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Interpolation inequalities on the sphere:
linear vs. nonlinear flows

JEAN DoLBEAULT (V)] MARIA J. ESTEBAN (2) AND MICHAEL Loss ()

ABSTRACT. — This paper is devoted to sharp interpolation inequali-
ties on the sphere and their proof using flows. The method explains some
rigidity results and proves uniqueness in related semilinear elliptic equa-
tions. Nonlinear flows allow to cover the interval of exponents ranging
from Poincaré to Sobolev inequality, while an intriguing limitation (an
upper bound on the exponent) appears in the carré du champ method
based on the heat flow. We investigate this limitation, describe a counter-
example for exponents which are above the bound, and obtain improve-
ments below.

RESUME. — Cet article est consacré a des inégalités d’interpolation
optimales sur la sphere et a leur preuve par des flots. La méthode explique
aussi certains résultats de rigidité et permet de prouver 'unicité dans
des équations elliptiques semilinéaires associées. Les flots non-linéaires
permettent de couvrir tout l'intervalle des exposants entre 'inégalité de
Poincaré et 'inégalité de Sobolev, tandis qu’une limitation intrigante (une
limite supérieure de l’exposant) apparait dans la méthode du carré du
champ basée sur le flot de la chaleur. Nous étudions cette limitation,
décrivons un contre-exemple pour les exposants qui sont au-dessus de la
borne, et obtenons des améliorations en-dessous.
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tion; heat flow; nonlinear diffusion; spectral gap inequality; Poincaré inequality; improved
inequalities.
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1. Introduction

On the d-dimensional sphere, let us consider the interpolation inequality
d d
IVullf2gay + 2 [ullf2 ey = 2 lullfpgey VueH(S%du), (1.1)

where the measure dy is the uniform probability measure on S¢ ¢ R+!
corresponding to the measure induced by the Lebesgue measure on R+,
and the exposant p > 1, p # 2, is such that

2d
d—2
if d > 3. We adopt the convention that 2* = co if d = 1 or d = 2. The case
p = 2 corresponds to the logarithmic Sobolev inequality

<28 =

IVl > 5 [ ol og< v )du vu e HUSY, dp)\ {0} (12)

||UHL2 (sd)

In both cases, equality is achieved by any constant non-zero function and
constants are optimal. Indeed, if we define

(p - 2) ||vu||iZ(Sd)

Hu”ip(sd) - ”UHL2(Sd)

2 ||VU||i2 (s4)
Jisa lul? log (15— ) dp
]2

L2(sd)

Qplu| := and Qslu] :=

respectively for p # 2 and for p = 2, and consider an eigenfunction ¢ asso-
ciated with the first positive eigenvalue of the Laplace—Beltrami operator
on S%, optimality can be checked by computing Q,[1 + c¢] as ¢ — 0.
Inequality (1.1) has been established in [13] by rigidity methods, in [8]
by techniques of harmonic analysis, and using the carré du champ method
n [7, 9, 14], for any p > 2. The case p = 2 was studied in [24].

Here we shall focus on flow methods. In [3, 4, 5], D. Bakry and M. Emery
proved the inequalities using the heat flow provided
2d* + 1
(d—1)*"
This special exponent is emphasized in [5]. It is an important limitation,
as we shall see in Section 4. Up to now, it was not known whether the
limitation was of technical nature, or if there was a deep reason for it. Our
main result is to build a counter-example which shows why heat flow methods
definitely cannot cover the whole range of the exponents up to the critical
exponent 2* while nonlinear flows, with a proper choice of the nonlinearity,
do it. Nonlinear flows introduced in [14] provide a unified framework for
rigidity and carré du champ methods as shown in [18]. We refer to [2, 6] for
background references. More specialized papers will be quoted below.

p<2#::
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Interpolation inequalities on the sphere

On the other hand, in the range p < 2% which is covered by a heat
flow method, we provide an improved inequality with a constructive method
under an integral constraint on the set of functions. See next section for
details. We also provide a constructive estimate when p € [2%,2*] under an
antipodal symmetry contraint: see Theorem 5.6.

The flow method applies to general compact manifolds but optimality is
achieved only for spheres and not in the general case. The reader interested in
differential geometry issues is invited to refer to [18] and many other papers
quoted therein. We will focus on the case of the sphere and use a simplified
version of the inequality based on the ultraspherical operator to build our
counter-examples.

2. Flows and functional inequalities

If we define the functionals &, and Z,, respectively by

1 2 g .
Eplol = —— V pr dp— (/ pdu) ] if p#2,
p Se sd
&Eap) ::/ p log (p) dy,
sd Hp”Ll(Sd)

Lplp] = /Sd Vor|* du,

then inequalities (1.1) and (1.2) amount to Z,[p] > d&,[p] as can easily be
checked using p = |ulP. To establish such inequalities, one can use the heat
flow

for p > 0, and

dp

—=A 2.1

5 = Ar (2.1)
where A denotes the LaplaceBeltrami operator on S%, and compute

d d
SE =Tl and LT,l0) < —dT,lpl.

Details of the computation based on the carré du champ will be given below.
However, there is a strict limitation on the exponent, namely that p < 2#.
If this condition is satisfied, we obtain that
d
S (Bl = agll) <o.
On the other hand, p(t,-) converges as ¢ — oo to a constant, namely
fsd p dup since dy is a probability measure and fgd p dp is conserved
by (2.1). As a consequence, lim;_,o (Z,[p] — d&€,[p]) = 0, which proves that
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Zylp(t, )] —d&lp(t, )] = 0 for any t > 0 and completes the proof. See [5]
for details. One may wonder whether the monotonicity property is also true
for some p > 2#. Our first result contains a negative answer to this question.

PROPOSITION 2.1. — For any p € (2%#,2*) or p = 2* if d > 3, there
exists a function pg such that, if p is a solution of (2.1) with initial datum py,
then

d

(@l = agli) _ >0,

To overcome the limitation p < 2% one can consider a nonlinear diffusion
of fast diffusion / porous medium type

dp

— =Ap™. 2.2

5 = OF (2.2)
With this flow, we no longer have %EP [0l = —Z,[p] but can still prove that

d

’CP[P] = ar

(Zlo] - a&,101) <0,

for any p € [1,2*]. Proofs have been given in [14, 18]. We also refer to [16, 17]
for results which are more specific to the case of the sphere and of the
ultraspherical operator, and further references therein. Except for p = 1 and
p = 2% with d > 3, there is some flexibility in the choice of m. It is enough
to pick a special example for proving Proposition 2.1. Notice that we use
a function related with the nonlinear diffusion equation (2.2) to prove the
non-monotonicity property along the heat flow (2.1). See Section 4 for details
and for a proof of Proposition 2.1.

For any p < 2*, existence of optimal functions in (1.1) and (1.2) is not an
issue due to the compactness of Sobolev’s embeddings. Instead of considering
the whole flow, it is possible to take such an optimal function u (or more
generically a positive critical point) as initial datum, compute the time-
derivative /C,, using the flow at ¢ = 0 (which is equal to 0 because u is a
critical point of Z, — d&,), and use this computation to identify w. This
is the essence of the rigidity method as in [13, 7]: see [18] for details and
improvements. In the flow perspective, we can also make use of K, to obtain
improved inequalities: see [17]. Here we use a function u such that C,[u] = 0
(along the nonlinear flow (2.2)) as initial datum for (2.1), when p = 2%,
and check that, for an appropriate choice of m, it satisfies the property of
Proposition 2.1.
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Interpolation inequalities on the sphere

With no restriction, we can assume that fsd pdu = 1. As t — oo, the
equation (2.2) becomes equivalent to the heat flow (2.1), which allows to
relate best constants in (1.1) and (1.2) with the spectral gap, or Poincaré
inequality, associated with the Laplace—Beltrami operator. Because of the
improved inequalities that have been shown in [17] (see the proof of Propo-
sition 5.1), optimality can be achieved only in the asymptotic regime. This
explains why the computation of Q,[1+4¢ ¢] as ¢ — 0 mentioned in Section 1
provides the optimal constant if ¢ is an eigenfunction associated with the
first positive eigenvalue of the Laplace-Beltrami operator. This also raises a
very interesting question that we address in Section 5 and goes as follows. If
we assume that the initial datum satisfies

/ rpdu =0,
Sd

is the decay rate of Z, — d&, along (2.2) faster and can we write that
4 (Z,[p] — X&[p]) < 0 for some A > d ? In other words, can we improve
on the value of the infimum of Qp[u] if we assume that [, = [ul? du =0 ?
Notice indeed that, in the asymptotic regime as t — oo, this condition means
that the solution of (2.1) is orthogonal to the eigenspace corresponding to
the first positive eigenvalue of — A, and hence proves that, for any ¢ > 0,

there exists a constant C' > 0, depending on €, such that

Elp(t, )] < Ce (@Dt vy,

Some partial results are known.

e If p =1, that is, in the linear case, Inequality (1.1) is equivalent to
a Poincaré inequality

|\Vu\\i2(Sd) >dlju— 1\\%2(§d) Vu e HY(S? du) such that /Sd udp=1.
With the additional condition that fsd zu dp = 0, the inequality is
improved to

IVal|fasay = 2 (d+1) lu =120

as can be shown by a simple decomposition in spherical harmonics.

e If p = 2* and d > 3, G. Bianchi and H. Egnell have shown in [12]
that the Fuclidean Sobolev inequality can be improved. Using an
inverse stereographic projection, this exactly shows that A > d and
we will give a similar argument in Section 5. However, this is argued
by contradiction so that no explicit value of A is given.
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o If d = 2, then 2* = co and the Sobolev inequality has to be replaced
by the Moser—Trudinger—Onofri inequality: see [15] for considera-
tions in this direction. This inequality states that

log (/ e" d,u> < g||Vu||iz(gd) Vu e HY(S? dp)
- 4

such that / udp =0,
S2

with = 1. It has been conjectured by A. Chang and P. Yang that
o = 1/2 under the additional condition that [, ze* dyp = 0. This
has recently been proved in [23]. Also see [21] for an earlier result
covering the case o < 2/3.

Of course, a major difficulty comes from the fact that the property
Jsa z p dpp = 0is not conserved by the flow of (2.2), except if m = 1 (and (2.2)
coincides then with (2.1)), as we shall see next. This is why we can produce
an explicit estimate for A only in the range p < 2#. Let us define

Vol? d
A= g Je VP e (23)
veHﬁr(Sd,d;L) de "U_]-| dM
fgdvd#zl
fgdzh)\p dpu=0

Here H! (S%, du) denotes the a.e. nonnegative functions in H'(S, dy).

THEOREM 2.2. — For any p € (2,2%), there exists a constant A > d
such that

A A
IVallEsgay + P [ullf2say = 2 [l sa) (2.4)

for any function v € HY(S? dp) such that [y, ;|ulP dp = 0 with i =
1,2,...,d. Moreover, if p < 2%, with A* > d, we have the estimate

(d—1)?

A>d+ i
Tt a2

(2% —p) (A* —d). (2.5)

The strategy of the proof of this result will be given in Section 5. We
will also give an estimate of A* for the limit case p = 2 of the logarithmic
Sobolev inequality in Proposition 5.4.
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3. The ultraspherical operator

To avoid technicalities, we will work with the ultraspherical operator
instead of the Laplace—Beltrami operator. As in [16, 17], we can indeed take
coordinates for x = (2/,2) € S? such that |2/|? + 22 = 1, with 2/ € R? and

€ [-1,1]. A simple symmetrization argument (see for instance [22]) shows
that optimality in (1.1) and (1.2) is achieved by functions depending only
on z so that, in order to prove these inequalities, it is equivalent to establish
the inequalities

—<ﬂcﬁ:3[lu?udw>»———mﬂﬁ—nm) (3.1)

p—2
and )
. I s (M
ez [ 1 os (s )ava, (32)

1/q
for any function f € H*((—1,1),dvy). Here ||f]l, := (fil |f? dyd> and
L f denotes the ultraspherical operator given by

ar

£f::(1—z2)f”—dzf’:uf"+2

while dyy is the probability measure defined by
va(2) dz = dvy(z) == 2 v2ldz with v(z):=1-22,

r(5)

and the normalization constant is Zg = /7 W.
2

With the scalar product (f1, fo) = f_ll f1 f2 dvg defined on the space
L2((—1,1),dvy), let us recall that the main property of £ is

(fi, L f2) = / fifavdyg.
We refer to [1, 9, 10, 11, 16, 19, 20, 24] for more references. The next lemma,

which is taken from [16, Inequalities (3.2) and (3.3)], gives two elementary
but very useful identities.

LEMMA 3.1. — For any positive smooth function f on (—1,1), we have
1 1 1

/ (ﬁf)Q dVd:/ |f”|2 V2 dl/d+d/ ‘f/‘Q l/dI/d,
-1 —1 -1

If'P? d [t SR
< 7 Ef> 152 T v? dyy — 2d+2/ 7 V2 dy,.
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Now let us rephrase the flow methods in the framework of the ultraspher-
ical operator. With p = |f|P, Inequality (3.1) can be rewritten as

L e 1 ! o by
Flp] ::f/ |(p'/P)| vdrg— — / pdug —/ PP dug| =0
dJ_y p—2 -1 -1

if p # 2. In the case p = 2, Inequality (3.2) can be rewritten as

F[p«—l/l (VP 2w dv _1/1p10g V=0
S d) T2, It pdug o

Let us consider its evolution that along the heat flow

dp
g = Lo (3.3)

The following result has been established by D. Bakry and M. Emery in [5].

PROPOSITION 3.2. — Assume that either d > 1 and p € [1,2%], ord =1
and p = 1. If p solves (3.3), then the functional F[p] is nonincreasing.

But if we consider p belonging to the larger interval [1,2*], the functional
Flp| is nonincreasing along the fast diffusion / porous medium flow

Ip

9P _ pom 4
5 =L (3.4)
with
2 /1
m=1+=-(=>-1), 3.5
p<ﬁ > (3:5)

and an appropriate choice of 3: see [14, 16, 17, 18] for detailed results. Here
is a summary of the results when p > 1. Let us define the numbers

d?—d(p—-5)—2p+6=+(d+2)/d(d—2)(p—1)(2*—p)
d? (p? —=3p+3) —2d(p* —3) + (p—3)? ’

which are the roots of a second order polynomial 3 +— ~(8) whose expression
can be found in Section 4. Notice that Sy and B_ coincide when p = 2:
B+(2*) = (d—2)/(d — 3). The denominator

§(p,d):=d*> (p* —3p+3)—2d(p* —3)+ (p—3)*

is positive if and only if one of the following condition is satisfied:

ﬂ:ﬁ:(pv d) =

o d 2 57

d =4 and p # 3,

d=2ord=3andp ¢ [p_(d),p+(d)] where py(d) are the two roots
of the equation d(p,d) = 0,

e d=1andp<2.
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Notice that the case d = 3 and p = 6 formally corresponds to 8 = 400 and
deserves a spacial treatment. It is covered with m = 2/3 in (3.4).

PROPOSITION 3.3. — Let p € [1,2*] and either § € [S—(p,d), B+(p,d)]
Zf 6(pad) > 0, or ﬂ € (—007ﬂ+(p,d)] U [B*(p7d)a+oo) Zf §(p7d) < 0. If
d(p,d) = 0 for some p = 0, we assume that the range of admissible values
for B is the limit of the range as p — p_. Then %F[p] < 0 if p solves (3.4).

The result of Proposition 3.2 is obtained by checking for which values of p
the case § = 1 is admissible in Proposition 3.3. In both cases, the method
provides only a sufficient condition. See Figs. 3.1 and 3.2 for an illustration
when d = 5.

T\ 15

oL
Figure 3.1. The gray area corresponds to the (p,3) admissible region
in which F[p] is monotone nonincreasing if p solves (3.4), in the case
d =5. It is delimited by the curves p — [+(p,d). Similar patterns occur
in higher dimensions. When 1 < d < 4, the admissible region is slightly
more complicated: see [17] for details. In any dimension d > 2, the line
B8 = 1 intersects p — B_(p) at p = 2%. For any d > 1, there exists an
admissible value of 8 for any p € [1,2*) and also for p = 2" if d > 3.

4. A counter-example for the heat flow

The conditions p < 2# and p < 2* are only sufficient conditions for
the monotonicity of F[p] under the action of (3.3) and (3.4), and one can
wonder, for instance, if the monotonicity can be established for larger values
of p under the action of the heat flow (3.3).

A first obstruction arises from the fact that for p = 2*, due to conformal
invariance properties on the sphere, optimality in (3.1) is achieved not only
by the constant functions but also by any function of the form

uz)=(a+b2)" T Vze(-1,1). (4.1)
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. )
1 15 25 30 \

00}

Figure 3.2. The gray area corresponds to the (p, m) admissible region, in
the case d = 5, where m is the exponent in (3.4) and given in terms of m
by (3.5). The case m > 1 and m < 1 correspond respectively to the porous
medium and fast diffusion cases, while the threshold case m = 1, which is
limited to p € [1,2%], is the special case of the heat equation (3.3).

Indeed we have the following technical result.
PRrROPOSITION 4.1. — Ifd > 3 and p = 2%, the function
p(t,z) = (a(t) + b(t) 2) -
is positive and solves (3.4) with m =1 — % if and only if
a(t) =w coth ((d — D w (t+to)) ,
b(t) = wesch ((d— 1w (t+to)) ,
for some nonnegative integration constants w and tg.
Proof. — Inserting the expression of p in (3.4), we get that
a+bz=-b(d-1)(b+az)
for any z € (—1,1). Hence (a, b) solve the system
ad=—(d-1)b*, b =-(d—1)ab.
From the positivity of p, we deduce that a > |b| and deduce that

There exists a positive constant w such that
a=+Vw?2+b?

and the problem is reduced to
a'=(d-1) (v —2a%) .
We conclude after integrating the ODE for a and using b = 4v/a2 — w?.
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As we shall see next, if p = 2* and d > 3, and p is a solution of (3.4), the
only possible choice for 8 compatible with Proposition 3.3 is § = 4(2*) =
(d—2)/(d —3), and in this case

d 2 !
SFpl=-2
el B /_1 w
with p = u? = wPP. When u is given by (4.1), w satisfies
d—1 |w'?
e =0. 4.3
d—3 w (43)

That is, for p = u? = w”P, solution of (3.4), and u given by (4.1) as initial
datum, we obtain

d—1 |[w)?]?
"_ ﬂ % 1/2 C].Vd7 (42)

d
&F[P]\t:o =0.

If p (= uP) solves (3.3) instead of (3.4), we also find that $F[p];—o = 0,
because p is a minimizer of F[p] at ¢ = 0. However, it is simple to check that
the family (4.1) is not invariant under the action of (3.3), as

ap b+az

— =d(d—1)b———F——

ot ( ) (a+bz)dt+l
clearly differs from

—bz?+daz+ (d+1)b

Lp=db (a+ bz)d+2

We claim that any positive minimizer of Fp] is given by (4.1) for some a
and b such that a > |b|. Indeed by (4.2) and using the same notations as
above, a minimizer solves (4.3). This ODE can be solved using elementary
methods and shows that p(z) = (a +bz)~%

Altogether, this proves that p — F[p] cannot evolve monotonously along
the flow of (3.3), and proves the result of Proposition 2.1 with pg = p(to, - ),
for some to > 0. This first obstruction is however not fully explicit.

A second obstruction arises from the fact that if p € (2%,2*), one can
find explicit functions such that %F[Pht:o > 0, with p solving (3.3). We
shall prove the following refined version of Proposition 2.1.

PROPOSITION 4.2. — Assume thatd > 3, p € (27,2%) and 8 = B_(p, d).
There exists an explicit, non-constant, positive function f and a positive
constant A such that, if p solves (3.3) with initial datum p(t = 0,-) = |f|?,

then
d VI s
aF[P]\tzoiA/A?V drg.
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Before proving this proposition, let us recall some known results for the
heat flow and for the fast diffusion equation.

4.1. The heat flow approach

Assume that p # 2. If p = |u|P solves (3.3), then w is a solution of

/2
ot o

5 v (4.4)

with initial datum f and we notice that

d 1

il P dyg =0
dt ,1|u| Ya =1

so that u? := [ _11 |ulP duy is preserved. A straightforward computation (using
the definition of £ and Lemma 3.1) shows that

1d ! 12 d 2 —2
_§a _1<|u|y—|—p_2(u| _u))dyd

1 1 2
d—1 o]
12 2 1 2
= dva—22" " (p-1 w2 g
[1|u|y V4 d+2(p )[1u " v° duyy

d P,
—(p—1 dyy .
+ d+2 (p )[1 U2 v Va

The r.h.s. is positive if
d d—1 2
= (p-1)—-(5—=@-1) =0,
n=gia P (d+2(p ))

that is, if p < 2% when d > 1, or p > 1 when d = 1. Altogether we have the
identity

d [! d

a/,l <|u'|2u+ P (ul? —u2)> dvg

/1 " d—1 |ul‘2 ?
= U
-1

(-1
Hence we have proved the following result.

N —

1 ‘u/|4
v? dvg + 'yl/ 2 v? duyy.

—1

d+2 u
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PROPOSITION 4.3. — For all p € [1,2) U (2,2%] if d > 1, and for all

p € [1,2) U (400) if d = 1, there exists a constant v; > 0, such that if u is a

positive solution to (4.4), then
d 1
= P du, =0
dt 71” vd )

d 1 d 1 114

T B <|u’|21/—|— Zf? (u2 —u2)) dyg < —271/ ‘Zi v? duy,

-1

where vy is given by

2
71=<d1> (p-1) Q% —p) if d>1, mz% if d=1.

This result can be found in [5].

4.2. The nonlinear diffusion approach

Now let us turn our attention towards the nonlinear flow defined by (3.4)
with m and 0 related by (3.5), k =8 (p—2) + 1, and

p(t,z) = wP (;;},gy) , (t,z) e RY x [1,1].

Then the function w satisfies

dw _..2-28 |wl|2
5 — ¥ (Cw—f—m - Y (4.5)

and notice that

d 1 1
T w?P dyd:ﬂp(ﬁ—ﬁ(p—2)—1)/ w2 w2 duyg,
~1 ~1

so that WP = f_ll wPP dyy is preserved if k = B (p—2) + 1. Recall that (4.5)
is such that p(t, ) = |u(t, )P = |w(t, z)|’P obeys to the nonlinear flow (3.4).
Similarly as in the linear case we calculate:

1 d [t 2 d
_762&/_1 (’(wﬁ)/’ Hﬁ (ww_ww))dyd
Jw'|?

1 1
d—1 w
= WPt dyg -2 —— K—I—B—l/ w”’ ——
[ -2 v [
1 /14
(H-‘rﬁ—l)]/ %Vzdyd.
-1

v? dyy

+{n(ﬁ—1)+ dji-Q
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The r.h.s. is nonnegative if there exists a 8 € R such that

1

2
18 =B -1+ 7t s-1- (S (w5 1)

~(+86-2) -1+ 75 86-10 - (F5356-1) >0

With the choice of § as in Proposition 3.3, v is nonnegative. Indeed we have
B)=—-1+2bf - ap?

with a = (dfl)zpzf?’(d(?df;)g% (4 +2d+3) and b = d'{;_‘?’_;p and the reduced
discriminant
b —ac 29 1) (2d— p(d—2

takes nonnegative values when d > 3 if 1 < p < 2*. The equation y(8) =0
has at most two solutions = S4(p,d), which are the two roots of the
polynomial § — ~(8) given in Section 3. Notice here that when p = 2*
and d > 4, v(8) = 0 has a single root 8 = 54(2*,d) = (d — 2)/(d — 3)
and that (4.2) follows from our computations. The case d = 3 and p = 6
is a limit case in (4.5) corresponding to f — +oo and can be dealt with
directly using (3.4). In dimension d = 2 and 1, the discriminant is respectively
2(p—1) and 5 (p — 1)(p + 2) and takes nonnegative values for any p > 1.
Altogether we obtain the identity

1 d [t 2 d _
“zmar [, (0P 55 @2 -0 ) an

1 212 1 4
d—1 || 9 |w'|* o
:/_1 e A GRSl I dyd+7(ﬁ)/ v v,

-1
Notice that (1) = 71, so that the above identity generalizes the computation
done for the heat flow. We have proved the following result.

PROPOSITION 4.4. — For all p € [1,2) U (2,2*] if d = 4, for all p €
[1,2) U (2,2%) if d =3, and for allp € [1,2) U (+00) if d =1 or d = 2, there
exist two constants, f € R and v > 0, such that if w is a solution to (4.5),

then )
d
&/ wPP dyg =0
-1
and
d ! 2 d _
s (|(w5)' v+ P (ww w25)> duy
71 -
1,714
w
<—26%000) [ L0t an.
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This result can be found in [17].

13}

12}

11f

10}

09F

~

08F

[ ‘u‘/\ |
0.7 4 L /

Figure 4.1. The function p — B_(p, d) for various values of d = 3,4, ...10.
The straight horizontal line corresponds to 8 = 1. The plain straight vertical
lines correspond to p = 2% and the dashed straight vertical lines correspond
top = 2.

4.3. Proof of Proposition 4.2

We are now in a position to build our counter-example, which is the
second obstruction we search for.

With o = 45 8 (p — 1), 8 = S_(p,d) and w such that
w(z) = (a—i—bz)ﬁ

for some positive constants a and b, we observe that

/|2
.
= 4.6
w'=a— (4.6)
Next we consider u = w? and compute
1 12 /12
St = (g M @ -n
1 12 72
Lol o]
I} U w
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If we take this function w as initial datum and consider the flow defined
by (3.3) and (4.4), then with p(¢,z) = |w(t,z)|’? we find that

d
—aF[P]\t:O =—DF[p]-Lp
1 1 72
d—1
:[1|u11|2y2dyd72m( 1)/1u//|uu|l/2dVd
d P,
*m“"”/_l?” dva
= A/1 |u,|41/2d1/
-1 u2
where
d—1 d
—A= —1)2—-2—(p -1 ——(p—1) 2.
(@+B-1° 20— (p-D@+B-1)8+—5p-1)8

After eliminating « and (3, we can observe that p — A(p) is positive. An
algebraic proof is given below, in Lemma 4.5. This concludes the proof of
Proposition 4.2. (|

T L L L L L
50 52 54 56 58 60

Figure 4.2. The function p — A(p) for various values of d = 3 (left) and
d =5 (right). The patterns are similar for all d > 4. Here p is in the range
28 < p< 2",

LEMMA 4.5. — Assume that d > 3. With the above notations, A is pos-
itive when p € (2¢,2*) and 8 = B_(p, d).

Proof. — With a = d—+2 (p—1), we get that
(d—1)2p*>— (3d*— 2d+2)p+d*—4d—3 ,
A= 260—-1
d+2)? pe+ 28
and the equation A = 0 has at most two solutions § = By (p,d) with

d+2
d+2+ (d-1)/(p—1)(p—2#)

Bi (pa d) =
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Elementary computations show that 53— < ,6’% < B%r if p € (27#,2%). Indeed,
it is elementary to check that

d+2 < 1 1 >

—— | =——— | =%/p—1Fd(d—2)/2* —p+ (d—1)\/p — 2#

g ) =V VA2 Y (@-1)y/
is positive if p € (2%,2*). Moreover, we have that A is positive for any
p € (27,2%) if B, < B < B_, which concludes the proof. O

10 15 20 25 30 35

Figure 4.3. Here is the (p,3) representation when d = 5. The grey area
and the overlapping region (dark grey area) correspond to A > 0. There is
a region in which A is positive, which intersects the admissible range (light
grey area) of . Vertical lines are located at p =1, p = 2% and p = 2*.

~

0 5 10 15 20 2 1 2 3 4 5 6 7

Figure 4.4. The discussion of the admissible range of 3 and the positivity
region of A is more complicated in dimension d = 3 (right) than for d > 4.
A similar discussion can also be done in dimension d = 2 (left). Again the
light grey areas correspond to admissibility of 3, the grey areas to the zone
where A > 0, and the dark grey areas to the zones which are interesting to
us, where (8 is admissible, and A > 0.
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5. Improvements

In this last section we investigate improved inequalities or, to be precise,
improvements on the optimal constants, that can be achieved in inequali-
ties (1.1) and (1.2) when additional integral constraints are imposed. The
general message is that improvements can always be obtained, but semi-
explicit (and probably non-optimal) constants are known only when p < 2%,
The main goal of this section is to sketch the proof of Theorem 2.2. Let us
start by reviewing a few results.

If p € [1,2), we may refer to [17, Theorem 1.2] for an improvement
based on the spectral decomposition associated with the Laplace—Beltrami
operator on S% and standard L?(S%) orthogonality constraints.

A more striking improvement has been obtained in [16, Sections 4.5
and 4.6]. Under the assumption that f(—z) = f(z) for any z € (—1,1)
a.e., Inequality (3.1) can be improved to

d® + (d - 1)* (2% —p) 2 2
oo I 118)

for any p € [1,2) U (2,2%). When p = 1, we observe that [d?> + (d + 1)? x
(2% — p)]/d = 2 (d + 1) is the second positive eigenvalue of — L. As a limit
case corresponding to p = 2, the improvement also covers the case of the
logarithmic Sobolev inequality and shows that

a?+4d—1 [t ., |f|2>
- >4 ez 1 dvg,
(e > ST [ o g

for any function f € H'((—1,1),dvy) such that f(—z) = f(z) for any z €
(—1,1) a.e. We will state a better result (Theorem 5.6) under an antipodal
symmetry assumption at the end of this section.

1
—<f,£f>:/1|f'|2udud>

Let us state a first new result on improvements that provides us with a
non-constructive constant.

PROPOSITION 5.1. — Assume that p € [1,2) U (2,2*] and ¢ € (2,2%).
Then there exists a constant Cp, 4 > d such that

CP,Q

1
L n = [ APz 2 (112 - 171B)

for any a.e. function f € H((—1,1),dvq) such that

1
/ z|f]?dyg =0.
~1
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This result is based on a Bianchi-Egnell type improvement in the sub-
critical range and generalizes the result of [12] to p < 2*.

Proof. — A simple spectral decomposition shows that C,1 =2(d+ 1).

Assume next that p € (1,2)U(2,2*). It has been proved in [14] and in [17,
Theorem 1.1] that there exists a strictly convex function ® on R* such that
®(0) =0, (0) =1 and

H’u’”i}?(gd) -1

2
IVullfsgey = d® ( b—2

) Vu e HY(S?, dp)

such that Hu||iQ(Sd) =1.

The same improvement is also true in the context of the ultraspherical op-
erator as can be checked from [17, Sections 3 and 4]. Hence we have that

I£17 — 1

_<f,£f>>d<b< -

) Vfe HY((—1,1),dvy)

such that | f||3=1.

It is clear that the infimum of —(p—2) (f,L f) / (I fI|I2 = |If]3) can be taken
under the additional constraint || f||2 = 1 without restriction and that it can
be achieved only in the limit as f — 1. If the limit is equal to d, then f—1 is
up, to higher order terms, proportional to z, which contradicts the constraint
f_ll z|f|? dvg = 0. This proves that C, , > d.

If p = 2%, Inequality (3.1) is equivalent to the classical Sobolev inequal-
ity on R%, as can be shown using the stereographic projection. Arguing by
contradiction, as in [12], and using the fact that, due to the constraint, the
function (after stereographic projection) is asymptotically in the orthogonal
to the manifold of Aubin-Talenti functions, we get that Cy-, > d. Of course
one has to take care of all invariances as was done in [12], that is, of the
conformal invariance on S¢. Technical details are left to the reader. O

Now let us turn our attention to the proof of Theorem 2.2. Inequality (2.4)
follows from Proposition (5.1) when p = ¢ < 2* and u depends only on
z € (—1,1). For simplicity, we will argue in this simplified setting and only
indicate how to extend the result to the general case. In analogy with the
definition of A*, let us define

1
Lv 2 dl/d
o= inf f—ll(—) >d (5.1)
veHL (=L1).dva) [7 [0'|2 v dug
fjl v drg=1
fjl z|v|? dvg=0
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and consider the inequality
PR 217
v dv, I =z ——

a TTp—2 BT g

1

vV f e Y ((—1,1),dvy) s.t. / 2|fIPdvg =0 (5.2)
—1

PROPOSITION 5.2. — For any p € (2,2%), inequality (5.2) holds with

—1)2
N I Gl

m@# —p) (N =d).

Proof. — We consider the heat flow (3.3) applied to a function p with

initial datum |f|P, or equivalently, the flow defined by (4.4) applied to a
function u with initial datum f. We observe that

d 1 1 | /|2
T _1z|u|pdyd:p/ z|u|p_2u<£u+(p 1) " )dy

-1
1 1

z—p/ |u\p_2uu’ydud=—d/ 2z |ul? dyg .
-1 —1

Hence, if f_ll z|ulP dvg = 0 at t = 0, this is also true for any ¢ > 0. From
now on, we shall assume that this constraint is satisfied.

With no restriction, we may assume that v is positive. Instead of writing
that

1d [ 2 d 2
_55/_1 <|u| y+p_2\u| dvg

1 1 /12
d-1 [
m2 .2 " 2
= dvg —2 —— 1 —v°d
/_1|U| va d+2(p )/1U u v va

we can write that
1d [ ,, d
g [ (WP S ) v
(d*1)2 /1 ma2 .2
=(1—-(p—1) ———~— d
(1-0-v 5y ) [ e an

d > d-1
— (p—1 - -
+d+2(p )/_1

” y " 1/2 dVd
=370 -




Interpolation inequalities on the sphere

2
and observe that 1 — (p—1) (gd(;i}ré) is positive since p < 2% := (Qddfj)g. Using

the formula

1 1 !
/ 2 v dvg = / (L) dvg — d/ W' vdve,  (5.3)
1 -1

-1

and the definition of A*, we find that

1d ! /2 A 2
- — —/ >
T 1<|U|V+p_2|u>dl/d/0
if
_ (d_1)2 # *
)\_d+d(d+2) (27 —p) (N —d).

Using u = 1 + cug with € < 1/2 and ua(2) = 22 — 2 as a test function, we
obtain that A* < 2(d+ 1) since — Lug = 2(d + 1) us. O

Proposition 5.2 provides an improvement of the constant A because of
the following estimate.

PROPOSITION 5.3. — For any p € (2,2*), we have that
A >d.

Notice that the estimate of A based on A\* is a constructive but non explicit
estimate, as we do not know the value of A*, and also that

1
Lu)? dv, 1
M:d and / z|ulP dvg =0
f71 [u'|2 v dug -1

if u(z) = z. However the condition 4 > 0 on (—1,1) is not satisfied in this
example. Hence the positivity of w in the infimum is crucial.

Proof of Proposition 5.3. — For any u > 0, by expanding the square in
1
[ 1eutntu- P > o,
-1

and after an integration by parts, we observe that

1 1
/ (Lu)? dyg — ,u/ [u'|> v dug
-1

-1
1 1

>,u</ |u'|21/d1/d—,u/ |u—1]2dyd>.
-1 -1
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As a consequence, the infimum A\* can be estimated by
Jo P v dvg

welL (~1,0).dva) [1 Ju— 112 dug
fjlududzl

A >

which is achieved by some nonnegative function . The Maximum Principle
applies and shows that the minimizer is then positive. Since the optimality
condition fil (Lu)? dyy = dfil |u/|? v dvg would imply that u is of the
form u(z) = a + bz for some a and b € R such that [b| < |al, it is clear
that the constraint fil zuP dyg = 0 cannot be matched unless a = 0, which
violates the positivity of w. This proves that \* = d is impossible. O

Theorem 2.2 can be proved using the same strategy as for Proposi-
tions 5.2-5.3, except that the flow (3.3) associated with the ultraspherical
operator has to be replaced by the heat flow on S? given by (2.1). Compu-
tations are more technical and can be found in [18]. The key observation is
again that [,z p(t,x) dp =0 for any t > 0 if [, xp(t =0,z) dp = 0.

The estimates of Theorem 2.2 and Propositions 5.2-5.3 are constructive
for any p € (2,2%), but the values of the constants A* and A* are not known
so far. From their definitions (2.3) and (5.1) we know that A* > A* but it is
an open question so far to decide if equality holds or not.

In the limit case p = 2, one can get the explicit estimate
2(d+2)
2(d+3)+/2(d+3)(2d +3)

As a consequence, we obtain the following result.

AN >d+

PROPOSITION 5.4. — Let d > 2. For any u € H'(S?, du) \ {0} such that
Jsa z|ul® dp = 0, we have

1) ul?
[owuaus 5 [ ju og | 5 au
Sd Sd ||u||L2(Sd)

. L 2 4d—1
with § :=d + 3 2 (d+3)+1/2 (d+3) (2d+3)

Proof. — Our proof relies on an improved estimate of A* when p = 2. We
write u = 1+ a - x + v where v is orthogonal to the constants and all the x;
withi=1,...,d+ 1 and a € R?*!. This is based on the decomposition of
u into spherical harmonics (1 and a - z respectively correspond to the two
lowest eigenmodes of the Laplace-Beltrami operator on S?). Moreover u has
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to satisfy the constraint > 0. In order to estimate A*, we have to minimize E
given by

E= Jsa [Vul” du —db+f§d|vv|2d“>e</ U2d>
Joa lu =12 dp b+ fgav2dp T g4 .

where
b::/ (a-x)*dp = lof* c::/ v? dp
Sd d+1’ Sd
and
_db+2(d+1)c (d+2)b
e(c) = b+c =2(d+1) - b+c

is monotone increasing in c. We recall that v is orthogonal to the constants
and all the z; with ¢ = 1,...,d + 1, which shows that de Vo2 dp >
2(d+1) Jgu |v]* dpu and, as a consequence, the inequality E > e (g, v du).
Our strategy is to bound ¢ from below in terms of b using two different
estimates and then minimize the resulting expression in terms of b > 0.

First estimate. — From the fact that u =1+ a-z+ v > 0, we get that
—a-z < (1+v(x)), ie,

a-z>2—(1+v).
By exchanging x with —z we also get a-z < 1+ v(—z). Hence we have that
1+v(—2z)Z2a-x>—(1+v(x)),
ie.,
|a - 2| < max {[1+v(-z)[,[1 + v(z)[}

or
la- o < max {1+ v(=2)%, |1+ (@)} < 1+ v(=2) + 1+ v()

and now integrate. This proves that
bz/ (a~x)2d,u<2(1+/ U2du>.
Sd Sd

We get a first inequality
b
/ 02 dpu>--—1.
sd 2

This establishes the estimate
b 2(d+2)b
> _ — = _—_ .
E/e<2 1) 2(d+1) 552 (5.4)

where the r.h.s. is an increasing function of b > 2.
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Second estimate. — We write [o, (14 a -z +v)*z; du =0 as
2 a;

2a-z)x; dp = — .
/de(v+ a-x)x; du Tl

Note that v is perpendicular to x;. As for the r.h.s., it comes from the fact
that [, (a-z)x; dp = a; [ o} dp and [, @7 dp does not depend on 4,

d+1
so that [o, 27 dpu = 77 250 faa? dp = 5 [l dp = gj7 because

Zji% x? = 1. By Schwarz and then summing over ¢ we get

4b 4|a|2 2 / 2 4|a|2
= < d d = 4b).
d+1 (d+1)2 /de K de thaH—l clet4b)

2
Setting b = % as above, one easily gets a second inequality

b 2 b
/de;L}Z\/bQJri—Qb: .
sd d+1 d+1 b+ /bz_'_djil

Hence we have found that

Exe(2 /24—t —2p) —2(d+1)— 4 DEED oy
d+1 d+1+ —F>2——
btq/b2+ 2t

In this second estimate the r.h.s. as a function of b is monotone decreasing.

Conclusion of the proof. — By combining (5.4) and (5.5), we obtain a
global estimate which is independent of b > 0. Let us solve

b / b
Z - 2 7
e<2 1) e<2 b? + 1 2b>7 b>2.

All computations done, this gives

222(d+3)(2d+3)+5d+9
b=bid) =3 v d+ 1

and E}e(b*(d)—1>:d+ 2(d+2) .
2 2(d+3)+/2(d+3)(2d+3)
Notice that d — b, (d) is decreasing with limg_, . bi(d) = 2.

We have shown that

2(d+2)
2(d+3)++/2(d+3)(2d+3)
Conclusion holds for the same reasons as in Proposition 5.2. Using the heat
flow (2.1), we proceed as in Proposition 5.2 with the heat flow (3.3) associated

with the ultraspherical operator and obtain that the difference of the two
terms in the inequality is monotone. The reader is invited to check that

AN >d+
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estimates for p = 2 are consistent with the estimates for p > 2 in the limit
asp — 24. |

To conclude this section, let us state a last improvement that can be
obtained under a stronger constraint. With the additional restriction of an-
tipodal symmetry, that is

u(—z) =u(z) VaesS?t, (5.6)
we can state an explicit result that goes as follows.
PROPOSITION 5.5. — Ifp € (1,2) U (2,2%), we have

d?+(d—1)2 (2% - p)
ooa Ul el

for any v € HY(S?, du) such that (5.6) holds. The limit case p = 2 corre-
sponds to the improved logarithmic Sobolev inequality

ﬁ+4d |u|?
HVUH%P(Sd) Z 0 / |u ? log<” B
L2(S%)

for any u € HY(SY,du) \ {0} such that (5.6) holds.

IVallfga) >

See [16, Section 4.5] for a proof based on the ultraspherical operator. It is
easily recovered by taking the formula in Proposition 5.2 and replacing \* by
the second positive eigenvalue of the ultraspherical operator, namely Ao =
2(d+1). As usual the case of the logarithmic Sobolev inequality is obtained
by taking the limit as p — 2. This result is based on the heat flow (3.3) and
one can get a better result which also covers the range p € [2%#,2*] using a
nonlinear diffusion.

THEOREM 5.6. — Ifp € (1,2) U (2,2*%), we have

d_[), (@@ —p)
[ anz s SR TP (jul, g uln)

for any v € HY (S, du) such that (5.6) holds. The limit case p = 2 corre-
sponds to the improved logarithmic Sobolev inequality

/|vm2 > dd+3)” /‘mﬁog U
SEICESE FelZer

for any w € HY(S,dp) \ {0} such that (5.6) holds.
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The above constants are probably not optimal as we get no improvement
for p = 2* while one is expected because of the result in [12]. We may also
observe that when d = 3, the quotient of the sphere S? by the antipodal
symmetry is homeomorphic to the group of rotations SO(3) on R3. The
range in p covered in Theorem 5.6, that is p € [1,2*], is larger than the
range covered in Proposition 5.5, namely p € [1,2%#]. Moreover, a tedious
but elementary computation shows that

(d2—4)(2*—p)} P+ (d-1)° (2% —p) S _(@d=1*(p—1)
dd+2)+p—1 d T d(d(d+2)+p-1)

d|l+
is nonnegative for any p € [1,2%], then showing that the constant in Theo-
rem 5.6 is larger than the constant in Proposition 5.5.

Proof of Theorem 5.6. — The proof is implicitly contained in [18]. Using
the flow defined by

2
%1: = w22 (Aw+ (L+58(r-2) lvy)

it was shown that for all 0 < A < A, where

0d
/ (1 6) (Agrw)? + 2% Ric(Vw, Vo) dy
A= inf 82 d—1
weH? (%) Jsa IVW|? dp ’
Vw#0

the equation
A .
— Asdu + m (u — ’LLP ) =0 (57)

has a unique positive solution v € C?(S?), which is constant and equal to 1
for all p € (2,2*). Here, Ric(Vw, Vw) denotes the Ricci curvature, which on
S? is given by (d — 1) |[Vw|?. The constants 6 and /3 are chosen to be

(d—1)%2(p—1) d+2
=2 P apd f=-—T
dds+p_1 =T,

Now one observes that the flow preserves functions that have antipodal sym-
metry and hence these considerations apply in this case as well. On the
space of functions with antipodal symmetry one finds that the operator
(Aga)? — 2(d + 1) Aga is nonnegative which implies the inequality

/ (Agew)? du > 2 (d + 1)/ IVl du.
sd sd
In particular this yields that

A=(1-6)2(d+1)+0d,
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which proves the theorem. The improved logarithmic Sobolev inequality fol-
lows by taking the limit p — 2 and is standard. For more details the reader
may consult [18]. O

Concluding remarks and open problems

The limiting exponent 2# = (2 ddjf)é for the proofs based on the heat

flow is not a technical limitation, since monotonicity cannot be ensured for
p € (2%,2%]. On the other hand, when p < 27 it is possible to prove explicit
improvements of the inequalities under an additional integral constraint, in
the spirit of the Bianchi—Egnell estimate for the critical Sobolev inequality.
Explicit estimates of the optimal constants for constrained problems (with
integral constraints) when p > 2% are so far open questions.

All computations have been done for integer values of d only, because of
the d-dimensional interpretation of the computations in Section 1. However,
computations of Sections 3-5 can also be done for non-integer values of d.
In this paper, computations have been limited to the d-dimensional sphere
and even to the case of the ultraspherical operator, but the exponent 2#
also appears on general manifolds with positive curvature: see [18] for a
discussion and some extensions. The discussion of the general case is however
less interesting because the equation which generalizes (4.6) has, in general,
no explicit solution, and also because the constant obtained by the flow
method is only a lower bound for the optimal constant in the interpolation
inequality. By Obata’s theorem, this bound is actually not optimal except
when the manifold is a sphere.

It is an open question to understand whether the improved rates that
can be obtained in the asymptotic regimes also determine optimal constants
in the global interpolation inequalities. The improvements of Section 5 show
that there are still lots of issues to understand in the case of constrained
problems for subcritical and critical interpolation inequalities. It also em-
phasizes the role of the exponent p = 2% and its connection with the heat
flow.
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