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Infinite energy solutions of the two-dimensional
Navier–Stokes equations

Thierry Gallay (1)

ABSTRACT. — These notes are based on a series of lectures delivered
by the author at the University of Toulouse in February 2014. They are
entirely devoted to the initial value problem and the long-time behavior of
solutions for the two-dimensional incompressible Navier–Stokes equations,
in the particular case where the domain occupied by the fluid is the whole
plane R2 and the velocity field is only assumed to be bounded. In this
context, local well-posedness is not difficult to establish [18], and a priori
estimates on the vorticity distribution imply that all solutions are global
and grow at most exponentially in time [19, 39]. Moreover, as was recently
shown by S. Zelik, localized energy estimates can be used to obtain a
much better control on the uniformly local energy norm of the velocity
field [45]. The aim of these notes is to present, in an explanatory and
self-contained way, a simplified and optimized version of Zelik’s argument
which, in combination with a new formulation of the Biot–Savart law
for bounded vorticities, allows one to show that the L∞ norm of the
velocity field grows at most linearly in time. The results do not rely on the
viscous dissipation, and remain therefore valid for the so-called “Serfati
solutions” of the two-dimensional Euler equations [2]. In the viscous case,
a recent work by S. Slijepčević and the author shows that all solutions
stay uniformly bounded if the velocity field and the pressure are periodic
in a given space direction [15, 16].

RÉSUMÉ. — Ces notes s’appuient sur un cours donné par l’auteur à
l’université de Toulouse en février 2014. Elles sont entièrement consacrées
au problème de Cauchy et au comportement en temps grands des solutions
des équations de Navier–Stokes incompressibles à deux dimensions, dans
le cas particulier où le domaine occupé par le fluide est le plan R2 tout
entier et où le champ de vitesse est seulement supposé borné. Dans ce
contexte, il n’est pas difficile de montrer que le problème est localement
bien posé [18], et des estimations a priori sur le tourbillon impliquent
que toutes les solutions sont globales et que leur croissance temporelle
est au plus exponentielle [19, 39]. En outre, comme l’a récemment montré
S. Zelik, on peut utiliser des estimations d’énergie localisées pour obtenir
un contrôle beaucoup plus précis sur le champ de vitesse dans l’espace
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d’énergie uniformément local [45]. Le but de ces notes est de présenter,
de façon pédagogique et indépendante, une version simplifiée et optimisée
de l’argument de Zelik qui, combinée avec une nouvelle formulation de
la loi de Biot–Savart pour des tourbillons bornés, permet de montrer
que la croissance temporelle du champ de vitesse est au plus linéaire.
Ces résultats sont établis sans utiliser la dissipation d’énergie due à la
viscosité, et restent donc valables pour les solutions dites « de Serfati » des
équations d’Euler en dimension deux [2]. Dans le cas visqueux, un travail
récent de S. Slijepčević et de l’auteur montre que toutes les solutions
demeurent uniformément bornées si le champ de vitesse et la pression
sont périodiques dans une direction donnée du plan [15, 16].

1. Introduction

The aim of these notes is to present in a unified and rather self-contained
way a set of recent results by various authors which give some valuable insight
into the dynamics of the incompressible Navier–Stokes equations in large or
unbounded two-dimensional domains. We must immediately point out that
the restriction to the two-dimensional case is more a technical necessity than
a deliberate choice: all questions that are discussed below would be equally
important and considerably more challenging for three-dimensional fluids,
but in the present state of affairs we simply do not know how to address
them mathematically. It should be mentioned, however, that there exist sit-
uations where a two-dimensional approximation is undoubtedly relevant for
real fluids. This is the case, for instance, when the aspect ratio of the domain
containing the fluid is very large, so that the motion in one space direction
can be neglected under certain conditions. Large-scale oceanic motion is a
typical example that is good to keep in mind, although in that particular
case a realistic model should take into account additional effects such as the
Coriolis force, the wind forcing at the free surface, the topography of the
bottom, or the energy dissipation in boundary layers.

If the Navier–Stokes equations are considered in a smooth two-dimen-
sional domain Ω ⊂ R2, with no-slip boundary conditions, it is well known
that there exists a unique global solution in the energy space L2(Ω) if the
initial data have finite kinetic energy. This fundamental result was first es-
tablished by J. Leray in the particular situation where Ω is the whole plane
R2 [26]. Bounded domains were also considered by Leray, who proved lo-
cal well-posedness in that case as well as global well-posedness for small
initial data [27]. The restriction on the size of the data was completely re-
moved later [25], and the existence proof was subsequently written in a nice
functional-analytic setting [12] which is applicable to essentially arbitrary do-
mains with smooth boundary, including for example exterior domains [24].
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If no exterior force is exerted on the fluid, the kinetic energy is a nonincreas-
ing function of time that converges to zero as t → ∞, see [32]. The rate
of convergence is exponential if Ω is bounded, due to the boundary condi-
tions, and in the unbounded case it depends on the localization properties of
the initial data [40, 44]. To conclude this brief survey, we also mention that
infinite-energy solutions can be considered in unbounded two-dimensional
domains, and may exhibit nontrivial long-time asymptotics. For instance,
in the whole plane R2, solutions with integrable vorticity distribution but
nonzero total circulation have infinite kinetic energy, and converge toward
nontrivial self-similar solutions as t→∞ [17].

The results mentioned above, and many others that were omitted, may
sometimes lead to the hasty conclusion that “everything is known” about the
dynamics of the two-dimensional Navier–Stokes equations. This is of course
deeply incorrect, and a more careful thinking reveals that even simple and
natural questions still lack a satisfactory answer. Here is a typical example,
which motivates some of the questions investigated in the present notes.
Consider the free evolution of a viscous incompressible fluid in a bounded
two-dimensional domain Ω ⊂ R2, with no-slip boundary conditions. We are
interested in the situation where the domain is very large compared to the
length scale given by the kinematic viscosity and the typical size of the
velocity; in other words, the Reynolds number of the flow is very high. If
D ⊂ Ω is a small subdomain located far from the boundary ∂Ω, we are
interested in estimating the kinetic energy of the fluid in the observation
domain D at a given time t. That energy is certainly smaller than the total
kinetic energy of the fluid at time t, which in turn is less than the same
quantity at initial time, but such an estimate is ridiculously non optimal.
When sailing the ocean, nobody expects that the total energy of the sea,
or a substantial fraction of it, could suddenly get concentrated in a small
neighborhood of the boat, and we certainly do not suggest this mechanism
as a possible explanation for the formation of rogue waves! It is intuitively
clear that the energy in the subdomain D at time t should be essentially
independent of the size of the domain Ω and of the total kinetic energy of the
fluid; instead it should be possible to estimate that quantity in terms of the
size ofD and the initial energy density only, but to the author’s knowledge no
such result has been established so far. In a more mathematical language, we
are lacking uniformly local energy estimates for the fluid velocity that would
hold uniformly in time and depend only on the initial energy density. Such
estimates would tell us how the energy can be redistributed in the system,
due to advection and diffusion, until it is dissipated by the viscosity.

Since the questions we have just mentioned are independent of the size
of the fluid domain and of the exact nature of the boundary conditions, it
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seems reasonable to attack them first in the idealized situation where the
fluid fills the whole plane R2 and the velocity field is merely bounded. We
thus consider the Navier–Stokes equations

∂tu+ (u · ∇)u = ν∆u− 1
ρ
∇π , div u = 0 , (1.1)

where the vector field u(x, t) ∈ R2 is the velocity of the fluid at point x ∈ R2

and time t ∈ R+, and the scalar field π(x, t) ∈ R is the pressure in the fluid at
the same point. The physical parameters in (1.1) are the kinematic viscosity
ν > 0 and the fluid density ρ > 0, which are both assumed to be constant.
To eliminate the fluid density from (1.1), we introduce the new function
p = π/ρ, which we still call (somewhat incorrectly) the “pressure” in the
fluid. Many authors also eliminate the kinematic viscosity by an appropriate
rescaling, but dimensionality checks then become more cumbersome, so we
prefer keeping the parameter ν.

The first equation in (1.1) corresponds to Newton’s equation for a fluid
particle moving under the action of the pressure gradient −∇p and the in-
ternal friction ν∆u, whereas the relation div u = 0 is the mathematical
formulation of the incompressibility of the fluid. The nonlinear advection
term in (1.1) is due to the definition of the velocity field in the Eulerian
representation, which implies that the acceleration of a fluid particle located
at point x ∈ R2 is not ∂tu(x, t) but ∂tu(x, t) + (u(x, t) · ∇)u(x, t). No evo-
lution equation for the pressure is needed, because p can be expressed as a
nonlinear and nonlocal function of the velocity field u by solving the elliptic
equation

−∆p = div((u · ∇)u) , (1.2)

which is obtained by taking the divergence with respect to x of the first
equation in (1.1). Note that (1.2) only determines the pressure up to a har-
monic function in R2, but if the velocity field is bounded and divergence
free one can show that (1.2) has a solution p ∈ BMO(R2) which is unique
up to an irrelevant additive constant. This is the canonical choice of the
pressure, which will always be made, albeit tacitly, in what follows. Here
BMO(R2) denotes the space of functions of bounded mean oscillation in R2,
see Section 2.2 below for a brief presentation. The interested reader should
consult the monographs [6, 29, 31, 43] for a careful derivation and a detailed
discussion of the model (1.1).

In most mathematical studies of the Navier–Stokes equations (1.1), it is
assumed that the total (kinetic) energy of the fluid is finite:

E(t) := 1
2

∫
R2
|u(x, t)|2 dx < ∞ . (1.3)
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Strictly speaking the physical energy is ρE(t), but we use definition (1.3)
in agreement with our previous choice of eliminating the density parameter
ρ. It is important to realize that E(t) is a Lyapunov function for the flow
of (1.1), because a formal calculation shows that

d
dtE(t) = −ν

∫
R2
|∇u(x, t)|2 dx 6 0 . (1.4)

As a consequence, we have

E(t) + ν

∫ t

0

∫
R2
|∇u(x, s)|2 dxds = E(0) , t > 0 . (1.5)

The energy equality (1.5) plays a crucial role in Leray’s construction of global
solutions to the Navier–Stokes equations in R2 [26].

As was already mentioned, we consider in these notes the more general
situation where the velocity field is only assumed to be bounded. To avoid
inessential technical problems related to continuity at initial time, we assume
that u belongs to the Banach space

X = Cbu(R2)2

=
{
u : R2 → R2

∣∣∣u is bounded and uniformly continuous
}
, (1.6)

equipped with the uniform norm. If u ∈ X, the energy (1.3) is infinite in
general, but we can still consider the energy density e = 1

2 |u|
2, which satisfies

the following local version of (1.4):

∂te+ div
(

(p+ e)u
)

= ν∆e− ν|∇u|2 , x ∈ R2 , t > 0 . (1.7)

Another important quantity is the vorticity ω = curlu = ∂1u2−∂2u1, which
evolves according to the simple advection-diffusion equation

∂tω + u · ∇ω = ν∆ω . (1.8)
If the velocity field is bounded, one can apply the parabolic maximum prin-
ciple to (1.8) and prove that all Lp norms of ω are Lyapunov functions for
the flow of (1.8). The case p = ∞ is most relevant for us, because if we as-
sume that the initial velocity u0 belongs to X, standard parabolic smoothing
estimates imply that, for any positive time, the derivative ∇u is a bounded
function on R2, see (1.10) below. The quantity ‖ω( · , t)‖L∞ is therefore fi-
nite and nonincreasing with time for all t > 0. We also mention that, since
div u = 0 and curlu = ω, it is possible to reconstruct the velocity field u
from the vorticity ω, up to an additive constant, by the Biot–Savart for-
mula, see Section 4.1 for a detailed discussion. However, a uniform bound
on the vorticity does not allow to control the L∞ norm of the velocity field,
hence a priori estimates are not sufficient to prove that solutions of (1.1)
stay uniformly bounded in time.
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A global existence result for solutions of the Navier–Stokes equations (1.1)
in the space X was first published by Giga, Matsui, and Sawada [18, 19],
although a similar result was previously obtained in [5]. The proof in [19]
shows that the L∞ norm of the velocity field cannot grow faster than a
double exponential as t→∞, but that pessimistic estimate was subsequently
improved by Sawada and Taniuchi [39] who obtained a single exponential
bound. These early results are summarized in our first statement:

Theorem 1.1 ([19, 39]). — For any u0 ∈ X with div u0 = 0, the
Navier–Stokes equations (1.1) have a unique global (mild) solution u ∈
C0([0,+∞), X) with initial data u0. Moreover, if the initial vorticity ω0 =
curlu0 is bounded, we have the estimate

‖u( · , t)‖L∞ 6 K0‖u0‖L∞ exp
(
K0 ‖ω0‖L∞t

)
, t > 0 , (1.9)

where K0 > 1 is a universal constant.

In Theorem 1.1, a mild solution refers to a solution of the integral equa-
tion associated with (1.1), see Section 2.4 below for details. The assumption
that the initial vorticity be bounded is only needed to derive the nice esti-
mate (1.9), which does not depend on the viscosity parameter. If we only
suppose that u0 ∈ X, div u0 = 0, and u0 6≡ 0, the local existence theory
shows that

sup
06t6T

‖u( · , t)‖L∞ + sup
0<t6T

(νt)1/2‖∇u( · , t)‖L∞ 6 K1‖u0‖L∞ ,

for T = ν

K2
1‖u0‖2

L∞
, (1.10)

where K1 > 1 is a universal constant, see Section 2.4. It follows in particular
from (1.10) that ‖ω( · , T )‖L∞ 6 2‖∇u( · , T )‖L∞ 6 2K2

1ν
−1‖u0‖2

L∞ , so if we
use (1.10) for t ∈ [0, T ] and (1.9) for t > T we obtain a bound of the form

‖u( · , t)‖L∞ 6 K2‖u0‖L∞ exp
(
K2 ν

−1‖u0‖2
L∞t

)
, t > 0 , (1.11)

for some universal constant K2 > 1. Estimate (1.11) holds for all u0 ∈ X
with div u0 = 0, but the right-hand side depends explicitly on the viscosity
parameter ν.

There are reasons to believe that the exponential upper bound (1.9) is the
best one can obtain using only the a priori estimates given by the vorticity
equation. However, as was shown recently by S. Zelik [45], the above results
can be improved in a spectacular way if one also exploits the local dissipation
law (1.7), which asserts that no energy is created inside the system. The
work of Zelik is devoted to a more general Navier–Stokes system, which
includes an additional linear damping term and an external force, but in the
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particular case of equation (1.1) a slight extension of the results of [45] gives
the following statement:

Theorem 1.2 ([45, revisited]). — If u0 ∈ X, div u0 = 0, and ω0 =
curlu0 ∈ L∞(R2), the solution of the Navier–Stokes equations (1.1) given by
Theorem 1.1 satisfies

‖u( · , t)‖L∞ 6 K3‖u0‖L∞
(

1 + ‖ω0‖L∞t
)
, t > 0 , (1.12)

where K3 > 1 is a universal constant.

Estimate (1.12) is clearly superior to (1.9), because it shows that the L∞
norm of the velocity field grows at most linearly as t→∞. As before, if we
do not assume that ω0 ∈ L∞(R2), we can use (1.10) for short times to prove
that the bound (1.12) remains valid if ‖ω0‖L∞ is replaced by 2K2

1ν
−1‖u0‖2

L∞

in the right-hand side. We thus find

‖u( · , t)‖L∞ 6 K4‖u0‖L∞
(

1 + ‖u0‖2
L∞t

ν

)
, t > 0 , (1.13)

for some universal constant K4 > 1.

The strategy of the proof of Theorem 1.2 in [45] can be roughly explained
as follows. Suppose that we want to control the solution of (1.1) given by
Theorem 1.1 on some large time interval [0, T ]. A natural idea is to compute,
for t ∈ [0, T ], the amount of energy contained in the ball of radius R > 0
centered at x ∈ R2:

ER(x, t) = 1
2

∫
BR

x

|u(y, t)|2 dy , where BRx =
{
y ∈ R2

∣∣∣ |y−x| 6 R}. (1.14)
Although the Navier–Stokes equations are dissipative, it is clear that ER(x, t)
is not necessarily a decreasing function of time, because energy may enter
the ball BRx through the boundary due to the advection term div((p+ e)u)
and the diffusion term ν∆e in (1.7). However, the key observation is that
these energy fluxes become relatively negligible when the radius R is taken
sufficiently large. Indeed, since the velocity field u( · , t) is bounded on R2

for any t ∈ [0, T ], we expect that for large R the energy ER(x, t) will be
proportional to the area of the ball BRx , which is πR2, whereas the flux
terms will be proportional to the length of the boundary ∂BRx , which is
2πR. This suggests that taking R sufficiently large, depending on T , may
help controlling the relative contribution of the energy entering the ball BRx
through the boundary. As a matter of fact, S. Zelik proved in [45] that there
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exists a universal constant K5 > 1 such that

sup
t∈[0,T ]

sup
x∈R2

1
πR2

∫
BR

x

|u(y, t)|2 dy 6 K5 sup
x∈R2

1
πR2

∫
BR

x

|u0(y)|2 dy

6 K5‖u0‖2
L∞ , (1.15)

provided R is taken sufficiently large, depending on T . More precisely, we
shall see in Section 3.2 below that one can take

R = max{R0 , C
√
νT , C‖u0‖L∞‖ω0‖L∞T 2} ,

where C > 0 is a universal constant and R0 = ‖u0‖L∞/‖ω0‖L∞ . Esti-
mate (1.15) is an example of uniformly local energy estimate for the Navier–
Stokes equations, because the quantity it involves is equivalent to the square
of the norm of u in the uniformly local Lebesgue space L2

ul(R2), see Sec-
tion 4.3 for an introduction to these spaces. It is clear that (1.15) is opti-
mal in the sense that, if the initial velocity u0 is a nonzero constant, then
u( · , t) = u0 for all t > 0 and (1.15) becomes an equality if K5 = 1. What
may not be optimal is the dependence of the radius R upon the observation
time T , namely R = O(T 2) as T →∞. If we had (1.15) for a smaller value
of R, this would improve inequality (1.12), because as we shall see in Sec-
tion 3.3 the right-hand side of (1.12) behaves like ‖u0‖1/2

L∞‖ω0‖1/2
L∞R(t)1/2 as

t→∞.

It is worth emphasizing that estimates (1.9) and (1.12) do not involve
the viscosity parameter ν, and thus do not rely on energy dissipation in
the system. Passing to the limit as ν → 0, they remain valid for global so-
lutions of the Euler equations in R2 with bounded velocity and vorticity.
Such solutions were recently studied by Ambrose, Kelliher, Lopes Filho, and
Nussenzveig Lopes in [2, 23], following an earlier work by Ph. Serfati [41],
and the vanishing viscosity limit (over a short time interval) was investi-
gated in [7]. Existence of solutions in the ideal case ν = 0 can be proved by
an approximation argument, which is quite different from the simple proof
presented in Section 2 for the Navier–Stokes equations, but once global solu-
tions have been constructed the bounds (1.9), (1.12) can be established just
as in the viscous case, see [4].

On the other hand, if one does use energy dissipation when ν > 0, it is
possible to obtain the following uniformly local enstrophy estimate:

sup
x∈R2

1
πR2

∫
BR

x

|ω(y, t)|2 dy 6 K6
‖u0‖2

L∞

νt
, 0 < t 6 T , (1.16)

where R = R(T ) is as in (1.15) and K6 > 0 is a universal constant. Of
course, if the initial vorticity is bounded, the left-hand side of (1.16) is also
smaller than ‖ω0‖2

L∞ by the maximum principle. Estimate (1.16) shows that
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a suitable average of the vorticity distribution converges to zero like t−1/2

as t → ∞. This strongly suggests that the long-time behavior of solutions
to (1.1) should be governed by irrotational flows, although no precise state-
ment is available so far.

Theorem 1.2 is the best we can do without further assumptions on the ini-
tial data. Since the right-hand side of (1.12) still depends on time, although
in a rather mild way, we do not have a satisfactory answer yet to the original
question of estimating the energy of a solution of (1.1) in an observation
domain D ⊂ R2 in terms of the initial energy density only. There is no rea-
son to believe that the linear time dependence in (1.12) is sharp, and to the
author’s knowledge there is no example of a solution to the Navier–Stokes
equations (1.1) for which the L∞ norm of the velocity field grows unbound-
edly in time. However, we believe that genuinely new ideas are needed to
improve estimate (1.12).

To conclude this introduction, we briefly present an interesting particular
case where the conclusion of Theorem 1.2 can be substantially strengthened.
Following [1, 15, 16], we consider the Navier–Stokes equations (1.1) in the
infinite strip ΩL = R × [0, L], with periodic boundary conditions. Equiva-
lently, we restrict ourselves to solutions of (1.1) in R2 for which the velocity
field u(x, t) and the pressure p(x, t) are periodic of period L > 0 in one
space direction, which is chosen to be the second coordinate axis. We de-
note by XL the set of all u ∈ X such that u(x1, x2) = u(x1, x2 + L) for all
x = (x1, x2) ∈ R2. If u ∈ XL is divergence free, one can show that the elliptic
equation (1.2) has a bounded solution which is L-periodic with respect to
the second coordinate x2, and that this solution is unique up to an additive
constant. This is the canonical definition of the pressure in the present con-
text, which agrees with the choice made in Theorems 1.1 and 1.2. We are
now in position to state our last result:

Theorem 1.3 ([16]). — For any u0 ∈ XL with div u0 = 0, the
Navier–Stokes equations (1.1) have a unique global (mild) solution u ∈
C0([0,+∞), XL) with initial data u0. Moreover, we have the estimate

‖u( · , t)‖L∞+(νt)1/2‖ω( · , t)‖L∞ 6 K7‖u0‖L∞(1+R5
u) , t > 0 , (1.17)

where Ru = ν−1L‖u0‖L∞ is the initial Reynolds number and K7 > 1 is a
universal constant.

The conclusion of Theorem 1.3 is obviously much stronger than that of
Theorem 1.2. First, the right-hand side of (1.17) does not depend on time,
so that the velocity field u( · , t) is uniformly bounded for all times. This
is the result that we were not able to prove in the general case. Next, the
vorticity distribution ω( · , t) converges uniformly to zero as t → ∞, at the
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optimal rate O(t−1/2) which is the same as for the linear heat equation. This
is clearly compatible with (1.16), but the estimate is now much more precise.
In addition, the proof of Theorem 1.3 given in [16] provides detailed informa-
tions on the long-time behavior of the solutions, which are shown to converge
exponentially in time to a shear flow governed by a linear advection-diffusion
equation on the real line R. These very strong conclusions are obtained us-
ing, in particular, the crucial observation made in [1] that the Biot–Savart
law is more powerful when periodicity is assumed in one space direction. In-
deed, a uniform bound on the vorticity ω allows to control the L∞ norm of
the velocity field, except for the quantitym(x1, t) = L−1 ∫ L

0 u2(x1, x2, t) dx2,
which represents the average of the second component of the velocity over
one period. We observe, however, that the right-hand side of (1.17) depends
on the viscosity parameter ν, through the initial Reynolds number Ru, and
does not have a finite limit as ν → 0. As a matter of fact, energy dissipation
is an essential ingredient in the proof of Theorem 1.3.

The rest of these notes is organized as follows. Section 2 is entirely devoted
to the proof of Theorem 1.1. For the reader’s convenience, we first recall well
known properties of the heat semigroup in the space (1.6), we study the el-
liptic equation (1.2), and we define the Leray–Hopf projection which allows
us to eliminate the pressure from (1.1). We then establish local existence
of solutions in X by applying a fixed point argument to the integral equa-
tion associated with (1.1). Finally, we prove global existence and obtain the
exponential bound (1.9) using a nice Fourier-splitting argument borrowed
from [39]. In Section 3, we develop the uniformly local energy estimates
which are the key ingredient in the proof of Theorem 1.2. As a warm-up,
we first apply uniformly local L2 and Lp estimates to solutions of the linear
heat equation. The core of the proof is Section 3.2 where, following the ap-
proach of Zelik [45], we use uniformly local energy estimates to control the
solutions of the Navier–Stokes equations in R2. This gives estimate (1.15),
and it is then relatively simple to deduce the upper bound (1.12) as well
as the enstrophy estimate (1.16). The final section is an appendix, where
important auxiliary results are collected. We first discuss the Biot–Savart
formula, which allows us to reconstruct the velocity field from the vorticity
up to an additive constant. We also establish a new representation formula
for the pressure, which can be expressed as an absolutely convergent integral
involving the velocity field and the vorticity. In Section 4.3 we define the uni-
formly local Lebesgue spaces, and we specify a class of weight functions that
can be used to construct equivalent norms. Finally miscellaneous notations
and results are collected in the last subsection, for easy reference.
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Disclaimer

The present text is a set of lecture notes, not an original research article.
Most of the results presented here have already been published elsewhere,
and are not due to the author. In particular, the proof of Theorem 1.1 in
Section 2 is entirely taken from [18, 19, 39], and the preliminary material
collected in Sections 2.1–2.3 can be found in many textbooks. Section 3 is a
little bit more original, although the statement and the proof of Theorem 1.2
are taken from the work of Zelik [45] with relatively minor modifications, see
also [4] for recent improvements in the same direction. In particular, the way
we treat the pressure in Section 3.2 differs notably from [45] and simplifies
somewhat the argument by avoiding the use of delicate interpolation inequal-
ities established in the appendices of [45] and [4]. The linear bound (1.12)
does not appear explicitly in [45], but follows quite easily from the uniformly
local energy estimate (1.15) and the a priori bound on the vorticity, see [4].
The uniformly local enstrophy estimate (1.16) is also new. Somewhat para-
doxically, the most original material is perhaps in the Appendix. The Biot–
Savart formula and the representation of the pressure given in Sections 4.1
and 4.2 are apparently new, although the recent work [23] contains several
interesting results in the same spirit. In Section 4.3, Lemma 4.7 provides a
characterization of admissible weights which is substantially more general
than what can be found in the literature, see e.g. [3, Def. 4.1].
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2. The Cauchy problem with bounded initial data

In this section we study the Cauchy problem for the Navier–Stokes equa-
tions

∂tu+ (u · ∇)u = ν∆u−∇p , div u = 0 , (2.1)
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in the whole plane R2, with bounded initial data. We thus assume that the
velocity field u = (u1, u2) belongs to the Banach space X defined in (1.6),
which is equipped with the uniform norm

‖u‖L∞ = sup
x∈R2

|u(x)| , where |u| = (u2
1 + u2

2)1/2 .

Our first goal is to reformulate the Navier–Stokes equations (2.1) as an in-
tegral equation in X. This requires three preliminary steps, which are per-
formed in Sections 2.1-2.3.

2.1. The heat semigroup on Cbu(R2)

Let L(X) be the space of all bounded linear operators on X. For any
t > 0, we denote by S(t) ∈ L(X) the linear operator defined, for all u0 ∈ X,
by the formula(

S(t)u0

)
(x) = 1

4πt

∫
R2

e−
|x−y|2

4t u0(y) dy , x ∈ R2 . (2.2)

We also set S(0) = 1 (the identity map). The family {S(t)}t>0 has the
following properties, which are well known and easy to verify [10, §2.3].

(1) For any u0 ∈ X, one has S(t)u0 ∈ X for any t > 0 and ‖S(t)u0‖L∞ 6
‖u0‖L∞ . That bound holds because the heat kernel in (2.2) is posi-
tive and normalized so that

1
4πt

∫
R2

e−
|x|2

4t dx = 1 , for any t > 0 .

(2) One has S(t1 + t2) = S(t1)S(t2) for all t1, t2 > 0. If both t1, t2 are
positive, this follows from the identity
1

4π

∫
R2

e−
|x−y|2

4t1 e−
|y|2
4t2 dy = t1t2

t1 + t2
e−

|x|2
4(t1+t2) , x ∈ R2 ,

which can be established by a direct calculation, or by using the
Fourier transform to compute the convolution product in the left-
hand side.

(3) For any u0 ∈ X, the map t 7→ S(t)u0 is continuous from [0,∞)
into X. More generally, for any u0 ∈ L∞(R2)2, one can verify that
t 7→ S(t)u0 is continuous from (0,∞) into X, but right-continuity
at t = 0 holds only if u0 ∈ X.

(4) If u0 ∈ X and if we set u(x, t) = (S(t)u0)(x) for x ∈ R2 and t > 0,
then u is smooth for t > 0 and satisfies the heat equation{

∂tu(x, t) = ∆u(x, t) , x ∈ R2 , t > 0 ,
u(x, 0) = u0(x) , x ∈ R2 .

(2.3)
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In fact u is the unique bounded solution of (2.3).
(5) For any u0 ∈ X and any multi-index α = (α1, α2) ∈ N2, there exists

a constant C > 0 such that

‖∂αS(t)u0‖L∞ 6
C

t|α|/2 ‖u0‖L∞ , for all t > 0 , (2.4)

where ∂α = ∂α1
1 ∂α2

2 and |α| = α1+α2. In particular ‖∇S(t)u0‖L∞ 6
Ct−1/2‖u0‖L∞ .

Properties 1–3 above can be summarized by saying that the family {S(t)}t>0
is a strongly continuous semigroup of contractions in X, see [9, 35]. Prop-
erty 4 implies that the Laplacian operator is the generator of the heat semi-
group. Finally, the smoothing estimates (2.4) are related to the analyticity
of the semigroup {S(t)}t>0 in X.

2.2. Determination of the pressure

Applying the divergence operator to the first equation in (2.1), we obtain
the elliptic equation

−∆p(x) = div
(

(u(x) · ∇)u(x)
)
, x ∈ R2 , (2.5)

which determines the pressure p up to a harmonic function on R2. To
construct a particular solution we observe that, since div u = 0, we can
write (2.5) in the equivalent form

−∆p(x) =
2∑

k,`=1
∂k∂`

(
uk(x)u`(x)

)
, x ∈ R2 .

If we take the Fourier transform of both sides and use the conventions spec-
ified in Section 4.4, we thus find

|ξ|2p̂(ξ) =
2∑

k,`=1
(iξk)(iξ`)ûku`(ξ) , hence p̂(ξ) =

2∑
k,`=1

iξk
|ξ|

iξ`
|ξ|

ûku`(ξ) ,

where equality holds in the space of tempered distributions S ′(R2). This
gives (at least formally) the following solution to (2.5)

p =
2∑

k,`=1
RkR`(uku`) , (2.6)

where R1, R2 are the Riesz transforms on R2, namely the linear operators
defined as Fourier multipliers through the formulas

(R̂kf)(ξ) = iξk
|ξ|

f̂(ξ) , k = 1, 2 , ξ ∈ R2 \ {0} . (2.7)
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Here f ∈ S(R2) is an arbitrary test function. In ordinary space, the Riesz
transforms are singular integral operators of the form

(Rkf)(x) = − 1
2π lim

ε→0

∫
|y|>ε

f(x− y) yk
|y|3

dy , k = 1, 2 , x ∈ R2 .

Using the Calderón-Zygmund theory [42, Chap. I], one can prove that the
Riesz transforms define bounded linear operators on Lp(R2) for p ∈ (1,∞):

‖Rkf‖Lp 6 Cp‖f‖Lp , k = 1, 2 , 1 < p <∞ . (2.8)

Unfortunately, estimate (2.8) fails both for p = 1 and p =∞. In particular, if
f ∈ L∞(R2), the Riesz transform Rkf is not a bounded function in general,
but a function of bounded mean oscillation in the sense of the following
definition.

Definition 2.1. — A locally integrable function f on R2 belongs to
BMO(R2) if there exists A > 0 such that, for any ball B ⊂ R2 with nonzero
Lebesgue measure |B|, one has

1
|B|

∫
B

|f(x)− fB |dx 6 A , where fB = 1
|B|

∫
B

f(x) dx . (2.9)

If f ∈ BMO(R2), the smallest bound A in (2.9) is denoted by ‖f‖BMO.

If f ∈ L∞(R2), it is clear that f ∈ BMO(R2) and ‖f‖BMO 6 2‖f‖L∞ .
However, the space BMO(R2) is strictly larger than L∞(R2). For instance,
if f(x) = log |x|, then f has bounded mean oscillation [42, §IV.1.1], but f is
obviously unbounded. It is also clear that adding a constant to f does not
alter the quantity ‖f‖BMO which, therefore, is not a norm. However, one
can show that ‖ · ‖BMO defines a norm on the quotient space of BMO(R2)
modulo the space of constant functions, which becomes in this way a Banach
space. We refer to [42, Chap. IV] for a comprehensive study of functions of
bounded mean oscillation.

Returning to Riesz transforms, we mention the important fact that R1, R2
can be extended to bounded linear operators from L∞(R2) into BMO(R2),
and even from BMO(R2) into itself, see e.g. [33, §VII.4] for more general
results implying that particular one. We point out that these extensions have
the property that R1, R2 vanish on constant functions. As a consequence,
if u ∈ X is divergence free, the formula (2.6) makes sense and defines a
function p ∈ BMO(R2), which satisfies the elliptic equation (2.5) in the
sense of distributions. Thus we have proved:

Lemma 2.2. — If u ∈ X and div u = 0, the elliptic equation (2.5) has
a solution p ∈ BMO(R2) given by (2.6), which is unique up to an additive
constant.
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The uniqueness claim in Lemma 2.2 is easy to prove. Indeed, any har-
monic function on R2 that belongs to BMO(R2) is identically constant (this
can be seen as a modest generalization of Liouville’s theorem). More gener-
ally, we could consider other solutions of (2.5), but since we want to solve
the Navier–Stokes equations (2.1) in the space X it is natural to assume that
the pressure gradient is bounded. So the most general admissible solution
of (2.5) is p+ α+ β1x1 + β2x2, where p is given by (2.6) and α, β1, β2 ∈ R.
The constant α is irrelevant, but nonzero values of β1, β2 would correspond
to driving the fluid by a pressure gradient (like, for instance, in the classical
Poiseuille flow). In these notes, we are interested in the intrinsic dynamics
of the Navier–Stokes equations (2.1) in the absence of exterior forcing, so we
always use the canonical choice of the pressure given by Lemma 2.2.

2.3. The Leray–Hopf projection

With the canonical choice of the pressure (2.6), the Navier–Stokes equa-
tions (2.1) can be written in the equivalent form

∂tu+ P(u · ∇)u = ν∆u , div u = 0 , (2.10)

where the Leray–Hopf projection P is the matrix-valued operator defined by

(Pu)j =
2∑
k=1

Pjkuk , with Pjk = δjk +RjRk .

Indeed, using Einstein’s summation convention over repeated indices, we
have from (2.6):

∂jp = ∂jRkR`(uku`) = RkRj∂`(uku`) = RjRk(u`∂`uk) ,

hence
∂jp+ u`∂`uj =

(
δjk +RjRk

)
(u`∂`uk) .

This shows that ∇p + (u · ∇)u = P(u · ∇)u. In the calculations above, we
have used the commutations relations R1R2 = R2R1, ∂jRk = Rk∂j , ∂jR` =
Rj∂`, as well as the incompressibility condition div u = 0. Symbolically, we
may also write

P(u · ∇)u = ∇ · P(u⊗ u) . (2.11)

It is clear that the Leray–Hopf projection P is a bounded linear operator
on Lp(R2)2 for 1 < p <∞, and from L∞(R2)2 into BMO(R2)2. For later use,
we also mention that ∇S(t)P defines a bounded operator on X = Cbu(R2)2

for any t > 0, where S(t) is the heat semigroup defined by (2.2).
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Lemma 2.3. — There exists a constant C0 > 0 such that

‖∇S(t)Pf‖L∞ 6
C0√
t
‖f‖L∞ , t > 0 , (2.12)

for all f ∈ X.

Proof. — For any t > 0 and any choice of j, k, ` ∈ {1, 2}, the operator
∂jS(t)Pk` is the Fourier multiplier with symbol

iξj

(
δk` −

ξkξ`
|ξ|2

)
e−t|ξ|

2
= iξjδk` e−t|ξ|

2
−iξjξkξ`

∫ ∞
t

e−τ |ξ|
2

dτ ,

where ξ ∈ R2 \ {0}. We thus have the following identity

∂jS(t)Pk`f = δk`∂jS(t)f +
∫ ∞
t

∂j∂k∂`S(τ)f dτ , (2.13)

which holds in particular for any f ∈ Cbu(R2). Both terms in the right-hand
side of (2.13) belong to Cbu(R2) and can be easily estimated using (2.4):

‖∂jS(t)f‖L∞ 6
C√
t
‖f‖L∞ ,∥∥∥∥∫ ∞

t

∂j∂k∂`S(τ)f dτ
∥∥∥∥
L∞
6 C

∫ ∞
t

1
τ3/2 ‖f‖L∞ dτ 6 C√

t
‖f‖L∞ ,

This immediately yields estimate (2.12). �

2.4. Local existence of solutions

Let u0 ∈ X be such that div u0 = 0. We consider the integral equation
associated with the Navier–Stokes equations (2.10):

u(t) = S(νt)u0 −
∫ t

0
∇ · S(ν(t− s))P(u(s)⊗ u(s)) ds , t > 0 , (2.14)

where S(t) is the heat semigroup (2.2), and the notation P(u⊗u) is explained
in (2.11). Here and in the sequel, the map x 7→ u(x, t) is simply denoted by
u(t) instead of u( · , t). The goal of this section is to prove that the integral
equation (2.14) has a unique local solution that it continuous in time with
values in the space X defined by (1.6). Such a solution of (2.14) is usually
called a mild solution of the Navier–Stokes equations (2.1) in X.

Proposition 2.4. — Fix ν > 0. For any M > 0, there exists a time
T = T (M,ν) > 0 such that, for all initial data u0 ∈ X with div u0 = 0
and ‖u0‖L∞ 6 M , the integral equation (2.14) has a unique local solution
u ∈ C0([0, T ], X), which moreover satisfies

sup
06t6T

‖u(t)‖L∞ 6 2M , and sup
0<t6T

(νt)1/2‖∇u(t)‖L∞ 6 CM , (2.15)
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where C > 0 is a universal constant. In addition, the solution u ∈
C0([0, T ], X) depends continuously on the initial data u0 ∈ X.

Proof. — Take T > 0 small enough so that

κ := 8C0M
T 1/2

ν1/2 < 1 , (2.16)

where C0 > 0 is as in Lemma 2.3. We introduce the Banach space Y =
C0([0, T ], X) equipped with the norm

‖u‖Y = sup
06t6T

‖u(t)‖L∞ .

Using Lemma 2.3 it is not difficult to verify that, if u ∈ Y , the integral in the
right-hand side of (2.14) is well defined and depends continuously on time
in the topology of X. Moreover, if u0 ∈ X, the results of Section 2.1 show
that the map t 7→ S(νt)u0 also belongs to Y . Thus, given any u0 ∈ X with
div u0 = 0 and ‖u0‖L∞ 6 M , we can consider the map F : Y → Y defined
by

(Fu)(t) = S(νt)u0−
∫ t

0
∇·S(ν(t−s))P(u(s)⊗u(s)) ds , t ∈ [0, T ] . (2.17)

Denoting B = {u ∈ Y | ‖u‖Y 6 2M} ⊂ Y , we claim that

(i) F maps B into itself. — Indeed, if u ∈ B, we find using (2.12)
and (2.16)

‖(Fu)(t)‖L∞

6 ‖u0‖L∞ +
∫ t

0

C0√
ν(t− s)

‖u(s)‖2
L∞ ds

6 M + ‖u‖2
Y

∫ t

0

C0√
ντ

dτ 6 M + 8M2C0(T/ν)1/2 = (1 + κ)M ,

for any t ∈ [0, T ]. As κ < 1, we deduce that ‖Fu‖Y < 2M , hence Fu ∈ B.

(ii) F is a strict contraction in B. — Indeed, if u, v ∈ B, then

(Fu)(t)− (Fv)(t) =
∫ t

0
∇ · S(ν(t− s))P

(
(v(s)⊗ v(s))− (u(s)⊗ u(s))

)
ds,

hence decomposing v⊗ v− u⊗ u = v⊗ (v− u) + (v− u)⊗ u and proceeding
as above, we find

‖(Fu)(t)− (Fv)(t)‖L∞

6
∫ t

0

C0√
ν(t− s)

(
‖v(s)‖L∞ + ‖u(s)‖L∞

)
‖u(s)− v(s)‖L∞ ds

6 4M‖u− v‖Y
∫ t

0

C0√
ντ

dτ 6 8MC0(T/ν)1/2‖u− v‖Y ,
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for all t ∈ [0, T ]. Thus ‖Fu−Fv‖Y 6 κ‖u− v‖Y where κ < 1 is as in (2.16).

By the Banach fixed point theorem, the map F : Y → Y has a unique fixed
point u in B, which satisfies by construction the integral equation (2.14)
as well as the first bound in (2.15). If ũ ∈ Y is another solution of (2.14),
then applying Gronwall’s lemma to the integral equation satisfied by the
difference ũ − u it is easy to verify that ũ = u, see [21] and Section 4.4.
Thus the solution u of (2.14) constructed by the fixed point argument above
is unique not only in the ball B, but also in the whole space Y . A similar
argument shows that the solution u ∈ Y is a locally Lipschitz function of
the initial data u0 ∈ X. Finally, the simplest way to prove the second bound
in (2.15) is to repeat the existence proof using the smaller function space

Z =
{
u ∈ C0([0, T ], X)

∣∣∣ t1/2∇u ∈ C0
b ((0, T ], X2)

}
,

equipped with the norm
‖u‖Z = sup

06t6T
‖u(t)‖L∞ + sup

0<t6T
(νt)1/2‖∇u(t)‖L∞ .

Proceeding as above one obtains the existence of a local solution u ∈ Z
of (2.14) for a slightly smaller value of T , which is determined by a condition
of the form (2.16) where C0 is replaced by a larger constant. �

Remark 2.5. — If u0 6= 0, the local existence time T given by the proof
of Proposition 2.4 satisfies

T = C1ν

‖u0‖2
L∞

, (2.18)

where C1 > 0 is a universal constant. This implies in particular that, if
we consider the maximal solution u ∈ C0([0, T∗), X) of (2.14) in X, then
either T∗ = ∞, which means that the solution is global, or ‖u(t)‖L∞ → ∞
as t → T∗. More precisely, we must have ‖u(t)‖2

L∞ > C1ν(T∗ − t)−1 for all
t ∈ [0, T∗). Note also that estimate (1.10) follows from (2.15) and (2.18).

Remark 2.6. — Using standard parabolic smoothing estimates, it is not
difficult to show that, if u ∈ C0([0, T ], X) is the mild solution of (2.1) con-
structed in Proposition 2.4, then u(x, t) is a smooth function for (x, t) ∈
R2 × (0, T ] which satisfies the Navier–Stokes equations (2.1) in the classical
sense, with the pressure p(x, t) given by (2.6), see [18, 19].

2.5. Global existence and a priori estimates

Take u0 ∈ X such that div u0 = 0, and let u ∈ C0([0, T∗), X) be the
maximal solution of (2.1) with initial data u0, the existence of which follows
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from Proposition 2.4. In view of Remark 2.5, to prove that this solution is
global (namely, T∗ = ∞), it is sufficient to show that the norm ‖u(t)‖L∞
cannot blow up in finite time. The easiest way to do that is to consider the
vorticity distribution ω = curlu = ∂1u2−∂2u1, which satisfies the advection-
diffusion equation

∂tω + u · ∇ω = ν∆ω . (2.19)
We know from Proposition 2.4 that ‖ω(t)‖L∞ 6 2‖∇u(t)‖L∞ < ∞ for any
t ∈ (0, T∗), hence shifting the origin of time we can assume without loss of
generality that ω0 = ω( · , 0) ∈ L∞(R2). Now, the parabolic maximum prin-
ciple [36] asserts that ‖ω(t)‖L∞ is a nonincreasing function of time, which
gives the a priori estimate

‖ω(t)‖L∞ 6 ‖ω0‖L∞ , for all t > 0 . (2.20)
Unfortunately, the bound (2.20) does not provide any direct control on
‖u(t)‖L∞ , because we work in an unbounded domain where the velocity field
can have arbitrarily low frequencies. In Fourier space, the relation between
û = Fu and ω̂ = Fω takes the simple form

û(ξ) = −iξ⊥

|ξ|2
ω̂(ξ) , ξ ∈ R2 \ {0} , (2.21)

where ξ⊥ = (−ξ2, ξ1) if ξ = (ξ1, ξ2) ∈ R2. This shows that the first-order
derivatives of the velocity field u satisfy

∂1u1 = −∂2u2 = R1R2 ω , ∂1u2 = −R2
1 ω , ∂2u1 = R2

2 ω ,

where R1, R2 are the Riesz transforms (2.7). In particular, we deduce the a
priori estimate

‖∇u(t)‖BMO 6 C‖ω(t)‖L∞ 6 C‖ω0‖L∞ , for all t > 0 . (2.22)
We refer to Section 4.1 for a more detailed discussion of the Biot–Savart law
in R2.

To go further we observe that, since div u = 0, we have the identity
(u · ∇)u = 1

2∇|u|
2 + u⊥ω , (2.23)

where u⊥ = (−u2, u1) if u = (u1, u2). We can thus write the Navier–Stokes
equations (2.1) in the equivalent form

∂tu+ u⊥ω = ν∆u−∇q , div u = 0 , (2.24)
where q = p + 1

2 |u|
2. Applying the Leray–Hopf projection, we obtain the

analog of (2.10)
∂tu+ P(u⊥ω) = ν∆u , div u = 0 . (2.25)

Since ω is under control, the nonlinear term P(u⊥ω) can be considered as a
linear expression in the velocity field u, and this strongly suggests that the so-
lutions of (2.25) should not grow faster than exp(C‖ω0‖L∞t) as t→∞. The
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problem with this naive argument is that we cannot estimate ‖P(u⊥ω)‖L∞ in
terms of ‖u‖L∞‖ω‖L∞ , because the Leray–Hopf projection P is not continu-
ous on L∞(R2)2. This difficulty was solved in an elegant way by O. Sawada
and Y. Taniuchi, who obtained the following result.

Proposition 2.7 ([39]). — Assume that u0 ∈ X, div u0 = 0, and ω0 =
curlu0 ∈ L∞(R2). Then the Navier–Stokes equations (2.1) have a unique
global (mild) solution u ∈ C0([0,∞), X) with initial data u0. Moreover, we
have the estimate

‖u(t)‖L∞ 6 C‖u0‖L∞ exp
(
C‖ω‖L∞t

)
, t > 0 , (2.26)

for some universal constant C > 0.

The proof of Proposition 2.7 relies on a clever Fourier-splitting argument
which we now describe. Let χ̂ : R2 → R be a smooth function such that

χ̂(ξ) =
{

1 if |ξ| 6 1 ,
0 if |ξ| > 2 .

We further assume that χ is radially symmetric and nonincreasing along rays.
Let χ = F−1χ̂ be the inverse Fourier transform of χ̂, so that χ ∈ S(R2).
Given any δ > 0, we denote by Qδ the Fourier multiplier with symbol χ̂(ξ/δ):

(Q̂δf)(ξ) = χ̂(ξ/δ)f̂(ξ) , ξ ∈ R2 . (2.27)
It is clear that Qδ is a bounded linear operator on S ′(R2).

Lemma 2.8. — There exists a constant C2 > 0 such that the following
bounds hold for any δ > 0.

(1) ‖Qδf‖L∞ 6 C2‖f‖L∞ , for any f ∈ Cbu(R2);

(2) ‖Qδ∇Pf‖L∞ 6 C2δ‖f‖L∞ , for any f ∈ Cbu(R2)2;

(3) ‖(1−Qδ)u‖L∞ 6 C2δ
−1‖ω‖L∞ , for any u ∈ X with div u = 0 and

curlu = ω.
Proof. — The first estimate follows immediately from Young’s inequality

(see Section 4.4), because Qδ is the convolution operator with the integrable
function x 7→ δ2χ(δx), the L1 norm of which does not depend on δ. To prove
the second estimate we have to show that, for any j, k, ` ∈ {1, 2}, the Fourier
multiplier M with symbol

m(ξ) = iξjξkξ`
|ξ|2

χ̂(ξ/δ) , ξ ∈ R2 \ {0} ,

is continuous on L∞(R2) with operator norm bounded by Cδ. We observe
that

m(ξ) = δψ̂(ξ/δ) , where ψ̂(ξ) = iξjξkξ`
|ξ|2

χ̂(ξ) .
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It follows that Mf = ψδ ∗ f , where ψδ(x) = δ3ψ(δx) and ψ = F−1ψ̂. It
is clear that ψ ∈ C∞(R2) (because ψ̂ has compact support), and from the
explicit formula

ψ(x) = 1
2π ∂j∂k∂`

∫
R2

log(|x− y|)χ(y) dy , x ∈ R2 ,

it is straightforward to verify that |ψ(x)| 6 C|x|−3 for |x| > 1. Thus
ψ ∈ L1(R2), and using Young’s inequality we conclude that ‖Mf‖L∞ 6
‖ψδ‖L1‖f‖L∞ = δ‖ψ‖L1‖f‖L∞ , which is the desired result.

Finally, to prove the third estimate in Lemma 2.8, we use formula (2.21)
to derive the relation

û(ξ)− Q̂δu(ξ) =
(

1− χ̂(ξ/δ)
)−iξ⊥
|ξ|2

ω̂(ξ) = 1
δ
φ̂(ξ/δ)ω̂(ξ) ,

where

φ̂(ξ) =
(

1− χ̂(ξ)
)−iξ⊥
|ξ|2

, ξ ∈ R2 \ {0} . (2.28)

As before, if φ = F−1φ̂, this implies that ‖(1−Qδ)u‖L∞ 6 δ−1‖φ‖L1‖ω‖L∞ ,
so we only need to verify that φ ∈ L1(R2). Since χ̂ has compact support in
R2, it follows from (2.28) that

φ(x) = 1
2π

x⊥

|x|2
+ Φ(x) , x ∈ R2 \ {0} ,

where Φ : R2 → R is smooth, hence φ is integrable on any bounded neigh-
borhood of the origin. On the other hand, if we apply the Laplacian ∆ξ

to both sides of (2.28), the resulting expression belongs to L2(R2,dξ). This
shows that |x|2φ ∈ L2(R2,dx), hence φ is integrable on the complement of
any neighborhood of the origin. Thus altogether φ ∈ L1(R2), which is the
desired result. �

Proof of Proposition 2.7. — Let u ∈ C0([0, T∗), X) be the maximal so-
lution of (2.1) with initial data u0. Without loss of generality, we assume
that u0 6≡ 0, and we fix t ∈ (0, T∗). The idea is to control the low frequencies
|ξ| 6 2δ in the solution u(t) using the integral equation (2.14), and the high
frequencies |ξ| > δ using the third estimate in Lemma 2.8 together with the
a priori bound on the vorticity. The threshold frequency δ will depend on
time and on the solution itself.

Given any δ > 0, we apply the Fourier multiplier Qδ defined in (2.27) to
the integral equation (2.14) and obtain

Qδu(t) = S(νt)Qδu0 −
∫ t

0
S(ν(t− s))Qδ∇ · P(u(s)⊗ u(s)) ds ,
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where we have used the fact that Qδ commutes with the heat semigroup
S(t). Using the first two estimates in Lemma 2.8, we thus find

‖Qδu(t)‖L∞ 6 C2‖u0‖L∞ + C2δ

∫ t

0
‖u(s)‖2

L∞ ds .

On the other hand, the third estimate in Lemma 2.8 implies that
‖(1−Qδ)u(t)‖L∞ 6 C2δ

−1‖ω(t)‖L∞ 6 C2δ
−1‖ω0‖L∞ .

This bound shows how the high frequencies in the velocity field u(t) can be
controlled in terms of the vorticity. Combining both results, we find

‖u(t)‖L∞ 6 C2‖u0‖L∞ + C2δ

∫ t

0
‖u(s)‖2

L∞ ds+ C2δ
−1‖ω0‖L∞ .

If we now choose

δ = ‖ω0‖1/2
L∞

(∫ t

0
‖u(s)‖2

L∞ ds
)−1/2

,

we obtain the bound

‖u(t)‖L∞ 6 C2‖u0‖L∞ + 2C2‖ω0‖1/2
L∞

(∫ t

0
‖u(s)‖2

L∞ ds
)1/2

, (2.29)

which holds for any t ∈ (0, T∗). Finally, squaring both sides of (2.29) and
applying Gronwall’s lemma (see Section 4.4), we arrive at the inequality

‖u(t)‖2
L∞ 6 2C2

2‖u0‖2
L∞ exp

(
8C2

2‖ω0‖L∞t
)
, t ∈ (0, T∗) , (2.30)

which shows that the norm ‖u(t)‖L∞ cannot blow up in finite time. Thus
T∗ =∞, and estimate (2.30) holds for all t > 0. �

Remark 2.9. — Theorem 1.1 is an immediate consequence of Proposi-
tions 2.4 and 2.7.

3. Uniformly local energy estimates

In the study of nonlinear partial differential equations on unbounded
spatial domains, if one considers solutions that do not decay to zero at
infinity, it is not always convenient to use function spaces based on the uni-
form norm ‖ · ‖∞, because those spaces may not take into account some
essential properties of the system, such as locally conserved or locally dis-
sipated quantities. From this point of view, the larger family of uniformly
local Lebesgue spaces offers an interesting compromise between simplicity
and flexibility. In the analysis of evolution PDE’s, uniformly local spaces
were introduced by T. Kato in 1975 [22], and subsequently used by many
authors, see [3, 8, 11, 14, 20, 30, 34, 45] for a few examples. For the reader’s
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convenience, the definition and the main properties of those spaces are given
in the Appendix, see Section 4.3. In short, if 1 6 p <∞, the uniformly local
Lebesgue space Lpul(Rd) is the completion of the space of all bounded and
uniformly continuous functions on Rd with respect to the norm

‖f‖Lp
ul

= sup
x∈Rd

(∫
|y−x|61

|f(y)|p dy
)1/p

. (3.1)

Our goal in this section is to control the solutions of the two-dimensional
Navier–Stokes equations in the uniformly local energy space L2

ul(R2). This
can be done using uniformly local energy estimates, a flexible and powerful
technique that we first explain on a simple example in Section 3.1 before
applying it to the original problem in Section 3.2.

3.1. Uniformly local energy estimates for the heat equation

In this section we show on a simple example how uniformly local energy
estimates can be used to obtain information on the solutions of partial differ-
ential equations on unbounded domains. We concentrate on the linear heat
equation on Rd, with nondecaying initial data u0. In that particular example,
the solution can be written in explicit form, but we shall not use the heat
kernel (4.22) because we want to develop robust methods that can be applied
to more complicated situations, such as the two-dimensional Navier–Stokes
equations which will considered later.

Let u0 ∈ L2
ul(Rd), and let u(x, t) be the solution of the heat equation

∂tu(x, t) = ∆u(x, t) , x ∈ Rd , t > 0 , (3.2)

with initial data u( · , 0) = u0. It follows from Proposition 4.6 below that
u ∈ C0(R+, L

2
ul(Rd)), and our goal is to derive accurate bounds on u using

localized energy estimates. Let ρ : Rd → (0,+∞) be a Lipschitz contin-
uous function satisfying the assumptions of Proposition 4.7 and such that
|∇ρ(x)| 6 ρ(x) for almost every x ∈ Rd. Typical examples are

ρ(x) = e−|x| , or ρ(x) = 1
(m+ |x|)m where m > d . (3.3)

Note that ρ cannot decay to zero faster than an exponential as |x| → ∞,
because of the assumption |∇ρ| 6 ρ. For any R > 0, we also define ρR(x) =
ρ(x/R).
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Since the solution u of (3.2) is smooth and bounded for t > 0, we can
compute

1
2

d
dt

∫
Rd

ρRu
2 dx =

∫
Rd

ρRuut dx =
∫
Rd

ρRu∆udx

= −
∫
Rd

ρR|∇u|2 dx−
∫
Rd

(∇ρR · ∇u)udx

6 −
∫
Rd

ρR|∇u|2 dx+ 1
R

∫
Rd

ρR|∇u||u|dx

6 −1
2

∫
Rd

ρR|∇u|2 dx+ 1
2R2

∫
Rd

ρRu
2 dx .

Using Gronwall’s lemma (see Section 4.4), we deduce that∫
Rd

ρR(x)u(x, t)2 dx+
∫ t

0

∫
Rd

ρR(x)|∇u(x, s)|2 dxds

6

(∫
Rd

ρR(x)u0(x)2 dx
)

et/R
2
, (3.4)

for all t > 0. This estimate looks rather pessimistic, because it predicts an
exponential growth of the solution as t → ∞, but one should keep in mind
that

∫
ρRu

2
0 dx < ∞ is the only assumption on the initial data that was

really used in the derivation of (3.4). If ρ(x) = e−|x|, this means that u0 is
allowed to grow exponentially as |x| → ∞, in which case the solution of (3.2)
indeed grows exponentially in time.

To improve (3.4) for large times, we must use the assumption that u0 ∈
L2

ul(Rd). If R > 1, an easy calculation shows that∫
Rd

ρR(x)u0(x)2 dx 6 CdR
d‖u0‖2

L2
ul
, (3.5)

for some constant Cd > 0 depending on the dimension d. So if we take
R = R(t) = (1 + t)1/2 we obtain from (3.4) and (3.5)∫

Rd

ρR(t)(x)u(x, t)2 dx+
∫ t

0

∫
Rd

ρR(t)(x)|∇u(x, s)|2 dxds

6 C‖u0‖2
L2

ul
(1 + t)d/2 , (3.6)

for all t > 0. This estimate is clearly superior to (3.4), because the right-hand
side grows only polynomially as t→∞. Another elementary but important
observation is that the same estimate holds if we replace ρR(x) with ρR(x−y)
for any fixed y ∈ Rd. Taking the supremum over all translations and using
the fact that ρR(x) > c > 0 whenever |x| 6 R, we obtain

sup
x∈Rd

1
R(t)d

∫
|y−x|6R(t)

u(y, t)2 dy 6 C‖u0‖2
L2

ul
, t > 0 , (3.7)
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where R(t) = (1 + t)1/2 and C > 0 is independent of t. In particular, if
u0 ≡ 1, then u( · , t) ≡ 1 for all positive times, and (3.7) is sharp in that
particular case, as far as the time dependence is concerned.

Unfortunately, the approach developed so far does not allow to bound the
norm ‖u(t)‖L2

ul
in an optimal way. Indeed, the best we can deduce directly

from (3.6) is
‖u(t)‖L2

ul
6 C‖u0‖L2

ul
(1 + t)d/4 , t > 0 ,

which is not sharp in view of Proposition 4.6. To improve that result, a
possibility is to use uniformly local Lp estimates for higher values of p.
Indeed, if p ∈ N∗ we have as before

1
2

d
dt

∫
Rd

ρRu
2p dx

= p

∫
Rd

ρRu
2p−1ut dx = p

∫
Rd

ρRu
2p−1∆udx

= −p(2p−1)
∫
Rd

ρRu
2p−2|∇u|2 dx− p

∫
Rd

(∇ρR · ∇u)u2p−1 dx

= −2p−1
p

∫
Rd

ρR|∇up|2 dx−
∫
Rd

(∇ρR · ∇up)up dx

6 −
∫
Rd

ρR|∇up|2 dx+ 1
R

∫
Rd

ρR|∇up||u|p dx

6 −1
2

∫
Rd

ρR|∇up|2 dx+ 1
2R2

∫
Rd

ρRu
2p dx .

Proceeding as above, we find if u0 ∈ L2p
ul (Rd):∫

Rd

ρR(t)(x)u(x, t)2p dx 6 C

∫
Rd

ρR(t)(x)u0(x)2p dx 6 C‖u0‖2p
L2p

ul
(1 + t)d/2 ,

where R(t) = (1 + t)1/2, and this implies

‖u(t)‖L2p
ul
6 C

1
2p ‖u0‖L2p

ul
(1 + t)

d
4p , t > 0 .

Here the constant C does not depend on p. Now, if we assume that u0 ∈
Cbu(Rd), we can take the limit p→∞ in the above inequality, and we obtain
the bound ‖u(t)‖L∞ 6 ‖u0‖L∞ which is clearly optimal.

3.2. Uniformly local energy estimates for the 2D Navier–Stokes
equations

After these preliminaries, we return to the two-dimensional Navier–Stokes
equations in R2. We assume that the initial data u0 ∈ X satisfy div u0 = 0
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and ω0 = curlu0 ∈ L∞(R2). Let u ∈ C0([0,+∞), X) be the unique mild
solution of (2.1) given by Proposition 2.7. Our goal is to control the velocity
field u(x, t) for large times using uniformly local L2 estimates.

For technical reasons, related to the control of the pressure term in (2.1),
it is convenient here to used compactly supported weight functions, see [45].
Let ψ : R2 → R+ be a smooth function satisfying

ψ(x) =
{

1 if |x| 6 1 ,
0 if |x| > 2 .

We also assume that ψ is radially symmetric and nonincreasing along rays,
and we define φ = ψ2. Then φ(x) is also equal to 1 if |x| 6 1 and to 0 if
|x| > 2. In addition, we have the estimate

|∇φ(x)| 6 C3φ(x)1/2 , x ∈ R2 , (3.8)

where C3 = 2‖∇ψ‖L∞ . Note that a compactly supported function φ cannot
satisfy |∇φ| 6 Cφ, unless φ ≡ 0, and this is why we shall only use the weaker
property (3.8). Given x0 ∈ R2 and R > 0, we also consider the translated
and rescaled localization function φR,x0 defined by

φR,x0(x) = φ
(x− x0

R

)
, x ∈ R2. (3.9)

By construction we have φR,x0 = 1 on BRx0
and φR,x0 = 0 on the complement

of B2R
x0

, where BRx0
denotes the closed ball with radius R centered at x0:

BRx0
=
{
x ∈ R2

∣∣∣ |x− x0| 6 R
}
.

Our starting point is the following localized energy estimate:

Lemma 3.1. — For any x0 ∈ R2 and any R > 0, the solution of (2.1)
satisfies

1
2

d
dt

∫
R2
φR,x0 |u|2 dx+ ν

∫
R2
|∇(φ1/2

R,x0
u)|2 dx

= ν

∫
R2
|∇φ1/2

R,x0
|2|u|2 dx+

∫
R2
q(u · ∇φR,x0) dx , (3.10)

where q = p+ 1
2 |u|

2.

Proof. — For simplicity we write φ instead of φR,x0 , and we denote ψ =
φ1/2. Using the equivalent form (2.24) of the Navier–Stokes equations, we
easily obtain

1
2

d
dt

∫
R2
φ|u|2 dx =

∫
R2
φu · ut dx =

∫
R2
φu · (ν∆u−∇q) dx . (3.11)
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Now, we have for k = 1, 2:∫
R2
|∇(ψuk)|2 =

∫
R2
|uk∇ψ + ψ∇uk|2

=
∫
R2

(u2
k|∇ψ|2 + ψ2|∇uk|2 + 2ψuk∇ψ · ∇uk) dx ,

hence ∫
R2
ψ2uk∆uk dx = −

∫
R2
ψ2|∇uk|2 dx− 2

∫
R2
ψuk∇ψ · ∇uk dx

= −
∫
R2
|∇(ψuk)|2 dx+

∫
R2
|∇ψ|2u2

k dx .

Thus summing over k and multiplying by ν, we obtain

ν

∫
R2
φu · (∆u) dx = −ν

∫
R2
|∇(ψu)|2 dx+ ν

∫
R2
|∇ψ|2|u|2 dx . (3.12)

On the other hand, since div u = 0, we easily find∫
R2
φu · ∇q dx =

∫
R2
φdiv(uq) dx = −

∫
R2
q(u · ∇φ) dx . (3.13)

Combining (3.11)–(3.13) we arrive at (3.10). �

Our next task is to transform the identity (3.10) into a differential in-
equality for the uniformly local energy norm of the velocity field. The terms
proportional to the viscosity parameter ν originate from the linear part of the
equation and can be easily estimated, as in Section 3.1. The difficulty is con-
centrated in the last term, which contains the modified pressure q = p+ 1

2 |u|
2.

That term is nonlocal in space and cubic in the velocity field u. Using the
results of Section 4.2, we obtain the following important estimate:

Lemma 3.2. — There exists a constant C4 > 0 such that, if x0 ∈ R2 and
0 < r 6 R, one has∣∣∣∣∫

R2
q(u · ∇φR,x0) dx

∣∣∣∣ 6 C4

(
r

R
‖ω‖L∞‖u‖2

L2(B3R
x0 ) + 1

rR
‖u‖3

L2(B3R
x0 )

+ 1
R2 sup

z∈R2
‖u‖3

L2(B2R
z )

)
. (3.14)

Remark 3.3. — As often in the sequel, we completely omit here the time
dependence of the quantities u, ω, and q, for notational simplicity. This is
harmless since time plays no role in an “elliptic” estimate such as (3.14).
But in Lemma 3.4 below that estimate will be applied to the solution of the
Navier–Stokes equations which, of course, depends on time.
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Proof. — For simplicity we assume that x0 = 0, and we write φR instead
of φR,x0 . To use the results of Section 4.2 we choose a smooth function
χ : R2 → [0, 1] satisfying

χ(x) =
{

1 if |x| 6 1/2 ,
0 if |x| > 1 ,

and we denote χr(x) = χ(x/r), where 0 < r 6 R. To estimate the left-hand
side of (3.14), it is sufficient to control the modified pressure q in the ball
B2R

0 , because ∇φR vanishes outside that ball. Also, as is clear from (3.13),
adding a constant to q does not change the quantity we want to bound.
Thus, using Lemma 4.5, we can assume that

q(x) = q1(x) + q2(x) + q3(x) + q4(x) , x ∈ B2R
0 , (3.15)

where

q1(x) = 1
2π

∫
R2
χr(x− y) (x− y)⊥

|x− y|2
· u(y)ω(y) dy ,

q2(x) = 1
4π

2∑
k,`=1

∫
R2
M

(r)
k` (x− y)uk(y)u`(y) dy ,

q3(x) = 1
2π

2∑
k,`=1

∫
|y|63R

χcr(x− y)Kk`(x− y)uk(y)u`(y) dy ,

q4(x) = 1
2π

2∑
k,`=1

∫
|y|>3R

{
Kk`(x− y)−Kk`(−y)

}
uk(y)u`(y) dy .

The expressions above agree with (4.15) up to the following inessential dif-
ferences. First we use everywhere the rescaled cut-off χr instead of χ. In
particular we denote by M

(r)
k` the functions defined by (4.16) with χ re-

placed by χr, and we write χcr = 1 − χr. Next, in the definition (4.15) of
q3(x, x0), we take x0 = 0 and we decompose the domain of integration as
R2 = B3R

0 ∪ (B3R
0 )c. The integral over y ∈ B3R

0 coincides with the func-
tion q3 above, up to an irrelevant additive constant, and the integral over
y /∈ B3R

0 gives exactly q4, because χcr(x − y) = χcr(−y) = 1 when |x| 6 2R
and |y| > 3R.

We now estimate the various terms in (3.15). As χr is supported in the
ball Br0 ⊂ BR0 , we have

|q1(x)| 6 1
2π

∫
|y|63R

χr(x− y)
|x− y|

|u(y)||ω(y)|dy , x ∈ B2R
0 .
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Since ∫
R2

χr(z)
|z|

dz = r

∫
R2

χ(z)
|z|

dz = Cr ,

it follows from Young’s inequality (see Section 4.4) that

‖q1‖L2(B2R
0 ) 6 Cr‖uω‖L2(B3R

0 ) 6 Cr‖ω‖L∞‖u‖L2(B3R
0 ) . (3.16)

Similarly,

|q2(x)| 6 1
4π

2∑
k,`=1

∫
|y|63R

|M (r)
k` (x− y)||uk(y)||u`(y)|dy , x ∈ B2R

0 .

As |M (r)
k` (z)| 6 C|z|−1|∇χr(z)| = Cr−1|z|−1|∇χ(z/r)|, we have

2∑
k,`=1

∫
R2
|M (r)

k` (z)|2 dz 6 C

r2

∫
r/26|z|6r

1
|z|2

dz = C

r2 ,

and using Young’s inequality again we find

‖q2‖L2(B2R
0 ) 6

C

r
‖|u|2‖L1(B3R

0 ) = C

r
‖u‖2

L2(B3R
0 ) . (3.17)

Exactly the same estimate holds for q3 too, because in view of (4.16)
2∑

k,`=1

∫
R2
χcr(z)2Kk`(z)2 dz 6 C

∫
|z|>r/2

1
|z|4

dz = C

r2 .

Finally, to bound q4, we use estimate (4.19) which shows that, for any x ∈
B2R

0 and y /∈ B3R
0 ,

2∑
k,`=1

|Kk`(x− y)−Kk`(−y)| 6 CR

2|y|3 6
CR

R3 + |y|3 .

Thus
|q4(x)| 6 C

∫
R2

R

R3 + |y|3 |u(y)|2 dy , x ∈ B2R
0 .

To evaluate the integral we decompose R2 = ∪k∈Z2QRk , where QRk ⊂ BRkR
denotes the square of measure R2 centered at kR ∈ R2. For k ∈ Z2 we also
define

Sk = sup
y∈QR

k

R

R3 + |y|3 6
C

R2
1

1 + |k|3 , so that
∑
k∈Z2

Sk 6
C

R2 .

With these notations we find for x ∈ B2R
0 :

|q4(x)| 6 C
∑
k∈Z2

∫
QR

k

R

R3 + |y|3 |u(y)|2 dy 6 C

(∑
k∈Z2

Sk

)
sup
k∈Z2

‖u‖2
L2(QR

k
) ,
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hence

‖q4‖L2(B2R
0 ) 6 2π1/2R‖q4‖L∞(B2R

0 ) 6
C

R
sup
z∈R2

‖u‖2
L2(BR

z ) . (3.18)

Summarizing, estimates (3.16)–(3.18) show that

‖q‖L2(B2R
0 )

6 Cr‖ω‖L∞‖u‖L2(B3R
0 ) + C

r
‖u‖2

L2(B3R
0 ) + C

R
sup
z∈R2

‖u‖2
L2(BR

z ) . (3.19)

On the other hand, as ∇φR(x) = R−1∇φ(x/R), we have by Hölder’s in-
equality ∣∣∣∣∫

R2
q(u · ∇φR) dx

∣∣∣∣ 6 C

R
‖u‖L2(B2R

0 )‖q‖L2(B2R
0 ) ,

thus using (3.19) we easily obtain estimate (3.14). �

Combining Lemmas 3.1 and 3.2, we now derive an integral inequality for
the quantity

ZR(t) = sup
x∈R2

‖u(t)‖L2(BR
x ) , (3.20)

which is equivalent (up to R-dependent constants) to the norm ‖u(t)‖L2
ul
.

Lemma 3.4. — There exists a constant C5 > 1 such that, for any t > 0
and any R > r > 0,

ZR(t)2 + 2ν sup
x∈R2

∫ t

0
‖∇u(s)‖2

L2(BR
x ) ds

6 7ZR(0)2 + C5

∫ t

0

{ ν

R2 ZR(s)2 + r

R
‖ω(s)‖L∞ZR(s)2 + 1

rR
ZR(s)3

}
ds .

(3.21)

Proof. — Fix R > 0. Integrating (3.10) with respect to time, we obtain
for any t > 0:∫

R2
φR,x0 |u(t)|2 dx+ 2ν

∫ t

0

∫
R2
|∇(φ1/2

R,x0
u(s))|2 dx ds

=
∫
R2
φR,x0 |u0|2 dx+ 2ν

∫ t

0

∫
R2
|∇φ1/2

R,x0
|2|u(s)|2 dxds

+ 2
∫ t

0

∫
R2
q(s)(u(s) · ∇φR,x0) dx ds , (3.22)

where x0 ∈ R2 is arbitrary. We now take the supremum over x0 ∈ R2 in both
sides. As φR,x0 = 1 on BRx0

, the supremum over x0 ∈ R2 of the left-hand side
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of (3.22) is bounded from below by the left-hand side of (3.21). To bound
the right-hand side of (3.22), we observe that

sup
x0∈R2

∫
R2
φR,x0 |u0|2 dx 6 sup

x0∈R2
‖u0‖2

L2(B2R
x0 ) 6 7ZR(0)2 ,

because each ball B2R
x0

can be covered by 7 balls of radius R, centered at
appropriate points. Similarly, as |∇φ1/2

R,x0
| is bounded by C/R and vanishes

outside B2R
x0

, we have

sup
x0∈R2

∫ t

0

∫
R2
|∇φ1/2

R,x0
|2|u(s)|2 ds 6 C

R2 sup
x0∈R2

∫ t

0
‖u(s)‖2

L2(B2R
x0 ) ds

6
7C
R2

∫ t

0
ZR(s)2 ds .

Finally, for the last term in (3.22), we choose r ∈ (0, R] and we use inequal-
ity (3.14). Collecting all estimates, we see that the supremum over x0 ∈ R2

of the right-hand side of (3.22) is bounded by the right-hand side of (3.21),
provided C5 > 0 is large enough. �

Using Lemma 3.4 and Gronwall’s lemma, we arrive at the main result of
this section.

Proposition 3.5. — There exist positive constants C6 and C7 such that
the following holds for any ν > 0. Let u ∈ C0([0,+∞), X) be the mild solu-
tion of the Navier–Stokes equations (2.1) with initial data u0 ∈ X satisfying
div u0 = 0, ω0 ∈ L∞(R2), and ω0 6≡ 0. For any t > 0, if R > 0 is large
enough so that

R > max
{
R0 , C7

√
νt , C7‖u0‖L∞‖ω0‖L∞t2

}
, (3.23)

where R0 = ‖u0‖L∞

‖ω0‖L∞
, we have

ZR(t) ≡ sup
x∈R2

‖u(t)‖L2(BR
x ) 6 C6R‖u0‖L∞ . (3.24)

Proof. — We observe that u0 6≡ 0, since by assumption ω0 6≡ 0. Take
C6 > 0 and C7 > 0 such that

C2
6 > 7 eπ , C2

7 > 2C5 , C
1/2
7 > 2C5(1 + C6) , (3.25)

where C5 is as in Lemma 3.4. Given any t > 0, choose R as in (3.23). From
the definition (3.20), we see that ZR(0) 6 π1/2R‖u0‖L∞ , hence by continuity
we necessarily have ZR(s) 6 C6R‖u0‖L∞ for sufficiently small s > 0. Define

t∗ = sup
{
τ ∈ [0, t]

∣∣∣ZR(s) 6 C6R‖u0‖L∞ for all s ∈ [0, τ ]
}
∈ (0, t] , (3.26)

We shall prove that t∗ = t, hence ZR(t) 6 C6R‖u0‖L∞ , which is (3.24).
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According to Lemma 3.4, we have for all τ ∈ [0, t∗]:

ZR(τ)2 6 7ZR(0)2 + C5

∫ τ

0
A(s)ZR(s)2 ds , (3.27)

where

A(s) = ν

R2 + r

R
‖ω(s)‖L∞ + 1

rR
ZR(s) 6 ν

R2 + r

R
‖ω0‖L∞ + C6

r
‖u0‖L∞ .

Here r 6 R is arbitrary, but we can optimize the right-hand side by choosing
r = (RR0)1/2, which gives

A(s) 6 ν

R2 + (1 + C6)‖u0‖1/2
L∞‖ω0‖1/2

L∞

R1/2 , s ∈ [0, t∗] .

In particular, using (3.23), (3.25) and the fact that t∗ 6 t, we find

C5

∫ t∗

0
A(s) ds 6 C5

νt

R2 + C5(1 + C6)‖u0‖1/2
L∞‖ω0‖1/2

L∞t

R1/2 6
1
2 + 1

2 = 1 .

If we now apply Gronwall’s lemma (see Section 4.4) to (3.27), we obtain

ZR(t∗)2 6 7ZR(0)2 exp
(
C5

∫ t∗

0
A(s) ds

)
6 7 eZR(0)2

6 7 eπR2‖u0‖2
L∞ . (3.28)

By (3.25) we thus have ZR(t∗) < C6R‖u0‖L∞ , which contradicts (3.26) if
t∗ < t. Thus we must have t∗ = t, which proves (3.24). �

Remark 3.6. — Estimate (1.15) follows immediately from (3.28) with
t∗ = t.

3.3. Velocity bounds and uniformly local enstrophy estimates

In this final section, we derive a few important consequences of the pre-
vious results. First, combining Proposition 3.5 with Corollary 4.3, we derive
an upper bound on the L∞ norm of the velocity field which greatly im-
proves (2.26).

Proposition 3.7. — There exist a positive constant C8 such that, for
any u0 ∈ X satisfying div u0 = 0 and ω0 = curl u0 ∈ L∞(R2), the solution
of the Navier–Stokes equations (2.1) with initial data u0 satisfies

‖u(t)‖L∞ 6 C8‖u0‖L∞
{

1 + ‖ω0‖L∞t+
(√νt
R0

)1/2
}
, t > 0 , (3.29)

where R0 = ‖u0‖L∞/‖ω0‖L∞ .
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Proof. — If ω0 ≡ 0, then u0 is a constant and u(t) = u0 for all t > 0, hence
we can assume without loss of generality that ω0 6≡ 0. Fix t > 0, and let R =
max{R0 , C7

√
νt , C7‖u0‖L∞‖ω0‖L∞t2}, as in (3.23). If M = ‖u(t)‖L∞ > 0,

there exists x̄ ∈ R2 such that |u(x̄, t)| > M/2. For simplicity, we assume
without loss of generality that x̄ = 0. We know from Proposition 3.5 that

I :=
∫
|x|6R

|u(x, t)|2 dx 6 C2
6R

2‖u0‖2
L∞ . (3.30)

On the other hand, applying Corollary 4.3 to u(x, t), we deduce from (4.10)
that

|u(x, t) + u(−x, t)| > 2|u(0, t)| − C∗|x|‖ω(t)‖L∞ > M − C∗|x|‖ω0‖L∞ ,
(3.31)

for all x ∈ R2, where C∗ > 0 is a universal constant. The idea is to use
estimate (3.31) to obtain a lower bound on the quantity I defined in (3.30),
in terms of M . Let

R∗ = M

C∗‖ω0‖L∞
.

We consider separately the following two cases:

Case 1. — R∗ 6 R. In that case, denoting D+ = {x ∈ R2 | |x| 6
R∗ , x1 > 0}, we compute

I >
∫
|x|6R∗

|u(x, t)|2 dx =
∫
D+

(
|u(x, t)|2 + |u(−x, t)|2

)
dx

>
1
2

∫
D+

|u(x, t) + u(−x, t)|2 dx

>
1
4

∫
|x|6R∗

(
M − C∗|x|‖ω0‖L∞

)2
dx = π

24 M
2R2
∗ ,

where in the last inequality we used (3.31). Comparing with (3.30), we deduce
that

M2R2
∗ 6 CR2‖u0‖2

L∞ , or M4 6 CR2‖u0‖2
L∞‖ω0‖2

L∞ .

Since M = ‖u(t)‖L∞ and R = max{R0 , C7
√
νt , C7‖u0‖L∞‖ω0‖L∞t2}, this

gives (3.29).

Case 2. — R∗ > R. A similar calculation gives

I >
1
4

∫
|x|6R

(
M − C∗|x|‖ω0‖L∞

)2
dx > π

24 M
2R2 ,

henceM2R2 6 CR2‖u0‖2
L∞ , namelyM2 6 C‖u0‖2

L∞ . Thus we obtain (3.29)
in both cases. �

– 1011 –



Thierry Gallay

Proof of Theorem 1.2. — We can assume without loss of generality that
u0 6≡ 0. Since global existence of solutions is already asserted by Theorem 1.1,
we only need to prove estimate (1.12). In view of the local existence theory,
it is sufficient to prove (1.12) for t > T , where T > 0 is as in (1.10). In that
case we have

√
νt 6 K1‖u0‖L∞t, or equivalently
√
νt

R0
= ‖ω0‖L∞
‖u0‖L∞

√
νt 6 K1‖ω0‖L∞t ,

hence (1.12) follows directly from (3.29). �

The results obtained so far do not rely on the viscous dissipation term
in (2.1), and remain therefore valid in the vanishing viscosity limit. Now,
assuming that ν > 0, we can also derive uniformly local enstrophy estimates.

Proposition 3.8. — Under the assumptions of Proposition 3.5, there
exists a constant C9 > 0 such that, for all t > 0,

sup
x∈R2

‖ω(t)‖2
L2(BR

x ) dy 6 C9‖u0‖2
L2

(
1 + R2

νt
+ Rt√

νt
‖ω0‖L∞

)
, (3.32)

where R = R(t) is as in (3.23).

Proof. — Fix t > 0 and let R be as in (3.23). If one does not neglect
the second term in the left-hand side of (3.21), the proof of Proposition 3.5
shows that

ZR(t)2 + 2ν sup
x∈R2

∫ t

0
‖∇u(s)‖2

L2(BR
x ) ds 6 C2

6R
2‖u0‖2

L∞ . (3.33)

Unfortunately, we cannot extract from (3.33) a pointwise estimate in time
on the uniformly local L2 norm of ∇u, because we cannot exchange the
supremum and the integral in the left-hand side of (3.33).

To avoid that difficulty, we use localized energy estimates for the vorticity
equation (1.8). Let x0 ∈ R2. As in Lemma 3.1 we have

1
2

d
dt

∫
R2
φR,x0 |ω|2 dx+ ν

∫
R2
|∇(φ1/2

R,x0
ω)|2 dx

= ν

∫
R2
|∇φ1/2

R,x0
|2|ω|2 dx+ 1

2

∫
R2
ω2(u · ∇φR,x0) dx , (3.34)

where φR,x0 is the localization function defined in (3.9). In view of (3.33),
there exists a time t0 ∈ [0, t/2] (depending on x0) such that

ν‖ω(t0)‖2
L2(B2R

x0 ) 6 2ν‖∇u(t0)‖2
L2(B2R

x0 ) 6
CR2

t
‖u0‖2

L∞ . (3.35)
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Integrating (3.34) over the time interval [t0, t], we find∫
R2
φR,x0 |ω(t)|2 dx

6
∫
R2
φR,x0 |ω(t0)|2 dx+ 2ν

∫ t

t0

∫
R2
|∇φ1/2

R,x0
|2|ω(s)|2 dx ds

+
∫ t

t0

∫
R2
ω(s)2(u(s) · ∇φR,x0) dx ds . (3.36)

By (3.35) we have∫
R2
φR,x0 |ω(t0)|2 dx 6 ‖ω(t0)‖2

L2(B2R
x0 ) 6

CR2

νt
‖u0‖2

L∞ . (3.37)

It follows also from (3.33) that

2ν
∫ t

t0

∫
R2
|∇φ1/2

R,x0
|2|ω(s)|2 dx ds

6
Cν

R2

∫ t

0
‖ω(s)‖2

L2(B2R
x0 ) ds 6 C‖u0‖2

L∞ . (3.38)

Finally, the cubic term in (3.36) can be estimated as follows:∣∣∣∣∫ t

t0

∫
R2
ω(s)2(u(s) · ∇φR,x0) dxds

∣∣∣∣
6

C

R

∫ t

0
‖ω(s)‖L∞‖ω(s)‖L2(B2R

x0 )‖u(s)‖L2(B2R
x0 ) ds

6
C

R
‖ω0‖L∞

(∫ t

0
‖ω(s)‖2

L2(B2R
x0 ) ds

)1/2
t1/2 sup

06s6t
‖u(s)‖L2(B2R

x0 ) (3.39)

6
C

R
‖ω0‖L∞ ·

CR‖u0‖L∞
ν1/2 · t1/2 · CR‖u0‖L∞ 6

CRt√
νt
‖ω0‖L∞‖u0‖2

L∞ .

If we now insert (3.37)–(3.39) into (3.36) we obtain for all x0 ∈ R2:∫
R2
φR,x0 |ω(t)|2 dx 6 C‖u0‖2

L2

(
1 + R2

νt
+ Rt√

νt
‖ω0‖L∞

)
.

Taking the supremum over x0 ∈ R2, we arrive at (3.32). �

Remark 3.9. — Estimate (1.16) easily follows from (3.32). Indeed, in
view of (1.10), it is clearly sufficient to prove (1.16) for t > T . In that case
we have

√
νt 6 K1‖u0‖L∞t, hence

Rt√
νt
‖ω0‖L∞ = R

ν
‖ω0‖L∞

√
νt 6

K1R

νt
‖u0‖L∞‖ω0‖L∞t2 6

K1

C7

R2

νt
,
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where in the last inequality we used definition (3.23), which also implies that
R2 > C2

7νt. Thus (1.16) follows from (3.32) when t > T .

4. Appendix

4.1. The Biot–Savart law for bounded velocities and vorticities

Assume that u ∈ X satisfies div u = 0, and let ω = curlu = ∂1u2 − ∂2u1.
If ω is strongly localized, for instance if ω ∈ Lp(R2) for some p ∈ (1, 2),
then u can be reconstructed from ω, up to an additive constant u∞, by the
classical Biot–Savart formula (see Section 4.4):

u(x) = u∞ + 1
2π

∫
R2

(x− y)⊥

|x− y|2
ω(y) dy , x ∈ R2 . (4.1)

Moreover, the Hardy–Littlewood–Sobolev inequality [28] implies that u −
u∞ ∈ Lq(R2)2 for q = 2p/(2− p), hence u(x) converges in some sense to u∞
as |x| → ∞.

If the vorticity distribution ω is only weakly localized, the integral in (4.1)
does not converge any more, and the Biot–Savart formula has to be modified.
Here is a reasonable possibility:

Proposition 4.1. — If u ∈ X is divergence free and if ω = curl u ∈
Lp(R2) for some p ∈ (2,∞), then

u(x) = u(0) + 1
2π

∫
R2

{
(x− y)⊥

|x− y|2
+ y⊥

|y|2

}
ω(y) dy , x ∈ R2 . (4.2)

Proof. — Let q = p/(p − 1), so that q ∈ (1, 2) and 1
p + 1

q = 1. For all
x, y ∈ R2 with x 6= y and y 6= 0, we denote

F (x, y) = (x− y)⊥

|x− y|2
+ y⊥

|y|2

= x⊥(y · (y−x)) + y⊥(x · (x−y)) + (x⊥−y⊥)(x · y)
|x− y|2|y|2

. (4.3)

We claim that, for any x ∈ R2, the map y 7→ F (x, y) belongs to Lq(R2) and(∫
R2
|F (x, y)|q dy

)1/q
6 C|x|

2
q−1 , (4.4)

where C > 0 is a universal constant. Indeed, as |F (x, y)| 6 |x− y|−1 + |y|−1,
we obtain using Minkowski’s inequality(∫

|y|62|x|
|F (x, y)|q dy

)1/q
6 2

(∫
|y|63|x|

1
|y|q

dy
)1/q

6 C|x|
2
q−1 .
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On the other hand, since |F (x, y)| 6 3|x||x − y|−1|y|−1 in view of the last
expression in (4.3), we have |F (x, y)| 6 6|x||y|−2 when |y| > 2|x|, hence(∫

|y|>2|x|
|F (x, y)|q dy

)1/q
6 6|x|

(∫
|y|>2|x|

1
|y|2q

dy
)1/q

6 C|x|
2
q−1 .

This proves (4.4). Now, let

v(x) = 1
2π

∫
R2
F (x, y)ω(y) dy

= 1
2π

∫
R2

{
(x− y)⊥

|x− y|2
+ y⊥

|y|2

}
ω(y) dy , x ∈ R2 .

Since 2
q −1 = 1− 2

p , we deduce from (4.4) that |v(x)| 6 C|x|1−
2
p ‖ω‖Lp for all

x ∈ R2. Moreover, a standard calculation in distribution theory shows that
div v = 0 and curl v = ω. If w = u−v, we thus have divw = 0 and curlw = 0,
so that w is a harmonic vector field on R2. As w(x) has a sublinear growth
as |x| → ∞, we conclude that w is identically constant, and since v(0) = 0
by definition we must have w = u(0), which proves (4.2). �

In these notes, we mainly deal with the situation where the vorticity ω is
not localized at all, namely ω ∈ L∞(R2). In that case, the integral in (4.2) is
logarithmically divergent, and has to be interpreted in an appropriate way.
The main result of this section is:

Proposition 4.2. — Assume that u ∈ X, div u = 0, and ω = curlu ∈
L∞(R2). Then

u(x) = u(0)+ lim
R→∞

1
2π

∫
|y|6R

{
(x− y)⊥

|x− y|2
+ y⊥

|y|2

}
ω(y) dy , x ∈ R2 . (4.5)

Proof. — For any R > 0 we denote

uR(x) = 1
2π

∫
|y|6R

{
(x− y)⊥

|x− y|2
+ y⊥

|y|2

}
ω(y) dy , x ∈ R2 .

Clearly div uR = 0 and curluR = ω 1{|x|6R} in the sense of distributions
on R2. Moreover uR is Hölder continuous and satisfies uR(0) = 0. For R >
2|x|+ 3, we decompose uR(x) = v(x) + wR(x), where

v(x) = 1
2π

∫
Dx

F (x, y)ω(y) dy , wR(x) = 1
2π

∫
BR

0 \Dx

F (x, y)ω(y) dy . (4.6)

Here the following notations have been used. As in Section 3, we denote by
Brx the closed ball of radius r > 0 centered at x ∈ R2. For any x ∈ R2, we
define

Dx =
{
B3

0 if |x| 6 2 ,
B1

0 ∪B1
x if |x| > 2 ,
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so that Dx ⊂ BR0 and Dx has smooth boundary. Finally F (x, y) is as in (4.3).

We now estimate both terms in (4.6). As |F (x, y)| 6 |x − y|−1 + |y|−1,
we have

|v(x)| 6 1
π

∫
|y|65

1
|y|
|ω(y)|dy 6 10‖ω‖L∞ , if |x| 6 2 ,

and
|v(x)| 6 2

π

∫
|y|61

1
|y|
|ω(y)|dy 6 4‖ω‖L∞ , if |x| > 2 .

Moreover v is continuous and v(0) = 0. To bound wR, we use the fact that
ω = curlu = −div u⊥, and we integrate by parts using Green’s formula. We
obtain

wR(x) = 1
2π

∫
∂Dx

F (x, y)u⊥(y) · ν(y) d`y −
1

2π

∫
∂BR

0

F (x, y)u⊥(y) · ν(y) d`y

+ 1
2π

∫
BR

0 \Dx

u⊥(y) · ∇yF (x, y) dy

= w(1)(x)− w(2)
R (x) + w

(3)
R (x) ,

where on the circles ∂Dx or ∂BR0 we denote by ν the exterior unit normal and
d` the elementary arc length. Proceeding as in the proof of Proposition 4.1,
it is straightforward to verify that |w(1)(x)| 6 4‖u‖L∞ and |w(2)

R (x)| 6
6|x|‖u‖L∞/R. In particular w(2)

R (x) converges to zero as R → ∞, for any
x ∈ R2. Finally, using the estimate

|∇yF (x, y)| 6 C

(
|x|

|x− y|2|y|
+ |x|
|x− y| |y|2

)
, x 6= y , y 6= 0 , (4.7)

which can be obtained by a direct calculation, it is not difficult to show that
1

2π

∫
R2\Dx

|u(y)||∇yF (x, y)|dy 6 C‖u‖L∞ log(1 + |x|) , (4.8)

for some universal constant C > 0. When evaluating that integral for large
|x|, it is convenient to consider separately the regions where 1 6 |y| 6 |x|/2,
where 1 6 |y − x| 6 |x|/2, where |y| > 2|x|, and the region where |x|/2 6
|y| 6 2|x| with |y − x| > |x|/2. Estimate (4.8) implies in particular that
w

(3)
R (x) has a limit as R→∞, so that wR(x)→ w∞(x) for some continuous

vector field w∞.

Summarizing, we have shown that uR(x) converges as R → ∞ to some
continuous vector field ū(x) = v(x) + w∞(x) which satisfies

|ū(x)| 6 C
(
‖ω‖L∞ + ‖u‖L∞

)
log(2 + |x|) , x ∈ R2 .
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By construction, we have div ū = 0, curl ū = ω, and ū(0) = 0. As in the
proof of Proposition 4.1, we conclude that u− ū is identically constant, and
this gives (4.5). �

Proposition 4.2 shows that the divergence free velocity field u ∈ X is
entirely determined, up to an additive constant, by its vorticity distribution
ω even in the case where ω is merely bounded. However this result does
not provide a good reconstruction formula, because the integral in (4.5)
is not absolutely convergent. In particular, we cannot use (4.5) to derive an
estimate on ‖u‖L∞ in terms of ‖ω‖L∞ , but the following consequence of (4.5)
will be useful:

Corollary 4.3. — Under the assumptions of Proposition 4.2, we have
for all x ∈ R2:

u(x) + u(−x)− 2u(0)

= 1
2π

∫
R2

{
(x− y)⊥

|x− y|2
− (x+ y)⊥

|x+ y|2
+ 2 y

⊥

|y|2

}
ω(y) dz . (4.9)

In particular, the following estimate holds

|u(x) + u(−x)− 2u(0)| 6 C∗|x| ‖ω‖L∞ , x ∈ R2 , (4.10)

where C∗ > 0 is a universal constant.

Proof. — Using (4.5) we easily obtain

u(x) + u(−x)− 2u(0) = lim
R→∞

1
2π

∫
|y|6R

G(x, y)ω(y) dy , (4.11)

where

G(x, y) = (x− y)⊥

|x− y|2
− (x+ y)⊥

|x+ y|2
+ 2 y

⊥

|y|2
, x 6= ±y , y 6= 0 .

A direct calculation yields the bound

|G(x, y)| 6 C
|x|2

|x− y| |x+ y| |y|
,

which implies that ∫
R2
|G(x, y)|dy 6 C|x| , x ∈ R2 , (4.12)

for some universal constant C > 0. When evaluating that integral, it is con-
venient to consider separately the regions where |y| 6 |x|/2, where |x|/2 6
|y| 6 2|x|, and where |y| > 2|x|. Thus we have shown that the integral
in (4.11) is absolutely convergent, so that (4.9) holds, and (4.10) follows
from (4.12). �
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Remark 4.4. — The origin plays a distinguished role in formulas (4.5)
and (4.9), but this is by no mean essential, and more general expressions can
easily be obtained using translation invariance.

4.2. A representation formula for the pressure

Assume that u ∈ X is such that div u = 0 and ω = ∂1u2−∂2u1 ∈ L∞(R2).
As was discussed in Section 2.2, the elliptic equation (2.5) determines a
unique pressure field p ∈ BMO(R2), up to an irrelevant additive constant.
Setting q = p+ 1

2 |u|
2 and using identity (2.23), we obtain for q the equation

−∆q = div(u⊥ω) , x ∈ R2 . (4.13)
The goal of this section is to obtain a representation formula for the solution
of (4.13) involving absolutely convergent integrals only, and not singular
integrals as in (2.6).

Lemma 4.5. — Assume that u ∈ X, div u = 0 and ω = ∂1u2 − ∂2u1 ∈
L∞(R2). If q ∈ BMO(R2) is a solution to (4.13), we have for any x0 ∈ R2

q(x) = q0 + q1(x) + q2(x) + q3(x, x0) , x ∈ R2 , (4.14)
where q0 ∈ R and

q1(x) = 1
2π

∫
R2
χ(x− y) (x− y)⊥

|x− y|2
· u(y)ω(y) dy ,

q2(x) = 1
4π

2∑
k,`=1

∫
R2
Mk`(x− y)uk(y)u`(y) dy , (4.15)

q3(x, x0) = 1
2π

2∑
k,`=1

∫
R2

{
χc(x− y)Kk`(x− y)

− χc(x0 − y)Kk`(x0 − y)
}
uk(y)u`(y) dy .

Here the following notations have been used: χ ∈ C∞0 (R2) is a cut-off func-
tion which is equal to 1 on a neighborhood of the origin, χc = 1− χ, and

Mk`(z) = 2zk∂`χ(z)− δk`(z1∂1χ(z) + z2∂2χ(z))
|z|2

,

Kk`(z) = 2zkz` − |z|2δk`
|z|4

.

(4.16)

Proof. — We first explain how the formulas (4.15) are obtained. Assume
for simplicity that ω has compact support in R2. In that case, using the
fundamental solution of the Laplace operator in R2 (see Section 4.4) and
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integrating by parts, we obtain the unique solution of (4.13) which decays
to zero at infinity:

q(x) = − 1
2π

∫
R2

log |x− y|div(u⊥(y)ω(y)) dy

= 1
2π

∫
R2

(x− y)⊥

|x− y|2
· u(y)ω(y) dy .

(4.17)

Our goal is to transform the integral in the right-hand side of (4.17) into an
expression that makes sense even if ω is not localized. To do that, we use the
partition of unity 1 = χ+ χc and we decompose q(x) = q1(x) + q̃(x), where
q1 is given by (4.15) and

q̃(x) = 1
2π

∫
R2
χc(x− y) (x− y)⊥

|x− y|2
· u(y)ω(y) dy . (4.18)

We next invoke the identities

u1ω = ∂1(u1u2) + 1
2∂2(u2

2 − u2
1) , u2ω = −∂2(u1u2) + 1

2∂1(u2
2 − u2

1) ,

which allow us to integrate by parts in (4.18). This gives two different terms,
according to whether the derivative acts on the cut-off or on the Biot–Savart
kernel. After careful calculations, we obtain decomposition q̃(x) = q2(x) +
q∗3(x), where q2 is as in (4.15) and

q∗3(x) = 1
2π

2∑
k,`=1

∫
R2
χc(x− y)Kk`(x− y)uk(y)u`(y) dy .

Summarizing, we have q(x) = q1(x) + q2(x) + q∗3(x) when ω is localized,
which gives (4.14) with q0 = q∗3(x0) since q3(x, x0) = q∗3(x)− q∗3(x0).

We now consider the general case where u and ω are only supposed to
be bounded. Under these assumptions the functions q1, q2 defined by (4.15)
are clearly continuous and bounded. On the other hand, using the estimate

|Kk`(x− y)−Kk`(x0 − y)|

6 C

(
|x− x0|

|x− y|2|x0 − y|
+ |x− x0|
|x− y| |x0 − y|2

)
, (4.19)

which is obtained as in (4.7), it is straightforward to verify that the inte-
gral defining q3(x, x0) in (4.15) is absolutely convergent for any pair of points
x, x0 ∈ R2, because the integrand is bounded and decays to zero like |y|−3 as
|y| → ∞. In fact, proceeding as in the proof of Proposition 4.2, one can show
that q3(x, x0) is a continuous function of x which grows at most logarithmi-
cally as |x| → ∞. Now, if we define q̄(x) = q1(x) + q2(x) + q3(x, x0), then
q̄ satisfies the elliptic equation (4.13). A convenient way to verify that is to
approximate u by an sequence of compactly supported divergence free vector
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fields un (this can be done using Bogovskii’s operator, see [13]). The corre-
sponding pressure q̄n satisfies −∆q̄n = div(u⊥nωn) by construction, where
ωn = curlun, and taking the limit n → ∞ we obtain the desired property
for the limit q̄. Finally, if q ∈ BMO(R2) is any other solution of (4.13), it
follows that q − q̄ is a harmonic function on R2 with sublinear growth at
infinity, hence q − q̄ = q0 for some q0 ∈ R. �

4.3. Uniformly local Lebesgue spaces

Let d ∈ N∗ and 1 6 p <∞. We introduce the space Lpul(Rd) defined by

Lpul(R
d) =

{
f ∈ Lploc(Rd)

∣∣∣ ‖f‖Lp
ul
<∞

}
, (4.20)

where ‖f‖Lp
ul

is given by (3.1). In other words, a function f belongs to
Lpul(Rd) if and only if f ∈ Lp(Bx) for any x ∈ Rd, where Bx ⊂ Rd denotes
the ball of unit radius centered at x, and if moreover the norm ‖f‖Lp(Bx) is
uniformly bounded for all x ∈ R2. Roughly speaking, a function f ∈ Lpul(Rd)
is locally in Lp but behaves at large scales like a bounded function.

The uniformly local Lp space Lpul(Rd) is the subspace of Lpul(Rd) defined
by

Lpul(R
d) =

{
f ∈ Lpul(R

d)
∣∣∣ ‖τyf − f‖Lp

ul
−−−→
y→0

0
}
, (4.21)

where τy denotes the translation operator: (τyf)(x) = f(x−y) for x, y ∈ Rd.
The following properties are well known [3]:

(1) The space Lpul(Rd) equipped with the norm (3.1) is a Banach space,
which contains Lpul(Rd) as a closed subspace. In fact Lpul(Rd) is the
closure of Cbu(Rd) in Lpul(Rd), so that Cbu(Rd) and even C∞bu(Rd)
are dense in Lpul(Rd).

(2) If p =∞ the norm (3.1) should be understood as the uniform norm
over Rd. We thus have L∞ul (Rd) = L∞(Rd) and the definition (4.21)
shows that L∞ul (Rd) = Cbu(Rd).

(3) For any p ∈ [1,∞] one has Lpul(Rd) 6= L
p
ul(Rd). For instance, if

f(x) = sin(|x|2), it is easy to verify that f ∈ Lpul(Rd) \ L
p
ul(Rd).

Such a function cannot be approximated by uniformly continuous
functions in the topology defined by the norm (3.1).

(4) As a Banach space, Lpul(Rd) is neither reflexive nor separable.
(5) If 1 6 p 6 q 6 ∞ one has the embeddings Cbu(Rd) ↪→ Lqul(Rd) ↪→

Lpul(Rd) ↪→ L1
ul(Rd).

– 1020 –



Infinite energy solutions of the two-dimensional Navier–Stokes equations

Uniformly local Sobolev spaces can be constructed in a similar way. For
instance one can define W 1,p

ul (Rd) as the space of all f ∈ Lpul(Rd) such that
the distributional derivatives ∂if belong to Lpul(Rd) for i = 1, . . . , d.

Uniformly local Lebesgue spaces provide a convenient framework for solv-
ing evolution PDE’s. As a simple example, we consider the linear heat
equation ∂tu = ∆u in Rd. The solution with initial data u0 ∈ Lpul(Rd) is
u(t) = S(t)u0, where S(0) = 1 and

(S(t)u0)(x) = 1
(4πt)d/2

∫
Rd

e−
|x−y|2

4t u0(y) dy , x ∈ Rd , t > 0 . (4.22)

The following result is not difficult to establish [3]:

Proposition 4.6. — The family {S(t)}t>0 given by (4.22) defines a
strongly continuous semigroup on Lpul(Rd) for 1 6 p 6 ∞. Moreover, if
1 6 p 6 q 6∞ one has the estimate

‖S(t)u0‖Lq
ul
6 C

(
1 + t−

d
2 ( 1

p−
1
q )
)
‖u0‖Lp

ul
, t > 0 . (4.23)

In Proposition 4.6, it is important to use Lpul(Rd) instead of the larger
space Lpul(Rd), because if u0 ∈ Lpul(Rd) \ L

p
ul(Rd) the solution u(t) = S(t)u0

is not right continuous at t = 0. For short times (t 6 1), the bound (4.23) re-
duces to the usual Lp−Lq estimate for the heat semigroup in Rd, whereas for
large times (t > 1) we recover the L∞−L∞ estimate. This is not surprising
if one remembers that elements of Lpul(Rd) behave locally like Lp functions,
but look like bounded functions when considered at a sufficiently large scale.
It is also possible to obtain smoothing estimates for the heat semigroup in
uniformly local Lebesgue spaces. For instance, if 1 6 p 6 q 6∞, we have

‖∇S(t)u0‖Lq
ul
6 Ct−1/2

(
1 + t−

d
2 ( 1

p−
1
q )
)
‖u0‖Lp

ul
, t > 0 . (4.24)

In the applications to partial differential equations, it is often convenient
to use slightly different norms on Lpul(Rd) which turn out to be equivalent
to (3.1). Let ρ : Rd → R+ be a measurable function with the following two
properties:

(a) ρ is positive on a set of nonzero measure;
(b) ρ̃ ∈ L1(Rd), where ρ̃(x) = sup{ρ(y) | |y − x| 6 1}.

The second assumption implies that ρ ∈ L1(Rd)∩L∞(Rd). Indeed, we clearly
have ρ 6 ρ̃, hence ‖ρ‖L1 6 ‖ρ̃‖L1 . Moreover, if B ⊂ Rd is any ball of unit
diameter, the definition of ρ̃ implies that ρ(x) 6 ρ̃(y) for all x, y ∈ B, hence

sup
x∈B

ρ(x) 6 inf
y∈B

ρ̃(y) 6 1
|B|

∫
B

ρ̃(y) dy . (4.25)
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This shows that ‖ρ‖L∞ 6 |B|−1‖ρ̃‖L1 . Assumption a) ensures that ρ is not
zero almost everywhere, so that

∫
Rd ρdx > 0.

The following result provides a plethora of equivalent norms on Lpul(Rd).

Proposition 4.7. — If ρ : Rd → R+ satisfies assumptions a) and b)
above, then for 1 6 p <∞ the quantity

‖f‖p,ρ = sup
x∈Rd

(∫
Rd

ρ(x− y)|f(y)|p dy
)1/p

(4.26)

is equivalent to the norm ‖ · ‖Lp
ul

on Lpul(Rd).

Remark 4.8. — Obviously, if ρ is the characteristic function of the unit
ball B0 ⊂ Rd, the definition (4.26) reduces to (3.1). So (4.26) is clearly a
generalization of (3.1).

Proof. — For any z ∈ Rd, we denote by Qz ⊂ Rd the cube of unit diame-
ter centered at z, the edges of which are parallel to the coordinate axes. The
Lebesgue measure of Qz is λd, where λ = d−1/2. Given any f ∈ Lpul(Rd) and
any x ∈ Rd, we estimate∫

Rd

ρ(x− y)|f(y)|p dy =
∑
k∈λZd

∫
Qk

ρ(x− y)|f(y)|p dy

6
∑
k∈λZd

r(x− k)
∫
Qk

|f(y)|p dy , (4.27)

where r(x−k) = sup{ρ(x−y) | y ∈ Qk} = sup{ρ(z) | z ∈ Qx−k}. We observe
that ∫

Qk

|f(y)|p dy 6
∫
Bk

|f(y)|p dy 6 ‖f‖p
Lp

ul
,

because Qk ⊂ Bk (the ball of unit radius centered at k). On the other hand,
we have as in (4.25):

r(x− k) = sup
z∈Qx−k

ρ(z) 6 inf
y∈Qx−k

ρ̃(y) 6 1
λd

∫
Qx−k

ρ̃(y) dy ,

hence ∑
k∈λZd

r(x− k) 6 1
λd

∑
k∈λZd

∫
Qx−k

ρ̃(y) dy = dd/2‖ρ̃‖L1 .

Taking the supremum over x ∈ Rd in (4.27), we conclude that ‖f‖pp,ρ 6
dd/2‖ρ̃‖L1‖f‖p

Lp
ul
.

Conversely, as ρ is positive on a set of nonzero measure, we can assume
without loss of generality that

∫
B0
ρ dx = ε > 0, where B0 ⊂ Rd is the unit
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ball centered at the origin. If ‖f‖Lp
ul
> 0, we choose x ∈ Rd such that∫

|y−x|61
|f(y)|d dy > 1

2‖f‖
p
Lp

ul
.

We then have∫
|z|62

{∫
Rd

ρ(x−y−z)|f(y)|p dy
}

dz

=
∫
Rd

{∫
|z|62

ρ(x−y−z) dz
}
|f(y)|p dy > ε

2‖f‖
p
Lp

ul
,

because by assumption
∫
|z|62 ρ(x−y−z) dz > ε whenever |y − x| 6 1. Thus

there exists z ∈ Rd with |z| 6 2 such that

‖f‖pp,ρ >
∫
Rd

ρ(x−y−z)|f(y)|p dy > ε

2 meas{z ∈ Rd | |z| 6 2}−1‖f‖p
Lp

ul
.

This proves the desired equivalence. �

Remark 4.9. — Proposition 4.7 provides sufficient conditions on the
weight function ρ so that (4.26) is equivalent to (3.1). These conditions
are weaker than what can be found in the existing literature (see e.g. [3,
Def. 4.1]), but it is not clear that assumptions (a) and (b) are optimal. It is
easy to verify that any weight ρ for which (4.26) is equivalent to (3.1) should
satisfy ρ ∈ L1(Rd) ∩ L∞(Rd) and

∫
ρ dx > 0, but these properties alone are

not sufficient, as can be seen from the following example. Assume that d = 1
and take

ρ =
∞∑
k=1

1√
k
1[−k−k−1,−k] , f =

∞∑
k=1

k 1[k,k+k−1] ,

where 1I denotes the characteristic function of an interval I ⊂ R. Then
ρ ∈ L1(R) ∩ L∞(R), and using definition (3.1) we see that f ∈ L1

ul(R). But∫
R
ρ(−y)f(y) dx =

∞∑
k=1

1√
k

= +∞ ,

so that ‖f‖1,ρ = +∞.

4.4. A few elementary tools

We collect here, for easy reference, a few elementary definitions and re-
sults that are used several times in these notes.
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4.4.1. Fourier transforms

We use the following conventions for Fourier transforms on R2. Let S(R2)
denote the (Schwartz) space of all smooth and rapidly decreasing functions
f : R2 → C, see [37]. If f ∈ S(R2) we set

f̂(ξ) =
∫
R2
f(x) e−iξ·x dx , f(x) = 1

2π

∫
R2
f̂(ξ) eiξ·x dξ , (4.28)

for all x ∈ R2 and ξ ∈ R2. We also denote f̂ = Ff and f = F−1f̂ . According
to (4.28), we have for any f ∈ S(R2):

F(∇xf) = iξ(Ff) , and F(xf) = i∇ξ(Ff) .
The Fourier transform F and its inverse F−1 are linear isomorphisms on
S(R2), and can be extended to linear isomorphisms on the dual space S ′(R2),
which is the space of tempered distributions on R2 [37, 38]. For instance, if
δ0 denotes the Dirac measure located at the origin, we have (Fδ0)(ξ) = 1
for all ξ ∈ R2.

4.4.2. Young’s inequality

If f, g ∈ S(R2), we define the convolution product h = f ∗ g ∈ S(R2) by
the formula

h(x) =
∫
R2
f(x− y)g(y) dy =

∫
R2
g(x− y)f(y) dy , x ∈ R2 . (4.29)

In Fourier space, we then have ĥ(ξ) = f̂(ξ)ĝ(ξ) for all ξ ∈ R2, so that
F(f ∗ g) = (Ff)(Fg). Moreover, for all exponents p, q, r ∈ [1,∞] satisfying
1
p + 1

q = 1 + 1
r , we have Young’s inequality

‖h‖Lr(R2) = ‖f ∗ g‖Lr(R2) 6 ‖f‖Lp(R2)‖g‖Lq(R2) . (4.30)
More generally, if f ∈ Lp(R2) and g ∈ Lq(R2), one can show that the integral
in (4.29) converges for almost every x ∈ R2 and defines a function h ∈ Lr(R2)
satisfying (4.30).

4.4.3. Fundamental solutions

The Fourier transform can be used to compute fundamental solutions of
partial differential operators with constant coefficients. Two particular ex-
amples play an important role in these notes. First, the fundamental solution
of the Poisson equation ∆Φ = δ0 in R2 is

Φ(x) = 1
2π log |x| , x ∈ R2 \ {0} ,
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see [10, 28]. It follows that u = Φ ∗ ρ is the solution of the Poisson equation
∆u = ρ for any ρ ∈ S(R2). Similarly, the vector field

V (x) = 1
2π

x⊥

|x|2
, x ∈ R2 \ {0} ,

satisfies divV = 0 and curlV ≡ ∂1V2−∂2V1 = δ0. Thus, if u = V ∗ω for some
ω ∈ S(R2), we have div u = 0 and curlu = ω. The vector field V = ∇⊥Φ is
therefore the fundamental solution associated to the Biot–Savart law.

4.4.4. Gronwall’s lemma

There exist many versions of Gronwall’s lemma, but the following one is
sufficient for our purposes.

Lemma 4.10. — Let T > 0, a > 0, and assume that f, g, b : [0, T ]→ R+
are continuous functions satisfying

f(t) +
∫ t

0
g(s) ds 6 a+

∫ t

0
b(s)f(s) ds , 0 6 t 6 T . (4.31)

Then

f(t) +
∫ t

0
g(s) ds 6 a exp

(∫ t

0
b(s) ds

)
, 0 6 t 6 T . (4.32)

Proof. — Let F (t) =
∫ t

0 b(s)f(s) ds. Then F is continuously differentiable
on [0, T ] and satisfies, in view of (4.31),

F ′(t) = b(t)f(t) 6 ab(t) + b(t)F (t) , 0 6 t 6 T .

Integrating that differential inequality and observing that F (0) = 0, we
obtain the bound

F (t) 6 a exp
(∫ t

0
b(s) ds

)
− a , 0 6 t 6 T ,

which can be inserted in the right-hand side of (4.31) to give (4.32). �

Bibliography

[1] A. L. Afendikov & A. Mielke, “Dynamical properties of spatially non-decaying
2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip”, J. Math. Fluid
Mech. 7 (2005), p. S51-S67.

[2] D. M. Ambrose, J. P. Kelliher, M. C. Lopes Filho & H. J. Nussenzveig Lopes,
“Serfati solutions to the 2D Euler equations on exterior domains”, J. Differ. Equa-
tions 259 (2015), no. 9, p. 4509-4560.

– 1025 –



Thierry Gallay

[3] J. M. Arrieta, A. Rodriguez-Bernal, J. W. Cholewa & T. Dlotko, “Linear
parabolic equations in locally uniform spaces”, Math. Models Methods Appl. Sci. 14
(2004), no. 2, p. 253-293.

[4] V. Chepyzhov & S. Zelik, “Infinite-energy solutions for dissipative Euler equations
in R2”, J. Math. Fluid Mech. 17 (2015), no. 3, p. 513-532.

[5] P. Collet, “A global existence result for the Navier-Stokes equation in the plane”,
unpublished manuscript, 1994.

[6] P. Constantin & C. Foias, Navier-Stokes equations, Chicago Lectures in Mathe-
matics, University of Chicago Press, 1988, ix+190 pages.

[7] E. Cozzi, “Vanishing viscosity in the plane for nondecaying velocity and vorticity”,
SIAM J. Math. Anal. 41 (2009), no. 2, p. 495-510.

[8] M. A. Efendiev & S. Zelik, “The attractor for a nonlinear reaction-diffusion system
in an unbounded domain”, Commun. Pure Appl. Math. 54 (2001), no. 6, p. 625-688.

[9] K.-J. Engel & R. Nagel, One-parameter semigroups for linear evolution equations,
Graduate Texts in Mathematics, vol. 194, Springer, 2000, xxi+586 pages.

[10] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19,
American Mathematical Society, 1998, xvii+662 pages.

[11] E. Feireisl, “Bounded, locally compact global attractors for semilinear damped wave
equations on Rn”, Differ. Integral Equ. 9 (1996), no. 5, p. 1147-1156.

[12] H. P. Fujita & T. Kato, “On the Navier-Stokes initial value problem. I.”, Arch.
Ration. Mech. Anal. 16 (1964), p. 269-315.

[13] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes
equations. Steady-state problems, 2nd ed., Springer Monographs in Mathematics,
Springer, 2011, xiv+1018 pages.

[14] T. Gallay & S. Slijepčević, “Energy flow in formally gradient partial differential
equations on unbounded domains”, J. Dyn. Differ. Equations 13 (2001), no. 4, p. 757-
789.

[15] ———, “Energy bounds for the two-dimensional Navier-Stokes equations in an infi-
nite cylinder”, Commun. Partial Differ. Equations 39 (2014), no. 9, p. 1741-1769.

[16] ———, “Uniform boundedness and long-time asymptotics for the two-dimensional
Navier-Stokes equations in an infinite cylinder”, J. Math. Fluid Mech. 17 (2015),
no. 1, p. 23-46.

[17] T. Gallay & C. E. Wayne, “Global stability of vortex solutions of the two-
dimensional Navier-Stokes equation”, Commun. Math. Phys. 255 (2005), no. 1, p. 97-
129.

[18] Y. Giga, K. Inui & S. Matsui, “On the Cauchy problem for the Navier-Stokes
equations with nondecaying initial data”, in Advances in fluid dynamics, Quaderni
di Matematica., vol. 4, Aracne, 1999, p. 27-68.

[19] Y. Giga, S. Matsui & O. Sawada, “Global existence of two dimensional Navier-
Stokes flow with non-decaying initial velocity”, J. Math. Fluid Mech. 3 (2001), no. 3,
p. 302-315.

[20] J. Ginibre & G. Velo, “The Cauchy problem in local spaces for the complex
Ginzburg-Landau equation, I: Compactness methods”, Physica D 95 (1996), no. 2-4,
p. 191-228.

[21] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in
Mathematics, vol. 840, Springer, 1981, iv+348 pages.

[22] T. Kato, “The Cauchy problem for quasi-linear symmetric hyperbolic systems”,
Arch. Ration. Mech. Anal. 58 (1975), p. 181-205.

[23] J. P. Kelliher, “A characterization at infinity of bounded vorticity, bounded velocity
solutions to the 2D Euler equations”, Indiana Univ. Math. J. 64 (2015), no. 6, p. 1643-
1666.

– 1026 –



Infinite energy solutions of the two-dimensional Navier–Stokes equations

[24] H. Kozono & T. Ogawa, “Two-dimensional Navier-Stokes flow in unbounded do-
mains”, Math. Ann. 297 (1993), no. 1, p. 1-31.

[25] O. A. Ladyzhenskaya, “Solution “in the large” of the nonstationary boundary value
problem for the Navier-Stokes system with two space variables”, Commun. Pure
Appl. Math. 12 (1959), p. 427-433.

[26] J. Leray, “Étude de diverses équations intégrales non linéaires et de quelques prob-
lèmes que pose l’hydrodynamique”, J. Math. Pures Appl. 12 (1933), p. 1-82.

[27] ———, “Essai sur les mouvements plans d’un fluide visqueux que limitent des
parois”, J. Math. Pures Appl. 13 (1934), p. 331-418.

[28] E. H. Lieb & M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American
Mathematical Society, 1996, 278 pages.

[29] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models,
Oxford Lecture Series in Mathematics and its Applications, vol. 3, Clarendon Press,
1996, xiv+237 pages.

[30] Y. Maekawa & Y. Terasawa, “The Navier-Stokes equations with initial data in
uniformly local Lp spaces”, Differ. Integral Equ. 19 (2006), no. 4, p. 369-400.

[31] A. J. Majda & A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts
in Applied Mathematics, Cambridge University Press, 2002, xii+545 pages.

[32] K. Masuda, “Weak solutions of Navier-Stokes equations”, Tohoku Math. J. (2) 36
(1984), p. 623-646.

[33] Y. Meyer,Ondelettes et opérateurs. II. Opérateurs de Calderón-Zygmund, Actualités
Mathématiques, Hermann, 1990.

[34] A. Mielke & G. Schneider, “Attractors for modulation equations on unbounded
domains — existence and comparison”, Nonlinearity 8 (1995), no. 5, p. 743-768.

[35] A. Pazy, Semigroups of linear operators and applications to partial differential equa-
tions, Applied Mathematical Sciences, vol. 44, Springer, 1983, viii+279 pages.

[36] M. H. Protter & H. F. Weinberger,Maximum principles in differential equations,
Prentice-Hall Partial Differential Equations Series, Prentice-Hall, 1967, x+261 pages.

[37] M. Reed & B. Simon, Methods of modern mathematical physics. I. Functional anal-
ysis, Academic Press, 1972, xvii+325 pages.

[38] ———, Methods of modern mathematical physics. II. Fourier analysis, self-
adjointness, Academic Press, 1975, xv+361 pages.

[39] O. Sawada & Y. Taniuchi, “A remark on L∞ solutions to the 2-D Navier-Stokes
equations”, J. Math. Fluid Mech. 9 (2007), no. 4, p. 533-542.

[40] M. E. Schonbek, “Large time behaviour of solutions to the Navier-Stokes equations”,
Commun. Partial Differ. Equations 11 (1986), p. 733-763.

[41] P. Serfati, “Solutions C∞ en temps, n-log Lipschitz bornées en espace et équation
d’Euler”, C. R. Acad. Sci., Paris 320 (1995), no. 5, p. 555-558.

[42] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscilla-
tory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press,
1993, xiii+695 pages.

[43] R. Temam, Navier-Stokes equations. Theory and numerical analysis., 3rd ed., Studies
in Mathematics and its Applications, vol. 2, North-Holland, 1984, xii+526 pages.

[44] M. Wiegner, “Decay results for weak solutions of the Navier-Stokes equations on
Rn”, J. Lond. Math. Soc. 35 (1987), p. 303-313.

[45] S. Zelik, “Infinite energy solutions for damped Navier-Stokes equations in R2”, J.
Math. Fluid Mech. 15 (2013), no. 4, p. 717-745.

– 1027 –


	1. Introduction
	Disclaimer
	Acknowledgements

	2. The Cauchy problem with bounded initial data
	2.1. The heat semigroup on Cbu(R2)
	2.2. Determination of the pressure
	2.3. The Leray–Hopf projection
	2.4. Local existence of solutions
	2.5. Global existence and a priori estimates

	3. Uniformly local energy estimates
	3.1. Uniformly local energy estimates for the heat equation
	3.2. Uniformly local energy estimates for the 2D Navier–Stokes equations
	3.3. Velocity bounds and uniformly local enstrophy estimates

	4. Appendix
	4.1. The Biot–Savart law for bounded velocities and vorticities
	4.2. A representation formula for the pressure
	4.3. Uniformly local Lebesgue spaces
	4.4. A few elementary tools
	4.4.1. Fourier transforms
	4.4.2. Young's inequality
	4.4.3. Fundamental solutions
	4.4.4. Gronwall's lemma


	Bibliography

