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Algorithmic aspects of branched coverings p˚q

Laurent Bartholdi (1) and Dzmitry Dudko (2)

ABSTRACT. — This is a survey, and a condensed version, of a series of
articles on the algorithmic study of Thurston maps. We describe branched
coverings of the sphere in terms of group-theoretical objects called bisets,
and develop a theory of decompositions of bisets.

We introduce a canonical “Levy” decomposition of an arbitrary
Thurston map into homeomorphisms, metrically-expanding maps and
maps doubly covered by torus endomorphisms. The homeomorphisms de-
compose themselves into finite-order and pseudo-Anosov maps, and the
expanding maps decompose themselves into rational maps.

As an outcome, we prove that it is decidable when two Thurston
maps are equivalent. We also show that the decompositions above are
computable, both in theory and in practice.

RÉSUMÉ. — Ce texte est un survol, et une version condensée, d’une
série d’articles étudiant algorithmiquement les applications de Thurston.
Nous décrivons les revêtements ramifiés de la sphère en termes d’objets
de la théorie des groupes appelés « bi-ensembles », et développons une
théorie de leur décomposition.

Nous introduisons une décomposition canonique « de Levy » d’une
application de Thurston quelconque en homéomorphismes, applications
métriquement dilatantes et applications doublement revêtues par un en-
domorphisme du tore. Les homéomorphismes se décomposent eux-mêmes
en applications d’ordre fini et pseudo-Anosov, et les applications dila-
tantes se décomposent elles-mêmes en applications rationelles.

Comme conséquence, nous prouvons qu’il est algorithmiquement dé-
cidable si deux applications de Thurston sont combinatoirement équiva-
lentes. Nous montrons aussi que les décompositions décrites ci-dessus sont
calculables, en théorie et en pratique.
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0. Introduction

Nielsen [27], and later Thurston [39], have achieved an impressive clas-
sification of surface self-homeomorphisms. Given a compact surface X and
a self-homeomorphism f : X ý, there exists a canonical set C of curves,
invariant up to isotopy by f , that separate X into simpler surfaces, and
such that the induced first return maps on these pieces are isotopic to either
finite-order or pseudo-Anosov maps.

These induced maps all preserve a geometric structure: finite-order trans-
formations are hyperbolic isometries (so preserve a complex structure), while
pseudo-Anosov maps preserve a pair of transverse foliations, expanding one
and contracting the other.

This classification result may also be viewed as a bridge between topology
and group theory: f naturally acts by automorphisms on the fundamental
group G of X; the collection C of curves determines a splitting of G as
amalgamated free product over cyclic subgroups, and the induced automor-
phisms of the pieces are either finite-order or irreducible in a strong sense
(“iwip”: irreducible with irreducible powers). Thus the decomposition of X
as an amalgam over circles naturally parallels a decomposition of G as an
amalgam over cyclic subgroups.

Our aim is to do the same for branched self-coverings of compact surfaces,
namely maps f : X ý that are coverings away from a finite set of branch
points, where they admit local models of the form z ÞÑ zd in complex charts.
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If f has degree ą 1, the only surfaces to consider are the sphere and the torus,
by the Riemann–Hurwitz formula. Examples of branched self-coverings of the
sphere include rational maps in Cpzq and their compositions with homeo-
morphisms; branched self-coverings of the torus admit no branch points, so
are genuine coverings and can all be represented on the torus R2{Z2 (after
punctures are filled in) as z ÞÑMz ` b for some M P Z2ˆ2 and some b P R2.
These maps may descend to the sphere: if 2b P Z2 and ℘ : R2{Z2 Ñ S2 is a
branched covering satisfying ℘p´pq “ ℘ppq then ℘ ˝ f ˝ ℘´1 is a branched
self-covering of S2.

An extra ingredient, besides topology and group theory, becomes avail-
able if f has degree ą 1: it may happen that X admits a metric that is
expanded by f . Even better, X may admit a complex structure that is pre-
served by f , in which case there exists a conformal metric that is expanded
by f .

0.1. Overview of results

We consider self-branched coverings f : pS2, Aqý, with A a finite subset
of S2 containing fpAq and the critical values of f ; such maps are called
marked Thurston maps. For example, A could be the post-critical set Pf “
Ť

ną0 f
npcritical pointsq.

Since Thurston’s fundamental work, it is customary to consider such maps
f up to combinatorial equivalence: two maps f0, f1 are equivalent if they
can be deformed smoothly into one another along a path ft : pS2, Atq ý of
marked Thurston maps.

This notion is a combination of two stricter notions: conjugacy by a home-
omorphism pS2, A0q Ñ pS2, A1q and isotopy rel A, namely along a path of
Thurston maps with constant marked set A. The centralizer of a Thurston
map f : pS2, Aq ý is the group of pure mapping classes g P ModpS2, Aq
such that g´1fg is isotopic to f .

Our work makes essential use of a fundamental invariant introduced by
Nekrashevych, the biset of a branched covering. Choose a basepoint ˚ P
S2zA and write G “ π1pS2zA, ˚q. Then the biset of a branched self-covering
f : pS2, Aqý is a set Bpfq equipped with two commuting actions of G, whose
(appropriately defined) isomorphism class is a complete invariant of f up to
combinatorial equivalence. Since G is a free group, calculations in Bpfq are
easy to perform.

The theory is slightly complicated by a family of branched self-coverings
f : pS2, Aq ý that come from a self-covering of the torus f̃ : T 2 ý via a
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degree-2 branched covering ℘ : T 2 Ñ S2; i.e. ℘ ˝ f̃ “ f ˝℘. Suppose we have
f̃pzq “Mz`b on the model R2{Z2 of T 2, and assume that the eigenvalues of
M are real but not rational. We call the map f irrational doubly covered by
a torus endomorphism. It may furthermore be expanding, if all eigenvalues
of M have norm ą 1.

A Levy obstruction is a cycle of curves γ0, γ1, . . . , γn “ γ0 on S2zA with
f mapping γi to γi`1 by degree 1, up to isotopy. It is clearly an obstruction
to the existence of an f -expanding metric, and we show that it is the only
one:

Theorem A. — Suppose f : pS2, Aq ý is a Thurston map with degree
at least 2 such that f admits no Levy obstruction. Then either f is isotopic
to a map expanding a metric on S2zA, or f is isotopic to the quotient by
the involution z ÞÑ ´z of an affine map on R2{Z2 whose eigenvalues are
different from ˘1.

By a decomposition of a map f : pS2, Aq ý we mean a decomposition of
S2zA into punctured spheres along an f -invariant multicurve; the pieces of
the decomposition are the return maps of f on the sub-spheres.

We first show that every Thurston map f : pS2, Aq ý may canonically
be decomposed into pieces that, up to isotopy, (1) are homeomorphisms, or
(2) expand a metric on S2zA, or (3) are non-expanding irrational doubly
covered by torus endomorphisms; see Figure 0.1.

The second case (expanding a metric) is equivalent to (21) a topological
property of f (it does not admit Levy cycles), and to (22) a group-theoretical
property (the biset of f is contracting).

According to the classical Nielsen–Thurston theory, homeomorphisms in
case (1) may canonically be further decomposed, again up to isotopy, into
maps of finite order and pseudo-Anosov homeomorphisms, namely homeo-
morphisms that preserve a pair of transverse foliations on S2zA.

The decomposition theory of Pilgrim [28] lets us decompose expanding
maps that are not doubly covered by irrational torus endomorphisms into
pieces that preserve a complex structure, namely are rational maps. There-
fore (2) implies another group-theoretical property (4): the biset of f de-
composes as an amalgam over cyclic bisets (i.e. transitive bisets over cyclic
groups), with rational pieces, and an algebraic-geometry property (5): there
exists a complex stable curve (an algebraic variety X consisting of com-
plex spheres with marked points, arranged as a cactoid) and a rational map
X 99K X that becomes isotopic to f when the nodes of X are resolved; see
Theorem D.
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deg “ 1 deg ą 1, Levy-free maps

finite-order

ˆ

0 1
´1 0

˙

{ ˘ 1

pseudo-Anosov

ˆ

2 1
1 1

˙

{ ˘ 1

doubly covered by torus endomorphism
ˆ

4 2
2 2

˙

{ ˘ 1

ˆ

6 3
3 3

˙

{ ˘ 1

irrational
expanding

ˆ

2 0
0 3

˙

{ ˘ 1

rational

z2

ˆ

2 0
0 2

˙

{ ˘ 1

Tan Lei & Shishikura’s
example, §7.8

Pilgrim’s example, §7.7

Figure 0.1. Geometric maps

We show how decision problems — isotopy rel A and computation of cen-
tralizers — can be promoted from pieces in a decomposition to the global
map. We also show that the points in AzPf can be encoded in group-
theoretical language, as finite sequences of biset elements. Finally, isotopy
and centralizers can be computed for each of the pieces: finite-order, pseudo-
Anosov, rational maps and maps doubly covered by torus endomorphisms.
Our main result follows:

Theorem B. — It is decidable whether or not two Thurston maps are
combinatorially equivalent.

Furthermore, the centralizer of a Thurston map f (i.e. the set of homeo-
morphisms that commute with f up to isotopy) is effectively computable.

This extends a series of partial results: Bonnot, Braverman and Yam-
polsky show in [11] that equivalence to a rational map is decidable, and
Selinger and Yampolsky show in [33, Main Theorem III] that it is decidable
whether g is equivalent to f provided that all return maps in the canonical
decomposition of f are rational maps with hyperbolic orbifolds.

Even though the first examples of branched self-coverings of the sphere
of degree ą 1 are rational maps, they benefit greatly from sometimes being
considered as topological maps. This is because surgery may be performed
on topological maps: one may decompose them into smaller pieces, glue
two maps together (“mating”, see §IV.3), etc. A fundamental theorem of
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Thurston asserts that, once a topological condition is satisfied (“no annular
obstruction”), the topological map can be isotoped back into a unique ratio-
nal map. What we are proposing, in this research, is to express the topology
in a group-theoretical language in which fundamental questions become de-
cidable and effectively computable, see §7.

Note that, in contrast to non-invertible branched self-coverings, the
algorithmic theory of Mod is fairly advanced, and in particular the
Nielsen–Thurston decomposition is known to be efficiently computable, start-
ing with train tracks as shown by Bestvina and Handel [10], and actually in
polynomial-time as recently announced by Margalit, Strenner and Yurttas.

0.2. Structure of the papers

In the first article [3], we develop the general machinery of bisets and
decompositions of bisets. The main definitions are graphs of groups and
graphs of bisets, and the main result is a van Kampen-like theorem: given
a correspondence Y Ð Z Ñ X and appropriately compatible covers of
X,Y, Z, a graph of bisets is obtained by restricting the correspondence to
the sets in the cover; and the van Kampen theorem expresses the biset of
the correspondence as the “fundamental biset” of the graph of bisets, just
as the fundamental group of a space is the fundamental group of its graph
of groups.

In the second article [4], we specialize to punctured spheres, or more
generally orbispace structures on spheres, which we treat as groups of the
form

G “ xγ1, . . . , γn | γe1
1 “ ¨ ¨ ¨ “ γenn “ γ1 ¨ ¨ ¨ γn “ 1y

with all ei P t2, 3, . . . ,8u. Curves on S2zA are treated as conjugacy classes
in G, and multicurves as collections of conjugacy classes. We use detailed
structure about pure mapping class groups to explain how conjugacy and
centralizer problems for pieces of a decomposition can be promoted to the
original Thurston map.

In the third article [5], we study the effect of erasing punctures (periodic
cycles or marked preimages of post-critical points) from a Thurston map.
We show how these erased points can be encoded by a finite subset of the
biset called a portrait. We use this language to study more carefully the maps
that are doubly covered by torus endomorphisms and characterize them via
elementary group theory.

In the fourth article [6], we prove the first decomposition theorem, of an
arbitrary Thurston map into homeomorphisms, expanding maps and maps
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doubly covered by torus endomorphisms. We also give the characterization
of expanding maps as Levy-free maps and as maps with contracting biset.
In particular, the above decomposition is along a minimal Levy multicurve
such that all pieces are Levy-free or homeomorphisms.

In the fifth article [7], we describe algorithms, and their implementations,
that

‚ convert the Poirier description of a complex polynomial by its ex-
ternal angles into a biset;

‚ convert the Hubbard tree description of a polynomial into a biset;
‚ convert a polynomial biset into its Poirier description by external
angles;

‚ convert a floating-point approximation of a rational map into a biset;
‚ convert a sphere biset into a complex rational map with algebraic
coefficients, or produce an invariant multicurve that testifies to the
inexistence of a rational map.

The first three algorithms are entirely symbolic, while the last two require
floating-point calculations as well as manipulations of triangulations on the
sphere. All these algorithms have been implemented in the software package
Img [1] within the computer algebra system Gap [37].

Finally, we prove Theorem B in §6, assuming all the results in the previ-
ously mentioned articles.

We give below, in separate sections I–V, condensates of the contents
of these articles following their numbering, with relevant definitions and
sketches of proofs, and conclude this article with, in §6, the skeleton of the
proof of Theorem B and, in §7, a series of examples seen from the topological,
group-theoretical and algebraic perspectives.

0.3. Pilgrim’s decomposition

Pilgrim develops in [28] a decomposition theory for branched coverings.
In particular, he constructs a canonical obstruction, which is a multicurve
Γf associated to a branched self-covering f : pS2, Aq ý that is not doubly
covered by a torus endomorphism and which has the property that f is
combinatorially equivalent to a rational map if and only if Γf “ H.

Let us review the construction, omitting on purpose the case of maps dou-
bly covered by torus endomorphisms. The Teichmüller space TA of pS2, Aq
is the space of complex structures on the marked sphere pS2, Aq, or equiv-
alently Riemannian metrics on S2zA of curvature ´1. Thurston associates
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with f : pS2, Aq ý a self-map σf : TA ý defined by pulling back complex
structures through f . He shows (see [17]) that σf is weakly contracting for
the Teichmüller metric on TA, so that (starting from an arbitrary point
τ P TA) either σnf pτq converges to a fixed point (which is then a complex
structure preserved by f , so f is combinatorially equivalent to a rational
map) or degenerates to the boundary of TA, in which case some curves on
S2zA become very short in the hyperbolic metric defined by σnf pτq. The
canonical obstruction Γf is simply defined as the collection of simple closed
curves on S2zA whose length goes to 0 as nÑ8.

Selinger gives in [32, Theorem 5.6] a topological characterization of the
canonical obstruction. As a consequence, we deduce that Pilgrim’s canoni-
cal obstruction is the union of the Levy obstruction (the multicurve along
which S2 is pinched to produce the Levy decomposition) and the rational
obstruction (the multicurve along which the expanding maps of the Levy de-
composition should be further pinched to give rational maps). Selinger and
Yampolsky show in [33, Main Theorem I] that the canonical obstruction is
computable.

0.4. Remarks

The main objects of study are bisets (called combinatorial bimodules
in [26]), which we generalize by allowing different groups H,G to to act
on the left and right respectively. Bisets may be thought of as generaliza-
tions of group homomorphisms, up to pre- and post-composition by inner
automorphisms. Indeed, if φ : H Ñ G is a group homomorphism, written
h ÞÑ hφ, one associates with it the H-G-set Bφ, which, qua right G-set, is
plainly G; the left H-action is by

h ¨ b “ hφb .

Conversely, if B is a transitive H-G biset (a general biset splits as a disjoint
union of its transitive components), then there is a group K and there are
homomorphisms φ : K Ñ G and ψ : K Ñ H such that B – B_ψ b Bφ,
where B_ψ is the contragredient of Bψ, see §I, so bisets may also be thought
as correspondences of groups. In fact, to every topological correspondence
Y Ð Z Ñ X there is a naturally associated π1pY q-π1pXq-biset, independent
of basepoints up to isomorphism.

The main decision problems we study are, in the context of bisets, the
conjugacy problem that can be asked in any category with multiplication
(given B,C, does there exist X with XB “ CX?), witnessed conjugacy
problem (givenB,C, find anX withXB “ CX or prove that there are none),
and the centralizer problem (given B, describe the set of X with BX “ XB).
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We proceed from the best-behaved bisets (that of rational Thurston maps)
to the general case by following diverse reductions, in particular introducing
portraits of bisets to add and erase marked points, and trees of bisets to glue
and cut along multicurves.

In fact, by a general trick, only the centralizer problem needs to be con-
sidered: assuming that the centralizer problem is solvable and given B,C,
compute the centralizer of B\C, and check whether it contains an element
that switches B and C; if so, its restriction to C is a witness for conjugacy
of B and C. This is easy to check e.g. if centralizers are finitely generated
subgroups of well-understood groups. We show, however, that centralizers
are only computable in the weaker sense of being expressible as kernels of
maps from well-understood groups to Abelian groups. In particular, they
can be infinitely generated, see Example 7.9. For extra clarity, we treat all
three decision problems in parallel.

We restrict ourselves to studying actions of the pure mapping class group:
punctures on our marked spheres may be permuted by Thurston maps, but
are fixed by the mapping classes. In this manner, the portrait of Thurston
maps, namely the dynamics on their marked points, is preserved by pre- and
post-composition by mapping classes. One could extend the statements and
algorithms to non-pure mapping class groups, at the cost of introducing finite
groups in a few places. The action of non-pure mapping classes would better
capture the notions of conjugation, centralizer and combinatorial equivalence
of maps. In particular, the action of non-pure (i.e. fractional) Dehn twists
could lead to valuable systematic constructions of Thurston maps, in the
spirit of near-Euclidean Thurston maps [13].

0.5. Acknowledgments

We are grateful to Kevin Pilgrim and Thomas Schick for enlightening
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0.6. Notations

Here are some notations that shall be used throughout the texts:

‚ The symmetric group on a set S is written SÓ.
‚ Concatenation of paths is written γ#δ for “first γ, then δ”; inverses
of paths are written γ´1
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‚ The identity map is written 1. Composition of maps, permutations
etc. is in the algebraic, left-to-right order, unless explicitly written
as pf ˝ gqpxq “ fpgpxqq. The restriction of a map f : A Ñ B to a
subset C Ď A is written f åC . Self-maps are written f : X ý in
preference to f : X Ñ X

‚ We write « for isotopy of paths, maps etc, „ for conjugacy or com-
binatorial equivalence, and – for isomorphism of algebraic objects

‚ We try to use similar fonts for similar objects: script C for multi-
curves, X for graphs of groups, Gz for its vertex and edge groups
(even if the graph of groups is not called G), B for graph of bisets,
Bz for its vertex and edge bisets, usually Greek letters for functions.

We also establish a kind of “dictionary” between topological and algebraic
notions:
Topology Algebra

Continuous map Right-principal biset Bpfq
Covering map Left-free right-principal biset
Composition of maps g ˝ f Tensor product of bisets Bpfq bBpgq
Topological correspondence pf, iq Biset Bpf, iq “ Bpiq_ bBpfq
Covering pair (f is a covering) Left-free biset
Decomposition of correspondence Graph of bisets
Punctured sphere pS2, Aq Sphere group G “ xγ1, . . . , γn | γ1 ¨ ¨ ¨ γny

Puncture ai P A Peripheral conjugacy class γG
i in G

Mapping class group ModpS2, Aq Outer automorphism group ModpGq
Multicurve C Family of essential conjugacy classes in G

Decomposition of S2 along C
Decomposition of G as sphere tree

of groups X

C \A Distinguished conjugacy classes X of X
Homeomorphism pS2, B,Dq Ñ pS2, A,C q Conjugator YIX between trees of groups
Group of Dehn twists along C ZC

Stabilizer ModpS2, A,C q of C Stabilizer ModpXq of X
Branched covering f : pS2, Bq Ñ pS2, Aq Sphere H-G-biset Bpfq
Isotopy rel A Isomorphism of sphere bisets
Mapping class biset Mpfq Mapping class biset MpBq
Thurston map f : pS2, Aq ý Sphere G-G-biset Bpfq
Expanding map f Contracting biset Bpfq
Restriction f : A ý Portrait B˚ : A ý

Combinatorial equivalence Conjugacy of sphere bisets
Centralizer Zpfq Centralizer ZpBq
Extra marked points of expanding map f Portrait of bisets for Bpfq
Torus endomorphism R2{Z2 ý Biset Z2BZ2 of a linear map
Map doubly covered by R2{Z2 ý Crossed product Z2BZ2 ¸ t˘1u
Decomposition of f along multicurve Decomposition of Bpfq as tree of bisets B

Sub-mapping class biset Mpf,B,A,D ,C q MpBq
Renormalization of f w.r.t. C Return bisets of B
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I. Bisets and van Kampen’s theorem [3]

Let f : Y Ñ X be a continuous map between topological spaces. Fix
basepoints : P Y and ˚ P X, and consider the fundamental groups H “
π1pY, :q and G “ π1pX, ˚q. Then the map f may be encoded into an H-G-
biset, namely a set Bpfq with commuting left H-action and right G-action.
As a set, Bpfq is the set of homotopy classes of paths, in X, from fp:q to ˚.
The actions of H and G are respectively given by pre-catenation of the f -
image and by post-catenation. To recall the acting groups, we sometimes
write HBpfqG. Bisets can be multiplied; the product B bG C of an H-G-
biset B with a G-F -biset C is the H-F -biset pBˆCq{tpbg, cq “ pb, gcqu. The
contragredient of the H-G-biset B is the G-H-biset B_, which is B as a set
with actions g ¨ pb_q ¨ h “ ph´1bg´1q_.

An intertwiner from an H-G-biset B to an H 1-G1-biset B1 is a map
β : B Ñ B1 and a pair of homomorphisms γ : H Ñ H 1 and α : GÑ G1 with

βphbgq “ γphqβpbqαpgq for all h P H, b P B, g P G.
If H “ G, H 1 “ G1 and γ “ α, then the intertwiner is a semiconjugacy.
If H “ H 1 and G “ G1 and γ “ 1 and α “ 1, then the intertwiner is a
morphism. Congruences, conjugacies, and isomorphisms are invertible inter-
twiners, semiconjugacies, and morphisms respectively.

semiconjugacies
pα, β, αq

G “ H,G1 “ H 1
Ă intertwiners

pγ, β, αq Ą
morphisms
p1, β,1q

G “ G1, H “ H 1
Y Y Y

conjugacies Ă congruences
Dpγ´1, β´1, α´1q Ą isomorphisms

Note that if G “ H then every morphism is also a semiconjugacy.

Let X,Y be path connected topological spaces. Bisets are well adapted
to encode more general objects than continuous maps Y Ñ X, namely topo-
logical correspondences. These are triples pZ, f, iq consisting of a topological
space Z and continuous maps f : Z Ñ X and i : Z Ñ Y , and are simply
written Y Ð Z Ñ X. If Z is path connected, then the biset of the corre-
spondence is Bpf, iq “ Bpiq_ b Bpfq; in general, it is the disjoint union of
the bisets on all path connected components of Z.

I.1. Coverings and left-free bisets

The biset HBpfqG of a continuous map f : Y Ñ X is, by construction,
isomorphic to GG qua right G-set. If furthermore f is a covering, say of

– 1229 –



Laurent Bartholdi and Dzmitry Dudko

degree d, then HBpfq is free of degree d qua left H-set. In particular, if
in the topological correspondence Y Ð Z Ñ X the map f is a degree-d
covering, then Bpf, iq is left-free of degree d. The correspondence is called a
covering pair.

Choose then a subset S Ď Bpf, iq of cardinality d that intersects once
every left H-orbit; such a subset is called a basis. Using the isomorphism
HBpf, iq “ H ˆ S, we may write the right G-action on Bpf, iq in the form

s ¨ g “ h ¨ s1 for some h P H, s1 P S .
This is a map SˆGÑ H ˆS, which (writing SÓ. for the permutation group
on S) yields a group homomorphism

ψ : G ÞÑ HS ¸ SÓ.
called the wreath recursion of Bpf, iq. Writing S “ t`1, . . . , `du, we may write
ψ as

g ÞÑ !h1, . . . , hd"π
for elements h1, . . . , hd and a permutation π. It is sufficient to specify ψ on
generators of g, and these data are called a presentation of the biset.

We shall see in §7 many examples of biset presentations. We stress here
that they are eminently computable, and in particular with pencil and paper.
Here is the concrete recipe, for a covering correspondence Y Ð Z Ñ X. Fix
basepoints ˚ P X and : P Y , and write G “ π1pX, ˚q and H “ π1pY, :q.
Choose for each z P f´1p˚q a path `z in Y from ipzq to :, and set S “
t`z | z P f´1p˚qu. For every (generator) g P G, represented as a curve
g : r0, 1s Ñ X, and for every `z P S, there exists a unique lift g̃z : r0, 1s Ñ Z
of g that starts at z. Let z1 be the endpoint of g̃z. Then the concatenation
hz :“ `´1

z #pi ˝ g̃zq#`z1 is a loop at :, and its class in H is independent of
the choice of representative for g. The wreath recursion of Bpf, iq is the map
g ÞÑ !hz1 , . . . , hzd"π with π P SÓ. the permutation z ÞÑ z1.

I.2. Graphs of bisets

The van Kampen theorem expresses the fundamental group of a topo-
logical space in terms of the fundamental groups of subspaces. A convenient
algebraic object that captures the data is a graph of groups — a graph dec-
orated with groups such that each edge group has two morphisms into the
neighboring vertex groups. It is therefore convenient [34] to double each edge
— to replace it with a pair of directed edges of the opposite orientation.

We view graphs as sets X endowed with two maps x ÞÑ x´ and x ÞÑ x,
with axioms x “ x and px´q´ “ x´ and x´ “ x ô x “ x. The vertex set
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V pXq is then tx | x´ “ xu, and the edge set EpXq is XzV pXq. The object
x is called the reverse of x. Setting x` :“ pxq´, the vertices x´ and x`
are respectively the origin and terminus of x. A graph morphism is a map
h : X Ñ X1 such that hpx´q “ hpxq´ and hpxq “ x for all x P X. Note that
the image of a vertex is a vertex while the image of an edge is either an edge
or a vertex.

Recall (e.g. from [34, §4]) that a graph of groups is a graph X with a group
Gx associated with each x P X, and for each edge x P X homomorphisms
Gx Ñ Gx´ and Gx Ñ Gx, written respectively g ÞÑ g´ and g ÞÑ g. Its
fundamental group π1pX, vq is the set of group-decorated loops g0e1g1 ¨ ¨ ¨ engn
with e1 ¨ ¨ ¨ en a loop at v P V pXq in X and gi P Ge`

i
for all i, up to the

relations eg` “ g´e for all edges e P E and all g P Ge. More generally,
given v, w P X we define π1pX, v, wq as the set of group-decorated paths
g0e1g1 ¨ ¨ ¨ engn with e1 ¨ ¨ ¨ en a path from v to w and gi P Ge`

i
for all i, up to

the relations eg` “ g´e as above. The set π1pX, v, wq is naturally a π1pX, vq-
π1pX, wq biset. Given p P π1pX, u, vq and q P π1pX, v, wq their product pq is
in π1pX, u, wq.

Definition I.1 (Graph of bisets). — Let X,Y be two graphs of groups.
A graph of bisets YBX between them is the following data:

‚ a graph B;
‚ graph morphisms λ : BÑ Y and ρ : BÑ X;
‚ for every z P B, a Gλpzq-Gρpzq-biset Bz, an intertwiner pq´ : Bz Ñ
Bz´ with respect to the homomorphisms GλpzqÑGλpzq´ and GρpzqÑ
Gρpzq´ , and an intertwiner pq : Bz Ñ Bz with respect to the homo-
morphisms Gλpzq Ñ G

λpzq and Gρpzq Ñ G
ρpzq. These intertwiners

satisfy natural axioms: the composition Bz Ñ Bz Ñ B
z
“ Bz is the

identity for every z P X, and if z P V pXq, then the homomorphisms
Bz Ñ Bz´ and Bz Ñ Bz are the identity. For b P Bz we write
b` “ b

´.

We call B a Y-X-biset.

Definition I.2 (Fundamental biset of graph of bisets). — Let B be a
Y-X-biset; choose ˚ P V pXq and : P V pYq. Write G “ π1pX, ˚q and H “
π1pY, :q. The fundamental biset of B is an H-G-biset B “ π1pB, :, ˚q,
constructed as follows.

B “
Ů

zPV pBq π1pY, :, λpzqq bGλpzq Bz bGρpzq π1pX, ρpzq, ˚q
"

qb´p “ qλpzqb`ρpzqp @ q P π1pY, :, λpzq´q, b P Bz,
p P π1pX, ρpzq´, ˚q, z P EpBq

* . (I.1)
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In other words, elements of B are sequences h0y1h1 ¨ ¨ ¨ yn b x1 ¨ ¨ ¨ gm´1xngn
subject to the equivalence relations used previously to define π1pXq, as well
as ynhb´gx1 Ø ynhλpzqb`ρpzqgx1 for all z P B, b P Bz, h P Gλpzq´ , g P
Gρpzq´ .

Up to congruence, the fundamental biset is independent on the choice of
basepoints: π1pB, :, ˚q “ π1pY, :, :1q b π1pB, :1, ˚1q b π1pX, ˚1, ˚q.

The definition is a bit unwieldy, but it has a simpler version in case the
graph of bisets is left-fibrant, see [3, Definition 3.16]. Such graphs of bisets
arise from correspondences where one of the maps is a fibration (such as
a covering). A left-fibrant graph of bisets possesses a lifting property: any
pbq P π1pB, :, ˚q can be rewritten in an essentially unique way as pq1b2 for
some b1 in a vertex biset. Thus (I.1) takes the form [3, (9)]

π1pB, :, ˚q “
ğ

zPρ´1p˚q
π1pY, :, λpzqq bGλpzq Bz , (I.2)

with right action given by lifting of paths in π1pX, ˚q.
A biset HBG is biprincipal if both actions are free and transitive. A graph

of bisets YIX is biprincipal if

(1) λ : IÑ Y and ρ : IÑ X are graph isomorphisms; and
(2) Bz are biprincipal for all objects z P I.

We use this notion to define congruence and conjugacy of graphs of bisets:

Definition I.3. — Two graphs of groups Y, X are called congruent if
there is a biprincipal graph of bisets YIX.

Isomorphism of graphs of bisets is meant in the strongest possible sense:
isomorphism of the underlying graphs, and isomorphisms of the respective
bisets. There is a general notion of tensor product of graphs of bisets, which
in the cases below simply amounts to tensoring the vertex and edge bisets
together.

Two graphs of bisets YBX and Y1CX1 are congruent if there are biprin-
cipal graph of bisets YIY1 and XLX1 such that YBX b L and I b Y1CX1 are
isomorphic.

Two graphs of bisets XBX and YCY are conjugate if there is a biprincipal
graph of bisets XIY such that BbX I and IbY C are isomorphic.
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I.3. Graphs of bisets from 1-dimensional covers

Definition I.4 (Finite 1-dimensional covers). — Consider a path con-
nected space X, covered by a finite collection of path connected (not nec-
essarily open) subspaces pXvqvPV . It is a finite 1-dimensional cover of X
if

‚ for every u, v P V and for every path connected component X 1 of
XuXXv there are an open neighbourhood rX 1 Ą X 1 and an Xw Ă X 1
such that Xw ãÑ rX 1 is a homotopy equivalence;

‚ if Xu Ď Xv Ď Xw then u “ v or v “ w.

We order V by writing u ă v if Xu Š Xv.

Definition I.5 (Graphs of groups from covers). — Consider a path con-
nected space X with a 1-dimensional cover pXvqvPV . It has an associated
graph of groups X, defined as follows. The vertex set of X is V . For every
pair u ă v there are edges e and e connecting u “ e´ “ e` and v “ e` “ e´,
and we let E be the set of these edges. Set X “ V \ E.

Choose basepoints ˚v P Xv for all v P V . Choose for each edge e a path
`e from ˚e´ to ˚e` such that `e “ `´1

e . Set Gv :“ π1pXv, ˚vq for every v P V .
For every edge e with e´ ă e` set Ge :“ Ge´ ; define Ge Ñ Ge´ :“ 1

and Ge Ñ Ge` by γ ÞÑ `´1
e #γ#`e. For every edge e with e´ ą e` define

Ge :“ Ge and define morphisms Ge Ñ Ge´ and Ge Ñ Ge` as Ge Ñ Ge`
and Ge Ñ Ge´ respectively.

Consider now a correspondence pZ, f, iq, with f : Z Ñ X and i : Z Ñ Y ,
between path connected spaces X and Y . Suppose that pUαq, pVβq, and pWγq
are finite 1-dimensional covers of X, Y , and Z respectively, compatible with
f and i: for every γ there are λpγq and ρpγq such that fpWγq Ă Uρpγq and
ipWγq Ă Vλpγq. Then the graph of bisets YBX of pf, iq with respect to the
above data is as follows:

‚ the graphs of groups X and Y are constructed as in Definition I.5
using the covers pUαq and pVβq ofX,Y respectively. Choices of paths
`e, me were made for edges e in X, Y respectively;

‚ the underlying graph of B is similarly constructed using the cover
pWγq of Z. For every vertex z P B the biset GλpzqpBzqGρpzq is
Bpf åWz ,iåWz q;

‚ for every edge e P B representing the embedding Wz1 Š Wz the
biset Be is Bz1 , and if e is oriented so that e´ “ z1 then the inter-
twiners pq˘ are the maps pq´ “ 1 : Be Ñ Bz1 and pq` : Be Ñ Bz
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given by pγ´1, δq ÞÑ pm´1
λpeq#γ

´1, δ#`ρpeqq in the description of Be
as BpiåWe´ q_ bBpf åWe´ q.

The graphs of groups X,Y and the graph of bisets B are independent of the
choices of basepoints and connecting paths `e,me, up to congruence.

Theorem I.6 (Van Kampen’s theorem for correspondences). — Let
pf, iq be a topological correspondence from a path connected space Y to a
path connected space X, and let YBX be the graph of bisets subject to com-
patible finite 1-dimensional covers of spaces in question.

Then for every v P Y and u P X we have an isomorphism
Bpf, i, :v, ˚uq – π1pB, v, uq ,

where :v and ˚u are basepoints.

If in Theorem I.6 the map f : Z Ñ Y is a covering and all restrictions
f : Wγ Ñ Uρpγq are covering maps, then B is left-fibrant. In this case its
fundamental biset is computed by (I.2).

I.4. Hubbard trees

Consider a polynomial ppzq P Crzs. We will see how to construct a graph
of bisets out of p’s “Hubbard tree”, see Figure I.1. We first recall some basic
definitions and properties; see [15, 16] for details.

The post-critical set P ppq is the forward orbit of p’s critical values:
P ppq :“ tpnpzq | p1pzq “ 0, n ě 1u .

The polynomial p is post-critically finite if P ppq is finite. The Julia set Jppq
of p is the boundary of the filled-in Julia set Kppq, and the Fatou set is its
complement:
Kppq :“ tz P C | tpnpzq | n P Nu is boundedu , Jc “ BKc , F ppq “ CzJppq .
TheHubbard tree of p is the smallest tree inKppq that contains P ppq and all of
p’s critical points; it intersects F ppq along radial arcs. It is a simplicial graph,
with some distinguished vertices corresponding to P ppq. All its vertices have
an order in N Y t8u: by definition, p behaves locally as z ÞÑ zdegzppq at a
point z P C, and

ordpvq “ l. c.m.tdegzppnq | n ě 0, z P p´npvqu .
Thus in particular ordpvq “ 8 if v is critical and periodic.

This order function defines an orbispace structure on C, see II.5: a topo-
logical space with the extra data of a non-trivial group Gv attached at a
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‚Z{2 ‚Z{2

‚1

‚
Z{2 ‚

Z{2
‚Z{2 ‚Z{2

‚Z{2

ρ “ cover

λ “ retract

Figure I.1. The Julia set of ppzq “ z2`i, its Hubbard tree (in red), and
its associated graph of bisets above graph of groups. The vertex groups
and bisets are indicated on the picture, all edge bisets and groups are
trivial, and the embeddings of edge bisets into vertex bisets are irrel-
evant.

discrete set of points v, in canonical neighbourhoods of which the funda-
mental group is isomorphic to Gv. In our situation, the group attached to
v P P ppq is cyclic of order ordpvq.

For each z P P ppq, let γz denote a small loop around z, and identify
γz with a representative of a conjugacy class in π1pCzP ppq, ˚q, see §II.1. It
follows that the fundamental group of the orbispace defined by ord is given
as follows:

Gp “ π1pCzP ppq, ˚q{xγordpzq
z : z P P ppqy .

The biset Bppq of p is the biset of the orbispace-correspondence
`

p : pC, p´1pP ppqqq Ñ pC, P ppqq, pC, p´1pP ppqqq ãÑ pC, P ppqq˘ .
Since p is an orbispace-covering, the biset Bppq is left-free, see §I.1.

Out of the Hubbard tree T of p, we may construct a graph of groups X.
Qua graph, X is T . A cyclic group of order ordpvq is attached to every vertex
v P T , and the edges of X all carry trivial groups.

We may also construct a graph of bisets XTX as follows, using the Hub-
bard tree T . The underlying graph of T is p´1pT q and ρ : T Ñ X is given
by the covering map p : p´1pT q Ñ T . The map λ : T Ñ X is the canonical
retraction of p´1pT q to its subtree T . There is a degree-degzppq cyclic biset
attached to each vertex z P T, and trivial bisets attached to edges of T. The
biset inclusions are determined by an additional piece of information: angles
between incoming edges at vertices of T . We shall give in Algorithm V.3
a procedure that constructs the graph of cyclic bisets directly out of the
combinatorial data of T , see also [30].
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Proposition I.7. — Let p be a complex polynomial. Then the groups Gp
and π1pX, ˚q are isomorphic, and the bisets Bppq and π1pTq are conjugate
via the group isomorphism between Gp and π1pX, ˚q.

II. Spheres and their decompositions [4]

We specialize the maps we consider to branched coverings pS2, Bq Ñ
pS2, Aq between spheres with finitely many marked points. Decompositions
of S2 are given by multicurves, namely collections of disjoint simple closed
curves on S2. Once these small curves are pinched to points, one obtains a
new collection of topological spheres attached at these points.

The main results of this part are decidability statements: conjugacy and
isotopy questions for sphere maps can be translated to group theory. In the
presence of a multicurve, these questions can be reduced to simpler questions
on the restrictions of the maps to the topological spheres in the complement
of the multicurve.

II.1. Sphere groups and maps

Spheres with marked points are described, within group theory, by their
fundamental group. Let pS2, Aq be a topological sphere, marked by a finite
subset A Ă S2 with #A ě 2. Choose a basepoint ˚ P S2zA. Then the funda-
mental group of S2zA may be computed as follows. Order A “ ta1, . . . , anu.
Choose for each ai P A a path γi from ˚ to ai, such that γi and γj intersect
only at ˚ for i ‰ j, and such that the γi are cyclically ordered as γ1, . . . , γn
counterclockwise around ˚. Let γi be the loop at ˚ that travels on the right
of γi, circles once counterclockwise around ai, and returns to ˚ on the right
of γ´1

i . We then have
G “ π1pS2zA, ˚q “ xγ1, . . . , γn | γ1 ¨ ¨ ¨ γny . (II.1)

A cycle (loop without basepoint) in S2zA is represented by a conjugacy
class in G. The group G comes with extra data: the collection tγG1 , . . . , γGn u
of conjugacy classes, called peripheral conjugacy classes, defined by the prop-
erty that γGi represents can be homotoped to a loop circling ai once coun-
terclockwise.

A sphere map f : pS2, Bq Ñ pS2, Aq is a branched covering f : S2 Ñ S2

such that fpB Y tcritical pointsuq Ď A. The biset Bpfq is the biset Bpf, iq
of the correspondence

pf : S2zf´1pAq Ñ S2zA, i : S2zf´1pAq ãÑ S2zBq .
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Fixing basepoints : P S2zB and ˚ P S2zA for the fundamental groups H :“
π1pS2zB, :q and G :“ π1pS2zA, ˚q, the H-G-biset Bpfq may be concretely
seen as

Bpfq “ tγ : r0, 1s Ñ S2zB | γp0q “ :, fpγp1qq “ ˚u .
The left- and right-actions are respectively by pre-catenation and post-
catenation of the appropriate f -lift.

Two sphere maps f0, f1 : pS2, Bq Ñ pS2, Aq are isotopic, written f0 « f1,
if there exists a path pft : pS2, Bq Ñ pS2, AqqtPr0,1s of sphere maps connecting
f0 to f1. Clearly, all Bpftq are isomorphic.

A Thurston map is a self-sphere map f : pS2, Aqý. In that dynamical set-
ting, we naturally assume that the basepoints ˚ and : coincide. Two Thurston
maps f : pS2, Aqý and g : pS2, Bqý are combinatorially equivalent if there
exists a homeomorphism φ : pS2, Aq Ñ pS2, Bq with φ ˝ f « g ˝ φ.

We consider algebraic counterparts to these notions. In [22], Hurwitz
describes an elegant classification of degree-d branched coverings S2 ý with
critical values contained in ta1, . . . , anu in terms of admissible n-tuples of
permutations pσi P dÓ.qi“1,...,n. A n-tuple is admissible if σ1 ¨ ¨ ¨σn “ 1 and
xσ1, . . . , σny is a transitive subgroup of dÓ. and the cycle lengths of the σi
satisfy the condition

n
ÿ

i“1

ÿ

c cycle
of σi

`

lengthpcq ´ 1
˘ “ 2d´ 2 . (II.2)

Definition II.1 (Sphere groups). — A sphere group is a tuple
pG,Γ1, . . . ,Γnq consisting of a group and n conjugacy classes Γi in G, such
that G admits a presentation as in (II.1) for some choice of γi P Γi. The Γi
are called peripheral conjugacy classes.

If pS2, Aq is a marked sphere, we note that π1pS2zA, ˚q is a sphere group
for each ˚ P S2zA. For every d P N we denote by Γdi the subset tgd | g P Γiu.

Let HBG be a left-free biset of finite degree, and choose a basis S of B,
namely a set of representatives for the left action. Consider g P G. Then
S – t¨u bH B decomposes into orbits S1 \ ¨ ¨ ¨ \ S` under the action of g, of
respective cardinalities d1, . . . , d`; and for all i “ 1, . . . , `, choosing si P Si
there are elements hi P H with hisi “ sig

di . The multiset tpdi, hHi q | i “
1, . . . , `u consisting of degrees and conjugacy classes in H is independent of
the choice of S, and depends only on the conjugacy class of g; it is called
the lift of gG.

Definition II.2 (Sphere bisets). — Let pG,tΓiuq and pH,t∆juq be sphere
groups. A sphere biset is an H-G-biset B such that the following hold:
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(1) B is left-free and right-transitive;
(2) the permutations of t¨u bH B induced by the right action of repre-

sentatives of Γ1, . . . ,Γn form an admissible tuple as in (II.2);
(3) the multiset of all lifts of Γ1, . . . ,Γn contains exactly once every ∆j,

the other conjugacy classes being all trivial.

By the last condition, to every peripheral conjugacy class ∆j in H is associ-
ated a well-defined degree deg∆j

pBq P N and conjugacy class Γi “: B˚p∆jq,
such that pdeg∆j

pBq,∆jq belongs to the lift of Γi. We define in this manner
a map B˚ from the peripheral conjugacy classes in H to those of G, called
the portrait of B.

In case the peripheral classes of G,H are indexed as pΓaqaPA and p∆cqcPC
respectively, we write B˚pcq “ a rather than B˚p∆cq “ Γa, defining in this
manner a map B˚ : C Ñ A.

If G “ π1pS2zAq and H “ π1pS2zBq and f : pS2, Bq Ñ pS2, Aq is a
sphere map, then Bpfq is a sphere H-G-biset. The following result extends
the Dehn-Nielsen-Baer Theorem II.12 to non-invertible maps; its first part
(in the dynamical setting A “ B) is due to Kameyama [24]. Recall that
an isomorphism between sphere bisets is required to preserve the peripheral
conjugacy classes.

Theorem II.3. — The isomorphism class of Bpfq depends only on the
isotopy class of f , and conversely every sphere H-G-biset is of the form Bpfq
for a sphere map f : pS2, Bq Ñ pS2, Aq.

In summary, there is a bijective correspondence between isotopy classes
of sphere maps and isomorphism classes of sphere bisets.

II.2. Multicurves

A multicurve on pS2, Aq is a disjoint collection C of non-trivial, non-
peripheral simple closed curves on S2zA. Algebraically, each curve in C is
expressed as a conjugacy class in π1pS2zAq; and one may choose in each
Γ P C a representative cΓ P Γ such that π1pS2zAq decomposes as a graph
of groups, with one vertex per connected component S of S2zC , with group
π1pSq, and one edge per curve Γ P C , with group xcΓy. The underlying
graph of the graph of groups is a tree. Following Definition I.5, we consider
the barycentric subdivision X of this graph of groups, with one vertex per
curve in C and one per connected component of S2zC .
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Let f : pS2, Aq ý be a Thurston map. A multicurve C is f -invariant(1)

if every component of f´1pC q is either trivial, peripheral, or homotopic to a
curve in C , and every curve in C appears in this manner; i.e. f´1pC q “ C
up to isotopy.

As soon as f´1pC q Ď C up to isotopy, one may construct the transition
matrix of f with respect to C , also called its Thurston matrix. It is the
endomorphism Tf of QC defined by

Tf pγq “
ÿ

δPf´1pγq
δ«εPC

1
degpf åδ : δ Ñ γqε. (II.3)

Here by deg one means the usual positive degree of f ; i.e. the degree of
zd : t|z| “ 1uý is |d|. A multicurve C is called an annular obstruction if the
spectral radius of its Thurston matrix is ě 1; see Theorem V.7.

Let f : pS2, Aqý be a Thurston map and let C be an f -invariant multic-
urve. The van Kampen theorem lets us decompose Bpfq as a sphere tree
of bisets. Denote by S11, . . . , S1n the connected components of S2zC , set
Sj :“ S1jzA and call Sj a small sphere. View each Sj as a punctured sphere,
so π1pSjq is a sphere group. Observe that tSju \C is a finite 1-dimensional
cover of S2zA and denote by X the associated sphere tree of groups, see Defi-
nition I.5, with the sphere structure given by the set of peripheral conjugacy
classes in every π1pSjq. By construction, each vertex of X represents either
a sphere Sj or a curve in C . The former is called a sphere vertex and the
latter is called a curve vertex.

Let T 11, . . . , T 1m be the connected components of S2zf´1pC q and set Tj :“
T 1jzf´1pAq. Then tTju\f´1pC q is a 1-dimensional cover of S2zf´1pAq. Using
an isotopy rel A modify the inclusion S2zf´1pAq ãÑ S2zA so that the new
map i : S2zf´1pAq Ñ S2zA squeezes all annuli between the essential curves
in f´1pC q that are isotopic rel A and maps them to the corresponding curve
in C . If ipTjq Ă γ P C , then define λpTjq :“ γ; otherwise there is a unique
Sk such that λpTjq Ă Sk, and define λpTjq :“ Sk. The map λ is defined
similarly for curves in f´1pC q. Since f : S2zf´1pAq Ñ S2zA is a covering,
there is a unique ρ : tTju\f´1pC q Ñ tSku\C such that f : Tj Ñ ρpTjq and
f : γ Ñ ρpγq are coverings. In this way we obtain a covering correspondence
f, i : S2zf´1pAq Ñ S2zA compatible with the 1-dimensional covers. The
sphere tree of bisets XBX is the associated graph of bisets. A conjugacy of a
sphere tree of bisets XBX is required to respect the sphere structure; namely
the I in Definition I.3 is a sphere tree of bisets. As with sphere trees of
groups, vertices of B representing spheres Tj are called sphere vertices and
vertices representing curves in f´1pC q are curve vertices.

(1) It is sometimes called “completely invariant”.
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We prove that the decomposition of Bpfq as a sphere tree of bisets is
computable:

Algorithm II.4. — Given f : pS2, Aqý a Thurston map by its sphere
biset, and given C an f -invariant multicurve as a collection of conjugacy
classes,
Compute the decomposition of Bpfq as a sphere tree of bisets.

We return to small spheres Ti Ă S2zA defining sphere vertices of B.
Each T i can be homotoped rel A either to a point (i.e. the map T i ãÑ S2 is
homotopic rel A to a constant map), or to a curve in C , or to a component Sj
(after filling in trivial rel A discs), and is respectively called trivial, annular
or essential. Every Sj contains up to homotopy a single essential Ti, and Ti
covers via f a single piece Sk, so that we have a map Sj Ñ Sk induced by f ,
well-defined up to isotopy. We also write k “ fpjq so that f : t1, . . . , nu ý
describes also how the components of S2zC are mapped by f . We define
finally the set of return maps

Rpf,C q :“ tfe : Sj ý | fepjq “ j and fe
1pjq ‰ j for all e1 ă eu.

All these notions have algebraic counterparts: consider a sphere biset B. A
multicurve C is B-invariant if, for every conjugacy class Γ P C and every b P
B there exist d P N and ∆ P C YtΓiuYt1u such that ∆˘b Ď bΓ˘d, and if all
curves in C occur as such a ∆. Note the similarity to Definition II.2. Consider
the sphere tree of bisets decomposition XBX of B along C , and denote again
by B˚ : t1, . . . , nu ý the dynamics on the essential sphere vertices of B. A
sphere vertex biset Bz of B is called trivial or annular if it is of the form
Gλpzq bP B1 for a P -Gρpzq-set B1 and a subgroup P ď Gλpzq generated by a
representative of a peripheral or trivial conjugacy class, respectively a class
in C ; and is called essential otherwise. Let us denote by B1, . . . , Bn the bisets
associated with essential vertices in B, and let

RpBq “ RpB,C q
:“ tBj bBB˚pjq b ¨ ¨ ¨ bBBe´1

˚ pjq ý | Be˚pjq “ j with e minimalu
denote the return bisets of B, namely the bisets obtained by following a cycle
in the sphere tree of bisets into which B decomposes.

We generalize a result by Kameyama [24] to marked spheres with multi-
curves:

Theorem II.5. — Let f : pS2, A,C q ý and g : pS2, B,Dq ý be two
maps with respective invariant multicurves C and D . Then f and g are
combinatorially equivalent along an isotopy carrying C to D if and only if
the sphere tree of bisets decompositions of Bpfq and Bpgq are conjugate (by
a sphere tree of bisets, see Definition I.3).
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If A “ B and C “ D , then f and g are isotopic rel AY C if and only if
their sphere trees of bisets decompositions are isomorphic.

II.3. Mapping class bisets

Let pS2, Aq be a marked sphere, and denote by ModpS2, Aq the pure
mapping class group of pS2, Aq, namely the set of isotopy classes of
homeomorphisms of S2 fixing A. For C a multicurve on pS2, Aq, denote by
ModpS2, A,C q the subgroup of ModpS2, Aq fixing each curve (together with
its orientation) of C up to isotopy. Similarly, if G is a sphere group π1pS2zAq
then we write ModpGq for ModpS2, Aq; by the Dehn–Nielsen–Baer theorem
(see [18, Theorem 8.8] and §II.5), the group ModpGq is actually a group of
outer automorphisms of G. If X is a sphere tree of groups decomposition of
G along a multicurve C , then we write ModpXq for ModpS2, A,C q; it is a
group of self-conjugators of X in the sense of Definition I.3.

Let f : pS2, Bq Ñ pS2, Aq be a sphere map, and let D ,C be multicurves
on S2zB,S2zA respectively with D Ď f´1pC q.

Definition II.6 (Mapping class bisets). — The ModpS2, Bq-
ModpS2, Aq-biset Mpf,B,Aq is defined as

Mpf,B,Aq “ tm1fm2 | m1 P ModpS2, Bq,m2 P ModpS2, Aqu {« .
It admits as a subbiset the ModpS2, B,Dq-ModpS2, A,C q-biset
Mpf,B,A,D ,C q

“ tm1fm2 | m1 P ModpS2, B,Dq,m2 P ModpS2, A,C qu {« .
The left- and right-actions are given by m1fm2 “ m2 ˝ f ˝ m1, in keeping
with using the algebraic order of operations in bisets.

By Theorem II.5, the biset Mpf,B,Aq is also the set of isomorphism
classes of bisets of the form Bpm1q bBpfq bBpm2q with m1 P ModpS2, Bq,
m2 P ModpS2, Aq, and similarly for Mpf,B,A,D ,C q. Therefore, for a
sphere biset HBG we introduce the notation

MpBq “ tBψ bB bBφ | ψ P ModpHq, φ P ModpGqu {– , (II.4)
and for a sphere tree of bisets YBX we define

MpBq “ tN1 bBbN2 | N1 P ModpYq,N2 P ModpXqu {– . (II.5)

We prove that Mpf,B,Aq and Mpf,B,A,D ,C q are left-free of finite de-
gree. The groups ModpS2, Aq and ModpS2, A,C q are computable: by the
Dehn–Nielsen–Baer theorem (see [18, Theorem 8.8] and §II.5), the group
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ModpS2, Aq is the group of outer automorphisms of π1pS2zA, ˚q that pre-
serve peripheral conjugacy classes, and ModpS2, A,C q is the subgroup that
also preserves the classes in C .

Algorithm II.7. — Given f a sphere map pS2, B,Dq Ñ pS2, A,C q,
Compute the biset Mpf,B,A,D ,C q.

The mapping class group ModpS2, A,C q naturally fits into a split exact
sequence

1 ÝÑ eModpS2, A,C q ιÝÑ ModpS2, A,C q πÝÑ vModpS2, A,C q ÝÑ 1
(II.6)

whose kernel eModpS2, A,C q is generated by Dehn twists about curves in
C , and thus is isomorphic to Z#C , and whose quotient is isomorphic to the
direct product of the mapping class groups of the path connected components
of S2zpC \Aq, where all removed discs are shrunk to punctures.

The structure ofMpf,B,A,D ,C q qua eModpS2, B,Dq-eModpS2, A,C q-
biset is described by the Thurston matrix Tf of f , see (II.3), in the sense
that if fm “ m1f with m P eModpS2, A,C q, then m1 P eModpS2, B,Dq is
the image of m under the Thurston matrix.

We arrive finally at the main results of this part: decision problems for
mapping class bisets. Consider a finitely generated group P , and a P -P -biset
B that is left-free of finite degree. We study the following decision problems:

The conjugacy problem. — Given b, c P B, are they conjugate? If so,
give a witness g P P with bg “ gc.

The centralizer problem. — Given b P B, compute its centralizer Zpbq :“
tg P P | gb “ bgu.

By a computable group we mean a finitely generated group with solvable
word problem. A subgroup H of a computable group P is computable if
H is finitely generated and has solvable membership problem (i.e. there is
an algorithm that decides, given g P G, whether g P H). We say that a
subgroup L ď P is sub-computable if there is a computable subgroup H ď P
and a computable homomorphism H Ñ A to an Abelian group such that
L “ kerpH Ñ Aq. (It follows from the definition that L also has solvable
membership problem because it is decidable if h P H is in kerpH Ñ Aq.)
We say that a centralizer problem is solvable, respectively sub-solvable, if
there is an algorithm calculating the centralizer group as a computable,
respectively sub-computable, subgroup. When elements of a left-free H-G-
biset B – H ˆS are supplied to an algorithm, they are given in the form hs
with h P H and s P S; a computable biset is one such that the groups G,H
and the map S ˆGÑ H ˆ S are computable.
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Let f : pS2, A,C q ý be a Thurston map, and set for brevity M :“
Mpf,A,A,C ,C q. From the exact sequence (II.6) we derive an “exact se-
quence” of bisets

eModpS2,A,C qMeModpS2,A,C q ãÑM � eModpS2,A,C qzM{eModpS2,A,C q (II.7)
in which the first term is M with restricted left and right actions,
and the third term is the quotient of M by the left and right actions of
eModpS2, A,C q. There is a finite-to-one map from this third term to the
product of mapping class bisets of spheres in pS2, AqzC . We prove a general
result about conjugacy and centralizer problems in extensions, which gives
the

Theorem II.8. — Let M be a mapping class biset as in (II.7). There
is an algorithm that computes the following. It receives as input two
elements b, c P M , a conjugator g P vModpS2, A,C q with bg “ gc in
eModpS2,A,C qzM{eModpS2,A,C q, and the centralizer Zpbq ď vModpS2, A,C q
as a computable group. It computes whether b „ c in M , if so finds a conju-
gator, and produces Zpbq as a sub-computable group. If furthermore Zpbq is
finite, then Zpbq is computable.

It is therefore sufficient, to solve conjugacy problems in M , to solve
them for return bisets in RpB,C q. We note that the centralizer problem
in ModpS2, Aq is solvable while the centralizer problem in M is only sub-
solvable, see the example in §7.9.

II.4. Distinguished conjugacy classes

Let pS2, Aq be a marked sphere, and let C be a multicurve. It is often
convenient to treat similarly the conjugacy classes describing elements of
A and of C . Consider a sphere tree of groups X. The set of distinguished
conjugacy classes X of X is the set of all peripheral conjugacy classes of all
sphere vertex groups with two conjugacy classes identified if they are related
by an edge. Equivalently, if X is the sphere tree of groups decomposition of
pS2, A,C q, then X is in bijection with AYC . Note that the set of geometric
edges of X is naturally a subset of the distinguished conjugacy classes.

The following algorithm determines when a bijection between (possibly
peripheral) multicurves is induced by a homeomorphism between the under-
lying spheres:

Algorithm II.9. — Given X and Y two sphere trees of groups with
distinguished conjugacy classes X and Y , and given a bijection h : X Ñ Y ,
Decide whether h : X Ñ Y promotes to a conjugator I from X to Y, and if
so construct I as follows:
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(1) Check whether h restricts to an isomorphism between the geometric
edge sets of X and Y. If not return fail.

(2) Check whether the isomorphism between the edge sets promotes
into a graph-isomorphism h : XÑ Y. If not, return fail.

(3) For a sphere vertex v P X let Γv Ă X be the set of peripheral
conjugacy classes ofGv. Check whether hpΓvq “ Γhpvq for all vertices
v P X. If not, return fail.

(4) For every sphere vertex v P X choose an isomorphism φpvq : Gv Ñ
Ghpvq compatible with h : Γv Ñ Γhpvq. For every edge e P Y choose
an isomorphism φpeq : Ge Ñ Ghpeq.

(5) Set I :“ X, λ :“ 1, ρ :“ h and Bz :“ Ghpzq for all z P I; the
left action of Gz on Bz is via φpzq, the right action is natural, and
the inclusion of Be into Be´ is via 1 ÞÑ g, for any g P Ghpzq with
pqg ˝ φpeq “ φpe´q, if we identify Ge with a subgroup of Ge´ .

(6) Return I.

Let XBX and YCY be two sphere trees of bisets. If I is a conjugator
between X and Y, then

pCqI :“ Ib Cb I_

is an X-tree of bisets. Recall from (II.5) the notations ModpXq and MpBq.
The following two algorithms determine, given two trees of bisets that stabi-
lize the same multicurve, whether they are twists of one another by mapping
classes respecting the multicurve.

The first algorithm expresses, if possible, a sphere tree of bisets as a left
multiple of another one. It relies on the following observation. Suppose that
we want to construct a biprincipal sphere tree of bisets T over a sphere tree
of groups X, and that its vertex and edge bisets are already given, so that
only the intertwiners Te Ñ Te´ need be specified at edges of T. Consider an
edge pair te, eu. The bisets Te and Te˘ may be identified with the groups Ge
and Ge˘ respectively; then the intertwiners Te Ñ Te˘ are defined by 1 ÞÑ g˘
for some g˘ P Ge˘ which commutes with the image of Ge. Since the Ge˘
are free while Ge is Abelian, the element g˘ may be chosen arbitrarily in
pGeq˘. All resulting choices of maps Te Ñ Te˘ are called legal intertwiners.
In fact, writing g˘ “ ph˘q˘ for some h˘ P Ge, the isomorphism class of T
depends only on h`ph´q´1. See Example 7.2 for the interpretation of these
intertwiners as “Dehn twists”.

Algorithm II.10. — Given XBX and XCX two sphere X-trees of bisets,
Decide whether there is an M P ModpXq such that C –MbB, and if so
construct M and the isomorphism as follows:

(1) Try to construct an isomorphism of trees h : BÑ C mapping essen-
tial vertices into essential vertices such that λBpzq “ λC ˝ hpzq and
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ρBpzq “ ρC ˝ hpzq for every z P B. If h does not exist, then return
fail. Otherwise h is unique.

(2) Choose an essential sphere vertex v P B. Try to find Mλpvq P
ModpGλpvqq such that Mλpvq b Bv – Chpvq. If such Mλpvq do not
exist, return fail. Otherwise set S :“ tvu and run Steps 3–6 over
all pairs te, eu Ć S but with e´ P S.

(3) If λpeq R λpSq, then do the following. (Note that in this case λpeq is
an edge in X.) Add e and e to S, let Mλpeq be a principal Z-biset,
choose any legal intertwiner pq´ : Mλpeq Ñ Mλpeq´ , and define Me

similarly.
(4) Try to find an isomorphism betweenMλpeqbBe and Chpeq compatible

with the intertwiner maps. If it does not exist, return fail.
(5) If e` is not an essential sphere vertex, then do the following. If

λpe`q R S, then (in this case λpe`q is a curve vertex) choose a
biprincipal Z-biset Mλpe`q, choose a legal intertwiner from Mλpeq
to Mλpe`q, and add e` to S. Try to find an isomorphism between
Mλpe`q b Be` and Chpe`q that is compatible with the isomorphism
between Mλpeq b Be and Chpeq via the intertwiner maps. If it does
not exist, return fail.

(6) If e` is an essential sphere vertex, then do the following. Try to
find Mλpzq P ModpGλpzqq such that Mλpzq b Bz – Chpzq. If such
Mλpzq do not exist, return fail. Try to find a legal intertwiner
pq´ : Mλpeq ÑMλpe`q such that the isomorphism betweenMλpeqbBe
and Chpeq is compatible with the isomorphism between Mλpeq b Be
and Chpeq via the intertwiner maps. If no such intertwiner exists,
return fail. Add e` to S.

(7) Return the principal sphere tree of bisets M and the isomorphism
between C and MbB constructed via h.

Algorithm II.11. — Given XBX and XCX two sphere X-trees of bisets,
Decide whether C P MpBq, and if so construct M,N P ModpXq such
that C –MbBbN as follows:

(1) Follow Algorithm II.7 to compute a basis of the mapping class biset
MpBq.

(2) For each N in the basis, do the following. Run Algorithm II.10 on
C and BbN. If there exists M P ModpXq with C –Mb pBbNq,
return pM,Nq.

(3) Return fail.

– 1245 –



Laurent Bartholdi and Dzmitry Dudko

II.5. Orbispheres

In fact, a slightly more general situation than marked spheres, that of
orbispheres, can be considered at almost no cost. Let there also be given
a function ord: A Ñ t2, 3, . . . ,8u, assigning a positive or infinite order to
each marked point. This describes an orbispace structure: if ordpaq “ 8, the
point a P A is punctured, while if ordpaq “ n then the space has a cone-
type singularity of angle 2π{n at a. It is convenient to extend ord to S2 so
that ordppq “ 1 ô p R A. We call pS2, A, ordq an orbisphere, and write its
fundamental group, called an orbisphere group, as

G “ π1pS2, A, ord, ˚q “ xγ1, . . . , γn | γordpa1q
1 , . . . , γordpanq

n , γ1 ¨ ¨ ¨ γny . (II.8)

A map f : pS2, B, ordBq Ñ pS2, A, ordAq between orbispheres is a
branched covering between the underlying spheres, with fpBq Y tcritical
valuespfqu Ď A. It is locally modeled at p P S2 by z ÞÑ zdegppfq, in charts
respectively centered at p and fppq, and the orbispace structures satisfy
ordBppqdegppfq | ordApfppqq for all p P S2.

Sphere groups and maps are subsumed in these definitions, by setting
ordpaq “ 8 for all a P A. On the other hand, let f : pS2, Aqý be a Thurston
map. There is then a minimal orbisphere structure pS2, Pf , ordf q, with Pf Ď
A the post-critical set of f , given by

ordf ppq “ l. c.m.tdegqpfnq | n ě 0, q P f´nppqu.

These notions have algebraic counterparts. Let G be an orbisphere group
with peripheral conjugacy classes tΓauaPA. For a P A set

ordGpaq “ mintd P N | Γda “ t1uu.
Orbisphere bisets are defined exactly as in Definition II.2. Let GBG be an
orbisphere biset. It has a portrait B˚ : A ý induced by the map on pe-
ripheral conjugacy classes, and a local degree degapBq. There is a minimal
orbisphere quotient of G associated with B, which is the quotient G of G by
the additional relations ΓordBpaq

a “ 1, for
ordBpaq “ l. c.m.td | n ě 0 and Γa has a lift of degree d under Bbnu,

(II.9)
and clearly ordBpaq | ordGpaq. We call the quotient biset GbG B bG G the
minimal orbisphere biset of GBG.

The mapping class group ModpGq of an orbisphere group is naturally
defined as the group of outer automorphisms of G that preserve its periph-
eral conjugacy classes classwise. It turns out that ModpGq is just a usual
mapping class group. More precisely, consider a marked sphere pS2, Aq with
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rG “ π1pS2, A, ˚q and an orbisphere structure pS2, A, ordq with non-positive
Euler characteristic and with corresponding orbisphere group G. There is a
natural map rGÑ G mapping each generator γi P rG to γi P G.

Theorem II.12 (Dehn–Nielsen–Baer–Zieschang–Vogt–Coldewey [40,
Theorem 5.8.3]). — If G has at least one peripheral class of order ě 3, then
the natural map rGÑ G induces an isomorphism Modp rGq Ñ ModpG). �

There is a small difficulty if all peripheral classes in G have order 2, be-
cause then the orientation of a mapping class is difficult to read in ModpGq.
In that case, we replace ModpGq by its orientation-preserving index-2 sub-
group. In the p2, 2, 2, 2q-case, every mapping class is of the form M p0,0q,
see (III.5), with detpMq “ 1 and M fixing peripheral conjugacy classes.
(See [4, §7] for details.)

An equivalent and useful formulation of orbispheres is via planar discon-
tinuous group actions. To every orbisphere pS2, A, ordq there corresponds a
universal cover which, if

ř

aPAp1 ´ ordpaq´1q ě 2, is a topological plane Π,
and an action of G “ π1pS2, A, ord, ˚q on Π by homeomorphisms such that
pS2, A, ordq “ Π{G; for every p P Π that projects to a marked point ai P A,
its stabilizer Gp is a cyclic group of order ordpaiq, conjugate to xγiy. Maps
between orbispace can be lifted to equivariant maps between their universal
covers.

Theorem II.13 (Baer, [40, Theorem 5.14.1]). — An orientation preserv-
ing homeomorphism of a plane commuting with planar discontinuous group
is isotopic to the identity relative to the group action. �

We consider now in more detail the operation on sphere groups and
sphere bisets consisting of changing the orbispace structure while retain-
ing the marked points. The less innocuous operation of erasing punctures
(i.e. setting their order to 1) will be treated in §III.

Let rG, G be two orbisphere groups with respective peripheral conjugacy
classes prΓaqaPA and pΓaqaPA. An inessential forgetful morphism rG Ñ G is
a homomorphism ι : rG Ñ G such that for every a P A we have ιprΓaq “ Γa.
Therefore the order of a in G divides the order of a in rG for all a P A.

Let G be an orbisphere group and let B be a G-G-biset. We naturally
get a right action of G on

T pBq :“
ğ

ně0
t¨u bG Bbn.

If B is left-free of degree d then T pBq naturally has the structure of a d-
regular rooted tree: if S is a basis of B, then T pBq is in bijection with the
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set of words S˚, which forms a #S-regular tree if one puts an edge between
s1 . . . sn and s1 . . . sn`1 for all si P S. The action of G on T pBq need not be
free; following [26, 5.1.1] we denote by IMGBpGq the quotient of G by the
kernel of this action.

Lemma II.14. — Let
rG
rB
rG be an orbisphere biset and let ι : rG Ñ G be

an inessential forgetful morphism between orbisphere groups. Then
B :“ Gb

rG
rB
rG bG (II.10)

is an orbisphere G-G-biset if and only if the kernel of ι : rGÑ G is contained
in the kernel of rG Ñ IMG

rBp rGq if and only if the kernel of ι : rG Ñ G

is contained in the kernel of rG Ñ G, where G is the minimal orbisphere
quotient of G associated with B.

For an orbisphere biset GBG its mapping class biset MpBq is defined
in the same way as in the sphere case (II.4); namely MpBq is the set of
isomorphism classes of twists Bψ b B b Bφ under all ψ P ModpHq, φ P
ModpGq.

Theorem II.15. — Suppose that rGÑ G is an inessential forgetful mor-
phism such that B :“ Gb

rG
rB
rGbG as in (II.10) is an orbisphere biset. Then

the natural map rb ÞÑ 1brbb 1 induces an isomorphism between the mapping
class bisets Mp rBq and MpBq.

III. Forgetful morphisms and geometric maps [5]

We consider in this part the operation of erasing punctures from a sphere.
Consider f : pS2, A \ E,Ąordq ý, and assume that f induces a branched
covering f : pS2, A, ordqý such that ord: AÑ t2, 3, . . . ,8u satisfies ordpaq |
Ąordpaq for all a P A. There is a natural forgetful epimorphism

rG :“ π1pS2, A\ E,Ąord, ˚q Ñ π1pS2, A, ord, ˚q “: G , (III.1)
as well as a natural forgetful biset epimorphism

rG
rB
rG

:“ Bpf : pS2, A\ E,Ąordqýq Ñ Bpf : pS2, A, ordqýq “: GBG (III.2)
given by

"

rG
rB
rG Ñ GbG rB bG G “ GBG ,

b ÞÑ 1b bb 1 . (III.3)

We say that (III.1) and (III.2) are essential if A Ĺ rA; otherwise (III.1)
and (III.2) are inessential. A forgetful morphism (III.2) is maximal if
pS2, A, ordq “ pS2, Pf , ordf q.
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We show that the geometric (see the next §) biset
rG
rB
rG of degree ą 1

can be described, and recovered, in terms of GBG and extra data which we
call a portrait of bisets. This allows us, in particular, to understand algorith-
mically maps doubly covered by torus endomorphisms. In that case we note
that pS2, A, ordq :“ pS2, Pf , ordf q is a p2, 2, 2, 2q-orbisphere and we show
that GBG is a crossed product of an Abelian biset with an order-2 group,
see §III.3.

III.1. Geometric maps

Let us specify, by geometric conditions, a class of maps that will be central
to our study; see Figure 0.1. Ultimately, we will show that it is equivalent
to a topological condition, being “Levy-free”, see Definition IV.3.

Definition III.1. — A homeomorphism f : pS2, Aqý is geometric if f
is either

tFOu of finite order: there is an n ą 0 such that fn “ 1; or
tPAu pseudo-Anosov [39]: there are two transverse measured foliations

preserved by f such that one foliation is expanded by f while an-
other is contracted.

Consider now a non-invertible map f : pS2, Aq ý. Let A8 Ď A denote
the forward orbit of the periodic critical points of f . The map f is Böttcher
expanding if there exists a metric on S2zA8 that is expanded by f , and such
that f is locally conjugate to z ÞÑ zdegapfq at all a P A8. The map f is
geometric if f is either

tExpu Böttcher expanding; or
tGTor/2u a quotient of a torus endomorphism Mz ` v : R2 ý by the invo-

lution z ÞÑ ´z, such that the eigenvalues of M are different from
˘1.

The two cases are not mutually exclusive. A map f P tGTor/2u is ex-
panding if and only if the absolute values of the eigenvalues ofM are greater
than 1.

A distinguished property of a geometric map is rigidity: two geometric
maps are combinatorially equivalent if and only if they are topologically
conjugate.

An orbisphere biset GBG is geometric if it is the biset of a geometric map,
and tGTor/2u and tExpu bisets are defined similarly. By rigidity there is a
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map fB : pS2, A, ordq ý, unique up to conjugacy, such that the biset of fB
is B.

If GBG is geometric and
rG
rB
rG Ñ GBG is a forgetful morphism as in (III.2),

then elements of E (which a priori are defined up to homotopy) can be
interpreted dynamically as extra marked points on S2zA. This is an instance
of homotopy shadowing, see [23].

More precisely, suppose that
rG
rB
rG Ñ GBG is a forgetful morphism as in

(III.2); suppose that GBG is the biset of a geometric map fB : pS2, A, ordqý;
and suppose that

rG
rB
rG is a Levy-free biset, see Definition IV.3. Then a finite

set E Ă S2zA with fBpEq Ă A \ E can be added to A in such a way that
rG
rB
rG is conjugate to the biset of fB : pS2, A \ E,Ąordq ý. Moreover, if G is

not a cyclic group, then the set E is unique.

III.2. Portraits of groups and bisets

Let GBG be an orbisphere biset with peripheral conjugacy classes pΓaqaPA
and portrait B˚ : A ý. Suppose that E is a finite set and suppose that
B˚ : A\ E ý is an extension of B˚ : Aý.

Definition III.2 (Portraits of groups and bisets). — Let G be an orbi-
sphere group with peripheral conjugacy classes pΓaqaPA and let E be a finite
set. A portrait of groups pGaqaPA\E in G is a collection of cyclic subgroups
Ga ď G such that

Ga “
#

xgy for some g P Γa if a P A,
x1y if a P E.

If E “ H, then pGaqaPA is a minimal portrait of groups.

Let GBG be an orbisphere biset and let B˚ : A\E ý be an extension of
B˚ : Aý. A portrait of bisets in GBG parameterized by B˚ : A\ E ý is a
collection pGa, BaqaPA\E such that

(1) pGaqaPA\E is a portrait of groups in G; and
(2) Ba is a transitive Ga-GB˚paq-subbiset of GBG such that if B˚paq “

B˚pcq and GbGa Ba “ GbGc Bc as subsets of B, then a “ c.

If E “ H, then pGa, BaqaPA\E is a minimal portrait of bisets.

Two portraits of bisets pGa, BaqaPA\E and pG1a, B1aqaPA\E parameterized
by B˚ : A\ E ý are conjugate if there exist p`aqaPA\E such that

Ga “ `´1
a G1a`a and Ba “ `´1

a B1a`B˚paq . (III.4)
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Every biset admits a minimal portrait, unique up to conjugacy.

Let us give a geometric interpretation of portraits of bisets. Consider a
branched covering f : pS2, Aqý. For every a P A choose a small neighbour-
hood Da of it; up to isotopy we may assume that f : Daztau Ñ Dfpaqztfpaqu
is a covering. Making appropriate choices we may embed π1pDaztauq and
Bpf : Daztau Ñ Dfpaqztfpaquq into π1pS2, Aq and Bpfq respectively; calling
the images of these embeddings Ga and Ba we get a minimal portrait of
bisets pGa, BaqaPA in Bpfq.

Recall from §I that a self-conjugacy of a G-G-biset B is a pair of maps
pφ : Gý, β : B ýq with βphbgq “ φphqβpbqφpgq; and an automorphism of B
is a self-conjugacy with φ “ 1. We show that, for sphere bisets, every self-
conjugacy pφ, βq is determined by its map φ, or equivalently that B admits
no non-trivial automorphism:

Theorem III.3 (No automorphisms). — Suppose GBG is a non-cyclic
orbisphere biset. Then the automorphism group of GBG is trivial.

Definition III.4. — Let ι :
rG
rB
rG Ñ GBG be a forgetful morphism of

orbisphere bisets as in (III.2). Let pGa, BaqaPA\E be a minimal portrait of
bisets in rB. Then

pGa, BaqaPA\E :“ pιpGaq, ιpBaqqaPA\E
is the induced portrait of bisets. It is parameterized by B˚ :“ rB˚ : A\E ý.

Consider a forgetful morphism rGÑ G as in (III.1). For every e P E set
rGe :“ π1pS2, A\ teu,Ąord |A\teu, ˚q

so that the forgetful morphism rGÑ G factors as rGÑ rGe Ñ G. We say that
a biset

rGK rG P Modp rGq is knitting if for every e P E we have
rGe b rG K b

rG
rGe – rGe

p rGeq rGe .
If m P ModpS2, A \ Eq, then the biset of m is knitting if and only if m is
trivial in ModpS2, A\ teuq for all e P E.

Theorem III.5. — Let rG Ñ G be a forgetful morphism as in (III.1).
Suppose that GBG is an orbisphere biset and that pGa, BaqaPA\E is a portrait
of bisets parameterized by B˚ : A\ E ý.

Then there is an orbisphere biset
rG
rB
rG such that pGa, BaqaPA\E is induced

by the forgetful morphism
rG
rB
rG Ñ GBG defined by (III.3), and if

rG
rB1
rG
is

another such biset then there is a knitting biset
rGK rG with

rB1 – K b
rG
rB .
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Conjugacy and centralizers of bisets of the form rB may be studied as
follows:

Theorem III.6. — Let rG Ñ G be a forgetful morphism of groups as
in (III.1) and let

rG
rB
rG Ñ GBG and

rG
rC
rG Ñ GCG

be two forgetful biset morphisms as in (III.2). Suppose furthermore that rB is
geometric of degree ą 1. Denote by pGa, BaqaPA\E and pGa, CaqaPA\E the
portraits of bisets induced by rB and rC in B and C respectively.

Then rB, rC are conjugate by Modp rGq if and only if there exists
φ P ModpGq such that Bφ – C and the portraits pGφa , Bφa qaPA\E and
pGa, CaqaPA\E are conjugate qua portraits in C.

Furthermore, the centralizer Zp rBq of rB is isomorphic, via the forgetful
map Modp rGq Ñ ModpGq, to

 

φ P ZpBq ˇˇ pGφa , Bφa qaPA\E „ pGa, BaqaPA\E
(

and is a finite-index subgroup of ZpBq.

It follows that the conjugacy and centralizer problems for rB are decidable
as soon as they are decidable for pB, portraitq.

Proposition III.7 (Contracting case). — Suppose that B is an orbi-
sphere contracting G-biset, see Definition IV.5. Then for every B˚ : A\E ý

the number of conjugacy classes of portraits of bisets parameterized by B˚ is
finite.

Moreover, there is an algorithm that, given B˚ : A\E ý, decides whether
two portraits of bisets parameterized by B˚ are conjugate.

The algorithm of Proposition III.7 reduces the conjugacy problem for
portraits to conjugacy problems of elements in Bbn. Here is a simple example
illustrating this main step in the algorithm:

Example III.8. — Suppose E “ teu with B˚peq “ e, and let
pGa, BaqaPA\E and pGa, CaqaPA\E be two portraits of bisets. Then Ge “ 1
and Be “ tbu and Ce “ tcu.

The portraits pGa, BaqaPA\E and pGa, CaqaPA\E are conjugate if and
only if there exists ` P G such that `b`´1 “ c.

This is a conjugacy problem in the biset B which can effectively be solved
using contraction in B, since the length of ` can be bounded in terms of the
lengths of b and c.
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Let B be the biset of a map f . In case E “ te1, . . . , enu consists of
a single cycle for B˚, all the bisets Be are singletons and the portrait of
bisets contains precisely the same information as a “homotopy pseudo orbit”,
namely a sequence of points z1, . . . , zn with homotopy classes of paths γn
from zn to an f -preimage of zn`1, indices read modulo n; see [23]. In case f
is expanding, these authors prove that pz1, . . . , znq is homotopic to a unique
period-n cycle.

Algorithm III.9. — Given bisets rB, rC together with the forgetful mor-
phisms onto B and C as in Theorem III.6 such that, in addition, B is con-
tracting; and Given φ P ModpGq such that Bφ – C and a finite generating
set of ZpBq,
Decide whether rB and rC are conjugate, and compute Zp rBq.

III.3. Bisets of minimal p2, 2, 2, 2q-maps

A p2, 2, 2, 2q-orbisphere is pS2, A, ordq with #A “ 4 and ordpaq “ 2 for
all a P A. Let us denote by Z{2 the group of integers modulo 2.

Lemma III.10. — If pS2, A, ordq is a p2, 2, 2, 2q-orbisphere, then
π1pS2, A, ordq – Z2¸t˘1u. There are exactly four order-2 conjugacy classes
in π1pS2, A, ordq – Z2¸t˘1u; these classes are identified with A and are of
the form

pn, 1qZ2¸t˘1u “ tpn` 2m, 1q | m P Z2u for all n P t0, 1u2 .

Let us fix a p2, 2, 2, 2q-orbisphere pS2, A, ordq and let us set G :“
π1pS2, A, ordq. Thanks to Lemma III.10 we identify A with the set of all
order-2 conjugacy classes of G. By Euler characteristic, every branched cov-
ering f : pS2, A, ordq ý is a self-covering. Therefore, the biset of f is right
principal.

We denote by Mat`2 pZq the set of 2ˆ2 integer matricesM with detpMq ą
0. For a matrix M P Mat`2 pZq and a vector v P Z2 there is an injective
endomorphism Mv : Z2 ¸ t˘1uý given by the following “crossed product”
structure:

Mvpn, 0q “ pMn, 0q and Mvpn, 1q “ pMn` v, 1q . (III.5)

Furthermore, Mv induces a map pMvq˚ : A ý on conjugacy classes. We
write BMv “ BM ¸ t˘1u the crossed product decomposition of the biset of
Mv.
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Proposition III.11. — Every p2, 2, 2, 2q-orbisphere biset B is of the
form B “ BMv for some Mv as in (III.5), and Mv is computable from
the biset B.

Conversely, BMv is an orbisphere biset for every Mv as in (III.5). Two
bisets BMv and BNw are isomorphic if and only if M “ ˘N and pMvq˚ “
pNwq˚ as maps on A.

The biset BMv is geometric if and only if both eigenvalues of M are
different from ˘1. If BMv is geometric, then for every pBMv q˚ : A \ E ý

the number of conjugacy classes of portraits of bisets in BMv parameterized
by pBMv q˚ is finite, and it is algorithmically decidable whether for a given
B˚ : A\ E ý two portraits of bisets within BMv are conjugate.

We need the following fact.

Theorem III.12 (Corollary of [19]). — There is an algorithm deciding
whether two M,N P Mat`2 pZq are conjugate by an element X P SL2pZq,
and produces such an X if it exists.

There is an algorithm computing, as a finitely generated subgroup of
SL2pZq, the centralizer of M P Mat`2 pZq.

Algorithm III.13. — Given
rG
rB
rG, rG

rC
rC two tGTor/2u bisets

Compute the centralizer Zp rBq, and decide whether rB and rC are conjugate
by an element of Modp rGq, and if so construct a conjugator as follows:

(1) If rB˚ ­“ rC˚ as maps on peripheral conjugacy classes, then return
fail.

(2) Let
rG
rB
rG Ñ GBG and

rG
rC
rG Ñ G1CG1 be two maximal forgetful

morphisms. IfG ­“ G1, then return fail. Otherwise by Lemma III.10
identify G “ G1 – Z2 ¸ t˘1u and by Proposition III.11 present B
and C as BMv and BNw respectively.

(3) Using Theorem III.12 check whether M and N are conjugate. If
not, return fail; otherwise find a conjugator X and compute the
centralizer subgroup K of M .

(4) Check whether there is a Y P K such that pY Xq0 is a conjuga-
tor between Mv and Nw. If there is none, return fail; otherwise
set X :“ Y X and replace K by tY P K | Y 0 centralizes Mvu, a
subgroup of finite index in K.

(5) Let pGa, BaqaPA\E and pGa, CaqaPA\E be induced by rB and rC
portrait of bisets in B – BMv and in C – BNw . Using Proposi-
tion III.11 check whether the is an Y P K such that

´

GpY Xq
0

a , BpY Xq
0

a

¯

aPA\E
„ pGa, CaqaPA\E .
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If not, return fail. Otherwise use Theorem III.6 to promote pY Xq0
into a conjugacy between rB and rC.

(6) The centralizer of rB is computed using Theorem III.6.

Corollary III.14. — There is an algorithm that, given two tGTor/2u
bisets GBG and HCH , decides whether B and C are conjugate, and computes
the centralizer of B.

IV. Expanding maps and the Levy decomposition [6]

Consider a Thurston map f : pS2, Aq ý. We give a criterion for the ex-
istence of a Riemannian metric on pS2, Aq such that f is isotopic to an
expanding map. This criterion is in terms of multicurves on S2zA. We then
give an application to the study of matings of polynomials.

IV.1. Levy, anti-Levy, Cantor, and anti-Cantor multicurves

Recall that a multicurve C is invariant if f´1pC q “ C , up to isotopy
and removing peripheral and trivial components. If C is a multicurve and
C Ď f´1pCq, then there is a unique invariant multicurve C generated by C,
namely C “ Ť

ně0 f
´npCq.

Consider the following graph called the curve graph of pS2, Aq. Its vertex
set is the set of isotopy classes of essential curves on S2zA. For every simple
closed curve γ and for every component δ of f´1pγq there is an edge from γ
to δ labeled degpf åδq.

Let C be an invariant multicurve, and consider the directed subgraph of
the curve graph that it spans. A strongly connected component is a maximal
subgraph spanned by a subset C Ď C such that, for every γ, δ P C, there
exists a non-trivial path from γ to δ in C. A strongly connected component
C is primitive if all its incoming edges come from C itself. We call C a
bicycle if for every γ, δ P C there exists n P N such that at least two paths of
length n join γ to δ in C, and a unicycle otherwise; see Figure IV.1 for an
illustration. Clearly, every invariant multicurve is generated by its primitive
strongly connected components.

We remark that bicycles contain at least two cycles, so that the number of
paths of length n grows exponentially in n. On the other hand, every unicycle
is an actual periodic cycle: it can be written as C “ pγ0, γ1, . . . , γn “ γ0q in
such a manner that γi`1 has an f -preimage γ1i isotopic to γi. If furthermore
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S1
v1

S2
v2

S3
v3

S4

S1 S1
2 S1

3 S2 S2
3 S1

4 S3 S2
2 S3

3 S4

v1 v2 v3

Figure IV.1. A bicycle tv2, v3u generates a Cantor multicurve
tv1, v2, v3u. The action of the map f is indicated on the preimages
of tv1, v2, v3u. If annuli are mapped by degree 1, then it is also a Levy
cycle. The graph below is the corresponding portion of the curve
graph.

the γ1i may be chosen so that f maps each γ1i to γi`1 by degree 1, then C is
called a Levy cycle.

bicycle

1 : 1 1 : 1

1 : 1

Levy cycle

C

Primitive s.c.c.

Definition IV.1 (Types of invariant multicurves). — Let C be an in-
variant multicurve. Then C is

Cantor if C is generated by its bicycles;
anti-Cantor if C does not contain any bicycle;
Levy if C is generated by its Levy cycles;
anti-Levy if C does not contain any Levy cycle.

Note that C being Cantor / anti-Cantor depends on the mappings of
curves of C to themselves, and being Levy / anti-Levy depends on the de-
grees under which the curves map.
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Suppose f : pS2, Aq ý is a Thurston map with an invariant multicurve
C . Recall from §II.2 that by Rpf,C q we denote the return maps induced by
f on S2zC .

Proposition IV.2. — Suppose f : pS2, Aq ý is a Thurston map with
an invariant multicurve C . Then:

(1) there is a unique maximal invariant Cantor sub-multicurve
CCantor Ď C such that the multicurves induced by C on pieces in
Rpf,CCantorq are anti-Cantor invariant multicurves;

(2) there is a unique maximal invariant Levy sub-multicurve CLevy Ď C
such that multicurves induced by C on pieces in Rpf,CLevyq are
anti-Levy invariant multicurves.

Definition IV.3 (Levy-free). — Let f : pS2, Aqý be a Thurston map.
It is Levy-free if degpfq ą 1 and f does not admit a Levy cycle.

We say that an invariant Levy multicurve C is complete if every piece
in Rpf,C q is either Levy-free or has degree 1. We show that for a Thurston
map f : pS2, Aq ý there is a unique minimal invariant complete Levy mul-
ticurve, which we denote by Cf,Levy and call the canonical Levy obstruction.
Any other invariant complete Levy multicurve C contains Cf,Levy as a sub-
multicurve. For B a biset, we define in a similar manner CB,Levy.

Definition IV.4 (Levy decomposition). — The Levy decomposition of
f : pS2, Aq ý is the decomposition along the canonical Levy obstruction
Cf,Levy.

The Levy decomposition of a biset B is the sphere tree of bisets decompo-
sition of B along CB,Levy.

IV.2. Expanding maps

A length metric with singularities on S2 is a length orbifold metric that is
allowed to have finitely many points, called singularities, at infinite distance
such that points topologically close to singularities are far away from usual
points. A basic example is the hyperbolic metric on the Riemann sphere with
finitely many removed points. We will also refer to singularities as points at
infinity.

A Thurston map f : pS2, Aqý is metrically expanding if there is a length
metric µ, with singularities, on S2 such that f is expanding with respect to
µ and all points sufficiently close topologically to infinity escape to infinity.
A combinatorial equivalence class of Thurston maps is called expanding if it
contains an expanding map.
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It follows from the definition that the set of singularities of µ is forward
invariant, and a periodic point is singular if and only if it is topologically
attracting.

We say that an expanding map is Böttcher if the first return map near
every critical periodic point is conjugate to z Ñ zd, where d ą 1 is the
degree of the first return map. Two Böttcher expanding maps are conjugate
if and only if they are combinatorially equivalent. (This is an application of
the “pullback argument”: if we have f ˝ φ “ g : pS2, Aq ý with φ isotopic
rel A to the identity, then φ can be normalized to be the identity near every
periodic critical cycle; by expansion the lifts φn of φ through fn converge
exponentially fast to the identity, so their product ψ :“ ¨ ¨ ¨˝φ1˝φ0 conjugates
f into g.)

Definition IV.5 ([26, Definition 2.11.8]). — Let B be a G-G-biset. It
is called contracting if for every finite S Ď B there exists a finite subset
N Ď G with the following property: for every g P G and every n ąą 0 we
have th P G | hSn X Sng ‰ Hu Ď N .

For a finitely generated group G, the biset B is contracting if there is a
proper metric | ¨ | on G and constants λ ă 1, C such that |h| ď λ|g| ` C
whenever hS X Sg ‰ H.

If B is left-free and we chose a basis S Ď B for the left action, we obtain
a wreath recursion ψ : G Ñ GS ¸ SÓ., see §I.1; and B is contracting if for
every g P G one obtains only elements of N as coördinates when one iterates
ψ long enough.

The set N in Definition IV.5 is not unique; but for every S Ď B there
exists a minimal such N , written NpSq and called the nucleus of pB,Sq. It
gives rise to a labeled graph, called the nucleus machine of pB,Sq: its vertex
set is NpSq, and there is an edge from g to h with input and output labels
s P S and t P S respectively whenever sg “ ht holds in B.

We slightly modify the definition of “contracting” for sphere bisets, be-
cause of the orbisphere structures. Let GBG be a sphere biset with G “
π1pS2, Aq. Recall from (II.9) that there is a minimal orbisphere structure
ordB given by B. We call an orbisphere structure ord: A Ñ t2, 3, . . . ,8u
bounded if ordpaq “ 8 ô ordBpaq “ 8 and ordpaqdegapBq | ordpB˚paqq for
all a P A. Let G denote the quotient orbisphere group G{xγordpaq

a : a P Ay.
Then we call B an orbisphere contracting biset if GbGBbGG is contracting
for some bounded orbisphere structure on pS2, Aq.

The main result of this part is the following criterion:
Theorem C. — Let f : pS2, Aq ý be a Thurston map, not doubly cov-

ered by a torus endomorphism. The following are equivalent:
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(1) f is isotopic to a Böttcher expanding map;
(2) f is Levy-free;
(3) Bpfq is an orbisphere contracting biset.

Furthermore, if these properties hold, the metric µ on S2 that is expanded
by f may be assumed to be Riemannian of pinched negative curvature.

Haïssinsky and Pilgrim ask in [20] whether every everywhere-expanding
map is isotopic to a smooth map. By Theorem C, a combinatorial equivalence
class contains a Böttcher smooth expanding map if and only if it is Levy free.

It was already proven in [33] that every Levy-free map that is doubly
covered by a torus endomorphism is in tGTor/2u. Combining this with the
results [27, 39] on geometrization of surface self-homeomorphisms we obtain
the

Corollary IV.6. — Let f : pS2, Aqý be a Thurston map. Then every
map in Rpf,CLevyq has a geometric structure: it is either expanding (i.e. in
tExpu), of degree 1, or a non-expanding irrational map doubly covered by a
torus endomorphism (i.e. in tGTor/2uztExpu).

Furthermore, the property of being geometric is algorithmically recogniz-
able: bisets double covered by a torus endomorphism are of a very particular
nature (III.5); contracting bisets are recognized by their nucleus, and non-
contracting bisets are recognized by their Levy obstruction.

Algorithm IV.7. — Given a Thurston map f : pS2, Aqý by its biset,
Compute the Levy decomposition of f as follows:

(1) For an enumeration of all multicurves C on pS2, Aq, that never
reaches a multicurve before reaching its proper submulticurves, do
the following steps:

(2) If the multicurve C is not invariant, or is not Levy, continue in (1)
with the next multicurve.

(3) Compute the decomposition of f using Algorithm II.4.
(4) If not all pieces are expanding or tGTor/2u or degree-1 maps, con-

tinue in (1) with the next multicurve;
(5) Return C .

IV.3. Matings of higher degree polynomials

We turn to an application to matings of polynomials. Let p, q : C ý be
two monic polynomials of same degree d ě 2. Identify C with the disk D
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by the map ν` : z ÞÑ z{a1` |z|2 and with its complement pCzD by the map
ν´pzq “ 1{ν`pzq. Consider the continuous map

pZ q :

$

’

’

’

&

’

’

’

%

pC Ñ pC ,
z with |z| ă 1 ÞÑ ν`pppν´1` pzqqq ,
z with |z| “ 1 ÞÑ zd ,

z with |z| ą 1 ÞÑ ν´pqpν´1´ pzqqq .
It is called the formal mating of p and q, and is a degree-d branched covering
of S2.

Recall also that there are external rays associated to the polynomials p, q.
First, the filled-in Julia set Kp of p is

Kp “ tz P C | fnpzq ­Ñ 8 as nÑ8u .
Assume that Kp is connected. There exists then a unique holomorphic iso-
morphism φp : pCzKp Ñ pCzD satisfying φppppzqq “ φppzqd and φpp8q “ 8
and φ1pp8q “ 1. It is called a Böttcher coördinate, and conjugates p to zd in
a neighbourhood of 8. For θ P R{Z, the associated external ray is

Rppθq “ tφ´1
p pre2iπθq | r ě 1u .

Let Xp,q be the quotient of pC in which each ν`pRppθqq has been identified to
one point for each θ P R{Z, and similarly each ν´pRqpθqq has been identified
to one point. Note that Xp,q is a quotient of Kp \ Kq, and need not be a
Hausdorff space. A classical criterion (due to Moore) determines when Xp,q

is homeomorphic to S2. If this occurs, p and q are said to be topologically
mateable, and the map induced by p Z q on Xp,q is called the topological
mating of p and q and denoted p > q : Xp,q ý.

Furthermore, if there exists a homeomorphism φ : Xp,q Ñ pC that is con-
formal on ν`pKo

pqY ν´pKo
q q and such that f :“ φ ˝ pp > qq ˝φ´1 is a rational

map, then p, q are said to be geometrically mateable, and any such f is called
a geometric mating of p and q.

Mary Rees and Tan Lei [36] proved that two post-critically finite qua-
dratic polynomials p, q are geometrically mateable if and only if p and q do
not belong to conjugate limbs of the Mandelbrot set; see [12, Theorem 2.1].
To be more precise, let us assume that p and q are hyperbolic. (The sub-
hyperbolic case requires a slight clarification because points in the post-
critical set may get glued during the geometric mating.) Then the following
are equivalent for d “ 2:

(1) pZ q is isotopic to a rational map p ˝ q;
(2) p > q is a sphere map (necessarily conjugate to p ˝ q);
(3) p, q are not in conjugate primary limbs of the Mandelbrot set.
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This theorem relies on the fact that any annular obstruction in degree 2
is Levy; indeed in degree ě 3 there are topological matings that are not
conjugate to rational maps, see [35] and §7.8. Since the obstruction to be an
expanding map is also Levy, we can generalize the degree 2 criterion in the
class of expanding maps as follows.

Definition IV.8. — Let p, q be two hyperbolic post-critically finite poly-
nomials of same degree d. We say that p, q have a pinching cycle of periodic
angles if there are angles φ0, φ1, . . . , φ2n´1 P R{Z, indices treated modulo 2n,
such that for all i,

‚ the angle φi is periodic under multiplication by d;
‚ the rays Rppφ2iq and Rppφ2i`1q land together;
‚ the rays Rqp´φ2i´1q and Rqp´φ2iq land together.

In degree 2, the pair p, q has a pinching cycle of periodic angles if and
only if p and q are in the conjugate primary limbs of the Mandelbrot set. In
degree ě 3, there is still no well-accepted notion of limbs, and they should
be rather defined as sets of parameters in which certain periodic rays land
together.

If p, q admit a pinching cycle, then a fibre of the map pCÑ Xp,q is a cycle,
so Xp,q cannot be homeomorphic to S2. We obtain the following criterion:

Theorem IV.9. — Let p, q be two monic hyperbolic post-critically finite
polynomials. Then the following are equivalent:

(1) pZ q is isotopic to an expanding map p ˝ q;
(2) p > q is a sphere map (necessarily conjugate to p ˝ q);
(3) p, q do not have a pinching cycle of periodic angles.

Furthermore, pinching cycles of periodic angles are effectively enumerable
using the nuclei of the bisets Bppq and Bpqq.

V. Symbolic and floating-point algorithms [7]

In this part we describe in more details the computational techniques
available to manipulate Thurston maps. In particular, we give a range of
symbolic algorithms, converters from one formalism into another, and de-
scribe hybrid algorithms that bridge between the group theory side and the
complex analytic sides of Thurston maps. Many of these algorithms are al-
ready implemented in a GAP package Img available from the GAP website.
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The main objects that the algorithms manipulate are bisets. They may
be constructed using classical data such as external angles, floating-point
approximations of maps, Hubbard trees, subdivision rules, etc. Many opera-
tions such as matings, tunings and composition with twists may be naturally
implemented on them.

On the one hand, bisets are often constructed by choosing a basis and
expressing its wreath recursion in that basis. Bisets, however, are funda-
mentally basis-free objects, and isomorphism, congruence etc. of bisets is
discovered by finding bases in which their recursions coincide. Classical no-
tions such as supporting rays, Hubbard trees etc. are viewed as invariants
of the biset. Twisting of bisets, or more generally compositions with home-
omorphisms, are implemented by changing the bases.

V.1. Converters

In order to compute with Thurston maps, it is important to represent
them, and the objects they are related to, in an efficient manner.

Consider a Thurston map f : pS2, Aq ý. In case f is a topological poly-
nomial, namely there exists a point 8 P A with f´1p8q “ t8u, then, on
the one hand, the biset of f can be expressed in an adapted basis, in which
its structure is essentially equivalent to a description by external angles. In
case #A “ 4 and all critical points of f are simple, it is possible to express
f as a “near-Euclidean map” (NET), see [13]. We consider here the general
case.

Sphere groups themselves are represented by their number of generators
and cyclic ordering of peripheral generators, as in (II.1). For each sphere
group, an isomorphism with an underlying free group is chosen so as to allow
fast comparison between elements. Elements in sphere groups are represented
as words in the peripheral generators and their inverses.

Mapping class groups are described as outer automorphisms of sphere
groups. They are represented by keeping track of the images of generators.
This list of images is reduced to a lexicographically minimal one by con-
jugating it diagonally by the sphere group. Stallings’ graphs are used to
manipulate them, and in particular compute their inverse.

All our bisets are left-free, so are represented by their associated wreath
recursions: if the right-acting sphere group has n generators and the biset
has degree d, the bisets are represented as a list of n permutations in dÓ. and
an nˆ d table of group elements.
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Algorithm V.1. — Given a degree d and a list of tuples of rational
numbers representing supporting rays à la Poirier [29],
Compute the biset of the polynomial that it describes.

Algorithm V.2. — Given a sphere biset B,
Compute the supporting rays à la Poirier [29], if B is combinatorially equiv-
alent to a polynomial, and fail else.

Algorithm V.3. — Given an angled Hubbard tree endowed with a self-
map,
Compute the biset of the polynomial that it describes.

Let f : pS2, Aq ý be a Thurston map. It may be conveniently encoded
combinatorially as follows:

(1) A triangulation T0 of S2 with vertex set A is chosen;
(2) The lift T1 of T0 under f is computed; it is a triangulation of S2 with

vertex set f´1pAq, and f is expressed as a simplicial map T1 Ñ T0;
(3) A refinement T 11 of T0, also with vertex set f´1pAq, is chosen, by

subdividing in T0 all triangles containing elements of f´1pAqzA;
(4) The relation between T1 and T 11 is encoded by computing for each

edge of T1 the sequence of edges of T 11 that it crosses.

The triangulation T0 expresses in a combinatorial manner the fundamen-
tal group of S2zA: there is a retraction from S2zA to the dual graph T K0 of
T0, so π1pS2zAq – π1pT K0 q. In (4) we give a homotopy equivalence between
T K1 and T 11

K, called a retriangulation.

Conversely, a Thurston map is specified uniquely by the above data: a
triangulation T0, a simplicial map f : T1 Ñ T0, a refinement T 11 Ě T0, and a
retriangulation of T 11 into T1 as specified in (4).

De facto, we are viewing f as a covering pair f, i : pS2, f´1pAqqÑ pS2, Aq;
we consider a triangulation T0 of the range, compute its preimages T1 and T 11
under f and i respectively, and encode combinatorially the relation between
these triangulations at the source.

In fact, in some situations we already start with a combinatorial descrip-
tion of a map, rather than an actual Thurston map on a topological sphere.
Most classical combinatorial descriptions are very close to the one given
above. We argue in this text that a description in terms of bisets is algo-
rithmically the most useful; it can be easily obtained from the combinatorial
description sketched above:

Algorithm V.4. — Given triangulations T1, T 11 , T0 of S2 such that T 11
is a refinement of T0, and given a simplicial map f : T1 Ñ T0 as well as a
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retriangulation T1 Ø T 11 ,
Compute the biset of f .

V.2. Floating-point algorithms

When we write that something is computable over C, we mean, in the
following strong sense, that all elements of C that we refer to are algebraic
numbers ξ, that a minimal polynomial of ξ over Z is computable, and that
a rectangle with rational corners is computable, that separates ξ from its
Galois conjugates.

On the other hand, a floating-point approximation of z P C is an algorithm
producing an infinite data stream pxn ` yni, εnq, with xn, yn, εn P Q and
|xn ` yni´ z| ă εn and εn Ñ 0.

Every computable number over C admits a floating-point approxima-
tion. Conversely, given a floating-point approximation pxn`yni, εnq and the
knowledge that its limit ξ is algebraic with given degree and bound on the
coefficients of its minimal polynomial, the number ξ is computable over C.
This only uses standard algorithms for root finding, root isolation and lattice
reduction (LLL).

A floating-point approximation of a rational map f : pS2, Aq ý is an
algorithm producing an infinite data stream pfn, An, εnq with fn a rational
map with rational coefficients, An a set in fixed bijection an Ø a with A,
and εn Ñ 0 rational numbers, such that the coefficients of fn are εn-close
to those of f , and the spherical distances between pairs a, an and between
pairs fpxq, fnpxq are less than εn for all a P A and all x P pC.

Consider a portrait pf : A Y C Ñ A,deg : A Y C Ñ Nq of rational maps
with hyperbolic orbifold; C is the set of critical points, and A is a forward-
invariant set. The set of rational Thurston maps agreeing with f on AY C
and having required degree at AYC is finite, and explicitly describable by a
set of equations with integer coefficients — for example, with variables the
coefficients of rational map and the position of AY C on pC. It follows that,
for every rational Thurston map with hyperbolic orbifold, its coefficients are
computable over C in the sense above.

Algorithm V.5. — Given a floating-point approximation of a ratio-
nal Thurston map f , as well as its portrait, Compute the biset Bpfq as
follows:

(1) Find the post-critical set of f on a sufficiently close approximation
of f , using the given portrait.
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(2) Compute the Delaunay triangulation on the post-critical set.
(3) Add sufficiently many points to the triangulation, keeping the De-

launay condition, so that f -lifts of triangles are small enough; e.g.
don’t touch more than one post-critical point.

(4) Compute the f -preimage of this triangulation.
(5) Apply Algorithm V.4.

Algorithm V.6 ([2]). — Given an admissible n-tuple of permutations
π1, . . . , πn P dÓ. and an n-tuple of distinct points z1, . . . , zn P pC,
Compute a floating-point approximation of a rational map whose critical
values zi have monodromy πi.

We recall Thurston’s fundamental “annular obstruction” theorem:

Theorem V.7 (Thurston [17]). — Let f : pS2, Pf qý be a Thurston map
with hyperbolic orbifold. Then f is combinatorially equivalent to a rational
map if and only if f admits no annular obstruction, namely no invariant
multicurve whose Thurston matrix has spectral radius ě 1, see (II.3). Fur-
thermore, in that case the rational map is unique up to conjugation by Möbius
transformations.

Given a sphere biset GBG with hyperbolic orbifold, either an annular ob-
struction for B or a rational map f with algebraic coefficients and Bpfq „ B
may be computed: as we noted above, there are finitely many rational maps
f1, . . . , fN with given degree and portrait, and they can be computed, e.g.
by solving algebraic equations over Z. Their bisets may be computed us-
ing Algorithm V.5. We may then in parallel search through the countably
many multicurves in G, seeking an annular obstruction for B, and the count-
ably many bijections between B and Bpfiq for all i P t1, . . . , Nu, seeking a
conjugacy. By Theorem V.7, one of these searches will eventually succeed.

If one knows beforehand that at least one critical point of f is periodic,
and one is only interested in knowing whether f admits an annular obstruc-
tion, then a more straightforward algorithm is available: one may run in
parallel a search for the annular obstruction and for a realization of f as a
self-map on an “elastic graph” with appropriate looseness; such a self-map
is a certificate for f being isotopic to a rational map, by a recent result of
Dylan Thurston [38].

The degree of the equations over Z to consider is so high that this ap-
proach fails except in the most trivial cases. The following algorithm does
work in practice:
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Algorithm V.8. — Given a sphere biset GBG with hyperbolic orbifold,
Compute either a rational map f P Cpzq, with computable algebraic co-
efficients, such that Bpfq „ B, or a B-invariant annular obstruction as
follows:

(1) We consider Teichmüller space modeled on G as the space of triangu-
lations of pC with a distinguished n-tuple of vertices, as well as mark-
ings of its dual edges by elements of G. Two marked triangulations
represent the same point in Teichmüller space if their distinguished
vertices are images of each other under a Möbius transformation, and
after their distinguished vertices are identified they admit a common
refinement, up to isotopy, compatible with the group markings.

(2) Start by an arbitrary point S0 in Teichmüller space. We iterate the
following steps, starting with i “ 0 and increasing it each time by 1.

(3) Apply Algorithm V.6 to the permutations in B and the marked
points in Si, find a rational map fi.

(4) Compute the biset Bpfiq by Algorithm V.5. Its right-acting group is
G and its left-acting group is Hi.

(5) Match the bisets B and Bpfiq by finding a group homomorphism
φi : Hi Ñ G such that B_φi b Bpfiq – B. Note that φi is unique
up to conjugation by inner automorphisms. The group Hi marks a
triangulation of pC with distinguished vertices rVi in bijection with
peripheral classes in Hi. Those peripheral classes in Hi that map
under φi to non-trivial peripheral classes in G determine a subset
Vi Ď rVi, and φi may be applied to the markings of the triangulation
to produce a new triangulation, marked by G and with distinguished
vertices Vi. This defines a new element Si`1 in Teichmüller space.

(6) Normalize the marking of Si`1, viewed as tpx, y, zq P R3 : x2 ` y2 `
z2 “ 1u, so that the barycentre of its marked points is p0, 0, 0q P R3,
the first of them (in some predetermined order) is at p0, 0, 1q, and
the second of them lies in t0u ˆ R` ˆ R.

(7) By Thurston’s Theorem V.7, either the maps fi converge, and give
approximations of the desired f , or points in Si cluster.
To detect this, compute all cross-ratios of points in Si. Partition the
points in Si by clustering together points with degenerating cross-
ratios. Produce conjugacy classes in G by following labels on dual
edges in the triangulation around clusters. Complete these conjugacy
classes by adding their B˚-preimages till the collection becomes ei-
ther B-invariant or non-(non-crossing). If it became invariant, com-
pute its transition matrix to check whether it is an annular obstruc-
tion. In that case, return the annular obstruction.

(8) Simultaneously, seek algebraic numbers of low degree, small height
(= maximal absolute value of coefficients over Z), and close to the
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estimated position of the set Si (now normalizing it in pC by putting
three of its points at 0, 1,8 respectively), and obtain in this manner
a probable position S̃ of Si consisting of algebraic numbers. Find
the corresponding rational map f̃ with algebraic coefficients. Run
Steps (4)–(5) with f̃ , S̃ en lieu of fi, Si, checking at the same time
that the permutations of Bpf̃q match those of B; this produces a lift
Si`1 of S̃. If Si`1, suitably normalized as above, coincides with S̃,
then return f̃ , while if not increase i and return to step (3).

We note that the resort to algebraic numbers in Step (8) of Algorithm V.8
is only necessary to prove its validity; in practice it may be replaced by
careful interval arithmetic; details are postponed to [7]. If we are interested
in good floating-point approximations of the position of S̃, then we may
iterate Steps (4)–(5), without changing the combinatorics of the marked
spheres and only improving the position of the marked set Si.

Corollary V.9. — There is an algorithm that, given two sphere bisets
GBG and HCH of rational non-tGTor/2u maps, decides whether B and C
are conjugate, and if so produces a conjugator.

The centralizers of GBG and HCH are trivial.

Proof. — The rational maps may be constructed using Algorithm V.8,
and their coefficients compared once three points in each post-critical set
are fixed. �

V.3. The canonical decomposition of Levy free maps

Recall the canonical decomposition of a Thurston map, introduced in §0.3.
We show that Levy-free maps have quite restricted canonical decompositions:

Lemma V.10. — Let f be a Levy free map. Either small maps in the
canonical decomposition of f are rational or f is a tGTor/2u map with trivial
canonical obstruction.

As a consequence, the canonical obstruction is the union of the canonical
Levy obstruction (the minimal multicurve whose return maps are Levy-free)
and the rational obstruction: for an expanding map not doubly covered by a
torus endomorphism, the minimal multicurve whose return maps are rational
(for tGTor/2u maps, that multicurve is characterized in [32]).

Algorithm V.11. — Given a Levy-free non-tGTor/2u sphere biset
GBG,
Compute the canonical obstruction of B as follows:

– 1267 –



Laurent Bartholdi and Dzmitry Dudko

(1) Enumerate in increasing order all multicurves C on the sphere
marked by G;

(2) If C is not fully B-invariant, discard it;
(3) Run Algorithm V.8 on the small maps RpB,C q. If all small maps

are rational, then return C , otherwise discard it.

Selinger and Yampolsky already showed in [33] that the canonical ob-
struction of a Thurston map is computable.

Corollary V.12. — There is an algorithm that, given a sphere biset
GBG of type tExpuztGTor/2u, computes the canonical decomposition XBX.
All bisets in RpBq are the bisets of rational maps.

Algorithm V.13. — Given two contracting sphere bisets GBG and
HCH that are not tGTor/2u,
Decide whether B and C are conjugate, and compute the centralizer ZpBq
as follows:

(1) If there are more peripheral conjugacy classes in B, respectively
C, than in their post-critical set, then these conjugacy classes can
be expressed into a portrait of bisets, as in §III.2. Conjugacy of
portraits of bisets is decidable, since B and C are contracting, see
Proposition III.7. We therefore assume that B,C are marked by
their post-critical conjugacy classes.

(2) Using Corollary V.12, compute the canonical decompositions XBX

and YCY of B and C respectively.
(3) LetX and Y be the set of distinguished conjugacy classes of X andY

respectively, see §II.4. Enumerate all possible bijections h : X Ñ Y .
(4) For every h : X Ñ Y try to do the following steps. Return fail if

there is no success.
(5) Using Algorithm II.9 try to promote h : X Ñ Y into a biprincipal

sphere X-Y-tree of bisets I. Discard h if there is no promotion.
(6) Check by Algorithm II.11 whether CI PMpBq; if not, discard h.
(7) For every I check, using Corollary V.9, whether bisets in RpBq and

RpCIq are conjugate; if not discard h.
(8) For every I, using Theorem II.8 check, whether the conjugacies be-

tween RpBq and RpCIq promote into a conjugacy between B and C.
(9) Using Theorem II.8 compute the centralizer ZpBq of B, which is

computable because by Corollary V.9 all bisets in RpBq have trivial
centralizers.

Corollary V.14. — Let B,C be contracting sphere bisets that are not
tGTor/2u. Then it is decidable whether B,C are conjugate, and the central-
izer of B is computable.
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6. Decidability of combinatorial equivalence

In this brief section we put together results from §§ I–V to prove The-
orem B: “it is decidable whether two Thurston maps are combinatorially
equivalent”.

Theorem 6.1. — Let B,C be two sphere bisets. Assume that B and C
are either degree-1 or Levy-free.

Then it is decidable whether B and C are conjugate, and the centralizer
of B is computable as a finitely generated subgroup of a product of pure
mapping class groups.

Proof. — It is decidable whether B and C have the same degree, and
have isomorphic acting groups; if not, they are not conjugate.

If B,C have degree 1, then they may be written as Bφ, Bψ respectively;
then B „ C if and only if φ and ψ are conjugate in a pure mapping class
group; this is decidable by [21]. The centralizer of a mapping class is also
computable; for example, train tracks [10] can be used to compute the cen-
tralizer of a pseudo-Anosov mapping class.

If B,C have degree ą 1 and their orbisphere quotient groups are both
p2, 2, 2, 2q-orbisphere groups, then their conjugacy and centralizer problems
are solvable by Corollary III.14.

In the remaining case, B,C are contracting by Theorem C, so their con-
jugacy and centralizer problems are solvable by Corollary V.14. �

We note that the condition that the bisets be Levy-free is essential: in
general, the centralizer need not be finitely generated, see Example 7.9.

We are ready to prove Theorem B. Its proof consists of the following

Algorithm 6.2. — Given two sphere bisets GBG and HCH ,
Decide whether B and C are conjugate as follows:

(1) Using Algorithm IV.7, compute the Levy decompositions XBX and
YCY of B and C respectively.

(2) LetX and Y be the set of distinguished conjugacy classes of X andY
respectively, see §II.4. Enumerate all possible bijections h : X Ñ Y .

(3) For every h : X Ñ Y try to do the following steps. Return fail if
there is no success.

(4) Using Algorithm II.9, try to promote h : X Ñ Y into a biprincipal
sphere X-Y-tree of bisets I. Discard h if there is no promotion.

(5) Using Algorithm II.11, check whether CI PMpBq; if not, discard I.
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(6) For every I check, using Theorem 6.1, whether bisets in RpBq and
RpCIq are conjugate; if not discard I.

(7) Using Theorem 6.1 compute the centralizer of bisets in RpBq.
(8) For every I check, using Theorem II.8, whether the conjugacies be-

tween RpBq and RpCIq promote into a conjugacy between B and C.
(9) Using Theorem II.8, compute the centralizer ZpBq of B.

7. Algebraic realizations

The previous sections explain how a Thurston map can canonically, and
computably, be decomposed into pseudo-Anosov and finite-order homeomor-
phisms, rational maps of degree ě 2 and maps doubly covered by torus
endomorphisms.

Finite-order homeomorphisms are isotopic to Möbius transformations,
which are rational maps. If f : pS2, Aq ý has only rational maps as pieces,
then each of its small spheres may be given a complex structure so as to
make all pieces rational. The structure encoding f is then a map of noded
spheres.

A complex stable curve is an algebraic variety with the topology of a
noded sphere. It may be given as X “ ppC1, P1q \ ¨ ¨ ¨ \ ppCn, Pnq{„ with
#Pi ě 3 for all i and an equivalence relation „ on P1 \ P2 \ ¨ ¨ ¨ \ Pk with
classes of size ď 2, such that the space obtained by replacing each pC – S2

by a closed ball is contractible. It is thus a collection of pC “ P1pCq’s glued
to each other at single points, in a tree-like manner. The points in non-
trivial „-classes are called nodes. Listing the non-trivial equivalence classes
as pk „ qk for i “ 1, . . . , `, with pk P Pipkq and qk P Pjpkq, one may describe
X as an algebraic singular curve

X “ tpx1, . . . , xnq P pCn | pxipkq ´ pkqpxjpkq ´ qkq “ 0 for k “ 1, . . . , `u .
If C is a multicurve on a topological sphere pS2, Aq, then shrinking all

components of C to points gives a noded topological sphere. Conversely,
given a complex stable curve, each node may be “opened”, namely replaced
by a small cylinder, so as to give a topological sphere and a multicurve.

Let f : pS2, Aq ý be a Thurston map, and let C be an f -invariant mul-
ticurve. Let X be the corresponding noded topological sphere, and let Y be
the noded topological sphere corresponding to pS2, f´1pAq, f´1pC qq. Then
f induces a branched covering still written f : Y Ñ X, while the inclusion
f´1pAq Ě A induces a continuous map i : Y Ñ X. We thus have a topo-
logical self-correspondence f, i : Y Ñ X. Topologically, i is a blow-down: it
shrinks some spheres to points, and erases some marked points.
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Note that the correspondence f, i : Y Ñ X does not quite determine
f : pS2, Aqý: once nodes of X are opened to a multicurve C on pS2, Aq, the
map f is defined on pS2, Aq only up to an integer number of full twists along
C .

If X,Y may be given structures of complex stable curves X,Y so that f, i
become rational maps YÑ X, we say f is realized by f, i : YÑ X.

A periodic cycle of curves is called an annular obstruction if the spectral
radius of its Thurston matrix (II.3) is ě 1; and a Thurston map is called
obstructed if it admits an annular obstruction. We show that many examples
of Thurston maps, even if they are obstructed and therefore not combina-
torially equivalent to a rational map (see Theorem V.7), may be described
algebraically, using the following result:

Theorem D. — Let f : pS2, Aq ý be a Thurston map. Then f may be
realized on a complex stable curve by pinching along a multicurve generated
by annular obstructions if and only if all pieces of f ’s canonical decomposi-
tion are rational, non-irrational tGTor/2u maps and homeomorphisms not
containing pseudo-Anosov maps.

Furthermore, it is computable whether all pieces of f are this form, and
in that case what the correspondence of complex stable curves is.

In case all return maps are rational with hyperbolic orbifold, it follows
from [31, Theorem 10.4] that such a realization exists, given by a fixed point
in augmented Teichmüller space.

Proof of Theorem D. — If there are irrational maps doubly covered by
torus endomorphisms, or homeomorphisms containing pseudo-Anosov maps,
in the canonical decomposition, then these maps appear in every decom-
position along an annular obstruction. They preserve transverse measured
foliations with different stretch factors; this prevents them from being ratio-
nal. Furthermore, since the eigenvalues are irrational, these pieces cannot be
further decomposed.

On the other hand, given a decomposition in which the return maps are
rational, non-irrational tGTor/2u maps and homeomorphisms not contain-
ing pseudo-Anosov maps, it is straightforward to assemble them together
in a complex stable curve. Maps doubly covered by torus endomorphisms
with integer eigenvalues decompose into Chebyshev polynomials, see §7.5.
Homeomorphisms with no pseudo-Anosov piece decompose along an annular
obstruction into finite-order homeomorphisms, which are isotopic to Möbius
transformations. �
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We conclude this section, and this article, with some fundamental ex-
amples illustrating decompositions, and of possible realizations on complex
stable curves:

§7.3: various maps obtained from composing the polynomial z2 ` i
with Dehn twists;

§7.4: the mating of z2´ 1 with itself: it is the simplest example of an
obstructed map;

§7.6: Douady–Hubbard’s mating of the quadratic lamination 5{12
with itself. This map has intersecting annular obstructions, and we
show which maps are obtained by cutting along the different multi-
curves;

§7.5: maps doubly covered by diagonalizable torus endomorphisms;
§7.7: A degree-5 rational map considered by Pilgrim in [28, §1.3.4].

It is obtained by blowing up an arc on torus endomorphism. (We
solve the hitherto-open problem of determining whether this map is
obstructed; it is so);

§7.8: a degree-3 mating studied by Tan Lei and Shishikura [35], which
is obstructed but does not admit Levy cycles. (We describe the
mating both as a biset and as an algebraic self-map of a doubly-
noded sphere, and answer [14, Question 2] by Chéritat);

§7.9: a degree-4 Thurston map whose centralizer is infinitely gener-
ated.

7.1. p2, 3, 6q-maps

We give a brief description of rational maps multiply covered by a torus
endomorphism in terms of their orbispace. Orbispaces of Euler characteristic
0 have marked points of respective orders p2, 2, 2, 2q, p3, 3, 3q, p2, 4, 4q or
p2, 3, 6q. They may be treated uniformly as follows: let ζ be a kth root of
unity, for k P t2, 3, 4, 6u. If k ě 3, let Λ :“ Zrζs be the lattice spanned by ζ
in C; while if k “ 2 choose at will Λ “ Zris or Λ “ Zrp´1 ` ?´3q{2s. Set
then

G :“ Λ¸ xζy .

The orbispace is C{G, with marked points of orders p2, 2, 2, 2q, p3, 3, 3q,
p2, 4, 4q, p2, 3, 6q for k “ 2, 3, 4, 6 respectively. Graphically,
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Endomorphisms of the orbisphere C{G are quotients f of maps f : C ý

with f ˝ G Ď G ˝ f . It immediately follows that f is isotopic to an affine
map, say fpzq “ az` b with a, b P C. Then f ˝ pz ÞÑ z`1q “ pz ÞÑ z`aq ˝f ,
so a P Λ; and f ˝ pz ÞÑ ζzq “ pz ÞÑ ζz ` p1 ´ ζqbq ˝ f , so b P p1 ´ ζq´1Λ.
Since z ÞÑ z ` 1 and z ÞÑ ζz generate G, these conditions are also sufficient.
Therefore, every rational map on C{G is determined by parameters a P Λ
and b P 1

1´ζΛ{Λ.
The biset of f is then easy to compute: since f is invertible, there exists,

for all g P G, a unique element, written gf P G, such that gf “ fgf . We
obtain:

Proposition 7.1. — The biset Bpfq of fpzq “ az ` b is G as a right
G-set, with left action given by g ¨ b “ gfb.

Note also gf P Λ for all g P Λ, so Λ Ď Bpfq is a Λ-subbiset. Its struc-
ture depends only on the linear part a of f . We may then write Bpfq as
a crossed product biset Λ ¸ xζy of this Λ-subbiset with the group xζy act-
ing by automorphisms on Λ. This extends the discussion in §III.3, and in
particular (III.5).

7.2. A Dehn twist

Before studying the twisted cousins of the polynomial z2 ` i in §7.3, we
consider the simple example of a Dehn twist on a sphere with four punctures.
Consider a basepoint ˚, and arrange the punctures in counterclockwise order
around ˚. Let a, b, c, d denote the “lollipop” generators about the punctures,
giving rise to the sphere group

G “ xa, b, c, d | dcbay .
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Set r “ cb, and let T denote the Dehn twist about the curve rG. Note that
T fixes ˚. The action of T on G is given by

a ÞÑ a , b ÞÑ br , c ÞÑ cr , d ÞÑ d ,

so the biset of T has in basis t˚u the wreath recursion

a “ !a", b “ !br", c “ !cr", d “ !d".

We have G “ G1 ˚Z G2, with G1 “ xa, r, d | dray and G2 “ xb, c, r´1 |
bcr´1y, glued along xry – Z. The tree of groups decomposition of G therefore
consists of a single segment. The decomposition T of BpT q as a tree of bisets
is also a single segment, with ρ “ λ “ 1 and vertex and edge bisets B1, B2, E1
above G1, G2, xry respectively:

‚B1 ‚ B2
E1

‚G1 ‚ G2.
xry

ρλ
ρ

λ

These bisets are obtained as subbisets of BpT q by restricting the wreath
recursion of BpT q to the subgroups G1, G2 and xry respectively. If we use
for them the same basis t˚u, they are given as follows:

‚ the G1-G1-biset B1 is the biset of the identity

a “ !a", r “ !r", d “ !d",
because the basepoint ˚ belongs to the sphere marked by a, d, r;

‚ the G2-G2-biset B2 has wreath recursion

b “ !br", c “ !cr", r “ !r" ;

‚ the biset E1 is the identity Z-Z-biset. It embeds naturally in its
respective source and target vertex bisets under g ¨ ˚ ÞÑ g ¨ ˚ for all
g P xry.

Note that, if one changes B2’s basis to t˚1 :“ r ¨ ˚u, one obtains for B2
the wreath recursion of the identity map; but then the embeddings of the
edge Z-Z-biset E1 in B1 and B2 change: the basis element ˚ of E1 maps to
the basis element ˚ of B1, but to r´1ˆ the basis element ˚1 of B2.

Note also that the biset of T is biprincipal and that T is a biprincipal
tree of bisets. The biset of Tn is BpT qbn, and its decomposition Tbn also
consists of a single edge, with identity bisets at vertices and the edge, and
embeddings b ÞÑ b and b ÞÑ r´n ¨ b of the edge biset into the vertex bisets B1
and B2 respectively.
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This example illustrates the importance of the edge biset embeddings. For
all Tbn the trees of groups are the same, the trees of bisets have the same un-
derlying tree and the same vertex and edge bisets; the algebraic realizations
are the same (a noded sphere with identity self-map), but the embeddings
of the edge biset in the vertex bisets depend on the twist parameter n.

7.3. All the twisted cousins of z2 ` i

The polynomial z2 ` i has the following critical graph: 0 ñ iÑ i´ 1 Ø
´i. There exist maps with the same post-critical graph as z2 ` i that are
obstructed, and one such map, f may be constructed as follows [9, §6.1]:

˝
˝ ‚ ‚

‚‚
‚ f´1(x)

f´1(z)
f´1(y)

f´1(z)
f´1(y)

a

c b

b c

˝
˝

‚
˝

‚

‚‚

x

y
z

a

bc

Γ

˝

f

The post-critical set of f is Pf :“ t8, x, y, zu with post-critical graph
¨ ñ xÑ y Ø z. Let Γ denote the simple closed curve Γ encircling y and z.

We first describe the biset Bpfq. For this, we choose a basepoint close to
8 on the positive real axis (indicated by a white dot on the figure above),
and we consider the simple (“lollipop”) loops a, b, c, d around x, y, z,8 re-
spectively. This gives the sphere group (see §II.1)

G “ xa, b, c, d | dcbay .
The wreath recursion (see §I.1) of Bpfq may be computed as follows. By our
choice of basepoint ˚, one preimage ˚1 is close to `8 and the other one ˚2 is
close to ´8. We choose as basis of Bpfq the set Q “ t`1, `2u with `1 a very
short path from ˚1 to ˚ and `2 a half-turn in the upper half-plane from ˚2 to
˚. Then, tracing f -lifts of the lollipop generators, we obtain a presentation
of Bpfq as
a “ !a´1, a"p1, 2q , b “ !a, c" , c “ !1, cbc´1" , d “ !d, 1"p1, 2q .
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One checks easily that r “ cb, representing the conjugacy class Γ, is an
annular obstruction, and furthermore is a Levy cycle: indeed r “ !a, r", so
its transition matrix is p1q.

Let T denote the Dehn twist about Γ as in 7.2. We also consider all the
maps fn “ Tn ˝ f ; they are also obstructed, and are all combinatorially
inequivalent (see [28, Theorem 8.2] or [9, Proposition 6.10]). The action of
T on G is given by

a ÞÑ a, b ÞÑ br , c ÞÑ cr , d ÞÑ d

so the biset of fn has wreath recursion

a “ !a´1, a"p1, 2q , b “ !a, crn" , c “ !1, br
n´1" , d “ !d, 1"p1, 2q .

(7.1)

Another construction of fn may be given as follows. Start with the biset
Bpz2` iq; it can be computed by drawing paths in Czti, i´1,´iu and lifting
them by

?
z ´ i, but can also be obtained by Algorithm V.1 starting from

the external angle 1{6 of the map z2 ` i. The wreath recursion of Bpz2 ` iq
is

a “ !dc, ba"p1, 2q , b “ !a, c" , c “ !b, 1" , d “ !d, 1"p1, 2q .

Consider next the Dehn twist U about the simple closed curve encircling i
and i´ 1; its action on G is

a ÞÑ aba , b ÞÑ ba , c ÞÑ c , d ÞÑ d.

Then f1 is combinatorially equivalent (see §II.1) to pz2`iq˝U´1, so Bpf1q –
BpUq_ bBpz2 ` iq, and indeed the wreath recursion of BpUq_ bBpz2 ` iq
is

a “ !cb, ad"p1, 2q , b “ !ad, cb" , c “ !1, b" , d “ !1, d"p1, 2q ,

which in basis t`2, d´1`1u coincides with (7.1) for n “ 1.

We have G “ G1 ˚Z G2, with G1 “ xa, r, d | dray and G2 “ xb, c, r´1 |
bcr´1y, glued along xry – Z. The tree of groups therefore consists of a single
segment.

Since no small sphere in pS2, f´1
n pPf q, f´1

n pΓqq maps to an annulus, we do
not need to subdivide the tree of groups barycentrically. Thus the decomposi-
tion Bpfnq of Bpfnq as a tree of bisets has three vertex bisets, corresponding
to the three components B1, B2, B3 of S2zf´1pΓq. They are arranged as
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follows:
‚ B3

‚B1
‚ B2

E3

E2

‚G1 ‚ G2.
xry

ρλ ρλ
λ (7.2)

By convention, the covering map ρ is given by vertical projection and drawn
in plain lines, while the map λ is drawn in squiggly lines; it sends B1, E3
and B3 to G1 while sending E2 to xry and B2 to G2.

The vertex bisets are obtained as subbisets of Bpfnq by restricting the
wreath recursion of Bpfnq to the subgroups G1 and G2, using subsets of the
basis Q, and are given as follows:

‚ the G1-G1-biset B1 has in the basis Q the wreath recursion
a “ !a´1, a"p1, 2q , r “ !a, r" , d “ !d, 1"p1, 2q ,

and is isomorphic to the biset of the rational map z2 ´ 2;
‚ the G2-G2-biset B2 has in the basis t`2u the wreath recursion

b “ !crn" , c “ !brn´1" , r “ !r" ,
and is isomorphic to the biset of the rational map z´1 marked at
t0, 1,8u;

‚ the G1-G2-biset B3 has in the basis t`1u the wreath recursion
b “ !a" , c “ !1" , r “ !a" ;

‚ the bisets E2 is the identity Z-Z-biset in the basis t`1u, and the biset
E3 is the G1-Z-biset given in the basis t`2u by the wreath recursion
r “ !a"; these edge bisets embed naturally in their respective
source and target vertex bisets.

Recalling from §7.2 the notation T for the biprincipal biset of T , we have
Bpfnq – TbnbBpf0q. Note that, if one changes B2’s basis to t`12 :“ rn ¨ `2u,
one obtains a simpler wreath recursion

b “ !c" , c “ !cbc´1" , r “ !r" ;
that does not depend on n, but then one has to specify the embeddings of
the edge Z-Z-biset E2 in B1 and B2 respectively: the basis element `2 of E2
maps to the basis element `2 in B1, but to r´nˆ the basis element `12 in B2.

The maps fn all admit the same algebraic realization on a singly noded
complex stable curve, as f, i : Y Ñ X. By convention, we identify the post-
critical points with the elementary loops in G representing them, so that
the post-critical set is now ta, b, c, du. We only give the map f , in red; we
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chose the coördinates on the spheres in Y so that i is either the identity
map or the constant map on each component, so that it suffices to label,
on Y, the i-preimages of the post-critical set. The mapping i on spheres is,
anyways, the same as the map λ in (7.2). We indicate inside the spheres the
coördinates that we chose so as to make the maps rational; they are usually
unimportant in those spheres of Y which get blown down, and which are
drawn shaded. We also attempt to give the correct geometry to the spheres
by indicating the angles at the post-critical points and their f -preimages:

a
´2

d 8

0
2

1
0

8

1

b
0

c
8

2

d 8

a ´2

1

b
0

c
8

Y

X

z2 ´ 2 z´1z

7.4. The mating of z2 ´ 1 with itself

This example appears in [28, §1.3.2]. Consider first the polynomial gpzq “
z2 ´ 1, with post-critical set Pg “ t0,´1,8u. Choose as in §7.3 a base-
point ˚ P R` close to 8, and a basis t`1, `2u consisting of a short path
`1 from

?˚ ` 1 to ˚ and an upper half-circle from ´?˚ ` 1 to ˚. Write
H “ xa, b, t | tbay for the fundamental group of pCzPg, with a, b, t elementary
loops around ´1, 0,8 respectively (i.e. a, b, t follow the straight lines from ˚
to the respective point). The presentation of the biset HBpgqH is

a “ !a´1, ba"p1, 2q , b “ !a, 1" , t “ !t, 1"p1, 2q .
It may also be obtained by Algorithm V.1 starting from the external angle
1{3 of the map z2 ´ 1.

Let now the branched covering f be the mating of g with itself. Topo-
logically, it is the following map. Take two copies of C, and compactify each
with a circle t8eiθ | θ P R{2πZu. Glue these two closed disks by identifying
8e2iπθ on the first with 8e´iθ on the second. Let g act on each copy, and
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note that they agree with the map 8eiθ ÞÑ 8e2iθ on the circle at infinity. In
effect, we have decomposed S2 in its upper and lower hemispheres and let g
act independently on both.

A presentation of Bpfq may easily be computed. Consider a copy H “
xā, b̄, t̄ | t̄b̄āy, and the group

G “ H ˚xty“xt̄´1y H̄ “ xa, b, ā, b̄ | bab̄āy .
This is a sphere tree of groups with two vertices and a single edge corre-
sponding to the fundamental group of the circle at infinity. The biset Bpfq
is the fundamental biset of the following tree of bisets: it has two vertices
each carrying the biset Bpgq; we write B̄pgq for the biset of the second ver-
tex to distinguish it from the first. An edge connects these vertices, carrying
the biset Bpz2q which is xty as a set with actions ti ¨ tj ¨ tk “ t2i`j`k. The
inclusions of Bpz2q in Bpgq are as follows: choosing for each of the bisets
Bpz2q, Bpgq, B̄pgq the same basis t`1, `2u, the maps are

$

’

&

’

%

Bpz2q Ñ Bpgq
`1 ÞÑ `1

`2 ÞÑ `2

and

$

’

&

’

%

Bpz2q Ñ Bpgq
`1 ÞÑ `1

`2 ÞÑ t ¨ `2 .
We obtain in this manner the following presentation for GBpfqG:
a “ !a´1, ba"p1, 2q , b “ !a, 1" , ā “ !b̄ā, ā´1"p1, 2q , b̄ “ !1, ā" .
We naturally have an invariant multicurve tpbaqGu, since ba “

!1, ba"p1, 2q; and its Thurston matrix is p1{2q. There is, however, another
invariant multicurve

Γ “ txGu with x “ āa ,

since x “ !1, x´ā"; and its Thurston matrix is p1q, so it is a Levy obstruc-
tion.

We have G “ G1 ˚ZG2, with G1 “ xa, ā, x´1 | āax´1y and G2 “ xba, b̄, x |
bab̄xy, glued along xxy “ Z. The sphere tree of groups therefore consists of
a single segment.

We change the basis of Bpfq to Q “ t`1, ā`2u so as to make more vis-
ible the decomposition of Bpfq as a tree of bisets; indeed in that basis
x “ !1, x´1". The presentation of Bpfq becomes, on the generating set
ta, ā, ba, b̄u,
a “ !x´1, xba"p1, 2q , ā “ !b̄, 1"p1, 2q , ba “ !1, ax

´1" , b̄ “ !1, ā" .
Again we do not need to subdivide the tree of groups barycentrically. We

note that, in the new basis of Bpfq, the wreath recursion restricts to maps
G1 Ñ G2

2¸QÓ. and G2 Ñ 1ˆG1. Therefore, the decomposition of Bpfq as a
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sphere tree of bisets has two vertices B1, B2 joined by an edge E2, and such
that ρ sends Bi to Gi while λ sends Bi to G3´i, and an additional trivial
vertex B3 above G2 joined by an edge E3 to B1:

‚ B3
‚B1

‚ B2

E3

E2

‚G1 ‚ G2.xxy

ρ
ρ

λ
λ λ

(7.3)

The vertex bisets are again obtained by restricting Bpfq while using sub-
sets of the basis Q, and are given as follows:

‚ the G2-G1-biset B1 has in the basis Q the wreath recursion

a “ !x´1, xba"p1, 2q , ā “ !b̄, 1"p1, 2q , x´1 “ !1, x" ;

‚ the G1-G2-biset B2 has in the basis tā`2u the wreath recursion

ba “ !ax´1" , b̄ “ !ā" , x “ !x´1" ;

‚ the G2-G2-biset B3 is trivial in the basis t`1u: it has the wreath
recursion ba “ b̄ “ x “ !1". It corresponds to a sphere that gets
shrunk under i.

‚ the bisets E2 and E3 are the identity Z-Z-bisets in the bases tā`2u
and t`1u respectively, and embed naturally in their respective source
and target vertex bisets.

To obtain the pieces of the decomposition, we consider the first return
map of λ´1ρ to G1 via its biset B2 bG2 B1. Its wreath recursion is

a “ !x, ax´1"p1, 2q , ā “ !ā, 1"p1, 2q , x´1 “ !1, x´1"

which is isomorphic to Bpz2q, with x´1 representing a loop around the fixed
point 1.

The algebraic realization takes place on a singly noded complex stable
curve, as f, i : Y Ñ X. We keep the convention of identifying the post-critical
points with the elementary loops in G representing them, giving the map f
in red and forcing i to be either the identity or the constant map on each
component:
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´1

ba 8

b̄
0

1

1

0

8

1

ā0

a8

1

a 8

ā 0

1

b̄0

ba8

Y

X

z2 z z

7.5. Maps doubly covered by diagonal torus endomorphisms

We consider next the endomorphism pm 0
0 n q of the torus R2{Z2, of degree

mn, and its projection to a map fm,n : S2 ý via the Weierstraß function ℘
of the square lattice. The example m “ 3, n “ 2 is treated in [28, §1.3.3].
Without loss of generality, we restrict ourselves to m ě n.

The critical points of ℘ are at 1
2Z

2, so fm,n has t℘p0q, ℘p 1
2 q, ℘p i2 q, ℘p 1`i

2 qu
as post-critical set. If m “ n, then f is a rational map — a flexible Lattès
map, see [25] and §III.3 — and its pullback map σfm,n on Teichmüller space
is the identity. In the general case, the pullback map associated to the map
f “ ℘ ˝ p p qr s q ˝℘´1 is σf pzq “ ppz` rq{pqz` sq, if one identifies Teichmüller
space Tta,b,c,du with the upper half plane.

Let us write a “ ℘p0q, b “ ℘p 1
2 q, c “ ℘p i2 q, d “ ℘p 1`i

2 q; the post-critical
graph depends on the parity of m and n, but in all cases a is a fixed point, b
maps to a or b, etc. The map fm,n may be given by considering the rectangle
X “ r0, 2s ˆ r0, 1s Ă R2, with sides identified under p0, yq „ p2, yq and
p1 ´ x, 0q „ p1 ` x, 0q and p1 ´ x, 2q „ p1 ` x, 2q. This is topologically
a sphere, and metrically a “pillowcase”. Consider next the rectangle Y “
r0, 2ms ˆ r0, ns and the maps f, i Ñ Y Ñ X given by ipx, yq “ px{m, y{nq
and fpx, yq “ px, yq on r0, 2s ˆ r0, 1s, extended by reflections in the lines
y P Z and x P 2Z. The picture for m “ 3, n “ 2 is given in Figure 7.1.

Since all post-critical points are orbispace points of order 2, the sphere
group of fm,n is

G “ xa, b, c, d | dcba, a2, b2, c2, d2y;
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a b

cd

a b

cd

i
f

Figure 7.1. The map doubly covered by the torus endomorphism m “
3, n “ 2

its subgroup H “ xba, ady has index 2 and H – Z2. The biset Bpfm,nq can
easily be computed from this picture, but the answer is not very illuminat-
ing. Let f̃m,n be the self-map of R2{Z2 defined by px, yq ÞÑ pmx, nyq; then
the biset Bpf̃m,nq admits the following simple description as an H-H-biset:
identify H with Z2. As a set, Bpf̃m,nq “ Z2. The left and right actions of
Z2 are given by v ¨ β ¨ w “ pm 0

0 n qv ` β ` w. From the degree-2 branched
cover R2{Z2 Ñ S2 we deduce that Bpf̃m,nq is a subbiset of Bpfm,nq of in-
dex 2, namely Bpfm,nq is, qua left H-set, the disjoint union of two copies of
Bpf̃m,nq.

We turn to the decomposition of fm,n. Set x “ ad; then the multicurve
txGu is invariant. It has m preimages mapping by degree n to itself, so its
Thurston matrix is pm{nq and it is an obstruction.

The sphere tree of groups decomposition of G associated with txGu is
G “ G1 ˚xxy G2 with G1 “ xa, d, x´1 | adx´1y and G2 “ xb, c, x | bcxy,
and the tree of bisets decomposition of Bpfm,nq has m` 1 vertices arranged
in a chain. Note that we needed, in this case, to consider the barycentric
subdivision of the tree of groups with two vertices and one edge, because the
map λ sends some vertices to annuli. Here is the graph for m “ 5; for even
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m, both endpoints of the tree of bisets would map to G1 by ρ:

‚B1 ‚ B2

‚B3 ‚ B4

‚B5 ‚ B6

˝
˝
˝
˝
˝

‚G1 ‚ G2.˝xxy

ρ

λ

ρ

λ

λ λ
λ λ

(7.4)

We give directly the complex stable curve, which is singly noded. De-
note by Tn the Chebyshev polynomial Tnpzq “ cospn arccos zq. We keep the
convention of identifying the post-critical points with the elementary loops
in G representing them, giving the map f in red and forcing i to be either
the identity or the constant map on each component — and, in the latter
case, indicating the blown-down spheres in shade. We consider m odd; if m
is even, then the first and last spheres both map to the left sphere by i:

8

a ´1

d 1

8
´1

1
00

´1

1

8 8
b1

c´1

8

a ´1

d 1

8

b1

c´1

Y

X

Tn ¨ ¨ ¨ 1
2 (z

n + z´n) ¨ ¨ ¨ Tn

7.6. The formal mating 5{12Z 5{12

Douady and Hubbard, in their article [17], consider the formal mating
with itself of the (obstructed) topological polynomial with lamination angle
5{12. This example is important because it is a Thurston map with six
curves, four of which forming a chain, such that various subsets of these
six curves define an annular obstruction. Because curves in an obstruction
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cannot intersect, this means that there is, in general, no such thing as a
“maximal annular obstruction”.

We start by describing the presentation of the map f5{12, using this time
the language of laminations; see [8]. An identical recursion arises if one starts
with the angle 7{12. In that picture, the generators lie at angles 5{12, 5{6,
2{3 and 1{3. With the generators t, g1, g2, g3, g4 corresponding to the angles
0, 1{3, 5{12, 2{3, 5{6 in increasing order, the biset Bpf5{12q has presentation
t “ !t, 1"p1, 2q , g1 “ !1, g3" , g2 “ !g´1

1 g´1
2 g´1

3 , g3g2g1"p1, 2q ,
g3 “ !g1, g4" , g4 “ !g2, 1" .

The fundamental group is H “ xt, g1, g2, g3, g4 | g4g3g2g1ty. The biset
Bpf5{12q admits a Levy obstruction tgH0 u with g0 “ gg2

3 g1, since g0 “
!gt´1

4 , g
g´1

2
0 ". It is canonical. This Levy cycle comes from the external rays

with angles 1{3 and 2{3 landing together. If one considers the subgroup
H0 “ xt, g0, g2, g4 | g4g2g0ty of H, consisting of paths that do not cross a
fixed arc between the punctures g1 and g3, one obtains a realizable biset
with presentation

t “ !t, 1"p1, 2q , g0 “ !gt´1

4 , g
g´1

2
0 " ,

g2 “ !g´1
0 g´1

2 , g2g0"p1, 2q , g4 “ !g2, 1" ,
which is the biset of a polynomial – z2 ´ 1.54369. In effect, passing to the
subgroup H0 amounts to considering only curves in pS2, Pf5{12q that do not
cross the curve gH0 .

To compute the mating f of f5{12 with itself, we consider as in §7.4 the
group

G “ G5{12 ˚xty G5{12 “ xg1, . . . , g4, h1, . . . , h4 | g4g3g2g1h4h3h2h1y .
Its generators are lollipops around two copies ¨ ñ x1 Ñ x2 Ñ x3 Ø x4
and ¨ ñ y1 Ñ y2 Ñ y3 Ø y4 of the post-critical set of f5{12. Let us write
t “ h4h3h2h1 “ pg4g3g2g1q´1. The presentation of Bpfq is then
g1 “ !1, g3", g2 “ !tg4, g

´1
4 t´1"p1, 2q, g3 “ !g1, g4", g4 “ !g2, 1",

h1 “ !h3, 1", h2 “ !h´1
4 t´1, th4"p1, 2q, h3 “ !h4, h1", h4 “ !1, h2".

There are now many annular obstructions: setting as before g0 “ gg2
3 g1

and h0 “ hh2
3 h1, the multicurves tgG0 u and thG0 u are both invariant with

matrix p1q; however, setting r “ g3h1 and s “ g1h3, we also have r “ !s, g4"
and s “ !h4, r" so trG, sGu is a Levy multicurve. The four curves g0, r, h0, s
intersect each other cyclically, so none of these are part of the canonical
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obstruction, see [17, p. 34]. In fact, the canonical obstruction is

tuG, vGu with u “ h2g2, v “ gt
´1

4 h4 ,

since u “ !v´1, vtg4" and v “ !1, uh2". Its Thurston matrix is p 0 1
2 0 q. We

get a sphere decomposition

G “ G1 ˚xuy G2 ˚xvy G3 with

$

’

’

&

’

’

%

G1 “ xg2, h2, u
´1 | h2g2u

´1y ,
G2 “ xg1, g

g2
3 , h

g2
1 , h3, u, v | vh3uh

g2
1 g

g2
3 g1y ,

G3 “ xgt´1

4 , h4, v
´1 | gt´1

4 h4v
´1y .

The corresponding sphere tree of bisets decomposition is

‚B1

‚
B2 ‚ B3

‚
B4

‚ B5

˝˝
˝ ˝

‚G1 ‚
G2

‚ G3,˝xuy ˝xvy

ρ

ρ
ρλ

λ
λ

λ
λ

(7.5)

with the following vertex bisets:

‚ the xvy-G1-biset B1 has, in basis t`1, g´1
1 g´1

2 g´1
3 `2u, the wreath re-

cursion

g2 “ !1, 1"p1, 2q , h2 “ !v, v´1"p1, 2q , u´1 “ !v, v´1" ;

‚ the G2-G2-biset B2 has, in basis tg´1
1 g´1

2 g´1
3 `2u, the wreath recur-

sion

g1 “ !pgg2
3 qg1" , gg2

3 “ !g1" , u “ !v" ,
hg2

1 “ !h3" , h3 “ !phg2
1 qg

g2
3 g1" , v “ !ugg2

3 g1" ;

‚ the G1-G3-biset B3 has, in basis t`2u, the wreath recursion

gt
´1

4 “ !g2" , h4 “ !h2" , v “ !ug2" ;

‚ the G3-G2-biset B4 has, in basis t`1u, the wreath recursion

g1 “ !1" , gg2
3 “ !gt´1

4 " , u “ !v´1" ,
hg2

1 “ !1" , h3 “ !h4" , v “ !1" ;

‚ the G3-G3-biset B5 has, in basis t`1u, the wreath recursion gt´1

4 “
h4 “ v “ !1". It corresponds to a sphere being contracted to a
point.
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The only return maps of Bpfq are the trivial biset B5 and the degree-1
biset B2. This last biset is the biset of an outer automorphism ϕ of order
two: the wreath recursion of B2 b B2 is conjugation by g0 “ gg2

3 g1. Indeed
ϕpg0q “ g0 and the action of ϕ is

gg2
3 ÞÑ g1 ÞÑ pgg2

3 qg0 , u ÞÑ v ÞÑ ug0 , hg2
1 ÞÑ h3 ÞÑ phg2

1 qg0 .

On top of ϕpg0q “ g0, we also have ϕphG2
0 q “ hG2

0 and ϕprg2G2q “ sG2 and
ϕpsG2q “ rg2G2 ; so the simple closed curves g0, r, h0, s can be homotoped
into periodic curves in the sphere G2.

We are ready to give the complex stable curve on which f may be realized:

0 ´1

8 1

y4
´i

y3
8

x4
i

x3
0

11

x10

y18

y2
8 ´i

x2
0 i

1´1

0

8

1 1

x1 0

y1 8 y3
8 y4

´i

x3
0

x4
i

1´1

x20

y28

Y

X

z2 z z´i
iz´1

z z

Note that the coördinates on the central small sphere in X are not uniquely
determined; rather, choose any Möbius transformation µ that is an involu-
tion and that does not fix 0, 1 or 8. Then, once the left and right small
spheres are labelled by 0, 1,8 as above, the central small sphere is labelled
by 0, 1,8, µp0q, µp1q, µp8q and the covering f is given, on the top central
small sphere of Y, by µ.

7.7. Blowing up an arc

In [28, §1.3.4], Kevin Pilgrim describes a self-covering of the sphere, ob-
tained from the z ÞÑ 2z map on the torus by rotating and blowing up an
edge. It is a degree-5 map f , and Pilgrim asks whether it can be realized as
a complex map (from the construction, it is clear that f is expanding, so it

– 1286 –



Algorithmic aspects of branched coverings

a b

cd

i
f

Figure 7.2. Pilgrim’s “blowing up an arc” subdivision rule

cannot have any Levy obstruction, see Theorem C). We start by describing
the map similarly to the examples in §7.5:

The map may be group-theoretically presented as follows — see
Figure 7.2. Consider G “ xa, b, c, d | dcbay generated by lollipops around
the punctures. In the basis t`1, . . . , `5u consisting of straight paths from
ipA1q, . . . , ipA5q to the basepoint A, the biset Bpfq is presented as

a “ !c´1, 1, 1, 1, c"p1, 5qp2, 4, 3q ,
b “ !1, 1, 1, d, d´1"p1, 2qp4, 5q ,
c “ !a, 1, 1, a´1, 1"p1, 4qp2, 3, 5q ,
d “ !b, 1, d, a, c" .

Consider x “ ac. One then computes directly

x “ !c´1, cx´1, 1, 1, xc
´1"p1, 2qp4, 5q ,

so txGu is an annular obstruction, with Thurston matrix p 1
2 ` 1

2 q. This al-
ready answers Pilgrim’s question in the negative. However, let us study this
example further, and decompose Bpfq as a sphere tree of bisets.

– 1287 –



Laurent Bartholdi and Dzmitry Dudko

The tree of groups decomposition is G “ G1 ˚ZG2, with G1 “ xa, c, x´1 |
acx´1y and G2 “ xx, b, dc | xdcby. To compute the sphere tree of bisets, we
first change the basis of Bpfq to Q :“ t`1, c`2, c`3, c`4, c`5u so as to simplify
the presentation of x, and obtain

a “ !1, 1, 1, 1, 1"p1, 5qp2, 4, 3q ,
b “ !c, c´1, 1, dc, d´c"p1, 2qp4, 5q ,
c “ !x, 1, 1, x´1, 1"p1, 4qp2, 3, 5q ,
dc “ !a, c, 1, bx, dc" ,
x “ !1, x´1, 1, 1, x"p1, 2qp4, 5q .

The multicurve txGu has 3 preimages, corresponding to the cycles
p1, 2qp3qp4, 5q of the permutation associated with x; so the sphere tree of
bisets into which Bpfq decomposes has 4 vertex bisets. They are arranged
as follows:

‚B1

‚ B2

‚ B3

‚ B4

˝
˝
˝

‚G1 ‚ G2.˝xxy

ρ
ρ

λ λ
λ λ

(7.6)

The vertex bisets are again obtained by restricting Bpfq while using subsets
of the basis Q, and are given as follows:

‚ the xxy-G1-biset B1 has in the basis Q the wreath recursion
a “ !1, 1, 1, 1, 1"p1, 5qp2, 4, 3q ,
c “ !x, 1, 1, x´1, 1"p1, 4qp2, 3, 5q ,

x´1 “ !x, 1, 1, x´1, 1"p1, 2qp4, 5q ;
‚ the G1-G2-biset B2 has in the subbasis t`1, c`2u of Q the wreath
recursion
x “ !1, x´1"p1, 2q , b “ !c, c´1"p1, 2q , dc “ !a, c" ;

‚ the xxy-G2-biset B3 has in the subbasis tc`3u of Q the trivial wreath
recursion x “ b “ dc “ !1"; it corresponds to a sphere that gets
blown down to a point on the annulus;

‚ the G2-G2-biset B4 has in the subbasis tc`4, c`5u of Q the wreath
recursion
x “ !1, x"p1, 2q , b “ !dc, d´c"p1, 2q , dc “ !bx, dc" ;
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it is isomorphic to the biset of the map z2 ´ 2.

The biset B1 is the biset of the rational map z3p4z ` 5q2{p5z ` 4q2. The
algebraic realization of f takes place on a singly noded complex stable curve.
Keeping the same conventions, it is

´7+i
?

15
8

0

´ 5
4

8

´ 4
5

´7´i
?

15
8

1

1
´1

a0

c8

1

0

8

1
´1

b0

dc
8

1

a 0

c 8

1

b0

dc
8

Y

X

z3
(
4z+5
5z+4

)2
z (z+1)2

4z

7.8. Shishikura and Tan Lei’s example

Tan Lei and Shishikura consider in [35] a mating of two polynomials of
degree 3, and show that it is obstructed, but does not admit a Levy cycle (it
is known that rational maps of degree 2 are obstructed if and only if they
admit a Levy cycle). This example was further studied in [14].

Their example may be described as follows. Consider the polynomial
fpzq “ z3 ` c , with pc3 ` cq3 ` c “ 0 and c « ´0.264425` 1.26049i .

Its post-critical orbit is w V u Ñ v Ñ w, and the angles landing at the
critical point u are t11, 24, 37u{39. Consider then the polynomial

gpzq “ pa´ 1qp3z2 ´ 2z3q ` 1 , with gpaq “ 0 and a « ´0.42654 .
Its post-critical orbit is z ñ x ñ y Ñ z, the angles landing at z are
t21, 47u{78 and those landing at x are t11, 63u{78. Consider finally the mat-
ing h of f and g.

We choose as usual a basepoint ˚ close to the equator of h and write
G “ π1pS2zPh, ˚q “ xu, v, w, x, y, z | uwvxyzy

for standard generators of G consisting of lollipops along external rays of
f and g respectively. For convenience, we write t “ uwv “ pxyzq´1 for
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the loop along the equator. In the basis t`1, `2, `3u of Bphq consisting of
positively oriented paths along the equator, we obtain t “ uwv “ pxyzq´1 “
!1, 1, t"p1, 2, 3q and

u “ !v´1, u´1, t"p1, 2, 3q , x “ !1, yz, y´1"p2, 3q ,
v “ !1, 1, u" , y “ !t´1, 1, tx"p1, 3q ,
w “ !1, v, 1" , z “ !1, y, 1" .

Consider now the multicurve trG, sGu with r “ vy and s “ uwxv
´1 . We

have
r “ !t´1, 1, tsv"p1, 3q , s “ !s´vt´1, r´v, t"p1, 3q ,

so trG, sGu is an annular obstruction with transition matrix p 0 1
1
2

1
2
q. The

corresponding decomposition of G has three vertices, and is

G “ G1 ˚xsy G2 ˚xry G3 with

$

’

&

’

%

G1 “ xuw, xv´1
, s´1 | uwxv´1

s´1y ,
G2 “ xw, z, r, s | zwsry ,
G3 “ xv, y, r´1 | vyr´1y .

In basis Q :“ tv`1, v`2, puwq´1`3u the presentation of Bphq becomes

uw “ !1, w, 1"p1, 2, 3q , xv
´1 “ !1, s´1, w´1r´1"p2, 3q ,

r “ !1, 1, s"p1, 3q , s “ !s´1, r´1, 1"p1, 3q ,
w “ !1, v, 1" , z “ !1, yv

´1
, 1" ,

v “ !1, 1, uw" , y “ !1, 1, xv
´1"p1, 3q .

From this presentation, just by looking at which of G1, G2, G3 the entries
belong to, we get the sphere tree of bisets decomposition

‚B1

‚
B2

‚ B3‚
B4

‚ B5˝ ˝
˝ ˝

‚G1 ‚
G2

‚ G3.˝xsy ˝xry

ρ

ρ
ρ

λ

λλ
λ (7.7)

The vertex bisets are as usual obtained by restricting Bphq while using sub-
sets of the basis Q, and are given as follows:

‚ the G2-G1-biset B1 has in the basis Q the wreath recursion

uw “ !1, w, 1"p1, 2, 3q, xv
´1 “ !1, s´1, w´1r´1"p2, 3q,

s´1 “ !1, r, s"p1, 3q ;
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in appropriate coördinates, it is the biset of the map 3z2 ´ 2z3;
‚ the G3-G2-biset B2 has in the subbasis t`2u of Q the wreath recur-
sion

w “ !v", z “ !yv´1", r “ !1", s “ !r´1" ;

‚ the G1-G3-biset B3 has in the subbasis t`1, `3u of Q the wreath
recursion

v “ !1, uw", y “ !1, xv
´1"p1, 2q, r´1 “ !s´1, 1"p1, 2q ;

‚ the xsy-G2-biset B4 has in the subbasis t`1, `3u of Q the wreath
recursion

w “ !1, 1", z “ !1, 1", r “ !1, s"p1, 2q, s “ !s´1, 1"p1, 2q ;
‚ the 1-G3 biset B5 is trivial on the subbasis t`2u, and corresponds to
a sphere that gets blown down to a point.

The only small cycle in the sphere tree of bisets is the G1-G1-biset C :“
B3bG3 B2bG2 B1 and its two cyclic permutations. A presentation for C, in
the basis t`1`2`1, `3`2`1, `1`2`2, `3`2`2, `1`2`3, `3`2`3u, is

uw “ !1, 1, 1, uw, 1, 1"p1, 3, 5qp2, 4, 6q ,
xv
´1 “ !1, 1, 1, uwxv

´1
, 1, u´w"p3, 6, 4, 5q ,

s´1 “ !1, 1, 1, 1, s´1, 1"p1, 5, 2, 6q .
A direct calculation shows that it is isomorphic to Bpp3z2´2q2{p3z4´4z6qq;
this will also follow from the algebraic realization of h, which is as follows:

´1{2

w
8

3{2

z
0 1 8

1 ´1

0?´2´?´2

1

8
v

´1{2
0
y

1
8
0

1

1{2 uw

8

xv´1
0

1

uw

8

xv´1
0

1

8
w

´1{2

0
z

1

v
8

y
0

Y

X

3z2 ´ 2z3 z2´1
z2`2

z z z2

2z´1
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We remark that, since h does not admit any Levy obstruction, it is iso-
topic to an expanding map for a path metric on pS2, Phq. It admits, therefore,
a Julia set, defined for example as the accumulation set of iterated preimages
of a generic point. On the other hand, p3z2 ´ 2z3q ˝ z ˝ z2

2z´1 is a rational
map, so also admits a Julia set. Chéritat investigates this example in [14] by
comparing these Julia sets.

On the above noded sphere model, the Julia set of h is, on the first sphere,
the Julia set of p3z2´2z3q˝z ˝ z2

2z´1 ; on the other two spheres, it is the Julia
set of its cyclic permutations.

Chéritat also asks, in [14, Question 2], to prove that the map of noded
spheres obtained from pinching the canonical obstruction in h is indeed (in
a different normalization) the map above. This follows from [31], and also
follows immediately from computing the bisets in the decomposition, as we
have done.

7.9. A Thurston map with infinitely generated centralizer

We conclude this survey with an example that shows that centralizers of
Thurston maps can be sometimes quite complicated, and in particular not
finitely generated (whence our notion of “sub-computable”). The example
has degree 6 and 7 marked points. Many generalizations are possible, but we
content ourselves with its direct description, see Figure 7.3.

The seven marked points A “ tx1, . . . , x7u of the Thurston map f are
separated by two curves s, t as follows: x3, x4 lie on an f -fixed sphere S0
separated by s from a sphere S1 containing x2, x5 and on which f acts as
z2; and S1 is separated by t from an f -fixed sphere S2 containing x1, x6, x7.
The canonical obstruction of f is ts, tu. There are two other preimages of
S1, mapping by z2 to S1 and embedded in annuli about s and t respectively,
and two other preimages of S2 mapping by degree 2 to S2, respectively with
critical values tx1, x6u and embedded in an annulus about s, and with critical
values tx1, x7u and embedded in an annulus about t.

The Thurston matrix of the multicurve C :“ ts, tu is p 1 2
0 3 q. Note that

every curve in S2 is a Levy cycle, however the return map on S2 is the
identity and the canonical obstruction does not contain the Levy cycles in
degree-1 pieces.

The centralizer of f preserves the canonical obstruction, so is a subgroup
of ModpS2, A,C q – ModpS0q ˆModpS1q ˆModpS2q ˆ ZC . Furthermore,
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x3

x4

8

0

8
x2

0
x5

8

0

x7

x6

x18

8
x2x3

x4

s

0
x5

t

x7

x6

x18

z

z2 z2+x6

1+x6
z2+x7

1+x7
z

Figure 7.3. A Thurston map with infinitely generated centralizer

ModpS0q “ 1 because it contains only three marked points, and the projec-
tion of Zpfq into ModpS1q is trivial because the restriction of f to S1 is a
rational self-map. Therefore, Zpfq is a subgroup of ZC ˆModpS2q.

To compute it, we write down a presentation of Bpfq, and compute some
relations in its mapping class biset. We set

G “ xx1, x2, x3, x4, x5, x6, x7 | x1x2x3x4x5x6x7y,
write s “ x3x4 and t “ x2x3x4x5, and in a basis t`1, . . . , `7u we compute
the presentation

x1 “ !1, s, s´1, t, t´1, x1"p2, 3qp4, 5q ,
x2 “ !1, 1, s´1, x2s, t

´1, t"p1, 2qp3, 4qp5, 6q ,
x3 “ !x3, 1, 1, 1, 1, 1" ,
x4 “ !x4, 1, 1, 1, 1, 1" ,
x5 “ !1, 1, x5, 1, 1, 1"p1, 2qp3, 4qp5, 6q ,
x6 “ !1, 1, 1, 1, 1, x6"p2, 3q ,
x7 “ !1, 1, 1, 1, 1, x7"p4, 5q ,

(7.8)
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giving s “ !s, 1, 1, 1, 1, 1" and t “ !1, s, s´1, t, t´1, t". We write σ, τ, α, β
for Dehn twists about s, t, x1x6 and x6x7 respectively; their actions on G are
given respectively by

σ : x3 ÞÑ xs3, x4 ÞÑ xs4 ,

τ : x2 ÞÑ xt2, x3 ÞÑ xt3, x4 ÞÑ xt4, x5 ÞÑ xt5 ,

α : x1 ÞÑ xtx6t
´1

1 , x6 ÞÑ xt
´1x1tx6

6 ,

β : x6 ÞÑ xx6x7
6 , x7 ÞÑ xx6x7

7 ,

all other generators being fixed. Naturally rσ, αs “ rτ, αs “ rσ, βs “ rτ, βs “
1 while xα, βy is a free group of rank 2. We then compute

Bpfq ¨ σ – σ ¨Bpfq , Bpfq ¨ τ – σ2τ3 ¨Bpfq ,
Bpfq ¨ α – ασ2 ¨Bpfq , Bpfq ¨ β – β ¨Bpfq .

For the second equality, the recursion of σ´2τ´3 ¨ Bpfq ¨ τ in basis
ts2t3`1, st

3`2, st
3`3, t

2`4, t
2`5, `6u coincides with (7.8), while for the third

equality, the recursion of σ´2α´1 ¨ Bpfq ¨ α in basis ts2`1, s
2`2, `3, . . . , `6u

coincides with (7.8).

Consider the homomorphism φ : xα, βy Ñ Z which counts the total expo-
nent in α of a word; it is the quotient by the normal closure of β. Then, for
w P xα, βy, the element wσmτn belongs to the centralizer of f if and only if
pm,nq “ pm`2n`φpwq, 3nq, if and only if n “ 0 and w P kerpφq. Therefore,

Zpfq “ xσy ˆ kerpφq “ xσy ˆ xβ, βα, βαβ , . . .y – Zˆ F8 .
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