The generating
polynomial FTG of spanning trees of the tree graph is given by

FTG = ΦGFG, (3.4)

where
ΦG =

∏
W(V

Ws.c.

(ΨV \W )m(W ), (3.5)

where the product is over all proper strongly connected subsets W ( V .

Note that from (2.4) and the matrix-tree theorem, Theorem 3.6 also gives
a formula for spanning trees of T G rooted at a particular spanning tree a.

Note also that summing over all trees a in (2.4) and using the matrix-tree
theorem, we see that the constant ΦG in (2.4) is indeed the same as the one
in (3.4).

Remark 3.7. — Both sides of Equation (3.5) have a natural combinato-
rial meaning; the left hand side is a generating function for spanning trees
of T G, while the right hand side is the generating function of some tuples
of forests on G. It would be interesting to have a direct combinatorial proof
of this identity.
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As an example, on the graph G of Figure 1.1, there are 7 strongly con-
nected proper subsets of vertices and we have:m({1}) = m({2}) = m({3}) =
0, m({4}) = 3, m({3, 4}) = 2, m({1, 2, 3}) = 0, m({1, 3, 4}) = 1, and
m(V ) = 1. It follows that the characteristic polynomial of the Schrödinger
operator of the graph T G in this case is given by

det(L) = det(L4)3 det(L3,4)2 det(L1,3,4) det(L).
This identity can of course also be checked by a direct computation.

4. Proof of the main results

In this section we prove the main results. We assume as above that G is
strongly connected and we use the same notation as in previous sections.

4.1. Polynomials

In order to prove Theorem 3.5 we will show that each factor in (3.3)
appears with, at least, the wanted multiplicity and conclude by a degree
argument. We start by showing that these factors are irreducible.

Lemma 4.1. — If W ⊂ V is a proper strongly connected subset then
the polynomial det(LW ) is irreducible as a polynomial in the variables
(xe)e∈E ; (yv)v∈W .

Proof. — First we note that det(LW ) is a homogeneous polynomial, and
it has degree at most one in each of the variables xe, e∈E, s(e)∈W, (yv)v∈W .
Moreover, by Kirchhoff’s theorem, its term of total degree 0 in the y variables
is the generating function of forests rooted in V \W , which is nonzero since
W is strongly connected and proper. In particular, the polynomial is not
divisible by any of the yv. By expanding the determinant det(LW ) along
the row indexed by some w ∈W , we see that for each w, in each monomial
of det(LW ) there is at most one factor xe with s(e) = w. It follows that,
for each w, as a polynomial in the variables (xe; s(e) = w), the polynomial
det(LW ) has degree 1.

Now assume that det(LW ) = AB is a nontrivial factorization into homo-
geneous polynomials then, from the previous point, for each w the polynomial
AB is a factorization of a degree one polynomial in (xe; s(e) = w). It follows
that there must exist a partition of W = X ] X ′ where A is a polynomial
in the yv and in the variables xe with s(e) ∈ X, while B is a polynomial in
the yv and in the variables xe with s(e) ∈ X ′; note that this partition is non
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trivial since det(LW ) is not divisible by any yv. Moreover every monomial
of det(LW ) can be written in a unique way as a product of a monomial ap-
pearing in A and a monomial appearing in B. Putting all variables xe with
s(e) ∈ X to zero we see that

det(LW )|xe=0,s(e)∈X = det(LX′)
∏
v∈X

yv = A(y, 0)B.

The same can be done for X ′ and we obtain that det(LX) det(LX′) =
h(y) det(LW ) where h(y) = A(y, 0)B(y, 0)

∏
v∈W y−1

v is a Laurent polyno-
mial. By looking at the top coefficient in the yv on both sides it follows that
h = 1, hence

det(LW ) = det(LX) det(LX′).

Since the graph GW is strongly connected there exists a spanning tree a
of W rooted in some vertex x ∈ X; in the corresponding monomial term
of det(LW ) there is a factor xe with s(e) = x′ for each x′ ∈ X ′, since
each vertex of X ′ has an outgoing edge in the tree a. The corresponding
monomial therefore appears in det(LX′), and we note that each variable
xe appearing in this monomial is such that t(e) ∈ W . The argument can
be repeated for X and we deduce that there exists a monomial term in
det(LW ) = det(LX) det(LX′) which is a product of variables xe which are
all such that t(e) ∈ W ; this monomial does not correspond to a forest by a
simple counting argument, hence a contradiction. �

4.2. The case of the full minor.

The space of functions on T G which depend only on the root of the tree
(i.e. functions F such that F (a) = F (b) if p(a) = p(b)) is invariant by
the action of L on functions, moreover the restriction of L to this subset is
clearly equivalent to the action of L on the functions on V by the obvious
map. Dually the matrix L leaves invariant the space of measures µ such that
µ(p−1(v)) = 0 for all v ∈ V . The action of L on the quotient of meas(T G)
by this subspace is isomorphic to the action of L on meas(G). From either
of these remarks, we deduce

Lemma 4.2. — The polynomial det(L) divides det(L).
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4.3. Boundary and erased vertices

We make some remarks on the algorithm of Section 3.2. Once we have
applied the algorithm to a given tree b, with output W = ψ(b), we can
distinguish several subsets of vertices:

(1) the set Z = φ(b), which is the set of vertices of a subtree of b;
(2) the set W = ψ(b), which is the set of vertices of a subtree of the

previous one;
(3) the set Y = V \ Z;
(4) the set of erased points which are the vertices which have been erased

when applying the algorithm.
(5) the set of boundary points, which are the vertices in Y having an

outgoing edge with target in Z.

Lemma 4.3. — The sets of boundary points and of erased points coin-
cide.

Proof. — In an iteration of the algorithm, any vertex which has been
added to the set A has all its outgoing edges suppressed, therefore it cannot
be erased in a subsequent iteration. It follows that, if a vertex has been erased
during the algorithm, then it does not belong to Z and it is the source of
some edge with target in Z therefore it is a boundary point. Conversely if v
is a boundary point let z ∈ Z be the first vertex, among the targets of an
outgoing edge of v, which is scanned by the algorithm, then the edge from
v to z does not belong to the tree b (if it did, v would be in Z), therefore v
is erased when one applies the algorithm at z. �

4.4. Constructing the invariant subspaces

Let W ⊂ V be a strongly connected proper subset. In this section and
the next we will construct m(W ) complementary vector spaces that are
invariant by L and on which L acts as the matrix LW . This will be the
main step towards proving (3.3). This construction goes in two steps: we
first build a space of measures that is not invariant (this section, 4.4) and
we then construct a quotient of this space by imposing suitable “boundary
conditions” that make the quotient space invariant (Section 4.5).

For every pair (a, f) formed of a spanning oriented tree a of W and
an oriented forest f rooted in W , let us call a × f the oriented spanning
tree of V , rooted in the root of a, obtained by taking the union of the
edges of a and f . Let us denote by TW the set of oriented spanning trees
of W and FW the set of oriented forests rooted in W . We thus have
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an injection TW × FW → T V and correspondingly a linear map from
meas(TW ) ⊗ meas(FW ) → meas(T V ). Fix some forest f as above and
consider the matrix L(W ) obtained from L by keeping only the rows and
columns corresponding to oriented spanning trees of V of the form a × f
where a is some spanning oriented tree of W . It is easy to see that this ma-
trix, considered as a matrix indexed by elements of TW , does not depend
on the forest f , but only on W . It differs from the matrix L constructed
from the graph GW by some diagonal terms corresponding to the fact that
there exists edges in E with source in W and target in V \W . The matrix
L(W ) acts on functions on TW and on measures on TW , and it is easy to
see that for its action on measures, the space of measures on TW such that
µ(p−1(w)) = 0 for every vertex w ∈ W is an invariant subspace of mea-
sures. The action of L(W ) on the quotient of meas(TW ) by this subspace is
isomorphic to the action of LW on meas(W ).

4.5. Boundary conditions and proof of Theorem 3.5

The subspace of measures meas(TW )⊗meas(FW ) ⊂ meas(T V ) is not
invariant by the action of L on measures but we will see that by modifying
it and imposing suitable “boundary conditions” we will obtain an invariant
subspace. For this let us consider a vertex w ∈ W and a tree b, rooted at
w, such that ψ(b) = W . The tree b is of the form a × f considered above,
moreover the tree a depends only on W and w, since it coincides with the
breadth-first search exploration tree on W (similarly as in Lemma 3.3). To
emphasize this fact we use the notation a = aW,w. The set of trees b rooted
at w and such that ψ(b) = W is equal to aW,w × FW,w where FW,w is some
set of forests rooted in W , with |FW,w| = m(W,w). As indicated by the
notation, the set FW,w may depend on both W and w.

Let us fix f ∈ FW,w and consider the set Eb of vertices erased when
running the algorithm on the tree b = aW,v × f . A vertex v is erased when
it is the source of some edge e(v) considered in the algorithm, which is not
in b and which is scanned before the edge of b going out of v. For a subset
F ⊂ Eb let fF be the graph obtained by replacing in f , for each erased vertex
v ∈ F, the edge going out of v by the edge e(v).

Lemma 4.4. — For each F ⊂ Eb the graph fF is a forest rooted in W

Proof. — It suffices to observe that each vertex of V \W has outdegree 1
and that, by construction, from any such vertex there is directed path going
to W . �
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For f ∈ FW,w, let νf be the measure on FW defined by

νf =
∑
F⊂Eb

(−1)|F|δfF , (4.1)

with b = aW,v × f .

Lemma 4.5. — The measures νf for f in FW,v are linearly independent.

Proof. — First, construct a gradation on the set of spanning trees of G
rooted at w as follows. If a is such a tree, let v0 = w, v1, . . . vk be the list
of elements of φ(a) (the set of non-erased vertices) in the order they are
discovered by the algorithm running on a. We let l0, . . . , lk be the number of
incoming edges of v0, . . . , vk from the set φ(a). This construction associates
to any tree a rooted at w a finite sequence l0, . . . , lk of integers. We equip the
set of all sequences with the lexicographic order, which induces a gradation
on the set of trees rooted at w.

Now, if f ∈ FW,w and F 6= ∅, then the tree aw,W × fF is strictly higher
in the gradation than aw,W × f . Indeed the origin of the first edge e(v) for
v ∈ F that is considered by the algorithm belongs to the set φ(aw,W × fF)
but not to φ(aw,W × f), which shows that at the first index where the degree
sequences differ, the one corresponding to aw,W × fF takes a larger value –
hence it is larger for the lexicographic order.

This shows that the transformation (4.1) expressing the measures {νg,g ∈
FW,w} in the basis {δf , f ∈ FW} is given by a matrix of full rank: indeed,
provided we order rows and columns by any total ordering of FW that
extends the gradation defined by f < g if (aW,w× f) < (aW,w×g), we obtain
a strict upper staircase matrix. �

It follows from the last lemma that the collection of measures

δt ⊗ νf

where t runs over all rooted spanning trees of W and f over all elements of
FW,w is a linearly independent family of measures on T G.

Now fix as above a forest f ∈ FW.w and let b = aW.w × f . Recall that
ψ(b) = W , and call B ⊂ V \W the set of boundary points relative to the
tree b, as defined in Section 4.3. Let H be the subgraph of T G where we
have erased all edges having for source a tree rooted in a vertex of B. Let K
be the subset of vertices of H which can be reached by a path in H starting
from a tree of the form t × fF, for some spanning tree t of W and some
F ⊂ Eb. Let J ⊂ K be the subset of trees whose root is not an element of B.
Note that B, H, K and J all depend on the choice of f (or b) even though
we do not indicate it in the notation.
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Lemma 4.6. — Let Ef be the space of measures spanned by δt⊗νfLn for
all spanning trees t of W and all n > 0, then every measure in this Ef is
supported on the set J .

Proof. — It is enough to prove that for all t and n > 0, the measure
δt ⊗ νfLn has support in J , since this property is preserved under taking
linear combinations. Let us compute δt ⊗ νfLn(c) for a tree c rooted a
some boundary point v ∈ B. Recall that boundary points and erased points
coincide by Lemma 4.3. One has

δt ⊗ νfLn(c) =
∑
F⊂E

(−1)|F|
∑
π

Lπ (4.2)

where the sum
∑
π Lπ is over all paths π of length n in T G starting at t× fF

and ending in c and Lπ is the product of Le over all edges e traversed by
π. Let π be such a path and τ its projection on G, then the quantity Lπ
is equal to Lτ . Assume that v /∈ F then the path τ can be lifted to a path
π′ starting at t × fF∪{v}. The only difference between fF and fF∪{v} is the
edge coming out of v. Since the path τ ends in v, the edge starting from v
is deleted in the end tree of π′, therefore the end point of π′ is again c. It
follows that the contributions of Lπ and Lπ′ to the sum cancel. If v ∈ F we
consider the path π′ started at t×fF\{v}, again the two contributions cancel.
It follows that any contribution to the right hand side of (4.2) comes with
another which cancels it, therefore the quantity δt⊗ νfLn(c) vanishes for all
n and all trees c rooted in some boundary point.

Let now c be a tree which does not belong to the set K. We prove that

δt ⊗ νfLn(c) = 0 (4.3)

by induction on n. Clearly this is true if n = 0 and

δt ⊗ νfLn+1(c) =
∑

d

δt ⊗ νfLn(d)Ldc.

Since c /∈ K, if (L)dc 6= 0 then either

(1) d is rooted in a boundary point, or
(2) d /∈ K.

In the first case δt ⊗ νfLn(d) = 0 by the first part of the proof. In case (2)
δt ⊗ νfLn(d) = 0 follows from the induction hypothesis. Equation (4.3)
follows. �

Now we let E be the span of the spaces Ef for all forests f ∈ FW,w.
Equivalently E is the space of measures spanned by [δt ⊗ νf ]Ln for all t,
n and f . By construction the space E is invariant by the action of L on
measures.
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Lemma 4.7. — The subspace F of E which consists of measures sup-
ported by trees with root not in W is an invariant subspace.

Proof. — It is enough to prove that for each f ∈ FW,w the subspace of
Ef which consists of measures supported by trees with root not in W is an
invariant subspace. This is clear from the last lemma, since in the graph H
we have suppressed edges coming out from vertices of B (boundary vertices),
hence it is not possible for a path to come back in W after having left it. �

Lemma 4.8. — The action of L on the quotient space E/F carries
m(W,w) copies of L(W ).

Proof. — Indeed for each forest f in FW,w and any b spanning rooted
tree of W , the measure δb⊗νf satisfies [δb⊗νf ]L = [δbL(W )]⊗νf +χ where
χ ∈ F . Moreover the space span(νf ) has dimension m(W,w) by Lemma 4.6.
The lemma follows. �

We can now finish the proof of the main results.

Proof of Definition-Lemma 3.4 and Theorem 3.5. — From Lemma 4.8,
it follows that det(L) is divisible by

det(LW )m(W,w)

for any strongly connectedW and w ∈W . In particular we can takem(W,w)
to be maximal among all w in W . This implies, since the different det(LW )
are prime polynomials (see Lemma 4.1) that

det(L) (4.4)

is divisible by

det(L)×
∏

W s.c.
det(LW )maxw∈W (m(W,w)) (4.5)

Now, the degree of (4.4) is |T V | while that of (4.5) is∑
W

|W |max
w∈W

(m(W,w)),

therefore
|T V | >

∑
W

|W |max
w∈W

(m(W,w)).

By definition of m(W,w) we have:

|T V | =
∑
W

∑
w∈W

m(W,w).

It follows that we have equality for all w ∈W :

m(W,w) = max
w∈W

(m(W,w)).
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This proves that m(W,w) does not depend on w ∈ W and justifies the
notation m(W ). This also proves that m(W ) is the multiplicity of the prime
factor det(LW ) in det(L). This quantity does not depend on the order chosen
on V , thus justifying Definition-Lemma 3.4.

We have thus proved that the two sides of (3.3) are scalar multiples of
each other. The proportionality constant is easily seen to be 1 by looking at
the top degree coefficient in the variables y. �

5. The case of multiple edges

Although Theorem 3.5 only covers the case of simple directed graphs,
it is easy to use it to address the case of multiple edges. Indeed there is a
well-known trick which produces a directed graph with no multiple edges,
starting from an arbitrary directed graph, which consists in adding a vertex
in the middle of each edge of the original graph. These new vertices have
one incoming and one outgoing edge, obtained by splitting the original edge.
This produces a new graph G̃ = (Ṽ , Ẽ) with |Ṽ | = |V |+ |E| and |Ẽ| = 2|E|.
Given a vertex v ∈ V there is a natural bijection between spanning trees of
G and of G̃ rooted at v. For a vertex ṽ of the new graph sitting on an edge
e with s(e) = v of G, there is a natural bijection with the spanning trees
rooted at v. Thus the graph T G̃ is obtained from T G by adding vertices in
the middle of the edges. It is now an easy task to transfer results on G̃ to
results on G. We leave the details to the interested reader (the examples of
the next section may serve as a guideline for this).

Note that we do not need to take care of loops, that are irrelevant to the
study of spanning trees.

6. Examples and applications

In this section we illustrate our result on a few simple examples.

6.1. The cycle graph

This example was treated in [4], let us see how to recover it via our main
result. Let G = (V,E) be the cycle graph of size n, with vertex set V = [1..n]
and a directed edge from i to j if j = i ± 1 mod n. Thus G has n vertices
and 2n directed edges. The graph G has n2 spanning trees: a spanning tree
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a is characterized by its root vertex r ∈ [1..n] and by the unique i ∈ [1..n]
such that {i, i+ 1} mod n are the two vertices of degree 1 in the tree.

We note that for any subset of vertices W ⊂ V of cardinality n− 1, one
has m(W ) = 1. To see this, recall that m(W ) = m(W,w) for any w ∈ W
and choose for w a neighbour of the unique vertex u not in W : then it is
clear that the only spanning tree a such that ψ(a) = W is the one rooted
at w in which u and w have degree 1. It is then easy to see, either directly
or by considering the degree of (3.3), that these are the only proper subsets
W ( V such that m(W ) 6= 0.

Applying Theorem 3.6, we obtain that ΦG is the product of all symmetric
minors of Q of size n− 1, which was Theorem 2 in [4].

6.2. The complete graph (spanning trees of the graph of all Cayley
trees)

If G = Kn is the complete graph on n > 1 vertices, then T G is the set of
all rooted Cayley trees of size n, thus T G has nn−1 vertices by Cayley’s for-
mula (1.1). If a is a Cayley tree rooted at r ∈ [1..n], applying the exploration
algorithm to a has the following effect: at the first step, all neighbours of r in
a are explored and added to A, and all other vertices of V \ {r} are erased.
It follows that for any W ⊂ [1..n] and w ∈ W , the multiplicity m(W,w)
is equal to the number of Cayley trees rooted at w in which the root has
1-neighbourhood W \{w}. Those trees are in bijection with spanning forests
of [1..n] \ {w} rooted at W \ {w}. We obtain, using a classical formula for
the number of labeled forests of size n− 1 rooted at k − 1 fixed roots:

m(W ) = m(w,W ) = (k − 1)(n− 1)n−k−1, where k = |W |.

This formula for the multiplicity appeared as a conjecture by the second
author in [4]. It is however easily seen to be equivalent to an earlier result of
Athanasiadis [2, Corollary 3.2], which also refers to an earlier conjecture of
Propp (we were not aware of the reference [2] at the time [4] was written).
By applying Theorem 3.6 we obtain that the number of spanning trees of
the graph TKn is equal to:

nn−2
n−1∏
k=1

(
(n− k)nk−1)(k−1)(n−1)n−k−1(n

k)
.

It would be interesting to give a direct combinatorial proof of this formula.
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6.3. Bouquets, and the hypercube.

Fix k > 1 and integers n1, n2, . . . , nk > 1. Consider the bouquet graph B
with vertex set

V = {0, 1, . . . , k} ] {vji , 1 6 i 6 k, 1 6 j 6 ni}

and a directed edge between each vji and 0, between each vertex i and each
vji for 1 6 j 6 ni and between 0 and each vertex i in [1..k]. See the following
picture:

0

1

v11
vn11. . .

2
v12

vn22

. . .

k
v1k

v
nk
k

..
.

. . .

. . .

. . .

For 1 6 i 6 k, 1 6 j 6 ni, we assign the weight xji to the edge entering
the vertex vji , the weight si to the edge going from 0 to the vertex i, and
we assign the weight 1 to all other edges. A spanning tree of B rooted
at 0 is naturally parametrised by the index in [1..ni] of the edge outgoing
from each vertex i in [1..k]. We let am be the spanning tree rooted at 0
naturally parametrized by m ∈ [1..n1] × [1..n2] × · · · × [1..nk]. For each m,
the tree am has k outgoing edges in T B, to trees that we note bim′ for
i ∈ [1..k], where bim is rooted at the vertex i and m′ is the projection of m to
[1..n1]× [1..n2]×· · ·× [̂1..ni]×· · ·× [1..nk] (i-th set in the product omitted).
Each tree bim′ has an outgoing path of length 2 going to each tree am such
that m projects to m′. For example if k = 1, then T B is the following “star
graph”:

b

a1

a2
an1 . . .

. . .
. . .

For k > 1, T B can be interpreted as a “partial product” of such star graphs
of parameters n1, n2, . . . , nk, more precisely it is the subgraph of the product
of these graphs induced by the subset of vertices that are such that at most
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one of their coordinates is a vertex which is not “of type a”. In particular,
if n1 = n2 = · · · = nk = 2, the graph T B is isomorphic to the hypercube
{0, 1}k, in which three vertices are inserted in each edge, and the edge is
duplicated into six directed edges as in Figure 6.1. The mapping between
T B and the hypercube sends the tree am to the point m, while the tree bim′
is interpreted as the vertex lying in the middle of the edge of the hypercube
defined by the vector m′ (this edge points in the i-th axial direction).

Figure 6.1. Left: The hypercube {0, 1}2; Right: the graph T B for
k = 2 and n1 = n2 = 2.

Let us now apply Theorem 3.5 to this example. For each I ⊂ [1..k], letWI

be the strongly connected subset of B consisting of 0 and all vertices in the
i-th petal of the bouquet for some i ∈ I. It is easy to see that these sets are
the only ones with nonzero multiplicity. By basic counting, it is immediate
to see that m(WI) = m(WI , 0) =

∏
i 6∈I(ni − 1), since a spanning tree a of

B rooted at 0 is such that ψ(a) = WI if and only if the edge outgoing from
the vertex i is (resp. is not) the one with smallest outgoing vertex for each
i ∈ I (resp. i 6∈ I). Moreover it follows from the interpretation in terms of
rooted forests (Kirchoff’s theorem) that for i ∈ [1..k] one has

detQWI
=

 ∑
i∈[1..k]\I

si

×∏
i∈I

ni∑
j=1

xji . (6.1)

From Theorem 3.6 one thus obtains the value of the polynomial ΦB :

ΦB =
∏

I([1..k]

 ∑
i∈[1..k]\I

si

∏
i∈I

 ni∑
j=1

xji


∏

i6∈I
(ni−1)

.

Equation (2.4) then implies that for any m ∈ [1..n1]× [1..n2]× · · · × [1..nk]
the generating polynomial of spanning trees of T B rooted at am is given by:

Z =
(∏

i

xmi
i

)
ΦB . (6.2)

Let us now examine more precisely the case n1 = n2 = · · · = nk = 2
and the link with the hypercube. Let Zm ≡ Zm(y0

i , y
1
i , ti, 1 6 i 6 k) be

the generating polynomial of spanning trees of the hypercube {0, 1}k rooted
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at m, where yji marks the number of edges in the tree mutating the i-th
coordinate to the value j, and ti marks the number of edges of {0, 1}k that
are parallel to the i-th axis and are not present in the tree. Then it is easy
to see combinatorially (see Figure 6.1 again) that we have:

Z = Zm(six1
i ; six2

i ;x1
i + x2

i ). (6.3)

Therefore the value of the generating polynomial Tm(y0
i , y

1
i ) = Z(y0

i , y
1
i ,1)

can be recovered via the (invertible) change of variables x1
i + x2

i = 1, six1
i =

y0
i , and six2

i = y1
i , i.e. by substituting x1

i ←
y0

i

y0
i

+y1
i
, x2

i ←
y1

i

y0
i

+y1
i
, and si ←

y0
i + y1

1 in (6.3). We finally obtain the generating polynomial of spanning
trees of the hypercube rooted at m:

Tm(y0
i , y

1
i ) =

k∏
i=1

ymi
i

y0
i + y1

i

∏
I([1..k]

 ∑
i∈[1..k]\I

y0
i + y1

i


=

k∏
i=1

ymi
i

∏
J⊂[1..k]
|J|>2

(∑
i∈J

y0
i + y1

i

)
, (6.4)

in agreement with [3, Eq (13)] (see also [7, Thm. 3]).

We note that a more refined enumeration can be obtained. First, let us
now assign the weight w (instead of 1) to all the edges leaving the vertices
vji , and let us replace the weights xji by wxji . Using Kirchoff’s theorem and
a careful enumeration of spanning forests of B, one can generalize (6.1) and
prove that for I ( [1..k] the determinant det(zI −QWI

) is equal to:z +
∑
i 6∈I

si

∏
i∈I

z +
ni∑
j=1

wxji

 (w + z)ni

+
∑
i0∈I

si0

z ni0∑
j=1

wxji0(w + z)ni0−1 + z(w + z)ni0


×

∏
i∈I\{i0}

z +
ni∑
j=1

wxji

 (w + z)ni .

This enables to apply Theorem 3.5 and obtain the full generating polynomial
of forests of the graph T B. By extracting the top degree coefficient in w in
the obtained formula, we obtain the generating function of spanning forests
of T B in which roots can only be vertices “of type a”. In the case n1 = n2 =
· · · = nk = 2, recalling that m(WI) = 1 for all I, we obtain for this quantity
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the formula: ∏
I

z +
∑
i 6∈I

si

∏
i∈I

2∑
j=1

xji .

Now, the generating polynomial of directed forests on T B that have only
roots of “type a”, and of spanning forests of the hypercube {0, 1}k are related
combinatorially by the same combinatorial change of variables as above,
namely x1

i + x2
i = 1, six1

i = y0
i , and six

2
i = y1

i , that implies in particular
that si = y0

i + y1
i . We thus obtain:

Corollary 6.1 ([3, Eq (3)]). — The generating function of spanning
oriented forests of the hypercube {0, 1}k, with a weight z per root and a
weight yji for each edge mutating the i-th coordinate to the value j is given
by: ∏

J⊂[1..k]

(
z +

∑
i∈J

(y0
i + y1

i )
)
.

We conclude this section with a final comment. Of course, our proof
of (6.4) or Corollary 6.1 via Theorem 3.6 is more complicated than a direct
enumeration using Kirchoff’s theorem and an elementary identification of
the eigenspaces. However, it sheds a new light on these formulas by placing
them in the general context of tree graphs. Moreover, this places the problem
of finding a combinatorial proof of these results and of our main theorem
under the same roof. An indication of the difficulty of this problem is that as
far as we know, and despite the progresses of [3], no bijective proof of (6.4)
(nor even (1.2)) is known.
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