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Dimension free bounds for the Hardy—Littlewood
maximal operator associated to convex sets (*)

Luc DELEAVAL (), OLIVIER GUEDON (2) AND BERNARD MAUREY (%)

ABSTRACT. — This survey is based on a series of lectures given by
the authors at the working seminar “Convexité et Probabilités” at UPMC
Jussieu, Paris, during the spring 2013. It is devoted to maximal functions
associated to symmetric convex sets in high dimensional linear spaces, a
topic mainly developed between 1982 and 1990 but recently renewed by
further advances.

The series focused on proving these maximal function inequalities in
LP(R™), with bounds independent of the dimension n and for all p €
(1,4o0] in the best cases. This program was initiated in 1982 by Elias
Stein, who obtained the first theorem of this kind for the family of Eu-
clidean balls in arbitrary dimension. We present several results along this
line, proved by Bourgain, Carbery and Miiller during the period 1986-
1990, and a new one due to Bourgain (2014) for the family of cubes in
arbitrary dimension. We complete the cube case with a negative answer
to the possible dimensionless behavior of the weak type (1,1) constant,
due to Aldaz, Aubrun and Iakovlev—Strémberg between 2009 and 2013.

RESUME. — Ces Notes reprennent et compléetent une série d’exposés
donnés par les auteurs au groupe de travail « Convexité et Probabilités » &
P’'UPMC Jussieu, Paris, au cours du printemps 2013. Elles sont consacrées
a ’étude des fonctions maximales de type Hardy—Littlewood associées aux
corps convexes symétriques dans R™. On s’intéresse tout particulierement
au comportement des constantes intervenant dans les estimations lorsque
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L. Deleaval, O. Guédon and B. Maurey

la dimension n tend vers ’'infini. Ce sujet a été développé principalement
entre 1982 et 1990, mais a été relancé par des avancées récentes.

Le but de la série d’exposés était de prouver des inégalités maximales
dans LP(R™) avec des bornes indépendantes de la dimension n, pour cer-
taines familles de corps convexes. Dans les meilleurs cas, on a pu obtenir
de tels résultats pour toutes les valeurs de p dans (1, 400]. Ce théme de re-
cherche a été initié en 1982 par Elias Stein [75], qui a démontré le premier
théoréme de ce genre pour la famille des boules euclidiennes en dimen-
sion arbitraire, obtenant pour tout p € (1, 4+00] une borne dans L?(R™)
indépendante de n. Nous présentons ce théoréme de Stein ainsi que plu-
sieurs autres résultats dans cette direction, démontrés par Bourgain, par
Carbery et par Miiller dans la période 1986-1990. En 1986, Bourgain [9]
obtient une borne indépendante de n valable dans L?(R™) pour tout corps
convexe symétrique dans R™, puis Bourgain [10] et Carbery [21] étendent
le résultat LP(R™) de Stein aux corps convexes symétriques quelconques,
mais sous la condition que p > 3/2. Miiller [59] obtient un résultat va-
lable pour tout p > 1 quand un certain parametre géométrique, lié aux
volumes des projections du corps convexe sur les hyperplans, reste borné.
Ce parametre ne reste pas borné pour tous les convexes, en particulier, il
tend vers l'infini pour les cubes de grande dimension. Nous donnons un
théoréme récent (2014) di & Bourgain [13] qui obtient pour tout p > 1
une borne dans LP(R"™) indépendante de n pour la famille des fonctions
maximales associées aux cubes en dimension arbitraire. Nous complétons
I’étude du cas du cube par des résultats pour la constante de type faible
(1,1), dus & Aldaz [1], & Aubrun [3] et & Iakovlev—Stromberg [46] entre
2009 et 2013. A I'inverse du cas LP(R™), 1 < p < 400, cette constante de
type faible ne reste pas bornée quand la dimension tend vers l'infini.

Introduction

First defined by Hardy and Littlewood [44] in the one-dimensional set-
ting, the Hardy—Littlewood maximal operator was generalized in arbitrary
dimension by Wiener [83]. It turned out to be a powerful tool, for instance
in harmonic or Fourier analysis, in differentiation theory or in singular in-
tegrals theory. It was extended to various situations, including not only ho-
mogeneous settings, as in the book of Coifman and Weiss [23], but also
non-homogeneous, like noncompact symmetric spaces in works by Clerc and
Stein [22] or Stromberg [78]. Also studied in vector-valued settings with the
Fefferman—Stein type inequalities [33], it gave rise to several kinds of maxi-
mal operators which are now important in real analysis.

We shall denote by M the classical centered Hardy-Littlewood maximal
operator, defined on the class of locally integrable functions f on R™ by

1 n
(Mf)(x)=§§g|&/BTIf(x—y)ld% rER", (0.1)
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Dimension free bounds

where B, is the Euclidean ball of radius r and center 0 in R™, and |S|
denotes here the n-dimensional Lebesgue volume of a Borel subset S of R™.
It is well known that this nonlinear operator M is of strong type (p,p) when
1 < p £ +oo and of weak type (1,1), as stated in the following famous
theorem. We write LP(R™) for the LP-space corresponding to the Lebesgue
measure on R".

THEOREM 0.1 (Hardy-Littlewood maximal theorem). — Let n be an
integer > 1.

(1) For every function f € LY(R™) and A > 0, the weak type inequality
C(n)

LAGD (WT)
holds true, with a constant C(n) depending only on the dimension n.

(2) Let1 < p < 4oo. There exists a constant C(n,p) such that for every
function f in LP(R™), one has

IMf [ Lr@ny < C(n,p) | fll Lo @n) - (ST)

{z eR™: (Mf)(z) > A}| <

The weak type inequality is optimal in the sense that Mf is never in
LY(R™), unless f = 0 almost everywhere. Zygmund introduced the so-called
“Llog L class” to give a sufficient condition for the local integrability of the
Hardy—Littlewood maximal function, a condition that is actually necessary,
as proved by Stein [72]. The proof of Theorem 0.1 by Hardy and Littlewood
was combinatorial and used decreasing rearrangements. The authors said:
“The problem is most easily grasped when stated in the language of cricket,
or any other game in which a player compiles a series of scores of which an
average is recorded”. Passing through the Vitali covering lemma, which is
recalled below, has become later a standard approach.

A natural question that can be raised is the following. Could we com-
pute the best constant in both inequalities (WT) and (ST)? This question
seems to be out of reach in full generality. There is a very remarkable ex-
ception to this statement, the one-dimensional case where Melas has shown
in [57] by a mixture of combinatorial, geometric and analytic arguments,
that the best constant in (WT) is (11 4 v/61)/12. The case p > 1 is still
open, even in the one-dimensional case, despite of substantial progress by
Grafakos, Montgomery-Smith and Motrunich [41], who obtained by varia-
tional methods the best constant in (ST) for the class of positive functions
on the line that are convex except at one point. The uncentered maximal
operator f +— f* is better understood [40], the uncentered maximal function
f* being defined for every x € R™ by

*(x) = su =N u)| du
F@ = s ). 02)

BeB(x)
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L. Deleaval, O. Guédon and B. Maurey

where B(x) denotes the family of Euclidean balls B containing z, with ar-
bitrary center y and radius > d(y,z). It is clear that f* > Mf, and the
maximal theorem also holds for f* since any “uncentered” ball B € B(x)
of radius r is contained in B(x,2r), yielding the far from sharp pointwise
inequality f* < 2"Mf.

Lacking for exact values, one may address the question of the asymp-
totic behavior of the constants when the dimension n tends to infinity. This
program was initiated at the beginning of the 80s by Stein. In the usual
proof of the Hardy-Littlewood maximal theorem based on the Vitali cov-
ering lemma, the dependence on the dimension n in the weak type result
is exponential, of the form C(n) = C™ for some C' > 1. Then, by inter-
polation of Marcinkiewicz-type between the weak-L! case and the trivial
L case, one can get for the strong type in LP(R™) a constant of the form
C(n,p) = pC™P/(p—1), when 1 < p < +oo0 (see [39, Exercises, 1.3.3 (a)]).
In [75], Stein has improved this asymptotic behavior in a spectacular fash-
ion. Indeed, by using a spherical maximal operator together with a lifting
method, he showed that for every p > 1, one can replace the bound C(n,p)
in (ST) by a bound C(p) independent of n. The detailed proof appeared in
the paper [77] by Stein and Stréomberg.

The use of an appropriate spherical maximal operator is now a decisive
approach for bounding the LP norm of Hardy-Littlewood-type maximal op-
erators independently of the dimension n, when p > 1. This is the case, for
instance, for the Heisenberg group [84] or for hyperbolic spaces [54]. More-
over, Stein and Stromberg proved that the weak type (1,1) constant grows
at most like O(n), and it is still unknown whether or not this constant may
be bounded independently of the dimension. The proof in [77] draws on
the Hopf-Dunford—Schwartz ergodic theorem, about which Stein says in [73]
that it is “one of the most powerful results in abstract analysis”. The strat-
egy, which exploits the relationship between averages on balls and either the
heat semi-group or the Poisson semi-group, is well explained in [24], and has
been applied in several different settings [27, 52, 53, 55].

In a large part of these Notes, we shall replace Euclidean balls in the
definition (0.1) of the maximal operator by other centrally symmetric convex
bodies in R™ (in what follows, we shall omit “centrally” and abbreviate it
as symmetric convex body). For example, replacing averages over Euclidean
balls B, of radius r by averages over n-dimensional cubes @, with side 2r
gives an operator Mg which satisfies both the weak type and strong type
maximal inequalities. Indeed, since B, C Q, C /nB,, it is obvious that
Mg is bounded in LP(R™) with C(n,p) replaced by n™/2C(n,p), but this
painless route badly spoils the constants. Several results specific to the cube
case have been obtained, as we shall indicate below.

4 -



Dimension free bounds

More generally, as in Stein and Stromberg [77], one can give a symmetric
convex body C in R™ and introduce the mazimal operator M¢ associated to
the convex set C as follows: for every f € Ll _(R") one defines the function
Mc f on R™ by

1
Mc f)(z) = ST e |f(y)|dy

1
:sup—/|f(:v+tv)|dv, z e R",
>0 [C] Je

(0.3.M)

where x + tC := {x + tc : ¢ € C}. One may also consider M¢c when C
is not symmetric but has its centroid at 0, see Fradelizi [34, Section 1.5].
The maximal operator Mo satisfies, again, a maximal theorem of Hardy—
Littlewood type.

Let C be a symmetric convex body in R™. The weak type (1,1) property
for M¢ can be deduced from the Vitali covering lemma: given a finite family
of translated-dilated sets z; + r;C, ¢ € I, z; € R™, r; > 0, one can extract
a disjoint subfamily (x; 4+ 7;C)jes, J C I, such that each set z; + r;C,
i € I, of the original family is contained in the dilate x; 4 37;C of some
member x; +7;C, j € J, of the extracted disjoint family. One may explain
the constant 3 by the use of the triangle inequality for the norm on R"
whose unit ball is C'. Passing to the Lebesgue measure in R"™, this statement
naturally introduces a factor 3" corresponding to the dilation factor 3. If
f& denotes the corresponding uncentered maximal function of f associated
to C, then for every A > 0, one has that

3TL
[{z e R™: f&(z) > A} gx / |f(z)|dz. (0.4)
{r&>A1
We briefly sketch a proof, very similar to that of Doob’s maximal inequality
presented in Section 1.1. It is convenient here to consider that C is an open
subset of R™. Given an arbitrary compact subset K of the open set U, =
{f& > A}, one applies the Vitali lemma to a finite covering of K by open
sets S; = z; + r;C such that fSi |f] > AlS;|. A simple feature of f is that
each such S; is actually contained in Uy. If J C I corresponds to the disjoint
family given by Vitali, then
n
K< 3 Joj 430,01 =" S las + 1,01 < T [ 5@l da,

jed jed Ux
implying (0.4). Next, a direct argument involving only Fubini and Holder
can give an LP bound, exactly as in the proof of Doob’s Theorem 1.1 below,
but giving a factor 3" instead of 3"/? obtained by interpolation. This Vitali
method does not depend upon the symmetric body C', does not distinguish
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the centered and uncentered operators, and introduces a quite unsatisfactory
exponential constant.

Stein and Stromberg have greatly improved this exponential dependence
in [77]. By a clever covering argument with less overlap than in Vitali’s
lemma, they proved that the weak type constant admits a bound of the form
O(nlogn), and by using the Calder6n—Zygmund method of rotations, they
obtained for the strong type property a constant which behaves as np/(p—1).
Concerning the weak type constant, Naor and Tao [60] have established the
same nlogn behavior for the large class of n-strong micro-doubling metric
measure spaces (see also [25]). Several powerful results about the strong type
constant for maximal functions associated to convex sets, beyond the one of
Stein—Stromberg, have been established between 1986 and 1990. First of
all, Bourgain proved a dimensionless theorem for general symmetric convex
bodies in the L? case [9], applying geometrical arguments and methods from
Fourier analysis. This result has been generalized to LP(R™), for all p > 3/2,
by Bourgain [10] and Carbery [21] in two independent papers. They both
bring into play an auxiliary dyadic maximal operator, but Bourgain uses
it together with square function techniques while Carbery uses multipliers
associated to fractional derivatives. Detlef Miiller extended in [59] the LP
bound to every p > 1, but under an additional geometrical condition on the
family of convex sets C' under study. Miiller also proved that for every fixed

€ [1,+00), his condition is fulfilled by the family F, of £ balls, n € N*.

After Miiller’s article, activity in this area slowed down. Nevertheless,
Bourgain recently proved in [13] that for all p > 1, the strong type constant
can be bounded independently of the dimension when we average over cubes.
In order to attack this problem, Bourgain applies an arsenal of techniques,
including a holomorphic semi-group theorem due to Pisier [62] and ideas
inspired by martingale theory. The cube case is rather well understood since
Aldaz [1] has proved that the weak type (1,1) constant kg, for cubes must
tend to infinity with the dimension n. The best lower bound known at the
time of our writing is due to Iakovlev—Strémberg [46] who obtained kg, >
xn'/4, improving a previous estimate kg, = k. (logn)'~¢ for every e > 0,
which was obtained by Aubrun [3] following the Aldaz result.

In the present survey, except for Section 9 on the Aldaz “negative” result,
we shall restrict ourselves to p > 1 and examine the strong type (p, p) behav-
ior of maximal functions associated to symmetric convex bodies in R™. We
shall present the dimensionless result of Stein for Euclidean balls, the works
of Bourgain, Carbery and Miiller during the 80s and the recent dimension-
less theorem of Bourgain for cubes. As we shall see, the proofs require a lot

-6 —



Dimension free bounds

of methods and tools, including multipliers, square functions, Littlewood—
Paley theory, complex interpolation, holomorphic semi-groups and geomet-
rical arguments involving convexity. The study of weak type inequalities
for Hardy—Littlewood-type operators needs powerful methods as well: not
only the aforementioned Hopf-Dunford—Schwartz ergodic theorem, but also
sharp estimates for heat or Poisson semi-group, Iwasawa decomposition, K-
bi-invariant convolution-type operators, expander-type estimates. . .

The first two sections contain general dimension free inequalities obtained
respectively by probabilistic methods or by Fourier transform methods. The
Poisson semi-group plays an important role in Stein’s book [73], and ap-
pears also in Bourgain’s articles [9, 10] and in Carbery [21]. We give a pre-
sentation of this semi-group, both on the probabilistic and Fourier analytic
viewpoints. The third section is about some analytic tools that are employed
later on, namely, estimates for the Gamma function in the complex plane,
and the complex interpolation scheme for linear operators, as developed in
Stein [70]. The Stein result for Euclidean balls in arbitrary dimension is our
Theorem 4.1. Section 5 is about Bourgain’s L2-theorem in arbitrary dimen-
sion n, stating that there exists a constant ko independent of n such that
for any symmetric convex body C in R”, one has

IMc fllzz@®ny < K2l fll2@®n)

for every f € L?(R"™). The next section presents Carbery’s proof of the
generalization to LP of the latter bound, obtained by Bourgain [10] and
Carbery [21]. In both papers, the L result for general symmetric convex
bodies is proved for p > 3/2 only. A theorem due to Detlef Miiller [59] is
given in Section 7; for families of symmetric convex sets C' for which a certain
parameter ¢(C) remains bounded, it extends the dimensionless LP bound to
every p > 1. This parameter is related to the (n — 1)-dimensional measure
of hyperplane projections of a specific volume one linear image of C, the
so-called isotropic position. Section 8 presents the result of Bourgain about
cubes in arbitrary dimension. In this special case, an LP bound independent
of the dimension is valid for all p > 1, although the Miiller condition is not
satisfied. Bourgain’s proof is highly dependent on the product structure of
the cube. In Section 9, we prove the Aldaz result that the weak type (1,1)
constant for cubes is not bounded when the dimension n tends to infinity.
We mention the quantitative improvement by Aubrun [3], and give a proof
for the lower bound xn'/* due to Takovlev-Stromberg [46].

We have put a notable emphasis on the notion of log-concavity. We shall
see that with not much more effort, most maximal theorems for convex
sets generalize to symmetric log-concave probability densities. This kind of
extension from convex sets to log-concave functions has attracted a lot of
attention in convex geometry in recent years, see [5, 42, 49, 50] among many
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others. In fact, Bourgain’s estimate (5.17.B), which is crucial to all results in
Section 5 and after, is only based on properties of log-concave distributions.

We have chosen a very elementary expository style. We shall give fully
detailed proofs, except in the first two introductory sections. Most readers
will know the contents of these sections and may start by reading Section 4.
Some may be happy though to see a gentle introduction to a few points they
are less familiar with. Our choice of topics in these two first sections owes
a lot to Stein’s monograph Topics in harmonic analysis [73]. In the next
sections, we have chosen to recall and usually follow the methods from the
original papers. This leads sometimes to unnecessary complications, but we
shall try to give hints to other possibilities.

We believe that most of our notation is standard. We write |z], [z] for
the floor and ceiling of a real number z, integers satisfying x — 1 < |z] <
z < [x] < x4+ 1. We pay a special attention to constants independent of the
dimension, for instance those appearing in results about martingale inequal-
ities, Riesz transforms, and try to keep specific letters for these constants
throughout the paper, such as ¢,, pp,... We use the letter £ to denote a
“universal” constant that does not deserve to be remembered. Most often in
our Notes, “we” is a two-letter abbreviation for “the author”, namely, Stein,
Bourgain, Carbery, Miiller and several others... We include an index and a
notation index.

1. General dimension free inequalities, first part

This first section is devoted to general facts obtained by probabilistic
methods, or merely employing the probabilistic language. We begin by re-
viewing the basic definitions. The functions here are real or complex valued,
or they take values in a finite dimensional real or complex linear space F
equipped with a norm denoted by |z|, for every vector x € F. If Q is a set, a
o-field G of subsets of 2 is a family of subsets that is closed under countable
unions | J,,cy An, closed under taking complement A — A€, and such that
0 eg. If Qis aset and G a o-field of subsets of €, one says that a function
g on Q is G-measurable when for every Borel subset B of the range space,
the inverse image g~!(B), also denoted by

{g € B} :={weQ:g(w) € B},
belongs to the collection G.

A probability space (2, F, P) consists of a set €, a o-field F of subsets
of Q and a probability measure P on (2, F), i.e., a nonnegative o-additive
measure on (£, F) such that P(2) = 1. If a function f is F-measurable (we
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Dimension free bounds

say then that f is a random variable) and if f is P-integrable, the expectation
of f is the integral of f with respect to P, denoted by

Ef::/ﬂf(w)dP(w).

Random variables (f;);es on (2, F, P) are independent if for any finite subset
J C I, one has E(T],¢; hjo fi) = [1;c, E(hj o f;) for all nonnegative Borel
functions (h;) ;e on the range space. The distribution of the random variable
f with values in Y = R, C or F' is the image probability measure p = fx P,
defined on the Borel o-field By of Y by letting (B) = P({f € B}) for every
B € By. If u is a distribution on the Euclidean space F', the marginals of u
on the linear subspaces Fj of F' are the distributions pr, obtained from p
as images by orthogonal projection, i.e., one sets up, = (mo)4p where m is
the orthogonal projection from F' onto Fj. If f is F-valued and if u is the
distribution of f, then pp, is that of mg o f.

If G is a sub-o-field of F, the conditional expectation on G of an inte-
grable function f is the unique element E(f|G) of L!(Q, F, P) possessing a
G-measurable representative g such that

E(14f) = E(1a9) = E(14E(f|G))

for every set A € G, where 14 denotes the indicator function of A, equal to
1 on A and 0 outside. It follows that

E(hf) = E(hE(f|G)), and actually E(hf|G) = hE(f|G)

for every bounded G-measurable scalar function A on 2. When f is scalar
and belongs to L?(2, F, P), the conditional expectation of f on G is the
orthogonal projection of f onto the closed linear subspace L?(2,G, P) of
L?(Q, F, P) formed by G-measurable and square integrable functions. When
A is an atom of G, i.e., a minimal non-empty element of G, and if P(A) > 0,
the value of E(f|G) on the atom A is the average of f on A, hence

E(f@(w)zﬁ /A f@)dPW'), weA.

The conditional expectation operator E(-|G) is linear and positive, i.e.,
it sends nonnegative functions to nonnegative functions. It follows that we
have the inequality p(E(f|G)) < E(p(f)|G) when the real-valued function
 is convex on the range space of f. In particular, one has that |E(f|g)| <

E(|f|‘g)7 and
’|E(f|g)||LP(Q,]-',P) < HfHLP(Q,]-',P) o Isp<+oo.

The inequality is true also when p = 400, it is easy and treated separately.

-9 -
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1.1. Doob’s maximal inequality

A (discrete time) martingale on a probability space (2, F, P) consists of
a filtration, i.e., an increasing sequence (Fy)ges of sub-o-fields of F indexed
by a subset I of Z, and of a sequence (My)ges of integrable functions on
such that for all k,¢ € I with k& < /¢, one has

My, = E(M;|F).

Notice that each My, k € I, is Fp-measurable. If I has a maximal element N,
the martingale is completely determined by its last element My, since we
have then that M = E(MN ’]—'k) for every k € I. In the case of a finite field
Fi, the martingale condition means that the value of M} on each atom of Fj,
is the average of the values of M, on that atom, for every ¢ € I with ¢ > k.
Clearly, any subsequence (My)res, J C I, is a martingale with respect to
the filtration (Fg)re-

Let us consider a finite martingale (M), on (£, F, P), with respect
to a filtration (fk)ivzo. This martingale can be real or complex valued, or
may take values in a finite dimensional normed space F'. We introduce the
mazimal process (M;)N_,, which is defined by M} = maxog;j<k |M;| for
k= 0,...,N. In the vector-valued case, |M;| is the function assigning to
each w € Q the norm of the vector M;(w) € F. We also employ the lighter
notation ||M]|, for the norm || M||» of a function M in LP(2, F, P), when
1<p< +oo.

THEOREM 1.1 (Doob’s inequality). — Let (My,)N_, be a martingale (real,
complez or vector-valued). For every real number ¢ > 0, one has that

cP({Mg > }) < / My |dP.
{M3 >c}

Furthermore, for every p € (1,4+00], one has when My € LP(Q, F, P) that
* p
[Myllp < o1 [ Mnllp - (1.1)

Proof. — We cut the set {M} > c} into disjoint events Aog,...,An,
corresponding to the first time & when |Mj| > c. Let Ag = {|Mp| > ¢} and
for each integer k between 1 and N, let Ay denote the set of w €  such
that |My(w)| > c and M}_,(w) < c. On the set Ay, we have |My| > ¢, and
Ay, belongs to the o-field Fy, since |My| and M | are Fi-measurable, hence

cP(Ak)g/ |Mk|dP:/ |E(My|Fy)|dP
Ak Ak

g/ E(|MN\\fk)dP=/ |My|dP.

~10 -
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On the other hand, we see that {M} > c} = Uszo Ay, union of pairwise
disjoint sets, therefore

N
cP({My >¢}) =Y cP(A)
k=0

N
<Z/ |My|dP = |My|dP. (1.2)
0 Ak {M}>c}

The result for LP when 1 < p < 400 follows. For each value t > 0, we
apply (1.2) with ¢ = ¢, we use Fubini’s theorem and Hoélder’s inequality,
obtaining thus

My +o00
E((M})?) =E (/O ptf’—ldt) :/0 ptP I P({ M7 > t}) dt
+0oo P
< / ptP 2 E(l{M;V>t} |My|)dt =E <pl(M;\F/)p_l MN|)
0 —

< Lo (B(307) 7 (1),

hence || M3, < p(p—1)"|Mn||p. The case p = +oo is straightforward. [

Remark 1.2. — In some contexts, it is useful to observe that the notion
of conditional expectation on a sub-o-field Fy of F remains well defined if
we have a possibly infinite measure p on (2, F), but which is o-finite on Fy,
in other words, if {2 can be split in countably many sets A; in Fy such that
H(A;) < +oo for each 4. If this condition is fulfilled by p and by the smallest
sub-o-field Fy of a filtration (.Fk)fyzo, we can also speak about martingales
with respect to the infinite measure p, and Theorem 1.1 remains true with
the same proof, simply replacing the words “probability of an event” by
“measure of a set”.

We can always consider the orthogonal projection 7w from L2(€2, F, )
onto L*(Q, Fo, i), but L*(Q, Fo, 1) = {0} when Fy does not contain any set
with finite positive measure. On the other hand, when A € Fy has finite
measure, the formula 7(14f) = 1a7mo(f) allows one to work on A as in the
case of a probability measure.

1.2. The Hopf maximal inequality

We are given a measure space (X,X, ) and a linear operator T’ from
LY(X,%, i) to itself. We shall only consider o-finite measures throughout
these Notes, and we work in this section with the space L'(X, ¥, u) of real-
valued functions. We assume that T is positive and nonexpansive, which
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means that for every nonnegative function g € L'(X, ¥, u), Tg is nonnega-
tive, and that the norm of T is < 1. We can sum up these two properties by
saying that when g > 0, then Tg > 0 and [, Tgdp < [y gdp.

Let us consider a function f in L'(X, %, i), and for every integer k > 0
let

Se(f)=f+Tf+T%f+---+T"f.
If N is a nonnegative integer, we set Sy (f) = max{S;(f): 0<j < N}.

LEMMA 1.3 (Hopf). — With the preceding notation, we have for every
function f € LY(X,X, u) and N > 0 that

/’ Fdu 0.
{S% (f)>0}

Proof, after Garsia [38]. — Let us simply write S, for Si(f) and S* for
Sx (f). By definition, we have Sy < S* for each integer k < N; since T is
positive and linear, we see that

TS, <TS*, and Spy1=f+TSk<f+TS".

In order to get for Sy = f an inequality similar to Spy1 < f + T'S*, we
replace S* by its nonnegative part S** = max(S*,0) > S*. Using positivity,
we can write

So=f<f+T(S), Sper <f+TS" < [+T(5).
Taking the supremum of Sis for 0 < k < N, we obtain the crucial inequality
S*< f+T(S*), or f=8"—T(S*). (1.3)

Since T is positive and nonexpansive on L'(X, %, i), we have

/ S*du:/ S**du>/ T(S**)dug/ T(S*")dp,
{s*>0} X X {S*>0}

and the result follows by (1.3), because

/ fdu}/ (S*=T(S*))dpu > 0. O
{5*>0} {5+>0}

We go on with the same linear operator T'. For each integer k£ > 0, let us
define the kth average operator aj = a1 associated to T' by writing

F+Tf+-+ T Si(f)
a(f) = = ’
k41 k41

For each integer N > 0, let ajy(f) = max{a;(f) : 0 < j < N}. It is clear

that the set {a%(f) > 0} coincides with the set {S%(f) > 0} which appears
in Lemma 1.3.

feLNX, %, p).
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We continue in a simplified setting where we also assume that p is finite
and that T'1 = 1. It follows that ax(1) =1 for each k¥ > 0 and ai(f —¢) =
ar(f) — c for every ¢ € R, thus a (f — ¢) = ajy(f) — ¢. Lemma 1.3 yields

/ (ffc)du:/ (f—c¢)dp>0.
{a% (f—c)>0} {8%(f—c)>0}

Equivalently, for every f € L*(X, %, 1), we have

eu({ay(f) > e}) </{ o fdn N2 ceR (4

This inequality makes sense also when p is infinite. Note that if ¢ < 0 and
if p is infinite, then u({f < c}) < ,u({|ﬂ > |c|}) < +00, the measure of
{an(f) > ¢} is thus infinite and (1.4) is trivial. We can extend (1.4) to
an infinite p if there exists an increasing sequence (C¢)¢>o of subsets of X
with finite measure such that

T'1¢, <1 forall j,£>0,

T'1¢, e—+> 1 pointwise for each j > 0. (1.5)
—+oo

Let ¢,e > 0 and abbreviate {ax (f) > t} as D(t), for ¢ > 0. Choose ¢’ > ¢
such that fD(C)\D(C,)(l + \f|) dp < e. Let BE(d,0) = {min()gjg]\] T'1¢, <
c/c’}, choose a large £ such that u(D(c¢") \ C¢) < € and fE(C, " |f]dp < e,
then observe that

D(c) c {a}‘\; (f — c/lcé) > 0} C D(c)UE(c,¥)

and apply Lemma 1.3 to f — ¢'1¢,. The assumption (1.5) is fulfilled when
T is an operator of convolution with a probability measure on R", acting
on L'(R™).

For each function f € L(X, X, i), let us define

Cipy o AT T
a*(f) —2‘;15ak(f) = sup P = Jhim_ay(f).

The set {a*(f) > c} is the increasing union of the sets {a’ (f) > ¢}, N >0,
$0, passing to the limit by dominated convergence, we deduce from (1.4) that

cp({a*(f) > c}) </{ ) fdp, ceR. (1.6)

Following [29, Lemma VIIL.6.7], we now get a variant of (1.6). Assume ¢ > 0
in what follows. We define f. by f.(z) = f(z) when f(x) > c and f.(x) =0
otherwise, for x € X. Note that f < f. + c. If a*(f.)(z) < ¢, then f.(x) =
ao(fe)(z) < ¢ thus f.(z) = 0 by construction. Hence f. vanishes outside
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{a*(f.) > ¢} and

/ fdu:/ fodn= [ fod.
{f>c} {a*(fe)>c}

Using the positivity of T and of ay, for each k > 0, we infer from f. > f — ¢
that a*(f.) = a*(f — ¢) = a*(f) — ¢. Then, by (1.6) for f. and since ¢ > 0,
we get

/{ L enl(a’ () > ) 2 enla’ () o> ).

Finally, we have obtained

cp({a*(f) > 2¢}) < /{f> }fd,u, c>0. (1.7)

Let us define A*(f) = sup;>qlax(f)] = max(a*(f),a*(—f)). Still as-
suming ¢ > 0, we decompose the set {A*(f) > ¢} = {a* f) > ¢t U
{a*(=f) > c} into three disjoint pieces, Ey = {a*(f) > ¢, a*(—f) < ¢},
Ey ={a*(f) >c, a*(—f) > ¢}, and Ey = {a*(f) < c, a ( f) > c}. Ac-
cording to (1.6) we have

en({A°(f) > &) < en({a’(f) > &) +en({a*(~f) > ¢}

</ fdu+/ (=f)du
{a*(f)>c} {a*(=f)>c}

- du+ | (=fHdu< du, (1.8
[ s [ enans [ irlan a9

noting that the integrals of f and —f on FE; cancel each other. In the
same way, we can get from (1.7) the variant form cu({A*f > 2c}) <
/ (fl>e) || dp. Notice that the latter “variant form” will be inherited by

any linear operator S satisfying that |S* f| < T%|f| for every k > 0, and see
Remark 1.5.
When 1 < p < 400, we deduce from (1.8) the L inequality

[f+Tf+- -+ T
sup
k>0 k+1

= 171l (1.9)

as we have seen with Doob’s inequality (1.1), while the variant form leads

to a constant 2 (p/(p — 1))1/p which is larger than p/(p — 1) for every p > 1.
Let now (7%):>0 be a semi-group of linear operators on L'(X, X, u), i.e

operators satisfying Tsyy = Ts o T} for all s,z > 0. We assume in addition

that each T} is positive and nonexpansive on L!. We also assume that T is
actually defined on L'(X, Y, u) + L>®(X, %, 1) and that T;1 = 1 for every
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> 0. This implies that T} is continuous from L*° to L°°, with norm 1. By
interpolation, we get that the norm ||T}||,—, on L?, for p € [1,400], is < 1.
Suppose that the semi-group is strongly continuous on L', which means that
|f —T:fll1 — 0ast— 0, for each f € L'. Combined with our assumptions,
this fact implies that ¢ — Tif is continuous from [0, +00) to LP for every
function f € LP and 1 < p < +oo. For f € LP(X, X, i) let

1 t
7/ Tsfds 9
t Jo

where the supremum can be defined as an essential supremum, see the dis-
cussion in Section 3.3. Yet, for the main examples of semi-groups of interest
in these Notes, namely, the Gaussian semi-group or the Poisson semi-group
on R", the function ¢ — (T:f)(z) is continuous on (0,4o00) for each fixed
r € R" and f € L}*(R"), so a* f and A* f have then a well defined pointwise
value, possibly +oo.

t
af*supl/ T,fds, A*f=-sup

t>0 t t>0

Suppose now that the measure p is finite (or that a continuous analog
of (1.5) is satisfied). When 1 < p < 400, we obtain from (1.9) the L?
inequality

|A*f], < —— 7 £l - (1.10)
If T} is positive and T31 = 1, the case p = 400 in (1.10) is clear.

Since t > a(t, f) == t* fot T, f ds is continuous from (0,+o0) to L?, we
can reach any a(t, f), t > 0, as an almost everywhere limit of a sequence
(a(ts, f))j>0, where each t; is rational and > 0. It follows that A*f can
be defined as the supremum of |a(¢, f)| for ¢ > 0 rational. For all integers
k > 0 and n > 1, observe that

k_ p(i+1)/n
kE+1 n
(M) =g [ e

=0

(X, Tim o
— (k—(&)—l n/o Tsfds ).

Tsfds =a(l/n, f) and T =T}, we see that

Letting f,, = nfl/n

(k+1f) fo+Tfu+-+T"fn

] = ak,7(fn)-
Let Qn be the set of positive multiples of 1/n. By (1.9) applied to T},
and f,, and because a(1/n,-) is an average of operators with norm < 1 on
LP, we get

sup| tf|
t€EQn

§12111>|a(j/n,f)|Hp <2 flat/m ), < 25 1

p
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We see that Q,, C Qmy for all m;n > 1. The sets @, corresponding to
n = £! for £ > 1 are increasing with ¢, and they cover the set of positive
rationals. We can conclude by noticing that A* f is the increasing limit of

SUPeq,, lalt, £l

Applying (1.6) we can obtain a version of Hopf’s maximal inequality as
cultef>e))< [ fdp ceR felMX.Ep).
{axf>c}

and from (1.8), we have cu({A*f > ¢}) < f{A*f>c} |f|dp when ¢ > 0.

By the preceding remark about the sets Qg it is enough to prove the in-
equality with a; = sup,cq, a(t, f) = sup,s, ak,Ty ), (fn) replacing a* f,
with n > 1 arbitrary and with a vanishing error term. By (1.6) we have
cy({az > c}) < f{a* e} fn. Since the semi-group (T})¢>o0 is strongly
continuous, we know that [fn = flli — 0 and we can conclude because
f{a:fx} fndp — f{afbf>c} fdp tends to zero.

We have made here assumptions more restrictive than those of the Hopf-
Dunford-Schwartz statement [29, Chap. VIII] praised by Stein [73], which
does not assume T; positive, nor y finite and 731 = 1. Theorem 1.4 below
contains Lemma VIIL.7.6 and Theorem VIIL.7.7 from [29] in a slightly sim-
plified form (the set U there has only one element here). The semi-group
(Ty)t=0 on L'(X,%, ) is said to be strongly measurable if, for each f in
LY (X, %, ), the mapping ¢t — Tif € L'(X, X, 1) is measurable with respect
to the Lebesgue measure on [0, +00).

THEOREM 1.4 ([29]). — Let (T3)it>0 be a strongly measurable semi-group
on the space LY (X, X, 1), with || Ty|l1—1 < 1 and || T} | cosoo < 1 for all t > 0.
For every function f € LY(X, %, u) and every ¢ > 0 one has

en({A°f > 26)) < /{ Ml

If1<p<+ooand f € LP(X, X, ), the function A*f is in LP(X, %, u) and

1/p
* p
sl <2(525) el

Remark 1.5. — In [29, Section VIII.6], the authors consider first a linear
operator T acting from L' to L' with norm < 1 and also acting from L* to
L with norm < 1; in this discrete parameter case, they study

ZTk

before going to the continuous setting of a semi-group (7}):>0. One of the
steps in their proof consists in introducing a positive operator P which acts

f—sup
n>1 N

~ 16 —



Dimension free bounds

from L' to L' and from L> to L, with norm < 1 in both cases, and such
that
Yn>=0, [T"f|<P"(|f]), feL>*nL".

This step is easy when the measure is the uniform measure on a finite set.
The assumptions imply that T' is given by a matrix (¢; ;) such that the sum
of absolute values in each row and in each column is < 1. It is then enough
to take P to be the matrix with entries p; ; equal to the absolute values |¢; ;|
of the entries of T

1.3. From martingales to semi-groups, via an argument of Rota

The arguments in this section, due to Rota [67], are presented in a more
sophisticated manner in Stein’s book [73, Chap. 4, §4]. We consider a Markov
chain Xy, ..., Xy with transition matrix P, assumed to be symmetric. We
suppose for simplicity that the state space £ is finite, with cardinality Z. For

every eg € £, we have

Z P(eo, 6) =1.

ecf
For each integer k such that 0 < k < N and for all e, e; € &, the probability
that X411 = e; knowing that X) = e is given by the entry P(eg, e1) of the
matrix P. This statement introduces implicitly the Markov property, which
loosely speaking, prescribes that what happens after time k depends only
on what we know at the instant k, regardless of the past positions at times
j < k. For each integer j > 2, the power P7 of the matrix P controls the
moves in j successive steps, the entry P7(eg,e) giving the probability of
moving from ey to e in exactly j steps. If Q) is a transition matrix and f a
scalar function on &£, we introduce the notation

QN) =) Qz,y)fly), z€k.

yee&

When applied to a power P7, the notation P’ f corresponds to the semi-
group notation P, f, with j € N replacing ¢t > 0. If the transition matrix Q
is symmetric, hence bistochastic, and if 1 < p < 400, convexity implies that
1Qfllp < || f]lp with respect to the uniform measure on €. Let f be a function
on & and let j, k be two nonnegative integers with j+k < N. If we fix zg € &,
the mean of the values f(y), when the chain makes j steps from the position
7o at time k to the position y at time k + j, is equal to (P7 f)(xo).

A simple but important symmetric example is that of the Bernoulli
random walk on Z, where for all x,y € Z we have P(z,y) = 1/2 when
|z —y| =1, and P(x,y) = 0 otherwise. This is not a finite example, but it
can be “approximated” by considering on the finite set £y = {—N,..., N},
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for N large, the modified matrix Py which still has Py (z,y) = 1/2 when
|z —y| =1, for z,y € En, but where Py(N,N) = Py(—N,—N) =1/2. One
can also consider the Bernoulli random walk on Z", for which P(z,y) =2~"
when |z; — y;| = 1 for all coordinates z;,y;, ¢ = 1,...,n, of the points
x=(x1,...,2,) and y = (y1,...,Yn) in Z".

Assume that the distribution of the initial position X is uniform, that
is to say, that P(Xo = eg) = 1/Z for every ey € €. Then for each e; € £, we
have

P(Xy=e1)=)Y P(Xo=¢, X;=e)

eef
1 1 1
= ZEP(e,el) =7 ZP(el,e) =
eef ec&

since the matrix P is symmetric. The distribution of the position X; of
the chain at time ¢ = 1 remains the uniform distribution, as well as that
of Xs,..., Xn. The uniform distribution is invariant under the action of
P. Recalling the meaning of the transition matrix in terms of conditional
probability, using Markov’s property and letting Axy_1 = {Xo = ep, X1 =
€1, ..., XN_1=en—_1}, we have that
EIZP(on(EO,Xl =€1, ... ,XNZBN)
=P(An_1, Xy =en) = P(An_1) P(Xn =en | ANn_1)
=P(An_1)P(Xny =en|Xn_—1=en—1) = P(An_1)P(en—1,en) .

We may go on, and by the symmetry property of the matrix we get

1
E=...= EP(60,61)P(61,€2) ...Plen—_a2,en_1)Plen_1,en)
1
:ZP(BN,eN_l)P(eN_l,eN_g)...P(eg,el)P(el,eo)
=P(Xy=ey, Xn_1=¢€1,..., X1 =en_1, Xo=¢€n).

We see that the “reversed” chain has the same behavior as that of the orig-
inal chain. Since the matrix is symmetric, we certainly have, whatever the
distribution of Xy can be, that the probability to arrive at a fixed yy at
time N, starting from an arbitrary point x at time £k = N — j, is given
by P’(x,v0) = P’(yo, ), the probability of moving from y at time 0 to
at time j. But under the invariant distribution, we can say more: if g is a
function on &, the mean of the values g(z) on all trajectories starting from
x at time k and arriving at yo at time N is equal to (P’g)(yo). Clearly,
this statement is not true in general, since this mean value depends on the
distribution of X}, hence on that of Xy. Under the uniform distribution, we
see by reversing the chain that the preceding mean is equal to the mean of

~ 18 —



Dimension free bounds

g(z), when starting from yo at time 0 and arriving at x at time j, namely,
this mean is equal to (P7g)(yo).

Let us describe the situation more formally. Let Q = EV*! denote the
space of all possible trajectories (e, ey, ...,exn) € ENFL for the chain. On
this model space 2 and for £k =0,..., N, we set

Xp(w)=w, €&, w=(wo,...,wn) € ENFL

It is easy to determine the probability measure P on 2 that corresponds to
the behavior of our Markov chain under the invariant distribution. For each
singleton {w} = {(wo,...,wn)} in P(£2), we must have that

P({(wo,...,wn)}) = %P(wo,wl)P(wth) ... Plun—_1,wn).

For k=0,...,N, let F;, denote the finite field of subsets of {2 whose atoms
A are of the following form: to any e, . .., ej fixed in £ we associate Ae € F
defined by

A=Ac={w=(wo,...,wn) 1w =¢€;,0<j <k} € Fp, e=(en,...,€x).

This F} is the “field of past events” at time k, it increases with k. Let Gy
denote the field of events occurring precisely at time k, whose atoms B are
of the form

B={w=(wo,...,wn):wr =e€r} € Gg.

Clearly, we have Gy C Fj. A function on Q which is Gx-measurable depends
only on the coordinate wy, and is thus of the form g(X}) with g a function
on £. If f is a function on &, the Markov property yields

E(f(Xn)|Fr) = E(f(XN)[Gk) = 9(Xk)

where g(z) = (PN =F f)(x) for every z € £. The preliminary discussion shows
that

(PYTEF)(Xk) = E(F(XN)|Fr),  (PY7*g)(Xn) = E(9(Xe)|Gn) . (1.11)

We introduce the “canonical” martingale associated to a function f on £, by
letting

M; = (PY7Uf)(X;) = E(f(XN)|Fi), 0<i<N. (1.12)
We see that in (1.11), one occurrence of PV ~* relates to the expectation at
time k < N of future positions f(Xy), while the other is about expectation
at time N of past positions g(Xj). Combining the two equalities in (1.11)

in a “back and forth” move, by taking ¢ = P’/ f and j = N — k, we conclude
that

(P¥ [)(Xn) = E(Mn—;|Gn)- (1.13)
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Since the conditional expectation operator on G is positive, we see that for
every j =N —k=0,...,N, we have the inequality
2
QA |(PY £)(Xn)| = Jmax \E(MN i1Gn)| < B( A |M;||Gn) -
It implies when 1 < p < 400, accordlng to Doob’s inequality (1.1) and to the
non-expansivity on LP of conditional expectations, the chain of inequalities

max |(P¥ f)(Xy)|

0<G<N 0<i<N

< HE( max |M;||Gn)

p p

< max

0<i<N

p _ b
< LMl = L5 AN - (110

We could recover the odd mdlces 27 4+ 1 by applying the latter inequality to
Pf instead of f and using ||Pf||, < ||fllp, to the cost of an extra factor 2.

Estimating the maximal function of semi-groups is a central theme in [73].
The discrete case of (1.14) was obtained by Stein in the short article [71],
independently of Rota [67], by methods preluding those of [73]. Theorem 1
in [71] applies to self-adjoint operators P on L? (X, %, u) satisfying also
[Pllims1 <1 and [|Pllec—oo < 1.

One can play the same game with convex functions other than the supre-
mum function on RV*+!, For example, let us begin with the convexity in-
equality

( > |E<fi|g)|2)1/2<E(( S 15 )”ﬂg)

0<i<N 0<i<N

and make use of the Burkholder—-Gundy inequalities of Theorem 1.6, in order
to obtain, when 0 < jo < j1 <...<Jr < N, 1 < p < +00, and with respect
to the invariant measure pu, the inequality

< pllfllze) - (1.15)

T 1/2
H(Z (PP f — P2j’“f)2)
k=1 LP(p)

Indeed, we have seen in (1.13) that (P?* f)(Xy) is the projection on Gy of
the member My_;, = (f(XN) | Fn—j, ) of the martingale (M) in (1.12).
Then L; = My_j,_,,1=0,...,r is another martingale, and

(PP £) (X n) — (P £)(XN) = E(My_j,_, — Mn_j, |GN)

appears as projection on Gy of the martingale difference d—j41 = Ly_j 41—
L,_ (see Section 1.4.2) when 1 < k < r. This principle can be applied for
bounding diverse convex functions of a semi-group, by considering them as
projections of corresponding functions of a martingale, for which we may
have an “L? inequality”.
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Let us come back to (1.14). Since the distribution of Xy is uniform, we
can restate (1.14) when 1 < p < 400 as

1 hy 1/p P 1 1/p

il J P PO P

(73 o (P n@r) < Lo (G Il

el e

or else, changing the normalization and letting N tend to infinity, we obtain
1/p

(X sup|<P2jf><z>|p)1/p <L <§|f(x)”) EENGRE

zel 320

We can also write

(S Kij)(x)'p)l/p (X |f(as)|p>1/p.

zeg 120 ey

If we want to deal with a countably infinite state space £ such as € = Z",
we may accept (as Stein [73] does) to work with an infinite invariant measure,
uniform on &, that gives measure 1 to each singleton {e}, e € £. We then
obtain the same maximal inequality (1.16), applying Remark 1.2. If we do
not accept an “infinite probability”, we may, for example with the Bernoulli
random walk, work with “boxes” finite but large enough: if f is finitely
supported in Z" and if N is fixed, we can find a finite box B in &, so big
that P7f vanishes outside B for every j < 2N. Changing the Bernoulli
transition matrix P(z,y) at the boundary of B, in order to force the Markov
chain to remain inside, we are back to the finite case.

1.4. Brownian motion, and more on martingales
1.4.1. Gaussian distributions and Brownian motion

Let |x| denote here the Euclidean norm of a vector x in R™. For every
probability measure ;1 on R” having a finite first order moment [p,, || du(z),
one defines the barycenter of u as

bar,uz/ zdp(z) € R™.

To a probability measure g on R™ with finite second order moment
Jgn 2> dp(z), one associates the quadratic form

Qu:&— /Rn((x—bar,u) f)zd,u(x)7 £ eR™

The matrix Q of @, with respect to the canonical basis of R" is the co-
variance matriz of . The quadratic form @), is positive definite when p is
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not supported on any affine hyperplane, for example when g is the uniform
probability measure on a bounded convex set C' with non empty interior,
i.e., a convez body C. We say that u is centered when bar p = 0, and in this
case the expression of Q,, simplifies to Q,(§) = [p.(x - §)? du(z) for every
& e R™.

When f is a probability density on R with finite second order moment,
the variance 0 of f(x)dx is defined by

=i <x— i dy>2f(:v) da.

When f is centered, one has that o2 = fR 22 f(x) du.

A Gaussian random variable with distribution N (0, I,,) takes values in R™,
its distribution 7, is symmetric, thus centered, defined on R™ by

dy,(z) = (2m) /2 e l7*/2 g (1.17)

and 7, admits the identity matrix I,, as covariance matrix. If F' is an n-
dimensional Euclidean space, we denote by g the image of -, under an
(any) isometry from R™ onto F. If X is a N(0,I,,) Gaussian random vari-
able and ¢ > 0, then the multiple 0 X admits the distribution d~,, (z) =
(2m)~"/2e~12/71*/2 4(2 /), called the N(0,021,) distribution, with oI, as
covariance matrix. One can consider that the Dirac probability measure d
at the origin of R™ corresponds to N(0,0,,).

The (absolute) moments of the one-dimensional distribution 77 can be
computed in terms of values of the Gamma function. For every p > —1, one
has that

/\x|”d’yl(x):(27r)_1/2/ 2P o=/ da = 222120 ((p + 1)/2).
R R

As p tends to 400, it follows from Stirling’s formula that
1/p
gp = (/R ||P dm(m)) ~/p/e. (1.18)

An n-dimensional Brownian motion (By)i>o starting at o € R™ is an R™-
valued random process defined on some probability space (€2, F, P), such that
By = xg, such that B; — B, is a Gaussian random variable with distribution
N(0, (t — s)1,,) whenever 0 < s < ¢, and with independent increments: for
every integer k > 1, when 0 < tp < ... < tj are given, then

Btoa Btl - Bt07 Btz - Btla' ce Btk - Btk,1

are independent. The coordinates (By;)i>0, ¢ = 1,...,n, are independent
one-dimensional Brownian motions. It is possible to choose everywhere de-
fined measurable functions (B;):>¢ satisfying the above properties in such a
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way that the trajectories 0 < ¢ — Bi(w), or random paths, are continuous
for (almost) every w € Q. The Brownian motion is a martingale with con-
tinuous time parameter ¢ > 0, with respect to a continuous time filtration
(Ft)t=0 where F; is generated by the variables B, 0 < s < ¢t. See for example
Durrett [31] for a detailed account.

It is well known that the Brownian motion on R” is the limit of Markov
chains with symmetric transition matrix, namely, a limit of suitably scaled
Bernoulli random walks. Indeed, if § > 0 is given and if we consider a
Bernoulli walk on the real line moving at each time kd, k € N*, by a step
+4/6, so that

[t/0]
X =6 Y en, t20, g =141,
k=1

then the distribution of (Xt(é))@o tends when 6 — 0 to that of a one-
dimensional Brownian motion. Here, ()32, is a sequence of independent
Bernoulli random variables, taking values 1 with probability 1/2. If (B;)¢>0
is the Brownian motion in R”, starting at 0, and if we consider the associated

Gaussian semi-group (Gs)s>o defined for f € L'(R™) and s > 0 by
(Gsf)(z) =E f(z + Bs)

= (2ms)"™/? flz+y) e lvl?/(29) dy, =ze€R",
R’!L

(1.19)

we can show an inequality analogous to (1.16). For every p in (1, +o00] and for
every function f € LP(R"), we have a maxzimal inequality for the Gaussian
semi-group with a bound independent of the dimension n, stating that

</R 2213|<Gsf><w>lpdw>1/p < YL( /R . If(fv)lpdx>1/p. (1.20.G%)

If we just need a maximal inequality possibly dimension dependent, there
is an easy proof relating the Gaussian maximal function to the classical
maximal function M f, because the Gaussian kernel is radial and radially de-
creasing, see (4.6). Once Stein’s Theorem 4.1 giving dimensionless estimates
for Mf is established, this easy bound of G4 f by Mf implies a dimension-
less estimate for the Gaussian semi-group, or for the Poisson semi-group as
well. With Bourgain, Carbery and Miiller, we shall follow the opposite route,
from the semi-group estimates to Mf or Mo f. We sketch an argument for
obtaining (1.20.G*) from the Bernoulli case.

Let us give some more details in dimension n = 1. Let (ex)32; be a se-
quence of independent Bernoulli random variables, taking values +1 with
probability 1/2. The associated semi-group (P;), indexed by j € N, is
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defined by

(Pig)(i) = Eg<i+ > sk), i>0, i€,
1<k
and it satisfies (1.16). As a consequence of the de Moivre-Laplace theorem
and by classical tail estimates, we know that

(1+$2)P<{N1/2 Z 5k<x})

1<k<N

tends to (1+2z%) 1 ((foo, m)) when N — oo, uniformly in z real. It follows

that Ef(N_l/2 D k<N 5k) tends to [ f(y) dyi(y), uniformly on Lips-
chitz functions having a Lipschitz constant bounded by some fixed C. If f
is Lipschitz on R, then

1<k<sN N R
uniformly in x € R and s € [to,t1], with 0 < to < t1 fixed. This implies
that for any given € > 0 and N large enough, letting gn (¢) = f(i/V N) for
1 € Z and assuming sN — 1 < jn < sN, we have that

P gn (i) — (Gsf)(i/VN)

<e, 1€7Z,

for every s € [to,t1]. Applying (1.16) to gn, we obtain when so, s1, ..., Sk

and a > 0 are given that
a p .
1 %
. P <P _p ) v
/mx (G, N@)|" de <o (e) + ( E ﬁNZ% o=
1€

where 7(e) tends to 0 with ¢, implying (1.20.G*) when € — 0, N — o0,
a — +oo and if the sequence {s;};>0 is dense in (0,+00). The same
argument works in R", thanks to the product structure of the Bernoulli
and Gaussian measures and to the fact that the linear space generated by
products f(z1,...,zn) = H;Zl fj(x;) is uniformly dense in the space of

P
)

compactly supported Lipschitz functions on R™.

These considerations generalize to semi-groups of convolution with sym-

metric probability measures (p):>0 on R™, that is to say, when g * p; =
tstt, St =0, and p(A) = p(—A) for every Borel subset A C R™. Given
k > 1, one can find a finitely supported symmetric probability measure v/,
on R™ which is an approximation of ji1, in the sense that the integrals of a
given finite family of functions f on R™ are nearly the same for y;,, and for

1/;7 x Whenever j < k2. We may assume that 14 /k is supported in €Z, € > 0.

The symmetric Markov chain (X;),<x2 on £ = €Z with transition governed
by 115, permits us to approximate the maximal function sup, | * f| of the

semi-group, replacing it with max;¢2 |1/i’7k * f].
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It follows that some convex functions of the convolution semi-group can
be estimated in LP by projecting functions of a martingale. For example, the
sum of squares of differences, already mentioned in the Gaussian case, can
be studied also in the Poisson case by relating it to the square function of
a martingale and applying the Burkholder—-Gundy inequalities presented in
the next section.

1.4.2. The Burkholder—Gundy inequalities

When (M)4_, is a martingale with respect to a filtration (F)X_, one
introduces the difference sequence (dk),]fvzo, which is defined by dy = M,
and dp, = My — Mp_1 if 0 < k < N. Observe that dj is Fp-measurable
for 0 < k < N and that E(dg|Fg—1) = 0 for k& > 0. Conversely, given
a sequence (di)N_, with these two properties, we obtain a martingale by
setting My, = Z?:o dj, for 0 < k < N. For a scalar martingale (Mj)Y_,, we
define the square function process (Sk)ffzo of the martingale by

k 1/2
Sy = (Zdﬁ) , k=0,...,N.

Jj=0

For a real or complex martingale in L?, the differences dj, and d; are orthog-
onal when k # £. If k < ¢ for example, then dj and its complex conjugate dy,
are Fy_1-measurable, thus E(dyd,) = E(dk E(d@|.7:g_1)) = 0. It follows that

N
E|My[> =) E|di* = E|Sy[*. (1.21)

k=0
This equality |[My|l2 = ||Sn||2 appears as an evident case of the following

result.

THEOREM 1.6 (Burkholder-Gundy [17]). — For every p in (1,+00),
there exists a constant ¢, > 1 such that for every integer N > 1, for ev-
ery real or complex martingale (Mk),]f:o, one has

C;;l”MNHp < [ISnllp < epllMnlp -

The Khinchin inequalities (see for example Zygmund [85, vol. I, V.8,
Th. 8.4]) are a very particular instance of the preceding theorem. Let (g5)3_,
be a sequence of independent Bernoulli random variables defined on a prob-
ability space (2, F, P), taking the values £1 with probability 1/2. For every
p in (0,400), there exist constants A,, B, > 0 such that for every N > 1
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and all scalars (a;)N_,, one has

N 1/2 N p\ 1/p N 1/2
AP<Z|%|2) <<E Z%Ek > S(Z%P) , 0<p<2,
k=1

k=1 k=1
(1.22.K)

N 1/2 N p\ 1/p N 1/2
(zw) <(E z) <B,,(z|ak|2) L 2<p.
k=1 k=1 k=1

The exact values of the constants A, B, are known ([79, 43]). In order to
relate these inequalities to Theorem 1.6 when 1 < p < +00, we consider a
special filtration on (2, F, P), generated by the sequence (e )2_;. Let Fy be
the trivial field consisting of 2 and (), and for k > 0, let F}, be the finite field
generated by €1,...,¢ex. This field Fj has 2% atoms of the form

A=Ay ={weQ:¢gjw)=uj,j=1,....k}, u=(u,...,ux), (1.23)

where u; = £1. We shall call this particular sequence (Fy)4_, of finite fields
a dyadic filtration. In this framework, for 1 < k < N, any scalar multiple
akel of € is a martingale difference dy. For the associated martingale with
My = Z,ivzl arcr, the square function Sy is the constant function equal
to (Zivzl lax]?)*/? and the Khinchin inequalities appear indeed as a simple
example of application of Theorem 1.6. Of course, the latter sentence is
historically totally inaccurate.

We shall prove only special cases of Theorem 1.6. We say that a sequence

of random variables (my)i_, is predictable when

mo is Fo-measurable, and my, is Fi_i-measurable for 0 < k < N. (1.24)

If (my)_, is scalar valued and predictable, and if (dx)Y_, is a martingale dif-
ference sequence, then (mkdk)ivzo is again a martingale difference sequence
since one has that E(mydg |fk_1) = my E(dg |]-'k_1) = 0. The new martin-
gale (Ly,)N_, defined by Ly, = Z?:o m;d; is said to be obtained as martingale
transform, see [15, 16].

Consider a dyadic filtration (Fy)&_, as defined above. Notice that each
atom A of Fj as in (1.23) has probability 27%, and is split into two atoms
A of Fiy1, Ax := AN {ery1 = £1}, according to the value of £;41. Let
dr+1 be a martingale difference with respect to these dyadic fields. The
function di41 should have mean 0 on the atom A of Fj, and be constant
on each of the two atoms Ay of Fjiq contained in A, which have equal
measure P(A)/2. It follows that dy; must take on A two opposite values
+v. Consequently, the modulus (or the norm) of dgi1 is constant on A,
thus |dj41| is Fr-measurable, so that (|dy|)i_, is predictable, as defined
in (1.24). We shall call Bernoulli martingale any martingale (Mj)n_, with
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respect to this dyadic filtration (Fj)_,. A Bernoulli martingale with values
in a vector space can be pictured as a tree (ve,,. ., ) of vectors, 0 < k < N
and €; = %1, such that each vector v, .., in the tree is the midpoint of his
two successors Ve, ... .1 and ve, ... ., —1. The vectors v., .. ., are the values
of the kth random variable M}, of the martingale, which can be defined by
Mk(é‘l, cee ,é‘k) = Veq,.c\ep-

The next Lemma contains an easier case of a result due to Burgess
Davis [26], namely, the left-hand inequality when p = 1. The rest of the
statement presents a mixture of Doob’s and Burkholder—-Gundy’s inequali-
ties.

LEMMA 1.7. — For every p with 1 < p < 2 and for every real or complex
Bernoulli martingale (My)Y_, one has that

6~ MRl < ISnllp < 6IIMF I, -

Partial proof, after [56]. — We consider the case p = 1. The general
strategy is to bring the problem to L%, where ||Syl|l2 = ||[Mx|2 by (1.21),
and this is essentially done by dividing f = My € L' by a “parent” of \/m,
in order to get an element in L? “similar” to \/m . One then applies known
facts in L?, and finally come back to L' by multiplication with a suitable L?
function. We begin with the proof of the left-hand inequality in Lemma 1.7.

Let (My)Y_, be a Bernoulli martingale. We know that (|dx|)i_, is

predictable, as well as (Sy)_,. Consider the martingale transform L =
Z?:o S;l/de. In L? we know that E|Ly|* = E;V oE(S -_l\d»|2) We see
that S '|do|? = So, and S '|d;|? < 2(S; — S;-1) for j > 1 because, letting

t =87 | and h = |d;|*, we have

t+h
dVITh— Vi) = / w2 du > h(t+ h)V2.
t

It follows that

E|Ly]? <2ESy. (1.25)
Notice that ‘ZJ 0 ]_1/2 = |Ly| < L% and ‘Z] i1 S _1/2 = |Ls —
L, < 2L% when 0 < r < s < N. Multiplying termwise the sequence

(Sy 1/2dk)k=0 by the non-decreasing sequence (S;/Z)ffzw we obtain for every
s < N by Abel’s summation method that

ZS 1/2

| M| = < SY?% sup 251/2L’j\,,

0o<r<s

—97 -



L. Deleaval, O. Guédon and B. Maurey

thus My < 25']1\,/2L}‘V. By Cauchy—Schwarz, Doob’s inequality (1.1) with
p =2, and by (1.25), we get the conclusion

E M5 <2BESy)Y?| Lyl < 22(ESn)Y?|| Lyl < 2°/2ESy <6ESy.

We leave the rewriting of this proof when 1 < p < 2 as an easy exercise
for the reader, and we pass to the right-hand side inequality using the same
method, with the help of the non-decreasing predictable sequence (Ak)évzo
defined by

Ay = |d0| = ‘M0|, A = max(Ak_l,M,:_l + |dk|) = |Mk|, k=1,...,N,

and of the martingale transform L = Zk_o A_1/2dj, k=0,...,N. Observe

that |di| < |Mg| + |[Mi—1| < 2M}, thus Ay < 3M}. By Abel, writing
drp = My — My_q for k > 1, we see that
N-1

|Ly| = ‘ AP My + 37 My, ( A2 —A,;if)
k=0

N-—1
<AV Y AnAYE - AL
k=0

1/2+Z<\/F+1 \/>> 2141/2

where we make use of u?(u! —v™ ) <v—wuwhen 0 < u <wv. InL? we
know that B(Y,_, Ay '|d]?) = E|Ln|?> < 4 E Ay, and we go back to L'

with Cauchy—Schwarz and the obvious inequality

N N
D kP < An DA di
k=0

k=0
‘We obtain
1/2

N
ESy =E (Z |dk|2) S(BAN)Y?||Lyllz <2EAn <6 M5 -

Remark. — The Brownian martingales can be approximated by
Bernoulli martingales, and we can obtain the analogous result for them.
Actually, the preceding proof is even simpler to write in this case. Brownian
martingales are defined by means of (Ito’s) stochastic integrals

w):/O ms(w)dBs(w), t>0,

where (ms)s>o0 is an adapted process, meaning essentially that each my,
s > 0, is Fs-measurable. The square function is then defined by S?(w) =
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fot |ms(w)|? ds for every ¢t > 0, and one can replace in the proof of Lemma 1.7
the Abel summation method by the more pleasant integration by parts.

Remark 1.8. — Together with Doob’s inequality, Lemma 1.7 implies
Theorem 1.6 for Bernoulli martingales when 1 < p < 2. The Burkholder—
Gundy inequalities are equivalent to saying that martingale difference se-
quences are unconditional in LP when 1 < p < 400, that is to say, that
there exists a constant &, , such that for each integer N > 0, all scalars
(ar)i_, with |ag| < 1 and all martingale differences (dj)X_,, we have

N N
1" ardi], < rup |3 ], - (1.26)
k=0 k=0

Going from Theorem 1.6 to unconditionality is simple, since the square func-
tion of the martingale at the left-hand side of (1.26) is less than that on
the right-hand side, and we can take k,, = c3. The other direction fol-
lows from Khinchin, by averaging over signs a; = 1. Indeed, one obtains
from (1.22.K) for (fx)i_, in LP(X, 3, i), 1 < p < +oo, that

N 1/2
(Z w)
k=1

A

» N
< E/ ’ZEkfk|de
Lr(p) X k=1

N 1/2
(1)
k=1

It is possible (see Pisier [64, Section 5.8]) to obtain the general case of un-
conditionality of martingale differences by approximating general martingale
difference sequences by blocks of Bernoulli martingale differences. Also, one
can see that (1.26) is self-dual and obtain by duality the Burkholder-Gundy
inequalities for 2 < p < +o0.

p
< By

Lr ()

The proof of Lemma 1.7 is valid with almost no change when the martin-
gale takes values in a Hilbert space H, because L?(, F, P, H) is a Hilbert
space where the H-valued martingale differences are orthogonal. For values
in a Banach space, two difficulties arise. First, the relevant “square func-
tion” has to be defined, and second, the Banach space-valued martingale
differences are not unconditional in general. The Banach spaces where mar-
tingale differences are unconditional form a nice class of spaces, see Pisier [64,
Chap. 5, The UMD property for Banach spaces].

Remark 1.9. — Let f = Zszo dy, be the sum of a Bernoulli martin-
gale and let g = ZQ;O ardy be obtained from f by a martingale transform
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operation, with |agx| < 1 for K = 0,..., N. By Lemma 1.7 and Doob’s in-
equality (1.1), we have

lglly < llg™ll> < 6115(9)llp < 6ISCNHIl» < 36] 5 <

which shows that the constant k., in (1.26) is of order 1/(p — 1) in this
case. Actually, Burkholder has found the exact value of the unconditional
constant for general martingale transforms and for every p € (1,400). It is
given by

36p
LIl 1<p<2,

Kup =D " —1, where p* :=max(p,p/(p —1)).
One can consult [16] and the references given there to several other articles
by Burkholder. One can also find in [16, Section 5.4] a bound ¢, < p* — 1
for the constant ¢, in Theorem 1.6.

1.4.3. A consequence of the “reflection principle”

Consider a Brownian motion (B;)s>0 on R, defined on a probability space
(Q, F, P) and with respect to a filtration (Fs)s>0. We assume that By = 0,
we fix a real number v > 0, and we let S, (w) denote the first time when
the trajectory s — Bg(w), s > 0, which is continuous for almost every
w € Q, reaches the point v. It is clear that if sy > 0 is given, one has
{Bs, = v} C {S, < so}, thus

Foo 2
P({S, < s0}) > P({By, > v}) = P({B1 > v/\/50}) = / ovt2 W

v/ Ver
From now on, we write P(S, < so) for P({S, < so}). We will show that
actually

+oo e_y2/2 dy
/%0 Var’

which proves in passing that .S, is finite almost surely, since we have then
dy
V2T

The reasoning makes use of the reflection of the Brownian motion after a
stopping time 7. A stopping time is a random variable 7 with values in
[0, 4+00], such that for every ¢ > 0, the event {7 < t} belongs to the o-field
Fi of the past of time ¢. Intuitively, a stopping time corresponds to a decision
to quit at time 7(w) that an observer, embarked on a path t — X;(w) of
the random process (X;)¢>o since the time ¢ = 0, can take from his only
knowledge of what happened on his way between 0 and the present time.

P(S, < 59) =2P(Bs, 2 v) =2 /

+oo 5
P(Sy<+oo):2/ e v /2 =1.
0
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The random time S, is an excellent example of stopping time, with a quite
simple rule: I stop when I reach the point v > 0.

The Brownian reflected after the random time 7 changes its direction, its
trajectory becomes the symmetric of the original trajectory with respect to
the point (B;)(w) := Br(,)(w) that was reached at time 7(w). Let us denote
by (BI)s>o the reflected Brownian, given by

Bl (w) = Bs(w) if 0<s<7(w),

Bi(w) + Bs(w)
2

The reflected Brownian B is still a Brownian motion. Consider first the
simplest stopping time and reflection. Choosing a set A; in the o-field Fj,
at time s; > 0, we define a stopping time 7; equal to s; on A; and to 400
outside. The corresponding reflection (B7')s>¢ is given by

= Br(w) (w) if s > T(w) .

B (w) = Bs(w) if 0<s<s or w¢A,
B (w) + Ba(w)

5 = B, (w) if s>s and weA;.

One shows easily that (B7')s>0 is a Brownian motion. Iterating this opera-
tion, one can reach discrete stopping times, and pass to the limit for dealing
with general stopping times. Indeed, a stopping time 7 can be approximated
by the first time 7, > 7 such that 2% is an integer, i.e., 7, = 27%(|2F7] +1),
for every k € N.

Another important property that can be checked following the same route
is the following: if 7 is an almost surely finite stopping time, the process
“starting afresh at time 7”7, defined by Xy = B,1s — B, ie., X (w) =
B (w)+s(w) = Br(w)(w), is also a Brownian motion.

Consider the Brownian reflected after the stopping time S, with v > 0.
Since the Brownian paths are continuous and By = 0, we have Bg, (.)(w) = v
and for every sg > 0, the event {B,, > v} is contained in {5, < sg}. Clearly,
the event {Bf» > v} is also contained in {S, < so} and disjoint from
{Bs, > v}. Actually, since on the set {S, < so} one has BS® + B,, = 2v,
one sees that

{S, < so} \ {Bs, = v} = {Bfo’ > v},

The event {BS» > v} has the same probability as { By, > v}, since (B5*)s>0
is another Brownian, and P(S, = s¢) < P(Bs, = v) = 0. We have therefore
that

P(S, < so) = P(Sy < so) =2P(Bs, > )—2/+(>o —u?/(250) _dU
v X S0) = v So0) = S0 v) = g € \/m
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Consequently, for every s > 0, we obtain
+oo R dy
P(S, <s)=P(sup B, 2w :2/ e~y /2 ]
S <0 =P(sp Bozo) =2 e S

This allows us to find the density h, of the distribution of S,,, which is given
by

—3/2
vSs a2
hv(S) = 1320 ﬁe v /(25), seR. (128)
Remark. — A variant of the preceding reasoning applies to the exit

time S from an open convex subset D of R™ containing the starting point xg
of an n-dimensional Brownian motion. Suppose that this Brownian motion
touches the boundary of D, for the first time, at the point © = x(w) and at
time S(w). Let E, be an affine half-space tangent to D at x, and exterior
to D (this E, is not unique in general). Starting again from z at time S(w),
there is a probability 1/2 to end in E, at time so > S(w), so there is at least
one chance out of two to end up outside D at time sg. The set {B,, ¢ D}
is a subset of {S < sp} that occupies thus at least one half of it. We have
therefore

P(S < so) < 2P(B,, ¢ D).

This inequality says that the probability to be outside D at a time between 0
and sq is bounded by twice the probability to be outside D at time s¢. This
can be readily interpreted in terms of maximal function. If || - ||c denotes
the norm on R"™ associated to a symmetric convex body C in R, we deduce
maximal inequalities in LP(R™) for the || - ||¢ norm of the martingale (Bs)s>0
that are better than Doob’s inequality. Namely, for every p > 0 we have

“+o0
P _ p—1
B max B =p / P [Bullo > 1) di

+oo
< 2p/ t'"'P(||Bs,llc > t) dt = 2 E|| By, ||% .
0

For p < 1, there is no Doob’s inequality in L?, and when p > 1, one has
always that 277 < p/(p — 1), because (1 — )2° < (1 — z)e® < 1 for
O0<z <1

One could get a similar estimate when the set D is no longer convex,
but has the property that for every boundary point x of D, there is a cone
FE, based at z, disjoint from D and with a solid angle bounded below by
6 > 0 independent of z. If we measure the angle as the proportion of the
unit sphere S"~1 of R" intersected by the cone E, — = based at 0, then the
constant 2 above has to be replaced by §~!.
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1.5. The Poisson semi-group

Let us recall that the Schwartz class S(R™) consists of all C*> functions
@ such that (1 + |z|*)¢® (x) is bounded on R™ for all integers k, £ > 0. We
shall denote by (P;)¢>0 the Poisson semi-group on R™, which can be defined,
for f in the Schwartz class S(R™), by

(P f)(z) =u(z,t), x€R", t>0, (1.29)

where u(x,t) is the (bounded) harmonic extension of f to the upper half-
space HT of R"*! formed by all (z,t) with € R" and t > 0. For z € R"
one has u(z,0) = f(x), Au(z,t) = 0 when ¢t > 0, and u is continuous on H™T.
The semi-group property Py = P, Ps amounts to saying that the harmonic
extension of the function fs defined on R™ by f.(x) = u(x,s) is given by
v(x,t) = u(z, t+ 3).

The Poisson semi-group is intimately related to the Brownian motion
(Bs)s>0 in R™1If the Brownian (Bg)s>o starts at time s = 0 from the
point (xg,tp), where 2o € R™ and to > 0, we know that almost every path
s+ Bg(w) will hit the hyperplane Hy = {¢t = 0} at some time 74, (w) < +o0.
If we decompose B into (zg + Xs,t0 + Ts), then Ty is a one-dimensional
Brownian motion, starting from 0 at time 0, and X, is a n-dimensional
Brownian motion, starting from the point 0 in R"™ and independent of T;. The
stopping time 7, is the first time s > 0 when T, = —to. If f is reasonable,
for example continuous and bounded on R™, one sees that the (bounded)
harmonic extension u of f to the upper half-space is given by

u(x07t0) = EF(BTtO) = Ef(xO + XTtO) = Lf(xO + X‘rto(w)(w)) dP(w),

where F is defined on the hyperplane Hy of R"*! by F(x,0) = f(z) for every
x € R™. The Poisson probability measure Py, (z)dz on R™ is the distribution
of X, , distribution of the Brownian motion (X;) starting from 0 € R" and
stopped at time 7;,, when B, reaches Hy. We shall employ the same notation
P; for the semi-group, for the Poisson distribution on R", and for its density
Py(x). The operator P; is the convolution with the corresponding probability
measure, it acts thus on LP(R™) for 1 < p < +00. We shall say that ¢ is the
parameter of P;.

The distribution of the stopping time 7, is clearly the same as the dis-
tribution of the first time S;, when the one-dimensional Brownian motion
starting from 0 reaches ty > 0, and we know by (1.28) the density h; of the
distribution of S;. The Poisson distribution P, on R™ is obtained by mixing
Gaussian distributions on R", distributions of X, at various times s, the
mixing being done according to the distribution of S;. In the portion of the
space 2 where so < 73 < sg + s, the coordinate z of the Brownian point
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Bs = (Xs,t+Ts) at time 7 is approximately X, , with probability of order
ht(s0) ds, and (Xs)s>0 is independent of 7. The point (z,0) = (X,,,0) is
the point where the Brownian B, touches the hyperplane Hy, knowing that
¢ = Sg. This is the reason behind the subordination principle of the Pois-
son semi-group to the Gaussian semi-group, which implies in particular that
the maximal function of the Poisson semi-group is bounded by that of the
Gaussian semi-group (Gs)s>o on R™. Indeed, we have by (1.28) that P, is
“in the (closed) convex hull” of the Gaussian semi-group, since

Foo t8_3/2 2
P, = G, e /(29 g 1.30

It follows that

+oo
|Pt*f|</ G /]
0

t —3/2
5 e/ (29) qs < sup |Gy * f] .
s u=0

We get a dimensionless estimate for the maximal function of the Poisson
semi-group, consequence of the one in (1.20.G*) for the Gaussian case. We

have
1/
<p</ |f(:z:)|pd:z:> ! (1.31.P%)

sup | P f] I
ey P~

t>0

The remarks about comparing to Mf are still in order here. Stein [73,
Lemma 1, p. 48] proves (1.31.P*) with different constants and in a dif-
ferent way, capable of easier generalizations to non FEuclidean settings. He
does not deal with the Gaussian maximal function, but applies the Hopf
maximal inequality (1.10) to the Gaussian semi-group together with the
subordination principle. Using subordination, Stein shows that the Poisson
maximal function P*f = sup,|P;f| is bounded by an average of expres-

sions t~1 fot (Gsf)ds that are controlled by Hopf.

The formula (1.30) proves that the marginals of P; are other Poisson
distributions: indeed, the mixing distribution, which has density h;, does not
depend on the dimension n, and the projections on R?, 1 < ¢ < n, of Gaussian
distributions N(0,02%1,) on R"™ are N(0,021,) Gaussian distributions. We
can also deduce the density of the distribution P; for each t > 0, writing

—n/2 t5_3/2

“+o0
Py(z) = / e‘lx\2/<2s)(27rs) o
0 \%

+oo
:t/ (2ms) /212 o= (e /2s) 48 o
0 S

e~ t*/(28) g4

Setting u = s/(t? + |z|?), then v = 1/(2u), we get

- oo dv
Py(w) = t(n(t* + [2]*)) (n+1)/2/ e vt/ —-
0
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The Poisson kernel P; on R™ is thus given by the formula
I'l(n+1)/2] t
a(n+D)/2 (#2 4 |g|2)(nt1)/2 7
In dimension n = 1, the Poisson kernel is the Cauchy kernel, equal to
Py(z) = PV (z) = ﬁ z€eR, t>0. (1.33.C)
The coefficient that comes into the n-dimensional formula (1.32) satisfies the
asymptotic estimate

Tltn+1)/2] 2n
m(n+1) /2 ™m wn Sp—1 ’

where w,, is the volume of the unit ball in R™ and s,,_1 the (n—1)-dimensional
measure of the unit sphere S”~! in R”, given by
71.’rL/2 71.71/2

(n/2)! " I((n/2) +1)°
From this, we obtain estimates on the measure of Euclidean balls for the
probability measure P;(x)dz on R™. Writing Pi(z) = F(|z|), we get an
exact asymptotic estimate when the dimension n tends to infinity: for
v > 0 fixed, we have

/ Pi(z)dx
{lz|>vn/v}
+o0 +oo 2 (n+1)/2
Sn—1/ mlE drN\/>/ \/’ r . g
N r 1+7r
(n+1)/2 —(n+1)/2
\f/ ( n) du \f/ <1+ ) ay.

Therefore, when n tends to infinity, we see that

/ Pi(z) dz — 2/ oviz Ay (1.35)
{v|a]>vm} 0 vn

Py(z) = P™(z) = zeR" t>0. (1.32)

Sp_1 = NWy . (1.34)

Wp =

2. General dimension free inequalities, second part

In this section, we gather results that depend on the Fourier transform.
In order that the Fourier transform be isometric on L?(R™), we set

VEER", f(€) = . fl@)e ™ da,  p(¢) = / et du(a),

when f is in L'(R™) N L?(R") or when p is a bounded measure on R”".
By the Plancherel theorem (some say Parseval’s theorem), we know that
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this defines a mapping from L*(R™) N L?(R") to L?*(R™) that extends to a
unitary transformation F of L?(R™). The inverse mapping F~! of F sends
every square integrable function £ — g(&) to F (f — g(—=¢ )), also expressible
by z +— (Fg)(—x). We shall employ the notation g¥ = F~1g for the inverse
Fourier transform.

The Plancherel-Parseval theorem extends to functions f with values in
a Euclidean space F, giving then an isometry from L?(R", F') to itself. This
is clear for instance by looking at coordinates in an orthonormal basis of F'.

With this normalization of the Fourier transform, we have that

~ 77|_2 2 n
An(€) =e 27 £ e R,

and the Fourier transform of the Poisson kernel P, on R is equal to e ~27t¢l

for every £ € R™. Indeed, as the marginals on R of P, are Cauchy distribu-
tions with the same parameter ¢, we find by the residue theorem that

~ tefziﬂ's‘f‘ ont

This information on the Fourier transform gives another way of checking
the semi-group property Ps x P, = Ps;,; of Poisson distributions. Using the
Fourier inversion formula, we notice for future use that the harmonic exten-
sion u(x,t) = (Pif)(z) of f € S(R™) considered in (1.29) can be written
as

u(z,t) = / e 2mUEL F6) 2T qe . 2 e R, > 0. (2.1)

2.1. Littlewood—Paley functions

The Littlewood—Paley function g(f) associated to a function f on R™ is
defined by

VzeR", g(f)(zx)= </0+Oo|tVu(x,t)|2it)1/2,

where u is the harmonic extension of f to the upper half-space in R"*!, and
where Vu is the gradient of v in R™*!. The classical theory, see for example
Zygmund [85, vol. 2] for the circle case in Chap. 14, §3 and Chap. 15, §2,
indicates that the norm of f in LP(R™), 1 < p < +00, is equivalent to that
of g(f). One has that

kip £l < lg(Hllp < #p £l (2.2)
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with a constant , depending on p, but independent of the dimension n. A
variant of this Littlewood—Paley function is defined by

oo | g 2
g1(f)2=/0 ‘tatPtf %. (2.3)

It is clear that g1(f) < g(f), since (9/0t)(P:f) is a coordinate of the vec-
tor Vu. The function g; is one of the variants studied by Stein [73]. More
generally, for every integer k > 1, Stein sets

“+o0 k
() = /0 2

otk
Let us define QQ; = Py; — Pyj+1, for every j € Z. Since

9J+1 a 2
Sl =3 [ (atptf> at

JEL JEL
2J+1

2 at

R -

)

we obtain by Cauchy—Schwarz that

9i+1 P
IS

g P f Ptf
JEZ JEZ

e 9 (f)?.

dt Z/

The classical result (2.2) on g(f) implies that for 1 < p < 400, there exists
a constant q, independent of the dimension n such that

H S Q1)

JEZ

<l fllze@wny,  f € LP(R™). (2.4)
Lr(R™)

Observe that the same proof implies that a similar inequality, with a dif-
ferent constant depending on ¢ > 1, will hold for differences of the form
Qj = P, — P,_,, where (;);ez is an increasing sequence of positive real
numbers, provided that we have ¢;11 < ct; for all js. On the other hand, by
Rota’s argument (1.15), one can obtain (2.4) from the Burkholder-Gundy
inequalities of Theorem 1.6. Inequalities similar to (2.4) would hold for the
Gaussian semi-group (Gy);>o defined in (1.19). Let us fix T > 0. We have
seen that Gaoyf, 0 < t < 7T, is the projection on the o-field Gr generated
by Br of the member My_; of the Brownian martingale My = (Pr_sf)(Bs),
0 < s < T, running under the infinite invariant measure given by the
Lebesgue measure on R". We then apply (1.15). Using Gaussian @);s would
allow us to avoid a few minor technical difficulties later, and this is essentially
what Bourgain [13] does for the cube problem, see Section 8.

Relying on (1.15) and Remark 1.9 gives for the constant ¢, in (2.4) an
upper bound of order p/(p— 1) when p — 1. This can also be obtained if one
follows Stein [73, p. 48-51]. When 1 < p < 2, the proof given there yields

lg(H)llp < (p— 1)_1/2p11,7p/2 | fll, for the right-hand side inequality in (2.2),
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where p,, is the constant in the maximal LP-inequality for the Poisson semi-
group. Since we have p, < p/(p — 1) by (1.31.P*), we get that

qp <p/(p—1) when 1<p<2. (2.5)

Looking at the Fourier side, we see that >, @j (&) =1 for every £ #£ 0,

since ﬁ;(ﬁ) = =2 "' 7lEl tends to 1 when j — —oo and to 0 when j — +o0.
It implies for the convolution operators, still denoted by Q;, that

> Qi=1d. (2.6)

JEZ
2.1.1. Littlewood—Paley and maximal functions

Stein [73, Chap. III, §3, p. 75] explains how to get L? estimates for several
maximal functions related to semi-groups, by using the Littlewood—Paley
functions. Consider a continuous function ¢ on the half-line [0, +00), differ-
entiable on (0,400), and denote by ® its antiderivative vanishing at 0. For
every t > 0, one has

o) = [ (sp(s)) ds = / () ds + / o (s)ds = (1) + / o (s)ds.

Comparing L' and L? norms, one sees that

! ds ¢ ds\ /2 ¢ ds\?
[rsen S < ([lse@rS) < ([ sers)
0 0 0

Therefore, one has
D(t +o0 ds 1/2
|%0(t)|<M+ (/ |s<p’(s)|2> . t>0.
t 0 s
One gets that
d(t +oo ds 1/2

sup (0] < sup P4 ([T )
t>0 t>0 1 0 s

If p(s) = (Psf)(x) for a given z € R™, the upper bound becomes

/O (Pof) () ds| + () 2).

One can (again) control the norm in LP, 1 < p < 400, of the maximal
function of the Poisson semi-group, by the Hopf maximal inequality and the
estimate for the Littlewood—Paley function. This control is easy in L?, espe-
cially when L? admits an orthonormal basis (f;) such that P, f; = e~ f;
for every j, A; = 0, for example in the case of the Laplacian on a bounded

1
sup |(Pf)(x)| < sup -
£>0 t>0 T

— 38 —



Dimension free bounds

domain Q C R™ If f = 37 a;f; in L*(Q), one has P f = Y. aje " fj,
and

+oo
/ da:f/ /
Q
:/ D lagPe2A7 e ) = :Z|a,|2/ T 2 e, 4t
0 — J t 1% ; ¥ ;
J J
e du I'(2) 1
- (/0 wre u) D o <=~ 1F13 = 11115

A; >0

it et fi () dx—

For the other Littlewood—Paley functions gix(f), one has in the same way

/ g (f)(2)? da =
Q

J
+
:§ :|CL]“2/ 2k)\2k —2tA; dl;t ( )”fH?
- 0
J

One can also work on R"™ by Fourier transform with Parseval. One gets

2 2k e gk pk —2mtle]|2 4, At
[ atn@ras=o® [ [ [Fomete =P a
R” 0 R™

I'(2k 2
=225z,

We have also other relations like

t2go’(t):/Ot(s2ap'(s)),ds:2/0tsg0’(s)ds+/0ts2go”(s)ds

implying that

’ e ’ 2ds e 2 2ds
sup [te' ()] < 2 s (s)|"— + Is@" (s)|"— -
t>0 0 S o S

This brings back the successive maximal functions associated with each of
the expressions t*9% /0t" (P, f), k > 1, to quantities that can be estimated
or are already estimated, as in

+o0 2
da:g

Z ajtk/\;? e N fi(x) ;

sup
t>0

12 (P @)| <201 (D) + o)), 7R

2.2. Fourier multipliers

We introduce two dilation operators that appear in duality, for instance
when dealing with the Fourier transform. Given a function g on R™ and
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A > 0, we use for these operations the notation

go(@) =A""g(\ ), gp(e) = g(ha), xeR™. (2.7)

If g already has a subscript, as in g = g1, we shall use the heavier notation
(gl)()\) or (g1)[x)- One sees, for example when g is integrable and h bounded,
that

| ao@h@ s = [ gy, and o)) =306). ¢ R,

that is to say, we have (g(n)) = (9)r]. Clearly, g, = (g()\))(u). The gy
dilation preserves the integral of g; it is extended to measures p on R™ by
setting (5 (f) = p(fix)), namely

/ F() dugyy () = / ) dp(z) (2.8)
R R

for every f in the space K(R™) of continuous and compactly supported func-
tions. The measure iy is the image of 1 under the mapping R" > = +— Ax.
If du(z) = g(x) dw, then gy is the density of fu(y).

Let ¢ — m(¢) belong to L=(R™). For f € L2(R"), we have f € L2(R")
by Plancherel, £ — m(f)f(f) is also in L?(R™) and is therefore the Fourier
transform of some function T}, f € L?(R™). We thus get a linear operator T},
on L?(R") if we define T,, f, for every f € L?(R™), by means of its Fourier
transform, letting

(T f)(€) = m(€)F(€), €eR™

Let P, be the operator of multiplication by m, defined by P, = m¢. The
operator Ty, = F 1P, F is bounded on L?(R") since by Parseval, one has
that

[ @an@Pas = [ m@PIFOR e < mlLIsB. 29)

We shall say that T, is the operator associated to the multiplier m.

One can ask whether T;,, also operates as a bounded mapping on certain
LP spaces. In this survey, “bounded on LP” will always mean bounded from
LP to LP. Let q be the conjugate exponent of p, defined by 1/q+ 1/p = 1.
Assuming that 1 < p < 400, we see that T, is bounded on L?(R™) if and
only if flR" m(f){o\(f)@(f) d¢ is uniformly bounded when ¢, 1) € S(R™) belong
to the unit balls of LP(R™) and L?(R™) respectively, hence T, is then also
bounded on LY(R") (and on L?(R"™) by interpolation, so m has to be a

bounded function, see the line after (2.12.P)).
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We now observe that the multiplier m and its dilates mpy) : & = m(A),
A > 0, define operators having equal norms on LP(R™). We see that

(Tmm f()\))/\(g) = m()‘f)f(/\f)

hence Ty, f2) = (Tmf)()\). Consider the operator Sy : f — f(x). For every
p € [1,+00] and 1/qg + 1/p = 1, the multiple Sy , := /48, of Sy is an
isometric bijection of LP(R™) onto itself. The relation Sy o T, = Ty © S
becomes

Ty = Sxp T Sy, (2.10)
and this implies that T}, and Ty ,, have the same norm on L? (R™). More
generally, let m = (mU ))je 7 be a family of multipliers and define Ty, f =

()

Sup;¢ s T, f| If we set mpy = (mw then we have again that

>j€J’
Ty = SapTm S;; (2.11)

because Sy commutes with f — [f[ and Sx(sup,c; fj) = sup;c; S f;. Con-
sequently, Ty, and Ty, also have the same norm on LP(R"™).

We shall speak of the action on LP of the multiplier m and set

[mllp—p = [T llp—p -

If T, is bounded on L?, one says that m is a multiplier on LP, or a LP-
multiplier. The next lemma will be useful, it is nothing but a direct conse-
quence of the equality ||mpllp—p = [|m|p—, for every A > 0, and of the
triangle inequality in LP.

LEMMA 2.1. — Suppose that 1 < p < +oo and that m(§) is a LP(R™)-
multiplier. If the function v is integrable on (0, +00), the multiplier N defined
by

—+o0
N(§) = ; PA)m(AE)dA, £ eR",

is a LP(R™)-multiplier and ||N||lp—p < [|9] 21 (0,400) Ml p—p-

Note that clearly, multiplier operators commute to each other, and com-
mute to translations and differentiations. We will apply many times the easy
fact (2.9), which can be written as

[mllz—2 = [ Timll2—2 < [m| Lo mn) - (2.12.P)

The inequality is actually an equality, since by Parseval, the norm of 7},, on
L?(R™) is equal to that of P,,, the multiplication operator by m.

If K is a function integrable on R™, it acts by convolution on LP(R™) for
all values 1 < p < 400, and one gets easily by convexity of the LP norm that

I * fllo @y < KL @y 11 ze ) - (2.13)
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This is an easy example of operator associated to a multiplier, since convolu-
tion of f with K corresponds to multiplication of f by K. The Fourier trans-
form m = K of K is thus a multiplier on all spaces LP(R"™), 1 < p < +o0.
Consider the Fourier transform m of the convolution kernel K € L'(R"),
equal to
m(&) = K(z)e '™ dz, ¢ €R™.
R’Vl

For £ # 0, let & = |€]0 and = y + sf, where y is in the hyperplane
6+ orthogonal to & € S~ ! and s € R. By Fubini, we have for every real
number u that

m(ug) = /R < ” K(y+ s0) d"_1y> e~ 2imsulel g

where d" "'y denotes the normalized Lebesgue measure on the Euclidean
space - C R”. In what follows we associate to K and to @ in the unit
sphere S™~1 the function g x defined on R by

VseR, vor(s):= K(y+s0)d" 1y, (2.14)
QL
so that for £ # 0 and 6 = [£|71¢, letting py = @ x We have

_ —2imsul| ds = i <’U> 72“”’“(1 . .
m(uf) /chg(s)e s /legog €] e v (2.15)

The function R 5 u — m(uf) is the Fourier transform (in dimension 1) of g.

2.2.1. Multipliers “of Laplace type”

We consider a scalar function F' on (0, +00) that admits an expression of
the form

+oo
YA>0, F(\)= )\/ e Maf(t)dt, (2.16)
0

where a is a measurable function bounded on (0, +00). The multiplier m(§)
“of Laplace type” associated to F' is defined by m(§) = F(|£]), for £ € R™.
We note that ||F||e < |/a]|co, thus by (2.12.P), this multiplier m is bounded
on L?(R™) with operator norm < ||al|oo. Stein proves the following result.

PROPOSITION 2.2 ([73, Theorem 3', p. 58]). — Let F be defined on
(0, +00) by (2.16), for some function a € L*°(0,+00). The operator T,, asso-
ciated to the multiplier m(§) = F(|£]) is bounded on LP(R™) for 1 < p < +o0
and

ITonllposp < Aol

where A\, is a constant independent of the dimension n.
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The identity operator belongs to this class (when a(t) = 1), we thus see
that A\, > 1 for every p. It follows from the proposition that the imaginary
powers of (—A)'/2 act on the spaces LP(R™) when 1 < p < +o0, with norms
bounded independently of the dimension n. Indeed, we have the formula of
Laplace type

ib 1 T i =t
A ] A e Mt7dt, A>0, a(t) (2.17)
0

T Ta-ib T T -ib)’
hence ||al|oo = [T'(1—1ib)| 7!, for every b € R. According to the estimate (3.4)
for the Gamma function, we get from Proposition 2.2 that

VbeR, |¢f° <A (1+)712emPI2 0 < p< oo, (2.18)

}P—m
Stein’s proof of Proposition 2.2 draws on L? inequalities for the Littlewood—
Paley functions g1 (f) and g2(f), and a comparison g1 (T f) < kg2(f). We
now sketch another possibility, which invokes martingale inequalities. If F’
is as in Proposition 2.2 and m(§) = F(|¢]), then To, f, for f € S(R™), can
be expressed by

“+oo
— (Tongany f) =/0 a(t)(aatptf> dt. (2.19)

Indeed, we know by (2.1) that

(Pf)(@) = ul(w,t) = / o~2rIE () 2 g

R"

and

—+oo
(/ a(t) <§t Ptf> dt> (z)
+OO o~ .
- / alt) ( / (—2mle]) e 278l F(g) o?ime ds) at

—— [ PeRe© ™ de = - (T, 1)@,

Suppose that a is a step function supported in [to, tn] C [0,400). Then
N

a(t) =Y a5li, (),

=1

with 0 =to < t1 < ... <tny. By (2.19), we obtain that
N

T f =Y a5(Pey = Poy )(f)-
j=1

It follows that Ty, f can be considered as projection of a martingale trans-
form by a conditional expectation Eg. Let u; = t;/2, j = 0,..., N, and
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T := un. We have seen in (1.13) that Py, f = Poy, f is the image under
the projection Eg of the martingale member Mr—.; = (Py, f)(X7-u;), s0
letting Li = Mr—uy_;, @ =0,..., N, we see that Tm[%]f is equal to

Eg (Z a;(Mp—w;_, — MTuj)) =Eg (Z an—it1(Li — Lil)) ;

j=1 i=1
which is the transform of the martingale (L;)], by the bounded non-
random multipliers (an—i41)h1. Also, Ly is equal to My = f(Xr) that
has the distribution of f with respect to the (infinite) invariant measure,
the Lebesgue measure on R™ (see Remark 1.2), hence || f||, = || Mr||p. In
this simple case, one deduces Proposition 2.2 from Remark 1.8 about the
Burkholder-Gundy inequalities, and it can be easily generalized, first to
compactly supported continuous functions a. Using Remark 1.9, we find
in this way that

Ap <kp",  p i=max(p,p/(p—1)), 1<p<+oo. (2.20)

2.3. Riesz transforms

In dimension 1, there is only one Riesz transform R, which is called the
Hilbert transform H. It is defined for f € L?*(R) by

VEER, (RF(E)=(H)(E) =27

This is given by a multiplier of constant modulus 1 (almost everywhere), thus
the transformation is isometric and invertible on L?(R) by Parseval, and H
is a unitary operator on L?(R) with inverse H ' = —H. If ti(x, t) denotes the
harmonic extension of H f to the upper half-plane, then u(z,¢)+ iu(x,t) is a
holomorphic function of the complex variable z = z + it, because its Fourier
transform vanishes for £ < 0, implying by inverse Fourier transform that
u(z,t) is an integral in € > 0 of the holomorphic functions e~ 27I¢lt ¢2imér —
e?imé(=+1t) " A classical theorem going back to Marcel Riesz [65] states that
the Hilbert transform is bounded on LP(R) when 1 < p < +oo. This is
also a consequence of the results on the Littlewood-Paley function g(f),
or of martingale inequalities as we shall see below. Some of the first deep
connections between Brownian motion and classical Harmonic Analysis can
be found in Burkholder—-Gundy—Silverstein [18].

The Brownian argument is easier for the Hilbert transform Hr on the
unit circle T C R?. Let (Bt)t=0 be a plane Brownian motion defined on
some (Q, F, P), starting from 0 in R?, and let 7 be the first time ¢ when
B: hits the circle T. By rotational invariance, the distribution of B; is
the uniform probability measure on the circle. Let f be a function in
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LP(T) and let u be its harmonic extension to the unit disk. Assume that
2ru(0) = fO% f(cosf,sinf) d6 = 0, and denote by a A b the minimum of
a and b real. The random process (Mt)i>0 = (u(Binr))t>0 is a Brownian
martingale, which can be expressed by the Ito integral

tAT
U(Bt/v-) = / V’LL(BS) . ng .
0

Suppose that 1 < p < +o00. By the continuous version of the Burkholder—
Gundy inequalities, the norm || f||L»(ry = ||w(B7)||Lr (0,7, p) is equivalent to
the norm in L?(Q), F, P) of the square function of the martingale (M;)¢>o0,

given by
. 1/2
S(f) = (/ |Vu(BS)|2ds> .
0

If f: Hrf denotes the function on T conjugate to f and w its harmonic
extension to the unit disk, then |Vu(z)| = |Vu(z)| for z in the unit disk,
according to the Cauchy—Riemann equations for the function v + iw holo-
morphic in the disk. It follows that S (f) = S(f) and the LP-boundedness
of the Hilbert transform for the circle is established via the Burkholder—
Gundy inequalities of Theorem 1.6. The bound for the norm of Ht obtained
in this manner is related to the constants in Burkholder-Gundy. The ex-
act value of the L” norm of H is known, this is due to Pichorides [61], see

Remark 2.3 below.

In dimension n, there are n Riesz transforms R;, defined on L?(R") by
~ i&; ~ .
(R; f) (£)=—ﬁf(£), j=1,...,n.

Since || (Z?:1 |ij\2)1/2|‘§ = Z?:1 |R; f||3, one has by Parseval that

n 1/2
()
j=1

The Riesz transforms are “collectively bounded” in LP(R™), by a constant p,
independent of the dimension n (Stein [76]), meaning that

n 1/2
(Enr)
j=1

Duoandikoetxea and Rubio de Francia [30] have connected in a few lines this
inequality to the properties of the Hilbert transform (see also Pisier [63]).

=fl2- (2.21)
2

<popllfllp, 1<p<+oo. (2.22)
p

Proof. — For each nonzero vector u in R™, let us introduce on L?(R")
the Hilbert transform H, in the direction u by setting

VECR", (Huf) (€)=~

iu-¢ ~

g 16 = —isimn(u-0) le).
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We deduce easily from the one-dimensional case that H, acts on LP(R™),
with the same norm as that of H on LP(R). It is enough to check the case
when wu is the first basis vector e; if one writes the points x in R™ as
r = (t,y),t € R, y € R"1 and if for f belonging to the Schwartz class
S(R™) we set f,(t) = f(t,y), we can see that (He, f)(t,y) = (H f,)(t). Then,
applying Fubini’s theorem, we obtain

J[tanamraay= [ [as)ora)a

<ty [ ([ inorac)ay =g, i1z

We can consider that Rf = (R1f,..., R,f) is the operator associated to
the vector-valued multiplier

m(¢) = —il¢| ' e R, R,

that is to say, the operator sending f € S(R™) to the function Ty, f from

~

R™ to R™ whose R™-valued Fourier transform is equal to f(§)m(&). For
f € S(R™), let us look at the vector-valued integral

HD@) = [ (Hp@uds() R, 2 eR,

where 7, is the Gaussian probability measure from (1.17). The operator H
corresponds to the vector-valued multiplier defined when £ # 0 by

<i [ st udna (=i [ lan())ide = SNENS3

This can be seen by integrating on affine hyperplanes orthogonal to £. The
“normalized” partial integral on the hyperplane £+ +v|¢|71¢, v € R, is equal
to

L s o vlel 1) e () = bl 1716

It follows that Rf = /n/2Hf. For x fixed, the norm of (Hf)(x) is the
supremum of scalar products with vectors € S"~! and letting 1/¢+1/p=1,
one has that

HN@I < swp [ o ullHaf) @) dvafa)

fesSn—1

<([rane) ([ ompwram)”
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Using the notation g, of (1.18) for the Gaussian moments, we get

([ mneras)” = [2( [ iouepas)”
Voo ([ [ 1opwpama)”

™
\/;% [ {p—sp 1 £l - (2.23)

This argument yields p, < \/7/2 gq ||H||p—p for the constant p, in (2.22).
When p = 2, this gives ps < y/7/2 instead of the correct value py = 1
of (2.21). When p tends to 1, we obtain by (1.18) that

N

N

(/ NS Xw)'”m)l/p < AVAH sy |- 0

Remark 2.3. — The value g4 = ([ [v]7dn (v))l/q tends to /2/7 when
p tends to 400, and the asymptotic result p, ~ ||H||,—p obtained from (2.23)
in this case is essentially best possible. Indeed, Iwaniec and Martin [47] have
shown that the operator norm on LP(R"™) of each individual Riesz transform
R;, j =1,...,n, is equal to the one of the Hilbert transform H on LP(R),
hence 1 < ||H|/p—p < pp. According to Pichorides [61], the norm of the
Hilbert transform is given by

T . .
|1H|lp—p = cot (2;0*)7 with p* = max(p,p/(p - 1)) )

Iwaniec and Martin [47] also bound the “collective” norm in (2.22) by
V2 H,(1), where H,(1) is the norm on LP(C) ~ LP(R?) of the “complex
Hilbert transform”, which corresponds to the multiplier C > & + i[£|71¢, in
other words, the operator Ry + iRy on LP(R?). Iwaniec and Sbordone [48,
Appendix| add a few lines and give H,(1) < §|[H||,—p so that finally

T
Pp S \/in(l) < ﬁ [H||p—p < £p* (2.24)

Remark. — The proof from [30] is in the spirit of the method of rotations,
which uses integration in polar coordinates to get directional operators in
its radial part, see also Section 4.1. With this method, one can relate to
the Hilbert transform not only the Riesz transforms, but also more general
singular integrals with odd kernel, see [39, Section 5.2] for example.
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3. Analytic tools

3.1. Some known facts about the Gamma function

From Euler’s formula

n! n?

)

one passes to the Weierstrass infinite product for 1/T", stating that

o

1 1 vz —z/n
F(2+1)22F(z):e H<(1+z/n)e />’

n=1

where 7 is the Euler-Mascheroni constant. It follows that 1/I" is an entire
function, with simple zeroes z = 0,—1,—2,... . For the interpolation argu-
ments to come, we need upper estimates on the modulus of 1/I'(o + i7) for
o, 7 real. From the preceding formula and from I'(Z) = I'(z), we infer that

2 [e3e] 2 .
h
ST (145) =" rer )

1
T

T(1+ir)

n=1
according to another result due to Euler, the famous formula

sin(mz) _ T (1 _ 22) (32.E)

U4

The connoisseur has seen that we just came upon a special case of the “Euler
reflection formula”, stating that T'(2)7!T(1 — 2)~! = sin(wz)/7 for every
z € C, or equivalently I'(1 + 2)7I'(1 — 2)~! = sin(wz)/(72). For every x
real, one has

sinh(7z) emlel erlel

< < :
X 1+ 7lz| = (1+a22)1/2

(3.3)

The right-hand inequality is evident, the left-hand one is equivalent to saying
that for every y > 0, we have (1+y)sinh(y) < ye¥ or h(y) := (y—1) e® +y+
1 > 0, which is true because h(0) = h’(0) = 0 and h”(y) = 4ye?¥ > 0 when
y = 0. Using (3.1) and (3.3), we get in particular that

< (V14 72)71/2 emlml/2 (3.4)

1

VTER, 'W
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More generally than in (3.1), for o € [0, 1], let us write
2

’r(1+i+7) - H (Kl +o/n) + (r/n)?] /)
= o> n];[l((l + a/n)2e*2a/n)nl:[1 (1 N (n :L 0-)2)
s T ((75) )

n>1

We have by convexity of In(1 + 272) for x > 0 that

(v (o)) < (I () (1 0+(5))
o 0+ (7))

sinh(77)

=(1 2\—0o
(+T) T

It follows that
1 _ _, sinh(w7)
- g (1 2 1 2\—o P\
‘I‘(1+0+i7) (I+o)=(A+7)

T

and applying (3.3) we obtain

’ ! <T(1+0)  (V1+72) 27 7 emr2 - (35)

F'l+o+ir)
We extend this bound by using the functional equation zI'(z) = T'(z + 1).
When z =k+ 140+ ir, with 0 € (0,1) and k > 1 an integer, we have

1 oy —1/2 1
'F(k—l—l-i—a-i—w <H (+0)*+7%) )‘W
< (Vi)™ m : (3.6)

Letting a A b = min(a,b) for a,b € R, we see that
+oo
IN(l+o0)= / u’ e du
0
+o00 1 1
2/ (u/\l)e_”du:/e_"duzl—e_1>7.
0 0 2
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Let us mention that the actual minimal value of I on (0, +00) is reached
at

zr = 1.46163... and that DI(zr) > 0.88. (3.7)
Note that on (0,+00), the function z — InT'(z) is convex and InI'(1) =
InI'(2) = 0, hence I'(z) < 1 when = € [1,2] and I'(z) > 1 on (0, 1] and
[2, +00).

We get consequently by (3.5) and (3.6) that
1 1/2—k—1—0
<2(V/1+ 72 mirl/2 3.8
T(k+1+o+ir) (Vi+7) ¢ (38)

When z = —k + o + i7, with k£ > 0 an integer, we obtain by the functional
equation

0

[ (G+a)*+72)2

j=—k

:’F(1+t17+17)

1
I'(2)
For j = 0, —1, the factors in the product are < (1 + 72)*/2, thus
1 2)(k+1)/2 1
I'(—k+o0+1i7) IF'(l1+o+i7)
and when j < —2, we have ((j+0)24+72)Y/2 < (|j| — o) (14+72)/2. Tt follows
for z=—-k+o+ir, k > 2, that

<147 when £ =0,1, (3.9)

1 (k+1)/2 1
<(k—o)(k—1-0)...(2—0) (1472 ———|. (3.10
(| < Bmo)k=1=0)... 2=0) (1+7) Titorin| &0
By the functional equation and the convexity of InI" on (0, +00), we have
I'k+1-o0)

Fl4+o) Y (k—o)k—1-0)...2—0) =

I'2—-o)T'(1+o0)
Tk+1-0) 2
< ———=—TIk+1- 2l(k+1—o0).
T(3/9) NG (k+1—-0)<2l(k+1—-0)
Coming back to (3.10) and using (3.5), we conclude when k > 2 that
1 1/24k—0

— | < 2T'(k — 1)(v1 2 mirl/2 A1
T(—k+o+ir) (k= +1)(V1+7?) € (3.11)
When Rez > —1, it follows from (3.8) and (3.9) that

S0, in every half—plane of the form Rez > a, one has by (3.11) an upper
‘ 1

bound
1/2—=a n|Imz|/2
el < Ba(V1+[Imz[?) erltm=l/2 (3.12.1)
with 8, = 2T'(Ja| + 1) when a < —1, and 8, = 2 otherwise.

1+(IH1 ))1/2 Re z 7r|Imz\/2
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Remark. — The rather crude estimate (3.12.T") is sufficient for our pur-
poses. In [73], Stein refers to Titchmarsh [82, p. 259], for an exact asymptotic
estimate. When o is fixed and |7| — 400, one has

ID(0 4 it)| ~ V2w e ™IT1/2 |7]o=1/2,

When o > 1, the preceding proof gives a lower bound 2~ 'v/2m e
for every 7. We can see it by replacing the inequality (3.3) with the evi-
dent inequality sinh(7z)/(7z) < (27|z|)~" e™1*]. It is not possible to replace
V14 |Imz? by |Imz| in (3.12.T') when Rez < —1, because the zeroes
—1,—2,... of 1/T" are simple. For more results on the Gamma function, we
refer to Andrews—Askey—Roy [2].

—m|r]/2 |7_|z7—1/2

3.2. The interpolation scheme

We begin with the classical three lines lemma, an easier version of which is
the Hadamard three-circle theorem. After this, we shall turn to interpolation
of holomorphic families of linear operators.

3.2.1. The three lines lemma

LEMMA 3.1. — Let S denote the open strip {z : 0 < Rez < 1} in the
complex plane. Let f be a function holomorphic in S and continuous on the
closure of S. Assume that f is bounded in S and that

IfO+i7)| < Co, [fA+im)|<Cy
for all 7 € R. Then, for every 6 € (0,1), one has that | f()| < Ca=?CY.

Remark 3.2. — Of course f(6 + i7) admits the same bound for every
7 € R, by translating f vertically. The somewhat strange assumption that
f must be bounded on the whole strip by a value which does not appear
in the final result is not the finest assumption that makes the conclusion
valid, see a better criterion below. However, when Lemma 3.1 applies, the
function f s bounded at last. It is well known that some restriction on the
size of f inside the strip is needed for the lemma to hold true. Indeed, in
the strip S; = {z : |Rez| < 7/2}, the function f(z) = e°** has modulus
one on the two lines Rez = +x/2, but it is “very big” when Rez = 0,
since |f(i7)| = e°°sP(7). For a function f holomorphic in an open vertical
strip S, continuous on the closure and bounded by 1 on the two boundary
lines, either f is bounded by 1 on S, or else sup| py, ,—|-| |f(2)| must become
extremely large when |7| tends to infinity. This is the typical situation with
the theorems of Phragmén—Lindelof type, see [69, Chap 12, 12.7] for example.
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Here is a sufficient criterion ensuring that |f| is bounded by its supremum
on the boundary 95, of a vertical strip S, of width w. If f is holomorphic
on Sy, continuous on the closure with |f| < 1 on dS., and if for some
a < m/w one has
|/ (2)] = O(exp(e*! ™))
when z tends to infinity in Sy, then |f| is bounded by 1 on the strip. Let
us prove it assuming In|f(z)| < ke®! ™=l in S, = {|Rez| < w/2}, for
an a < 1 = 7/w. Set ge(z) = e ") withe > 0and a < b < 1. If
z=o0+ it and |o| < 7/2, we have
lge(2)| = exp( —eRecos(bz) ) = exp(—e cos(bo) cosh(bT))
exp( ecos(br/2) cosh(bT)) < exp(—BE ebm) <1, B:>0,

hence |f(2)ge(2)| < 1 on 88y, and if |7| = |Im 2| > (b —a) ' In(k/B:) we
get

In|f(2)g-(2)] < ke —B. """ < 0. (3.13)
Given any zo € Sr, we can find a rectangle R. = {|Rez| < 7/2, |Im z| <
To(€)} containing zo such that |f(z)g-(z)] < 1 on JR.. We then have
|f(20)g:(20)| < 1 by the maximum principle, |f(z0)|] < |e®®%0) | for
every € > 0, thus | f(z0)] < 1.

Several times later on, we encounter situations where the function f is not
bounded on the two lines limiting a vertical strip .S, but has instead a growth
exponential in |7| = |Im z|. The next lemma generalizes the preceding. Our
proof and estimate are not the “correct” ones, as we shall explain below after
Corollary 3.4, but they give a reasonable explicit bound. In these Notes, we
shall say that a function f defined on a vertical strip S has an admissible
growth in the strip if for some x > 0, the function f admits in .S a bound of
the form |f(z)] < werl ™2l

LEMMA 3.3. — Let f be a function holomorphic in the strip S = {z :
0 < Rez < 1}, with admissible growth in S and continuous on the closure of
S. Assume that there exist real numbers ag,a; = 0 and by, by such that for
every 7 € R, one has

|0+ i7)] < eIt | #(1 4 ir)| < elIHbr
For every 6 € (0,1), it follows that

1£(6)] < exp (\/9(1 —0)\/(1 —0)a3 +0a2 + (1 — )by + 9b1>.

Proof. — We introduce the holomorphic function g(z) := ecz2/2+d2, with
¢>0and dreal. If z = 0 + i7, we see that |g(2)| = ec(o®=*)/24do Op the
vertical side Rez = 0 of S, we have that

|F(ir)g(ir)] < elTiTbo=er?/2 < gad/(Ga+ho —. g,
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and when Re z = 1, we get the upper bound
|f(1 + lT)g(]. 4 17_)‘ < ea1|‘r\+b1—072/2+c/2+d < ea%/(20)+b1+c/2+d —. E1 )

We choose d so that Ey = E1, and we need not mention the value of d.

It follows from the assumption |f(z)| < ke ™2l = ke®I7| that f(2)g(z)
tends to zero at infinity in S. Let us fix 6 € (0,1). If f(6) # 0, there exists
7o > 0 such that |f(2)g(z)| < |f(8)g(0)] when |Im z| > 79. By the maximum
principle for the compact rectangle R = {0 < Rez < 1, |Imz| < 79}, we
know that the maximum of |f(z)g(z)| is reached at the boundary of R, but
it cannot be on the horizontal sides |Im z| = 7. Hence |f(0)g(0)| < Eg =
E = Eé_gEf , we get therefore

2
O] < e/ B0 B

2c

and after optimizing in ¢ > 0, we conclude that
()] < exp (\/(1 — 0)a3 + 02 /01— 0) + (1 — )by + 0b1> .o

COROLLARY 3.4. — Let f be a function holomorphic in S = {z : ag <
Rez < a1}, with admissible growth in the strip S and continuous on the

closure of S. Assume that there exist real numbers ug,u; = 0 and vg,v1 such
that

- 2 2
= exp ((19)‘1()*9&1 + (1= 0)bg + Oby + cO(1 — 9)/2)

flao + i) < P, | fag +im)] < el
for every T € R. Let § € [0,1], set ag = (1—0)apg+0ay, ug = (1—0)ug+0uy
and vg = (1 — @)vg + Bvy. For every T € R, one has
|f(a6 + 17_)| < Ew,&(u(];ul) eu9\7'|+v9 ,

where w = a1 — ag denotes the width of the strip S and where
Eyo(ug,uq) := exp( \/9 1-6 \/ 1—6)ud —|—9u%).

Notice that 1/6(1 —6) < 1/2 for every 6 € [0,1]. When 0 < ug,u; < u,
one can always employ the snnpler bound E, ¢(u,u) < ewu/2?,

Proof. — We begin with S; := {0 < Rez < 1}. We bound the modulus
of f(0 4 i) for 79 in R by performing a vertical translation of f, then
invoking Lemma 3.3. The function F(z) = f(z + i7o) satisfies |F(j + i7)| <
euilTl+(uslmoltvs) -5 — 0,1, and the bound for |F(#)| given at Lemma 3.3
implies that

|f(9 + iT())| < El’g(uO, ul) eug\m|+v9 , To €R. (314)
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It is easy to pass to S = {ap < Rez < aq} with the transform that replaces
f(2), defined for z € S, by F(Z) = f(ao+ Zw) for Z € Sq. If | f(o; + i7)| <
eilTlHvi 5 = 0,1, then |F(j + it)| < ¥ 71T and by (3.14) we have that

|f(ag + i70)| = [F(6 + imo/w)]

< Eq9(wug, wuy ) glwuo)lmo/wltve — Ey0(uo, u1) glolmoltve O

Applying Corollary 3.4 in the case where ug = u1 =« > 0 and v; = 0, one
sees that when f has an admissible growth in S, the hypothesis | f(a;+i7)| <
e"I"l for all 7 € R and j = 0, 1, implies |f(a+ i7)] < e®"/2 e%I7] in the strip.
It is not possible to replace the “bounding factor” e®“/2 by 1, as we shall
understand below.

The “correct” proof of Lemma 3.3 uses a lemma given by Hirschman [45,
Lemma 1], cited by Stein [70]. In our case, we consider the function U,
harmonic in the open strip S; = {0 < Rez < 1} and continuous on
the closed strip, equal to a;|7| + b; at each boundary point j + i7, with
a;j 2 0, 7 € Rand j = 0,1. Let V be the harmonic conjugate of U
in Si1, defined up to an additive constant by the fact that VV(z), for
z € S1, is equal to RVU(z) where R is the rotation of angle +7/2 in
R? ~ C. Let us set V(1/2) = 0 in order to fix V entirely. Since U is
harmonic, the 1-form —Uy dx + U, dy is closed and V (z) = fol RVU(v(s))-
v'(s)ds for any C* path ~ in S; such that v(0) = 1/2 and y(1) = z. Then
U + iV is holomorphic, by the Cauchy—Riemann equations. Consider the
holomorphic outer function

g(z) = exp(—U(z) - iV(z)) , z€51,

for which |g(z)| = exp(~U(z)) and |g(z)| < e=®0"*1) in §;. If f is as in
Lemma 3.3, then |fg| < 1 at the boundary of S1 and fg has an admissible
growth. It follows from an easy variation of Lemma 3.1 that |(fg)(0)] < 1
thus |£(0)] < V@, and it remains to express U(6), with the help of the
harmonic measure at 6 for S;.

We shall obtain the harmonic measures for S; = {z € C : |Rez| <
m/2} from the case of the open unit disk D, by a conformal mapping (see
also [39, proof of Lemma 1.3.8]). Let o belong to I, = (—7/2,7/2) = S;NR.
The Poisson probability measure u, at o relative to S, can be written as
Ho = Ho,0 + Ho,1, Where s o is supported on By = —7/2 + iR and p,1 on
B; =7/2+ iR. If h is real, harmonic in Sy, bounded and continuous on the
closure of Sy, the value of h at o is equal to

h(o) = hdpe = [ hdpeo+ [ hdpo:. (3.15)
OS, By B;

The Poisson probability measure v, for D at r € (—1, 1) has density g, (e!?) =
(1—72)/(1 —2r cos B+ 1r?) with respect to the invariant probability measure
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on the unit circle T. Let ® be the holomorphic bijection from S, onto D
given by ®(z) = tan(z/2) when z € S;, extended to |Rez| = 7/2 by the
same formula. Then S, is sent to T\ {i, —i} and if ®(7/2+ iT) = el we
have 8 € (—7/2,7/2) and tanh(7/2) = tan(8/2). For r = tan(c/2) we see
that v, = ®4 p, and

COSs o

= 2 1 i h =
/Bl hdpsa /Rh(ﬂ'/ +i7) fo(7)d7T with f,(7) Sr{coshr —sing)
while [ hdpso = [ h(=7/2 4+ i7) f—o(7) d7. One finds ||po1ll1 = 6 :=
o/m+1/2 and ||fts0]|1 = 1 — 6 by harmonicity of h(z) = Re z. When o tends

to m/2, the density f, resembles the Cauchy kernel P in (1.33.C) with
e =m/2— o, since

1 sine €

fo(7)

" 2mcoshT —cose  w(r2+e?)’

One can also comprehend f, as sum of the alternate series of Cauchy kernels

_ pM (1) (1) (1)
f‘T - Pﬂ'/2—o’ - P7r+7r/2+a + P27r+7r/2—<7 - P27r+7r+7r/2+a
L pO PO

4r+m/2—0 - An+n47/240 +oee ’

indeed, if ¢, denotes the sum of the series above and if g belongs to IC(R),
then G(o+i7) = (pe *g)(7) is harmonic in S, tends to g(7) when o — 7/2
and to 0 when 0 — —m/2, the same properties as for (f, * g)(7).

Let h, be a continuous function on 95, and suppose that the two func-
tions ¢ — e~ !l h,(£m/2+1it) are Lebesgue-integrable on the real line. Then,
writing

h*(z):/R(h*(w/Q—i—i(T—t))fa(t)+h*(—7r/2+i(7'—t))f_g(t)) dt  (3.16)

for every z = o 4+ iT € S, one defines a harmonic function hy in Sx,
continuous on the closure if one sets ?L*(Z*) = hy(z:) for z, € 0S;. Let
H.(Sr) denote the class of functions harmonic in S, and continuous on
the closure. Not every h € H.(S;) can be expressed by (3.16) from its
restriction h, = h‘as . First, h, must be u,-integrable, but even then, h(z) =

Re cos(z) = cos(o) coﬂsh(T)7 for which h, = 0, is a counterexample.

Let us say here that g defined on Sy, resp. 9Sy, is moderate if there is
a < 1 such that g(z) = O(e®!™=l) for z € Sy, resp. Sy. If h, is moderate
and continuous on JSy, the extension h, in (3.16) is in H.(Sy), and it is
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moderate because

o +i7)] < & / T fy + fo) () dt
R

u +o0 ea|t\ d alr]
< k| e+ ——dt ) e,
/1 cosht —1

LEMMA 3.5 (after [45]). — If h € H.(Sx) is moderate and h, = h|as ,
then h = ﬁ*

If one replaces S by a strip S,, of width w, then clearly the moderation
condition in S, must be formulated for z € S, as g(z) = O(e*!'™*I) with
a<7/w.

Proof. — We have that h, is moderate on 0S;, hence U = h — . is
moderate on S, and vanishes on 9S;. Given zg € S;, a < 1 such that
U=0("), e >0and b € (a,1), we see as in (3.13) that U — < Re cos(bz) is
< 0 on the boundary of a rectangle containing z, hence U(zy) < € Re cos(zp)
by the maximum principle. Doing it also with —U and letting ¢ — 0 we
conclude that h — h, = 0. O

We now study the function hy defined by hi(7/2 + iT) = |7|, h1i(—7/2 +
iT) = 0 for every 7 € R and its (moderate) harmonic extension given at
o € I by

“+oo
hi(o) = / 7l () dr = 3/ arctan <C°S”> dr
R ™ Jo eT —sino

Recall that || fo||L1@r)y = 6 = o/m + 1/2. When ¢ = 0, we have the easy

bound
2 [T _ 2 [T _ 2
hl(O):f/ arctan(e T)dT<*/ e Tdr==.
7 /o 7 /o T

One can find h;i(0) by writing the power series expansion of arctan(z),
letting then x = e~ " and integrating in 7 € (0, +00). One gets h1(0) =
2G/m < 0.584, where G = Zz'j)(fl)k@k +1)7? is the Catalan constant,
0.915 < G < 0.916. One has

, 2 [T 27 e Tsing 1
hi(o) == . dT:71H(2*ZSiHU),
T
0

T —21 _2e~Tsino + 1

thus hy is concave on I, and maximal when ¢ = 7/6. One can find nu-
merically that 0.646 < hy(7/6) < 0.647. By concavity, we obtain for each
o € I, that

hi(o) = hi(0) — hi(—=7/2) < hy(—=7/2)(o +7/2) =0 1n4. (3.17)
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One has hi(m/2) = 0, the behavior of hi(o) when ¢ = 7/2 — 0 — 0 is
given by

hi(o)= -1 In(2 — 2coss)ds
™ Jo

~ —%/O In(s”) ds = %(5111(1/6) + 5) . (3.18)
Since hi(-+ i7) — hi(+) is bounded by |7| on B; and vanishes on By, we
have

0 < hi(c+it) < hi(o) +0|7| < hi(n/6)+0|7|, o €I, TE€R. (3.19)

If So = {z € C: a0 < Rez < a1} has width w = a1 — oo and if
A = w/7, we may associate to h, harmonic on S, the harmonic function
H(Z) = h(a1j2 + AZ) for Z € Sy, where oy = (1 — t)ao + tar when
t € [0,1]. If we set hi (a1 + i7) = |7| and h1,w = 0 on ag + iR, then
Hi,., = Ah1, and we get from (3.19) that

hiw(ag +17) = hiw(aie + Ao+ 1i7) = Ahi(o + iT/X)
< why(m/6) /7 + 6|7].

We now comment on Corollary 3.4. If f is holomorphic in S,, with ad-
missible growth, satisfies | f(a; +i7)| < %!l on 8S,, u; >0, j = 0,1, the
“correct” bound at z € S, for f is eVuw () where Uu,w = woho,w+u1hi w,
with how(o/2 +¢) = hiw(a1/2 — (). One gets in particular Uy w (o /2) =
2X(uo + u1)G/m. When uo = uy = 1, this finer method gives at oy /2 a
bounding factor e/ /™) instead of E, 1/2(1,1) = /2, and 4G /7* <
0.3713 < 1/2.

Let Vi, be the harmonic conjugate of Uy, . Our first method in Corol-
lary 3.4 applied to fo(z) = eVuw(H+iVuw(2) yields

Un,w(ag +i7) < In By g(uo, u1) + ug|7] . (3.20)

Ifuo =u1 =u >0, we get Un,w(g) = u(ho,wthiw)(as) < wy/60(1 —0)u.
This estimate (3.20) has the right order of magnitude in w and u, but not
in 6 when 6 tends to 0 or 1. The correct order when 6 — 0 is k6 log(1/6),
according to (3.18).

Remark 3.6. — We shall have to deal with cases where the bounds on

the lines limiting the strip S, = {z € C: ap < Rez < an}, w = a1 — ay,

have the form

|flay +im)| < (L + 729 ewlH | ciu; >0, j=0,1.

It is obviously possible to “absorb” the polynomial factor by replacing u; in
the exponential with u; + ¢, € > 0 arbitrary, and modifying v; accordingly,

but one can work a little more carefully as follows.
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Let ¢1,,, be the moderate harmonic function on S, such that €1 . (a1 +
it) =In(14+72) for 7 € Rand £ ., = 0 on ap+iR. Let ap = (1—0)ap+ba,
A=w/m, 0 =70 —n/2 and L1w(Z) = £1,w(a1/2+AZ). By Lemma 3.5
and (3.16), we get

lw(ae +17) = b w(ar /s + Ao+ i7) = L1 w(o + iT/X)

:/Ll,w(w/2+ir/)\—it)fa(t)dt g/ln(1+(/\\t|+\r|)2)fg(t) dt.

Applying Jensen’s inequality to the probability density fa =6"'f,, one
sees that

exp </1n([1+(/\t|+|T)2]1/2)fg(t)dt>

< / [+ D2 T (0 dt < (14 7)12 4 x / 7 ()t
R R

bounded by (1+72)"/24+X1n4 by (3.17). For every 7 € R, one has therefore
0 < l1w(op + i) <20 n((1+7%)"? + AIn4). (3.21)

Define a harmonic function U in Sy, continuous on the closure, by U =
colo,w + €110, where £o.(2) = £1,w(200 /2 — 2), so that U(ay + i) =
cjIn(1 + 72). Let V be conjugate to U in Sy,. Then g = e"Y~V is holo-
morphic in Sy, and |(fg)(a; + it)| < €“I"1*% on 0S,,. By (3.21), we can
bound |f(z)| at z = ap + i7 by multiplying the inside bound of Corol-
lary 3.4 for fg with the additional factor

eU(ag+i‘r) < ((1 +T2)1/2 +1n(4)w/7r)2C6 < (1 +ll’l(4)UJ/7T)2c9 (1 _~_7_2)697
where ¢y = (1 — 6)co + fc1. Since In(4)/m < 1/2, we may remember that
|f(oo +i7)| < (14 w/2)% Eyo(uo, u1) (1+72)% e"e!7ITv0 — (3.22)

3.2.2. Interpolation of holomorphic families of linear operators

We now recall the classical complex interpolation method for bounding
in the norm of LP(X, X, 1), when 1 < p < 400, a linear operator T, that is
a member of a holomorphic family of operators (T), for z in a vertical strip
S containing a. We consider a linear space £ which is a common subspace
of all LI™(X,%,u), 1 < r < o0, and which is dense in L"(X, >, u) when
1 < r < 4o00. This space £ can be the space of simple Y-measurable and
p-integrable functions, or for the specific spaces L"(R"™), it can be S(R™)
or the space C(R™). We consider a closed strip ap < Rez < ay in C, with
ap < a < a1. We assume that each T, for z in this closed strip, is defined
on £ and linear with values in L*(X, %, ) + L°(X, %, ). The holomorphy
assumption means that for f, g € £, the function z — (T f, g) is holomorphic
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in the open strip g < Rez < a1, but one also assumes that it extends as a
continuous function on the closed strip. The above bracket is bilinear, given
by [ «(T-.f)gdu. Later in these Notes, we shall abuse slightly and speak
about holomorphic family of linear operators in the closed strip g < Rez <
aq.

We consider 1 < pg,p1 < +0o and p between pg and pp, so that 1 <
p < +oo. We assume that when Rez = a5, j = 0,1, the T’ s are uniformly
bounded from &, equipped with the LPi norm, to LPi (X, %, u), and we as-
sume that for a certain 6 € (0, 1), we have both
L 1_0—1—2 and a=(1-0)ag+0ay.

p Po b1

We want to show that T, is bounded from &, equipped with the LP norm,
to LP(X,%, u). Then, by the density of £, we will be able to extend to
LP(X, X, u) the bound obtained for the functions in £.

We must of course bound (T, f, g), uniformly for f in the intersection of
& with the unit ball of LP(X, %, ) and for ¢ in the unit ball of the dual
LYX,%,u), 1/p+1/q = 1. Denote by go the conjugate of py and by ¢; that
of p1. Observe that we have also 1/¢ = (1 —60)/qo + 6/¢q1. We write f(z) =
u(z)|f(z)], g(x) = v(z)|g(x)| for every z € X, with |u(x)| = |v(z)|] = 1.
Next, for each z € C, we set

(@) = u@)|f(@)P0 0 ga(a) = v(@)|g()| 0, ze X, (3.23)

where s, t real are chosen such that sag +t =1/pg and say +¢ = 1/p;. This
yields sa +t = 1/p. We see that fo, = f, go = g and we also see that the
exponents have been chosen so that the assumptions || f||, < 1 and [|g||; < 1

imply
VT eR, [faotirllpo <1, fartirllpy <1,
9a0+irllao <15 [lgay+irlla < 1.
‘We notice for future reference that if f and g are bounded by M on X, then
|f2] < max(MP/Po MP/PYY g, | < max(MY/ % M) (3.24)

when oy < Rez < a1, because Re(sz + t) stays between 1/pg and 1/p; and
Re(1 — sz —t) between 1/qo and 1/¢q; when z € S. We now apply the three
lines Lemma 3.1 for bounding the value H(«) = (T, f, g) of the holomorphic
function

H:z—(T.f.,g.), z€8S, (3.25)
from the bounds on the lines Re 2z = oy and Rez = a;. When Rez = o, we
get

|H(z)| = |<Tzf27QZ>| < HTZHPJ-HPJ' Hszp]- ngnqj < ||TZ||pj*>Pj7
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for j = 0,1. In addition, the holomorphic function H must be bounded on
the strip, see Remark 3.2 above. If true, we know by Lemma 3.1 that

1—-60 0
H()| = |(Tuf.g)] < (supnTawnpﬁpo) (sumemwm) ,
TER TER

and by taking the supremum over f and g, we obtain

1-60 0
ITallpsp < (supnTaomnpﬁpo) (supnTamnpﬁm) . (3:26)
TER T7ER

Finally, we can extend T, from the dense subspace £ to LP(X, X, i1). Some-
times, rather than looking for extension, one obtains in this way a sharper
estimate for the norm of an operator T, already known to be bounded on
LP(X, %, p).

This complex method, introduced for LP spaces by Thorin [80, 81] for
one linear operator, extended by Stein [70] to families, can also be extended
(see [6]) to spaces of the form LP(L") and more generally, by the abstract
complex interpolation method due to Calderén [19], to a pair of the form
(LPo(Ap), LP*(A1)). One then obtains estimates in LP(Ap), where Ay is the
space associated to the pair (Ap, A1) by Calderén’s method with parameter
6 € (0,1).

In many cases later on, the norms of the operators (73).cs are not uni-
formly bounded on the boundary lines, but obey for some A > 0 estimates
of the form

”TaoJriT”Poﬁpo < CO eklﬂ ) ||T0¢1+i7'||171‘>?1 < Cl e)\lTl , TE R.

Using Corollary 3.4, we can handle this situation. We must simply check
that the above function H(z) = Hy 4(z) in (3.25) has an admissible growth
in the strip. We have to find an ad hoc argument giving such a growth for
each choice of f and g in suitable dense subsets, growth depending on f,g.
Indeed, in general, we do not know yet bounds on the norm ||7%|,,—p. for
z € S, where w/p, = (a1 —Re z)/po+ (Re z — ap)/p1 and where w = ag — g
is the width of S. If each function H¢ 4 has an admissible growth in S, we
obtain here at last that

[Tallp—p < 03_0019 X Vo0,

If an additional polynomial factor is present in the bound of |74, 1ir|lp,—p,»
j =0,1, then we make use of Remark 3.6 and of the estimate (3.22).
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3.3. On the definition of maximal functions

Let us consider a family (K})¢~o of integrable functions on R™ and define
a related maximal function by the formula

pu(f) = sup [K¢ * f| (3.27)
t>0

for f € LP(R™), 1 < p < +oo. We are faced with a standard difficulty of
processes with continuous time parameter. In this generality, the convolution
Ky * f is only defined almost everywhere, for each ¢t > 0, and the preceding
supremum is not a well defined equivalence class of measurable functions.
However, if D is a countable subset of (0, +00), there is no problem in con-
sidering
np(f) = sup | Ky * fl,
teD

and a classical workaround for defining p(f) consists in introducing the
essential supremum: there is a countable subset Dy C (0,+00) such that
up(f) = pp,(f) almost everywhere, whenever D O Dg. In other words, for
every t > 0, we then have | K« f| < pup, (f) almost everywhere. The essential
supremum is defined to be the equivalence class of up, (f). It is also the least
upper bound of the family (|K; * f|)¢>o in the Banach lattice LP(R™).

Most often, we shall have the specific problem where one considers an
integrable kernel K on R™ and defines a maximal function using the dilates
of K, by

pu(f) = sup [K) * f.
t>0

If f € LP(R™) and if K belongs to LY(R™), with ¢ < 400 and 1/¢+1/p =1,
then K () * f is defined pointwise and ¢ — K4 is continuous from (0, +oc0)
to L9. It follows that ¢ +— (K * f)(x) is continuous for every f € LP(R"),
r € R", and the aforementioned problem disappears. If K € L'(R") and
f € LP(R™) are nonnegative, then (K * f)(x) is a definite value in [0, +o0]
for every z € R"™, but it is not immediately clear that a direct application
of (3.27) gives what we want. However, we can find an increasing sequence
(fx)k>0 of bounded nonnegative Borel functions tending almost everywhere
to f. Then for every x € R™ and k > 0, the map ¢t — (K * fr)(z) is
continuous from (0, +00) to [0, +00), because ¢ + K is continuous from
(0,+00) to L*(R™). It follows that ¢ — (K4 * f)(z) is lower semi-continuous,
since it is an increasing limit of continuous functions. For every countable
dense set D one has thus

pp(f)(z) = jgg(K(s) * f)(x) = fEE(K“) * f)(x).

This argument does not apply to kernels that can also assume negative
values, and it is precisely the case that will appear later.
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We will have to investigate maximal functions such as u(f) =
SUpy~ [ K@) * f|, usually when K € L'(R™), but also more generally when K
is a bounded measure on R™. It will be often convenient to start the study
with nice functions, for example functions ¢ belonging to the Schwartz class
S(R™), for which pu(p) is clearly defined. If a function f € LP(R™) is given
and since S(R™) is dense in LP(R™), we may find for every € > 0 a sequence
(@k)k}o in S(Rn) such that

f= Z‘/’k in LP(R"), and le¢k||p<||f||p+€

k=0 k=0

Since the convolution with K is linear and continuous on LP(R™), we have

+o00 +o00
K(t)*f:ZK(t)*‘Pk in LP(RH>’ and ZHK(t)*(pka < +00,
k=0 k=0

so the series Zﬁif) K4y * 1. converges also almost everywhere to Ky * f,
and we have almost everywhere

+oo “+o00
Ky FI <D 1K@ okl < pler) -
k=0 k=0

For any countable subset D C (0, +00) we get pp(f) < Zk o M(gok) imply-
ing that u(f), defined as essential supremum, is bounded by 37, o (pr). If
we know that there exists x such that ||u(o)|l, < &[l¢]l, when ¢ € S(R™), it
follows that

l(H)lp < leusok )y < KJZHwkllp £ fllp + )

for every € > 0. In order to bound p(f) in LP(R™), it is therefore enough
to obtain a uniform bound for Schwartz functions. Clearly, any dense linear
subspace of LP(R"™) consisting of nice functions can be used instead of S(R™).

The classical maximal function M f, as well as M¢ f in (0.3.M), is actually
defined by means of sup;. o K * | f|. This makes sense whenever the kernel
K is nonnegative, but not for a general K. We shall distinguish

Mg f:=sup K * [f| and Mgf := sup|K(t) *f’
t>0 t>0

by the tiny notational difference between the slanted or unslanted letter
M. When the kernel K is nonnegative, we have obviously Mk f < Mg f =

Mk (| 1)
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4. The results of Stein for Euclidean balls

We prove here the remarkable fact due to Stein [75] that for p > 1, the
maximal operator associated to Euclidean balls, i.e., the classical Hardy—
Littlewood maximal operator M defined in (0.1), may be bounded in L?(R"™)
independently of the dimension n. Full details appeared in [77]. Other proofs
have appeared since then, let us mention Auscher and Carro [4] who found
the simple explicit bound 2++/2 in L?(R"), extended by interpolation as (24
V/2)2/? for p > 2. It is not known whether or not the weak (1,1) norm of the
maximal operator M is also bounded independently of the dimension. Even
if we shall not develop this weak type aspect mentioned in our introduction,
let us recall that the best upper estimate that is known for the weak (1,1)
norm of M is the Stein-Stromberg O(n) bound [77].

THEOREM 4.1 (Stein [75]). — Let 1 < p < +00. For every integer n > 1
and all functions f € LP(R™), one has that

IMfll Lo rny < CO flle@ny

where C(p) is a constant independent of the dimension n.

4.1. Proof of Theorem 4.1

The main tool in the proof is the spherical maximal operator M defined
by

Mf)(x) = (M f)(x) = sup

>0

/ flx—r0)do(d)|, z=eR",
Sn—l

where ¢ is the normalized Haar measure on the unit sphere S?~1. It is clear
that M f is well defined when f is regular, but not when f € LL (R™). The-

loc
orem 4.2 below means in particular that for suitable p and n, M f can be
defined when f € LP(R"), for example by the method described at the end
of Section 3.3. The maximal function M(|f|) controls Mf pointwise, as one
sees easily by using polar coordinates. The maximal operator M is bounded
in LP(RN ) for some p and N, with a bound depending on the dimension N,
according to the following theorem also due to Stein. An extension by Bour-

gain of this result can be found in [8].

THEOREM 4.2 (Stein [74]). — Let N >3 and assume that N/(N—1) <
p < +oo. There exists a constant C(N,p) such that for every function f €
LP(RY), one has

IMFllLr@yy < CN,p) 1l e @y -
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The condition p > N/(N — 1) can be easily seen necessary, and the case
p = 400 is obvious, with C(NV,00) = 1. We postpone the proof of this theo-
rem to the next section. It requires a number of harmonic analysis methods,
including square function, multipliers and Littlewood—Paley decomposition.

In order to prove Theorem 4.1, we first introduce the following weighted
maximal operator, depending on a parameter k € N. For f € S(R™), let

Sier @ =)yl dy
sup

xz €R”
r>0 f|y|gr |y|kdy

) )

(Mn,kf)(z) =
where |y| denotes the Euclidean norm of y € R™. Taking polar coordinates
gives us the pointwise inequality

My, f)(2) < Mf)(z), zeR",

from which we can deduce by applying Theorem 4.2 that for every integer
N > 3, for p such that N/(N — 1) < p < oo and for every f in LP(RY),
we have

IMy & fll e @yy < CN,p) 1 f |l e @ny s (4.1)

where C'(N, p) is the constant in Theorem 4.2. We shall obtain Theorem 4.1
by lifting to R™ the inequality (4.1) obtained in a lower dimension N = n—k.
This is done by integrating over the Grassmannian of (n — k)-planes in R™.
This method of descent is in the spirit of the Calderén—Zygmund method of
rotations.

We write R” = R"~* x R¥ and x = (21, x5) accordingly, for every z € R",
with z; € R"™* and x5 € R*. For each U in the orthogonal group O(n), we
introduce the auxiliary maximal operator

(MY f)(2) = sup Jan—r L1y 1f (@ = Uys, 0)] |y |* dys

, T€ER".
>0 Jgo—r Ljya<ry 91 1F dyn

We need two lemmas.

LEMMA 4.3. — Letn =2 k+3 andp > (n—k)/(n—k —1). Then for all
feLP(R™) and U € O(n), we have

MG fll o ny < Cn =k, p) || fll Lo ny
where C(n — k,p) is the constant appearing in Theorem 4.2.

Proof. — Let us set fiy)(xz) = f(Ux), for every x € R". Since U € O(n),
the mapping Sy : f +— fly) is an isometry of LP(R™). Observe that

/ |f(Uz = U(y1,0))| |y ]* dylz/ | fioy (@ = (y1,0))| [y2|* dyr
2 I<r i l<r
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hence we have that (M{ f)(Uz) = (M fi)(x), for every = € R™. This
means that SUM,IC] = M,ICdSU. It follows that we need only consider M,f:d.
Now, for every z = (z1,z2) € R", we have

n— ]- 1 T 1 — ,x kd
(MY ) (21, 29) = s f]R e Ly <ny | F21 — 22 )| g2 l* dys
'r>0 fRn k 1{\y1\<r} |y1‘ dyr

= (Mn—k,kfwg)( 1)
with fy,(z1) = f(z1,22). Applying (4.1) to M,,_g  for each x5 € RF gives

/ k’(M,ch )(xl,x2)|pda:1 < C(n—k,p)? / | fas (21 | dzy,
Rk

therefore

IME Vo < Cln=kn? [ ([ 1 faton]” o )
:C(n_kvp) Hf”Lp(Rn .

LEMMA 4.4. — For every locally integrable function f on R™ and 1 <
k < n, one has the pointwise inequality

(Mf)(z) < /o RUHEIAOREEES

where p, denotes the normalized Haar measure on O(n).

Proof. — The desired pointwise inequality follows from the next equality,
true for every nonnegative Borel function g on R™, stating that

Jui<r 9@ Y fory Jrn—r 1<y 9(U(11,0) [y |* dyrdpan (U)

f\ylér dy Jrn—r L(jyai<ry [91]% dun (42)
Indeed, for each r > 0 and x € R", the previous equality allows us to write
Jow) Syl (@ = Uy1,0)) | ly]* dyrdpan (U)
|B | / ol = j“yl‘<7« |y | dy1

U
< /O BN dn(©),

and we conclude by taking the supremum over all » > 0.

It remains to check (4.2). By standard measure-theoretic arguments about
classes of functions generating the Borel o-algebra of R™, we can suppose
that g has the form g(z) = go(|x|)g1(z’), with z = |z|z" and 2’ € S"~L. By
taking polar coordinates, we see that the left-hand side of (4.2) is equal to

([ a)( [ i)
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where 0,,_1 is the invariant probability measure on S”~!. The right-hand
side is

2 [ woea) ( / /S o 9 (U040) a4 ),

Observe that for every 6y € S~ !, we have

/ 01 (U80) dpin (U) = / 61(0) don_1(6)
O(n)

Sn—1

since the left-hand side of this equality defines a probability measure on
S7=1 namely Bgn-1 3> A+ fo(n) 14(U6p) dp,(U), which is invariant under
the left-action of O(n), hence equal to o,,_1. We have therefore

/ o(n) /s o, 91 (U1,0) dona (41) dpn(U)
- /Sn_k_l (/O(n) 91(U(%1,0)) dun(U)> dow 1 ()

/S,L,,H (/Snlg1(9)dan1(9)) o x1(y))
= /SM 91(y") don-1(y')

completing the proof. a

Proof of Theorem 4.1. — Let 1 < p < +00. There is obviously nothing
todoifn < 2. When n < p/(p—1), the “bad” Vitali-bound C'(n) = 3™ in the
classical maximal inequality (ST) is less than a function of p alone, namely
3P/(P=1) We can therefore assume that both inequalities n > p/(p — 1) and
n > 3 hold. We then write n = (n—k)+k with n—k = |max(p/(p—1),2) | +1,
and the result follows from Lemma 4.3 and Lemma 4.4 since with this choice,
the bound C'(n — k, p) in Lemma 4.3 is now a function of p alone. O

4.2. Boundedness of the spherical maximal operator

In this section, we prove Theorem 4.2 following the approach of Rubio
de Francia [68], see also Grafakos [39]. Let n > 2. The spherical maximal
operator is expressed by

~

(M)(@) = sup|[mo () O] (@)] = sup| () « f) ()], @ € R,

where bV (z) = E(—m) denotes the inverse Fourier transform of a function h,
my is the Fourier transform of the uniform probability measure ¢ on the unit
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sphere S”1, and o(r) is the dilated probability measure defined in (2.8). It
is known that

mq(€) = 6(€) = (27[€]) =" D/2T (o 2(27IE]), EER™, (4.3)

with J, the Bessel function of order v. This equality follows from the fact
that the two functions ¢ — t_("_Q)/QJ(n,Q)/Q(t) and

25n_9 [!
t»—>F(t):/ et do(z) = 22 2/ (1 — $2)"=9)/2 cos(st) ds
Sn— 1 0

Sn—1
are entire functions g satisfying ¢(0) = 1 and t2(¢" (t)+g(t)) = —(n—1)tg'(t).

We shall rely on the Littlewood—Paley theory, decomposing multipliers
into dyadic pieces with localized frequencies. More precisely, we shall domi-
nate M by a series of maximal operators ZZ:S My, , where each kernel K,
is radial with a well localized Fourier transform m,. We establish that Mk,
is of strong type when p = 2 and of weak type (1,1). Then, we get an LP
bound for My, by interpolation, and the range of p in Theorem 4.2 is chosen
for making the series of bounds convergent. For the case p = 2, we mainly
use for my both the decay at infinity and a support property, together with
a precise upper bound for the L?(R"™) norm of a related square function.
When p = 1, we invoke the usual Hardy—Littlewood theorem. Before giving
the proof of Theorem 4.2, we introduce the dyadic decomposition of m, = 7.

Let o be a smooth radial function on R" satisfying for every £ € R”

that
_ )it g <1
wo(§) = { if €] > 2

Let (&) = ¢o(§) — wo(2¢) for € in R™. This function ¢ is supported in the
annulus {1/2 < |¢] < 2}. For every integer £ > 1 we define
o) = o(27°) — po(2'7°) = Ypp-y(€), EERT,

and for every ¢ > 0, we consider the dyadic radial piece me = QMg
associated to the multlpher my. We can check that Ze owe = 1, thus
My = Zz:o my. For every ¢ > 0, we introduce the integrable kernel K, =
m) = ¢, * o and we set

(M, @) = sup | [me(r) 7] @) = swp [ [(0) ) *00 * £ @) = € B,

when f € S(R™). In particular, we have My, f = supr>o|(<p(\)/)(r) * 00 * f]
and

Mg, f = s1>1%|(1j)v)(2_[T) * O () * f|, £>1.
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For every = € R™ and r > 0, we see that (o) * f)(z) = Log((Kg)(r) * f)(x)
and we get the pointwise inequality

+oo

(M) (@) <D (Mg, f)(z). (4.4)

£=0

In a first subsection, we present some useful results on this type of maxi-
mal operators and associated square functions. Then, we shall prove that
each Mp,, for £ > 0, is of strong type when p = 2 and of weak type when
p =1, and we give the proof of Theorem 4.2 in a third subsection.

4.2.1. Maximal operator and square function

Let m(§) be a multiplier that is a bounded continuous function on R™,
vanishing at 0, with |m(§)| = O(J¢|) in a neighborhood of 0. For f in the
Schwartz class S(R™) and for x € R™, set

= ([ ner )"

00 2 1/2
=( /+ [ mtwyfe @ dg\ d“) .
0 n u

We obtain the Littlewood—Paley function ¢;(f) of (2.3) when m(§) =
2m|€] e=2IEl

LEMMA 4.5. — Assume that the multiplier m(§) is a bounded function
of £ € R™, supported in an annulus of the form {a < |§| < ra}, a > 0 and
r > 1. For every function f € S(R™), one has that

lgmfll2@ny < VInr [m| poo ey || fll22@®n) -

Proof. — According to the Fubini theorem, followed by Parseval, Fubini
again and setting finally v = ||, we have

IR CRE
B +OOT pdu [T 917 2dud
= [t = [ imepiferR e

’I"lld /\
<l [ ([ S )FORaE = Il w113 O
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LEMMA 4.6. — Assume that m(€) is of class C' on R"™ and vanishes
outside a compact subset of R™\ {0}. For every t > 0 and f € S(R™), we

have
2

[ mtF© ™€ de] < 200m)@) (g Hla), 7 €R",
where we have set m* (&) = £ - Vm(&) for every £ € R™.

Proof. — For each s > 0 let us set

~

(Gome )() = (T, () = / m(s€)F(€) A E de, @ e R™.

n

We note that

d T imx- * Y imx-
s e h)@) = [ 6T f( ¢ ae = [ miso)Fe e ac.
which allows us to see this quantity as (gm»sf)(x). Since m vanishes in a
neighborhood of 0, one has (gm,0f)(x) = 0, thus

(GNP = [ LoD P ds

=2Re [ @) 5 ()@
=280 [ (o)) (g )0

S

By Cauchy—Schwarz, and bounding the integral on [0, ¢] by the integral on
[0, +00), we obtain that

= 2 (g ) (&) (g ) (). -

LEMMA 4.7. — Let K be an integrable kernel on R™. Suppose that m, the
Fourier transform of K, is of class C' on R™ and supported in an annulus
of the form {a < |§| < ra}, a >0 and r > 1. For every function f € S(R™),
one has that

1Mic F ey = 5w 1) # 117 e
< 2In(r) [[ml| poo ey M| oo @y 1172 (R »
where m*(§) = & - Vm(&) for £ € R™.
Proof. — By Lemma 4.6, we have for every x € R™ and ¢ > 0 that

2
(K + NI = | [ m(e)fle) 7 de|- < 2(0m ) g1} (0).
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This upper bound is independent of ¢, thus

(MicF)(@))* < 2(gnf) (@) (gme F) (@)
and by Cauchy—Schwarz we get

1M F |32 ey < 2Mgm 2y I gme Fllz2n) -

According to Lemma 4.5, we conclude that

2 *
HMKfHLg(Rn) < 21In(r) |m]| poe mmy |m* || oo (mm) ”fH%?(]R")' U

The following proposition is nearly obvious.

PROPOSITION 4.8. — Let K € S(R™) be a radial kernel. For every p in
(1, +00], the maximal operator My is bounded on LP(R™).

One also gets the weak type (1,1) for Mk, but we shall not use it.

Proof. — Since K is a Schwartz radial function, we can find an integrable
function Q, radial and radially decreasing, such that |K| < . It implies that

sup [ [K () = f](z)] <sup (Qq * | f])(x), xR,
r>0 r>0
and €2 being radial and radially decreasing, we classically have

sup (Q * 1) (@) < [1Qllzr ey Mf)(2), @ €R™. (4.5)

By Theorem 0.1, the usual maximal theorem for M, we get the conclusion.
For proving (4.5), it suffices to show that
| N)(@)| <1201 @ny(Mf)(2), =eR" (4.6)

Suppose that Q < 1 for simplicity, and consider for each integer k > 1
the set

Ay ={x e R" : Q(z) > 27"},

This set Ax is a Euclidean ball, and if we define g = Zk>1 27}“1,4,@, we
can check that g/2 < Q < g. We rewrite g as

1a,
=) ari=,
g Z Ay
k>1
with ar > 0 for every k > 1. Since € is integrable, g is also integrable and

R™ R™

k>0
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We have for every x € R™ that

(@ F)@)] < (g% )= Z| ()] dy
k>1 z+Ag
< (Z) (Mf)(@) < 2[[Ql 1 zny (M) ().
k>0

The inequality with constant 1 can be reached by refining the partition,
replacing the values 2% by (14¢) ™", with & > 0 tending to 0. One can also
give a direct proof involving integration by parts, or the Fubini theorem
and level sets of 2. O

4.2.2. Strong and weak type results for Mg,, £ > 1

We begin with the strong type result, when p = 2.

PROPOSITION 4.9. — For every integer £ > 1 and every f € L*(R™) one
has that
[Mrc, || 2 ny < CI27TD 2 fl| 2eeny

where C(n) is a constant independent of £.

Proof. — For each £ > 1, the multiplier my = I/(\g is C'!, supported in the
annulus
I ={¢cR": 271 gl < 241
Applying Lemma 4.7 to K, with m}(§) = £ - Vm(§) and r = 4, we obtain

2 *
HMKszLQ(Rn) < 21In(4) ||m£||L°°(R") Hmz ||L°°(R") ||f||%2(Rn) :
The desired result will be consequence of the inequalities
lmell Loe gy < C1 ()27 72 0 |lmi|| oo (ny < Ca(n)27 /2 (4.7)
that we establish now, with Cy(n) and Cy(n) independent of ¢. Thanks to
well-known properties of Bessel functions (see for instance [2, p. 238]), we
have

d 1
sup t1/2|J,(t)| < 400, and —Ju(t) = = (Jae1(t) = Jap1(t)) . (4.8)
t>1 de 2

The first property follows from the fact that ua(t) = VtJa(t) satisfies a
differential equation u, (t) + (1 +kat™2)ua(t) = 0 for t > 0, hence va(t) :=
(ua(t)? + uh(t)?)/2 satisfies vh(t) = —kat 2ua(B)ua(t) < Kot 2va(t),
yielding va(t) < elral va (1) for every ¢ > 1. The second property can be
checked on the coefficients of the power series ngo(—l)m (m!F(m +a+
1))71(15/2)2” of t7*Ja(t), and when o = n € N, it is even simpler to see

it on the integral expression 27J, (t) = f;" el(tsins—ns) 4o
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Since my and mj are supported in the annulus I, we need only bound
me(€) and mj(€) when 1 < 2671 < [¢] < 271 (we have £ > 1). We then
obtain (4.7) by recalling (4.3) and by applying (4.8) to t = 27|¢| > 1, which
give that

Ime(€)] < ex()|€]~™3Y2 and |mj(€)] < ea(n)] 232 O

We state in the next proposition a crucial weak type estimate for Mg,.

PROPOSITION 4.10. — Let ¢ > 1. For all f € L*(R™) and every A > 0,
one has that

{z e R": (M, f)(@) > A} < C(n) SN flleren
where C(n) is a constant independent of £ and M.

Proof. — We claim that it is enough to prove that for each ¢ > 1, we
have
22
|Ke(2)| < C(n) ———,,, z€R™ (4.9)
(1+ |)
Indeed, since (1 + |z|)~"~! is radial, radially decreasing and integrable, we
will have for all z € R", as in (4.6), that

sup| (K} * £(2)| < Cm) 2 (M) )

The result of Proposition 4.10 follows then from the weak estimate in Theo-
rem 0.1, the standard maximal theorem. We now turn to the proof of (4.9).
We want a bound for Ky = ¢}/ *0, for £ > 1, where o is the uniform probabil-
ity measure on S"~! and ¢} = (z/JV)(Q,Z). Since 1) belongs to the Schwartz
class, we can bound |4V| by a multiple ¢, g of the radial and radially de-
creasing integrable function g(z) = (1+ |x|)~™L. In order to bound K, we
shall prove that

1K) < (- +0)@) = [ gol@=2)da(:)

<OMm)2Y(1 + |z)~ L.

This is easy when |z| > 2, because for each z in S"~!, we have then |z — 2| >
|z| = 1> |z[/2 and 1+ |z| < 2|z|. Recalling go-¢)(y) = 2ntg(2%), we get
Gele) = (90 =)&) < _max, gomoy (@ — ) < 27 (1 + 2]l 2)
< 2n€27(871)(n+1) ‘.’E|7n71 _ 2n+17€ ‘.’E|7n71
< 22n+1 (1 + |:C‘)7n71,
even better than required. Suppose now that |z| < 2. It is enough to prove

that G(x) < C(n)2%, since we have 1+ |z| < 3 in this second case, hence it

—79 -



Dimension free bounds

will follow that C(n)2¢ < [C(n)3" 1241 + |z|)~™~!. For y € R™, we write
y = (v,t) with v € R""! and t real. By the rotational invariance, we may
restrict the study to x = (0, s), s > 0. We write each z € S"~1 as z = (v, 1),
and thus ¢ — z = (—v, s — t). Let 7 be the orthogonal projection of R™ onto
the hyperplane of vectors (w,0), w € R"~L. Since g(2-+) is radial and radially
decreasing, we see that gy (7 —2) < g2-¢)(To(x—2)) = g(2-¢)(—v,0). This
yields

Go(w) = Ge(0, 5) = /S ga-0)(@ — 2)do(z)

< [ seomlz=2)det)
:/ gi2-1)(=v,0)dv(v),
Rnfl

where v is the projection on R”~! of the probability measure 0. We have
that 5 1 1

dv(v) = — A< gy = C’(n)i{lv‘d} dv

1—1o? 1—1of?

where s,,_1 is the measure of S"~! recalled in (1.34). We cut the integral
with respect to v into two parts, according to |v| < 1/2 or not. In the part E;
corresponding to |v| < 1/2, we have 1 — |v|? > 3/4, hence

4

E; < fC(n)/ 92—y (v,0)dv < 2C(n)/ 92—y (v,0)dv.

3 lu|<1/2 Rn—1
We are integrating on R™~! the function g(2-+) that is normalized for a
change of variable in dimension n. This implies that

E < 2O(n)2’32<”*1>4/

g(2%,0)dv = 20(71)2[/ g(u,0)du,
Rnr—1

Rn—1
a bound of the expected form. In the second case, we have |v| > 1/2 and
9(272)(,0’0) — 2n€(1 + 2€|,U|)—n—1 < 2nZ2—(Z—1)(n+1) < 271

It follows that the integral F limited to |v| > 1/2, with respect to the
probability measure v, is bounded by a function of n. O

4.2.3. Conclusion

Proof of Theorem 4.2. — Thanks to the results of the previous subsec-
tion, the proof is easy. Using the Marcinkiewicz theorem (see Zygmund [85,
Chap. XII], or [64, Theorem 5.60]), we shall interpolate between the weak
type (1,1) and the strong type (2,2). We apply Proposition 4.9, Propo-
sition 4.10 in RY and interpolation with parameter § = 2 — 2/p, where
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1<p<2 Forall £>1andall fe LP(RV), since the chosen interpolation
parameter 0 satisfies (1 — 0)/1+6/2 = 1/p, we have

—142/p (N — 2-2/
[Mic, £ 1oy < (1, 2,p)C(NY (2°) 7P (27 22 5 £l ey
where (1,2, p) is independent of N and £. We have thus obtained that

HMKszLp(RN) < C'(N, p) 2 V/p=(N=1)] LNl ey -

For p > N/(N — 1), the series >, 2¢ [IN/p=(N=1I converges. Moreover, we
know by Proposition 4.8 that My, maps LP(R™) to itself for all 1 < p < +o0.
Therefore, in view of (4.4), we obtain that M is bounded on LP(RY) for
every real number p such that N/(N —1) < p < 2. For p > 2, we proceed by
interpolation between the L2(R™) case and the trivial L>(RY) case. O

5. The L? result of Bourgain

In an article published in 1986, Bourgain has generalized the L? case of
the Stein result presented in Section 4. This L? case for Euclidean balls only
required Proposition 4.9 and the “method of rotations”. The maximal oper-
ator Mo associated to a symmetric convex body C was defined in (0.3.M).

THEOREM 5.1 (Bourgain [9]). — There exists a universal constant ko
such that for every integer n > 1 and every symmetric convex body C C R",
one has

VfeL*R"), [Mcfllaen < r2llflleen -

The rest of this section is devoted to the proof of this maximal theorem,
together with the description of the general framework concerning maximal
functions associated to convex sets. We shall in particular establish some
geometric inequalities for log-concave distributions that will be applied in
the subsequent sections.

5.1. The general setting

Let C be a symmetric convex body in R™. Throughout these Notes, we
let K¢ be the density of the uniform probability measure puc on C, and m¢
denotes the Fourier transform of K¢ or of pe. Hence, we have

ﬁlm), duc(z) = Ko@) de, me(€) = Ko(€) = o (é)

for all z,§ € R™. Notice that Kxc = (Kc)(y) and mac(§) = me(AE) for
each A > 0 and ¢ € R”. We already know that the maximal operator M¢

Kc(x) =
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acts boundedly on LP(R™), 1 < p < 400, but the bounds we have so far
depend on n.

This L? result comes from the weak type estimate (0.4) given by the Vitali
covering lemma. Except for the value of the constant, it is clear that this
weak type (1, 1) result for M¢ is optimal, as we can see by taking for f the
indicator 1¢ of the symmetric convex body C' C R"™. Let C have volume 1,
so that || f||1 = 1. For any given r > 0 and = € rC, we see that z+ (r+1)C
contains C, therefore

(Mc f)(z) = [(r + 1)C|71/ . lo(y)dy=[(r+1CI™ = (r+1)7"
z4+(r+1)C

and {Mcf > (r+1)""} D rC. Every value c in the interval (0,27 "] can

be written as ¢ = (r + 1)™" for some r > 1, hence

—n =", 2"
vee 027, |Mef e > o= T s 20

The maximal function Mc1le is not integrable. It belongs to the space

L'°°(R™), the so-called weak-L' space, and nothing better: any bounded

radial and radially decreasing function belonging to L''°°(R") is smaller

than a multiple of M¢c1c.

The maximal function M¢ f is given by M¢ f = sup, (Kc)(t) | f|, where
(Kc)(t) is the dilate from (2.7). More generally, let K be a probability density
on R™, resp. an integrable kernel K. We define the maximal function Mg or

Mg f =sup Ky * |f|, resp. Mg f = sup ’K(t) *f| .
t>0 t>0

If A is linear and bijective on R™, we can see that the maximal operators
M¢ and My have the same norm on LP(R™). For a function f on R™ we
define f(A) by

VzeR™, fay(z)=|det A" f(A " z).

We have |f|(A) = ‘f(A)‘a (sup; fi)(A) = sup; (fi)(A), and (f*g)(A) = fa) *
g(a) since

[ et A2 (A7 (@ y)g(A7 )y = et A7 [ f(A7e—2)g(z) dz.

It is clear that (f(A))(t) = faa) = (f(t))(A). If S4 is the mapping f — f(a),
then S, = |det A|'4S 4, with ¢ conjugate to p, is an onto isometry of
LP(R™).

The density K4c¢ is equal to (Kc)( a)- For every integrable kernel K
on R", we see now that K and K(4) produce maximal functions that are
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conjugate by the isometry Sy , of LP(R™), and have therefore the same norm
on L?(R™). We have
Miciay fiay = sup| (K ) ) * fay| = sup|(Kw) ) * fi)|
= sup | (K * = (M, .
t>Ig|( ® * Pyl = (Mi f)4)

It follows that M 4 © Sap = Sapo Mg. This remark allows us to assume
that C is in isotropic position: one says that a symmetric convex body C' is
in isotropic position if the quadratic form

Qc:w@c(s):/cwxfdx, ceR",

is a multiple of the square & - [£|? of the Euclidean norm on R™. Since Q¢
is positive definite for every symmetric convex body C, we can bring it to
the form & — M|£|?, A > 0, by a suitable linear change of coordinates. For
an isotropic symmetric convex set Cy of volume 1, one defines the isotropy
constant L(Cy) by

L(Cy)?* = / (e1-x)*dz, and one has then / (€-z)?da = L(Cy)?[¢]?
Co CO

for every £ € R™. For C, isotropic of the form C, = rCy, r > 0, we get
|C| = r™ and for every & € R™, we have

/ (&- z)* K¢, (x)dx = \Fl*| /C* (&- x)2 de =r—" /Co(f Srw)?r" du
= r’L(Co)*[¢]* = |C.|*/"L(Co)* ¢

Let A linear and invertible put C, in another isotropic position AC, so that
Qac, (&) = MEJ? for some A > 0 and all £ € R™. Letting v = A\|AC,|~! we
get

(5.1)

Vel = | (€ vPKac )y = [ (€ AnPKe () da

= |CL[¥" L(Co)? AT,
hence A is a multiple pU of an isometry U, |det A|] = p" and v =
|CLP™L(Co)?p? = |ACL /" L(Co)?, thus |ACL| ™2™ [5,.(0-y)* K ac. (y) dy =
L(Cy)? for every § € Sm1L.

When C s isotropic, it follows that L(C) := L(Cy) is well defined by

L(C)? = |C|‘2/”/n(9 22 Ko(x) da

(5.2)
= |C’|‘1‘2/"/ 0-2)*de, 6ecS" .
C
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A well-known open question (see [58]) is to decide whether the isotropy
constant is bounded above by a universal constant valid for all symmetric
convex bodies and every n. The best upper bound that is known so far, due
to Klartag [49] improving Bourgain [12], is L(C) < xn'/* in dimension n.
It is known that L(C') is bounded below by a universal constant. However,
neither this known fact nor the unsolved problem will interfere with the
treatment of the maximal function problem.

Clearly, K¢ and (K, c)( N have the same maximal function for every A > 0,
so we can choose any multiple among isotropic positions of C. Here, we do
not follow Bourgain [9] who chooses the isotropic position of volume 1, we
prefer the isotropic position such that uc has covariance matrix I,,. We thus
assume that

voes ! /"’(0~x)2duc(x)—Ié|/c(9~x)2dx—1. (5.3)

This means that the one-dimensional marginals of puc, images of pc by
x> 0-xfor # € S"~1 have all variance 1. We shall say in this case that C
is isotropic and normalized by variance. We have then in addition that

/ |z|?dz =n|C| and |C|=L(C)™".
c

If we look for a (centrally symmetric) Euclidean ball in R™ normalized

by variance, its radius r = r, y must therefore satisfy for g, dt =
T n—1 o e

nfo " sp—1 dt, giving

oy =Vn+2. (5.4)

In the same way, we can bring to isotropy a symmetric probability density
K on R™, i.e., such that K(—z) = K(z) for € R", by a linear change to
K (4) for some A linear and invertible. When K is isotropic, there exists
o > 0 such that

[ € oK @ds=oef, e,

which means that all one-dimensional marginals of K have the same vari-
ance o2. We shall then say for brevity that K is isotropic with variance o2.
The dilated density K(i/,) :  + 0™ K (ox) is normalized by variance. For
example, the standard Gaussian ~,, in (1.17) is normalized by variance. For
the study of maximal functions, we can always assume that K is normalized

by variance.
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5.2. On the volume of sections

We have seen in (2.14) that the Fourier transform m of a kernel K €
L'(R™) can be expressed as

m(ug) = /RWK(S) e-2multl gy e R, £ € R™\ {0},

where one has set § = [£]71€ and py(s) = @9,k (s) = [, K(y+s6)d" 1y for
every s € R. When K is the kernel K¢ correspondlng to a symmetric convex
body C, the function ¢y is the “normalized” function of (n — 1)-dimensional
volumes of hyperplane sections parallel to 8+, defined by

) |C N6+ +s0)|
wo.c(s) = , Ko(y+s6)d" 'y = ]

We know by the Brunn-Minkowski inequality [37, Theorem 4.1] that g ¢
is log-concave on R. Indeed, a form of this inequality states that

(1= NA+AB| > [A]'7*B]*

—1

whenever A, B are compact subsets of R” and A € [0,1]. Recall that a
function K > 0 on R™ is log-concave when

K((1—a)zo+az1) > K(zo)' " *K(z1)*, x0,21 € R”, a €[0,1],
in other words, when log K is concave on the convex set {K > 0}.

More generally than Brunn—Minkowski, the Prékopa—Leindler inequal-
ity [37, Theorem 7.1] implies that the function ¢g x defined in (2.14) is a
log-concave probability density on the real line if K is a log-concave proba-
bility density on R™. The statement of Prékopa—Leindler is as follows: if « is
n (0,1), if fo, f1, fo nonnegative and integrable Borel functions on R™ are
such that

fa((1 = @)z + awy) > folwo)' ™ fi(z1)®
for all zg,z; € R™, then

- falz)dz > < - fo(x) dz)l_a( . fi(x) dx)a.

Given § € S™71, 50,51 real and letting f;(y) = K(y + s;0) for y € 6+ and
J =01, 8, = (1 —a)sp + as; and f,(y) = K(y + s.f), we obtain that
vo,x is log-concave by applying Prékopa-Leindler on §+ ~ R"~! to these
functions fy, f1 and f,. Similarly, one shows that convolutions of log-concave
densities are log-concave. Without more effort, Bourgain’s proof also gives
the following theorem.
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THEOREM 5.2. — There exists a constant ko < 140 such that for every
integer n > 1 and every symmetric log-concave probability density K on R™,
one has

v f S LQ(RR), ||MKf||L2(Rn) < Ko ||fHL2(Rn) .

We turn to the proof of the main inequalities about log-concave functions,
which will be used throughout our Notes. We introduce the right mazimal
function f} of a locally integrable function f on an interval [r,+00) of the
line by setting

@ =swpd [irenas, 2z (5.5)

t>0 U
One sees that f < f* < 2Mf, where f* is the uncentered maximal function
from (0.2), and f*(z) > |f(x)| at each Lebesgue point x of f, hence almost
everywhere. When v is nonnegative, integrable and decreasing on [z, +00),
then

[ iemveas< ([T vsas) . 5.6

xr
One can get (5.6) as in (4.6), by approximating ¢ by a combination of
functions t,;ll[x’zﬂk]. We can also define in a similar way a left maximal
function f;.

LEMMA 5.3. — Let ¢ be an integrable log-concave function on an inter-
val [1,400), let p belong to (0,+00) and let

+oo +oo
S = [ elds, S = [ -nre)ds.
Then S,(7) is finite. Furthermore, assuming S,(T) > 0, we have

P T(p+1)Sp(r)P*! P *(\P So(r)PH
(1)P < 5. 07) , maxp(s)” > gp(r)" > CEBGH
Proof. — We have ¢ > 0 by definition of log-concavity. We assume
Sp(T) > 0, hence Sp(7) > 0. We may suppose 7 = 0 by translating and
So = So(0) = 1 by homogeneity. We begin with the left-hand inequality
in (5.7), assuming a := ¢(0) > 0. Consider the log-affine probability density
P(s) = ae™* on [0,4+00), chosen so that ¥(0) = ¢(0). By log-concavity,
the set I = {¢ > ¢} is an interval, such that 0 € I C [0,+400). Since ¢
and v both have integral 1 on [0, +00), the interval I is not reduced to {0}.
If T = [0,+00), the densities are equal and

“+o0 +oo
Sp 1= /0 sPp(s)ds = /o sPY(s)ds =

(5.7)

1 [t
pt (as)P e~ ads
ar Jo

T(p+1)

aP
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Otherwise, the interval I is bounded, let sy := supI > 0. We have ¢ < ¢
on [0,s0) and ¢(s) < ¥(s) when s > so, implying that S,(0) is finite. The
antiderivative I of ¢ —1) vanishing at 0 is first increasing, then decreasing on
[0,400), and tends to 0 at infinity because ¢ and ¢ have equal integrals. It
follows that F' is nonnegative on [0, 4+00). Recalling that 0 < ¢(s) < ¥(s) at
infinity, we know that |F'(s)| is exponentially small at infinity, and integrating
by parts we obtain

+oo 400
/ s (p(s) = ¥(s)) ds = —p/ sP"1F(s)ds < 0.
0 0
One concludes the first part by writing

+oo +o0o
Sp = /0 sPp(s)ds < /0 sPY(s)ds = 1) .

aP
For the right-hand inequality in (5.7), we let b = ¢%(0) > 0 and consider

the probability density 1(s) = b1jg 1 (s) on [0,+00). Let F' be the anti-
derivative of ¢ — 1 vanishing at 0. When 0 < x < 1/b we have by definition
of ¢*(0) that

F(x 1 [* 1 [*

A2 [ - venas= (5 [Cewas) v <o.

0 0

€T x x

We see that ¢¥(x) = 0 < ¢(x) when & > 1/b. It follows that the function F
is < 0 on [0,1/b], then increasing on [1/b, +00), tends to 0 at infinity, thus
F is < 0 on the half-line [0, +00). Arguing as before, we have consequently

+o0 1/b 1
S:/ sP sds}b/ sPds = ————. O
P 0 #(s) 0 (p+1)br

For every 6 € S™~!, the function ¢y ¢ associated to a symmetric convex
set C' is even, log-concave and has integral 1 by definition. We shall thus be
in a position to apply to it the following Corollary 5.4.

COROLLARY 5.4. — Suppose that ¢ is a symmetric log-concave probabil-
ity density on R and let 0* := [ s?¢p(s) ds. One has that
1 1
— < 2 - 2.
1252 S PO =maxe(s)” < 57
Proof. — Since ¢ is even and log-concave, we have ¢(0) = maxser ¢(s).
We apply Lemma 5.3 with p = 2, 7 = 0, and observe that Sy(0) = 1/2,
S5(0) = 02/2. O
The preceding result is sharp, as one sees with the two examples
s)=—¢ s s)=——=1 s), seR. 5.8
eol) = 219 = 7= 1y (9 (5.8)
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The next corollary is not very sharp, but easy to deduce from Lemma 5.3.
When the function ¢ > 0 is defined on the line and p € [0, +00), we set

+o0 T
S;_(T) = / (s —1)Pe(s)ds, Sp_(T) = / [s —7[Pp(s)ds.

— 00

COROLLARY 5.5. — Let ¢ be a centered log-concave probability density
on R and let o? := [ s*¢(s)ds. We have that
4

1 ©;(0)? + ©x(0)? 2
< < < — .
Mg2 S 2 S maxe(s)” <

Proof. — We begin with the rightmost inequality. Let us fix 7 real. Since
@ is a centered probability density, one has that

SS(r)+ S5 (1) :/(8—7)2<,0($)ds:02—|—7'2 >02, TER.
R
Up to a symmetry around 7, possibly replacing the function ¢ by s —
©(27 — s), we may assume that Sy (7) > 02/2. We have Sf(r) =
f:roo ©(s)ds < 1 since ¢ is a probability density on R, thus by Lemma 5.3
with p = 2 we get
255 (m)3 4
P(T)? < = < o
Sy(r) ~o?
Since 7 is arbitrary, we obtain the right-hand inequality. Let us pass to the
other inequality. By Lemma 5.3 with p = 2 on the intervals (0, +o00) and
(—00,0), we conclude using S5 (0) < o and Sy (0) + Sy (0) = 1 that
SF(0)2 S50 _ SF(0)2 45503 1
LEMMA 5.6. — Let ¢ be a symmetric log-concave probability density

on R, with variance o2. The function ¢ decays exponentially at infinity,
with a rate depending on its variance and satisfying

VseR, op(os)<min(2e /211 e lsl)

Proof. — Without loss of generality, we may assume that o = 1. It follows
then from Corollary 5.4 that 1/(2v/3) < a := (0) < 1/4/2. Consider the
log-affine function 15(s) = ae=?% on [0, +00), with 8 > 0, satisfying 15(0) =
©(0). If we have ¢(79) < ¢g(7) for some 75 > 0, it implies by log-concavity
that ¢(s) < ¥s(s) < e P* /v/2 for s > 75, and in order to obtain a bound for
@ everywhere, we can apply for the values 0 < s < 7y the obvious inequalities

o) < p(0) = a < a9 < (7 VB e
For any 79 > 0, we obtain since ¢ is even that

(1) < Us(10) = pls) = p(ls]) <PVl e (5.9)
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On the other hand, if ¢(s) > 93(s) for every s € (0, 7], then

+o0 T a BT
1/2 = / s2p(s)ds > / s%pp(s)ds = —3/ u?e " du
0 0 B Jo

BT
a —uy, 2 1 —BT(p2. 2
=—|—e"“u"+2u+2 > ——F(2—¢ T+ 2674+ 2)).
o e )2 sy e 2 2)
Equivalently, when ¢(s) > ¢g(s) for every s € (0, 7], we get that
e PT (627'2 + 2681 + 2) >2-+/383%. (5.10)

Suppose that 4% < 2/v/3. Then (5.10) cannot be true if 7 is large. For
every such 3, there exists 7o > 0 such that ¢(79) < ¥g(70) and by (5.9), there
is a constant ¢(f) such that p(s) < ¢(8)e ?l*l on the line. For numerical
purposes, it is more convenient to express this as follows. If 0 < v/3% < 2
and if

e (a2 + 20 +2) <2 -3, (5.11)
then x > 0, and letting xo(8) = z, we know that ¢(s) < ¥s(|s|) < e Plsl /v/2
when |s| > 79(8) := x0(8)/5, and ¢(s) < ¢(B) e~ PI#l for every s € R by (5.9),
with
e(B) = PP V2 — oro(@)—In V2 (5.12)
An almost optimal z satisfying (5.11) can be found numerically. We have for
example that o(s) < 2.218 e~ I*I/2 for all s when 8 = 1/2, with 2(0.5) =
1.143. We also find ¢(1) < 94.295 with a choice xo(1) = 4.893. We can then
improve the first estimate given by (5.12) for § = 1. When |s| < zo(1) =
T0(1), we write

o(s) <2218 e 1*1/2 = 2.218 el*l/2 15l < 2,218 ™ (M)/2 o715l < 9667 5I .

More generally, if we know a modified bound ¢,,(81) such that ¢(s) <
cm(B1) e 118l for every s and if ¢(s) < e=%215! /\/2 when |s| > 79(62), with
b1 < Ba, then for |s| < 79(f2) we can write

0(5) < em(Br) e P11l = ¢, (By) eP2=A1)lsl g=Bzls]
< Cm(ﬁl) (B2—PB1)T0(B2) 6*52| \

so that

em(B2) < Inax(e(ﬁ2 B1)7o(B2) em(B1), 1/\[) (5.13)
The following table displays admissible values for z¢(8), 70(8), then the cor-
responding rough bound ¢(5) from (5.12), and the modified bounds ¢,,(5)
obtained step by step applying (5.13), by dividing the interval [0, 1] in ten
equal segments, beginning with c(0) = ¢,,(0) = ¢(0) < 1/v/2 < 0.708.
We have replaced each higher precision value of x by the upper bound
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xo(8) = [1000.2]/1000, and used this replacement consistently in the fur-
ther calculations of 74(8), ¢(8) and ¢, (8).

B 960(5) 7-0(6) C(ﬁ) Cm(ﬁ)
0.0 0.000 0.000 0.708 0.708
0.1 0.182 1.820 0.849 0.850
0.2 0.381 1.906 1.036 1.029
0.3 0.603 2.010 1.293 1.259
0.4 0.854 2.135 1.662 1.559
0.5 1.143 2.287 2.218 1.960
0.6 1.484 2.474 3.119 2.511
0.7 1.903 2.719 4.742 3.296
0.8 2451 3.064 8.203 4.478
0.9 3.255 3.617 18.328  6.430
1.0 4.893 4.893 94.295 10.489

We obtain the announced bounds when 5 = 1/2 and 8 = 1. One can obvi-
ously refine the previous argument and show that

¢(s) < c(0) exp (/01 70(8) dﬁ) eIl < % exp (/01 70(8) db’) e ll.

We may get in this way that ¢(s) < 9e~ 15, An exact estimate could perhaps
be obtained by an extreme point argument, as in [35]. Some numerical ex-
periments suggest that for every 8 > 0, the maximum on R of s — e®l*l o (s),
for ¢ symmetric log-concave probability density with variance 1, occurs for
one of the two examples g, ¢1 mentioned in (5.8). The example ¢o(s) shows
that e”l*l o (s) is unbounded when 8 > v/2 and ¢ = 1. |

Our next estimate is so poor that it does not deserve to be given explicitly.

COROLLARY 5.7. — There exists a numerical value k > 0 such that for
every centered log-concave probability density ¢ on R with variance o2 = 1,
one has

VseR, o(s) <wke /=,

Proof. — Since ¢ is centered, we know that f0+°° sp(s)ds =
ffoo |s|¢(s) ds, and we can thus set S := S;7(0) = S; (0). For p # 1, let us
write S instead of Si(0). We have that S5, 5; < 0% = 1. By Corollary 5.5

and Lemma 5.3 with p = 1, applied on the intervals [0, +00) and (—o0, 0],
we get

(S0)? (50)°
> > > >
2> max o(s) > 25, 2> max o(s) = 25, "
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It follows that 851 > (S;)? + (S5)? = 1/2 s0 S; > 1/16. We also need a
lower bound for SSE. Let k1 = 16. By Cauchy—Schwarz we have

RS STSS; 8y <S5, kTS STSSTSE ST
hence Sy, S& > K;Z. Suppose that the maximum of ¢ is reached at sg > 0.
Then ¢ is non-decreasing on (—oo, s9] and by Lemma 5.3 with p = 2 we get

(S0 ) _m®

4> p(0)* = max p(s)% > > g =2 - (5.14)

s<0 355
The symmetric probability density ¢i1(s) = (255 ) t¢(—|s|) on R is log-
concave, has variance o = S5 /Sy < k3. By (5.14), we have (S, )3/S, < 12.
By Lemma 5.6, we know that

©1(s) < 1 e~ lsl/ov and o(s) < 22 ((50)3> i e~ lsl/on < 77 o~ lsl/ma
g1 2
for s < 0. Let us pass to the positive side. We let ¢ be equal to ¢(sg) on [0, so]
and to ¢ on [sg,+00). Then 53' > 5’3' > /{1_2 and since @_1 < p(0) <
o(x) < @(sp) < 2 when 0 < x < sg, we have ¢ < 2k2¢ on [0,+00). The
symmetrized function ¢; corresponding to & satisfies 02 = S5 /S5 < 2k2ky.
Also, we know that (§J)3/§; < 3max @(s)? < 12. The rest is identical to
the negative case. O

The next lemma is easy and classical. The (total) mass of a real valued
(thus bounded) measure u on (Q, F) is defined by setting ||u||1 = ™ (Q) +
p(Q) = |u|(Q), where p = p™ — p~ is the Hahn decomposition of p as
difference of two nonnegative measures, and |u| = g™ + p~. On the line or
on R™ we have

= sop {| [ wan
R

and when p has a density f, one has that || f(z)dz||y = || f[| 11 (&)

:wenﬁwwww<1}

LEMMA 5.8. — Let p be a real valued measure on R and let m(t) = ja(t)
be its Fourier transform. For every t € R we have
Im ()] < el - (5.15a)

If dp(s) = (s)ds with 1 integrable, then m = fi = ¥ and |m(t)| <
91 L1y -

Let us further assume that [;(1+ |s])d|u|(s) < +oo. Then m is C' on
R and

im/(t) = 27T/ se 2™t du(s),
R

so im/ is the Fourier transform of the real valued measure 2ws du(s).
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Let v be a real valued measure on R and let ¢(s) = v((—o0, s]), for every
s € R. The measure v is the derivative of ¥ in the sense of distributions and
assuming 1 integrable, we have

intzZ(t) = 2i7rt/ Y(s)e 2™ ds = / e 2™t du(s), (5.15b)
R R

so ZithZ(t) is the Fourier transform of the derivative v of 1.

Let j, k be nonnegative integers. Suppose that 1 is of class C*~1 on the
line, with a kth derivative ¥) in the sense of distributions that is a bounded
measure v, on R, and that lims o0 (s) = 0, [5 |s]? d|vg|(s) < +oo. Then
m is C7 and

(@rlt))* [m@ ()] < 2n)7 || (70(s) ], - (5.15¢)
Consequently, for t # 0, we have that

) DRSS <k>ﬂ ik [)
mwi< S S (3 g L el as

i=(k—j)+

)k :
(2t|,2 /R|5|Jd|1/k|(s). (5.15d)

+

In the line above, one can replace [ ||’ d|vy|(s) with [; [s|7 [0 (s)| ds,
when t admits a derivative 9*) and duy(z) = ¢ *) (z) da.

Proof. — The first inequality (5.15a) is obvious. Assuming that
Jz |sl d|u|(s) is finite, we write

m(t) _ / ef2i7rst d,u(s) = / 672i7rst d/fL(s) o / ef2i7rst d/dLi(S),
R R

R
and we obtain by the dominated convergence theorem that

m'(t) = —Ziw/ se 2™t qu(s).
R

If v in (5.15b) has the form dv(x) = ¢'(z) do with 1" a true derivative, we
use integration by parts, otherwise we use Fubini’s theorem for v+ and v—.
We get

Ziﬁt/w(t) e 2imst ds:/e*m”t dv(s).

R R

The verification of (5.15d) is left to the reader. Notice that by (5.16), the
hypotheses imply that [; |s|"*7=%|)()(s)| ds < +oo when (k — j)* <i < k.
Indeed, if g“+1) is integrable on [0, +00), then ¢g¥) tends to a limit L at

infinity and if g tends to 0 at infinity, it follows that L = 0, for example by
the Taylor formula. O

The next lemma is straightforward.
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LEMMA 5.9. — Let v be a nonnegative measure on (0,+00) and a > 0.
One has

a/0+oo s* ' ([s,+00)) ds = /0+°O s*du(s).

Let F be a function on (0,+00) such that |F(s)| < f;oo dv(s) for s > 0.

One has
+oo +oo
oz/ s F(s)|ds < / s*du(s).
0 0

Suppose that the function g is differentiable on R, with lims_, 1o g(s) = 0
and g' integrable on the line. It follows that

o / 15127 |g(s)|ds < / 151219/ (s)] ds . (5.16)

If in addition g is even and non-increasing on [0,+00), one has

/R 151°1¢'(5)] ds = a / s1°1g(s)ds, and / 1¢/(s)] ds = 29(0)

Proof. — The first assertion is an immediate consequence of Fubini, be-
cause

+o0 +oo
a/ s 'w([s,400)) ds = a// Liocs<ty s* M dr(t)ds = / t*du(t),
0 0
with integrals finite or not. The remaining facts are left to the reader.
For (5.16), use dv(s) = |g¢’(s)| ds. O
We arrive to the main result of this section.

PROPOSITION 5.10 ([9, §4]). — Let K. be a symmetric log-concave prob-
ability density on R", isotropic with variance o*. Let my. be the Fourier
transform of K;.. For every & € R™ one has that

mV20lg|lmie(§) <1, [1=mw(§)| < 2molé], |§-Vme(§)| < 2. (5.17.B)
The middle inequality follows from the fact that for every 0 € S™1, one has
|6 - Vm(t0)] < 2mo, teR.

Remark. — These inequalities are valid for m¢, when C' is a symmetric
convex body, isotropic and normalized by variance. The case of convex bodies
is the one given by Bourgain, but the proof is the same in the log-concave
case.

Proof. — We have seen in (2.14) that for # € S"~! and ¢ real, one can
write

mye(tl) = / ©o(s) e 2imst (g
R
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where (g is obtained by integrating K. on affine hyperplanes parallel to 6.
It is enough to prove the case 0 = 1. We know that ¢y is log-concave ac-
cording to Prékopa—Leindler, it is even, has integral 1 and variance 1 by
hypothesis. By Lemma 5.6, one has that og(s) < 2e~15/2 for every s € R,
but the desired estimates do not depend on this exponential decay, which
ensures however absolute convergence for the integrals that follow. For ev-
ery t, by (5.15d) with j = 0, kK = 1 and since @y is even and decreasing on
(0, +00), we have using Lemma 5.9 that

©o(0)
mt|

: 1
my.(t0 2’/(,09 5) e 2imst ds‘g/ wp(s)|ds =
mi(t8)] = [ als) it L1

The function @y has variance 1 by our normalization assumption, and ac-
cording to Corollary 5.4 we have the upper bound ¢g(0) < 1/4/2. Writing
¢ = €0, it follows that mv/2[&] |m.(€)] < 1 for every ¢ in R™.

Notice that our writing is not correct, because py might be discontinuous
at the ends of its support, so that ¢} is a measure in that case, with two
Dirac masses at the end points of the support. This happens for example
with ¢, when C' is polyhedral and # orthogonal to a facet. We leave the
easy changes to the reader.

Given 0 € S*1, the derivative of t — m.(t0) is expressed by

0 - Vm(th) = /(fins)gag(s) e 2Tt (s,
R

and

1/2
|6 - Vm,.(t0)| < 27r/ [s|po(s)ds < 271'(/ s2pg(s) ds> =2,
R R
hence |1 —m(§)] = |mic(0) — m(1€]0)] < 2m|€|. We see also that

t0 - Viny(t0) = /

(—2imt)spg(s) e 2™t ds = — / (8909(5)),672”‘-3)& ds.
R

R

We estimate the two parts coming from (sgag(s))/, first

‘/@0(5) ef2i7rst ds
R

and as @y is even and non-increasing on [0, 4+00), we have by Lemma 5.9
that

g/cpg(s)ds:l,
R

’/sdg(s)e_m”t ds </|s<p’9(s)\d8:/<pg(s)ds=1.
R R R

We conclude that [t6-Vm,.(t0)| < 2 and get [£-Vm(§)| < 2 for every £&. O
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LEMMA 5.11. — Let K;. be an even log-concave probability density on
R™, normalized by variance, and my. its Fourier transform. For every 6 €
S™=1 one has

j=20, teR,

1
-mlc(te)‘ < e m )

where 0; . is a ungversal constant, estimated at (5.18).

Proof. — We know that m.(t0) = g(t). From Lemma 5.8, (5.15d) with
k =0, it follows that

\mlc (t6) \ @O0 < @ [ Isteals)ds
R

de’
and with k =1,
271' j—1 . - .
Y | < B / 5P~ Lpp(s) ds + / 157 () ds ).
dts It| R R

The function ¢y is a symmetric log-concave probability density on R, with
variance 1. By Corollary 5.4, we have for 5 = 0 that

(1+ 2 t]) [mc(t0)] < /(%(U) +lph () du < 1+209(0) <1+ V2.

For j > 1, we have [p |ul?|pp’(u)|du = j [, [ul’ " pp(u) du by Lemma 5.9,
and

dJ . . .
(1+ 2nlt)) ‘ mlc(tﬂ)‘ < (2m)! / (Jul + 25w ~) o (u) du
R
The function ¢y satisfies [;, s?pg(s) ds = 1, implying that
S0 <1+V2<3; 6.<67m; g0 <2072, (5.18a)
We know by Lemma 5.6 that og(s) < 11e~!*l. This implies for j > 2 that

. +w . . .
§ie < 22(2@]/ (s7 +2js7 1) e " ds = 66(2r)T(j +1).  (5.18b)
0 O
Remarks 5.12. — One gets [; [s|7¢g(s)ds < 39/2T(j + 1) by applying
Lemma 5.3 and Corollary 5.4; Lemma 5.6 yields the bound 22T'(j+1), better
when j is large.

If the log-concave probability density K on R™ is normalized by variance
but is simply centered, then g i is log-concave and centered for each 6, and
satisfies the exponential decay of Corollary 5.7. If ¢g i reaches its maximum
at sg, then

/ 15191, (5)] ds < 2150/ 0.1 (50) + 7 / 159 9.1 (5) s
R R
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admits a universal bound x;. Lemma 5.11 remains valid in this extended
case, with other constants (J;);>0 for which we do not have satisfactory
explicit expressions. Fradelizi [34, Theorem 5] extended the LP(R™) result of
Theorem 6.2 (Bourgain, Carbery) to centered bodies C' in R™, not necessarily
symmetric (unluckily, the word “centered” was forgotten in the statement
given in [34]).

If C is an arbitrary convex body, then M¢ is bounded on LP(R"™), p €
(1, +o0], but for each fixed n > 1 and p < +o0, there is no uniform bound
for the family of arbitrary convex bodies in R™ (if n = 1, examine Mc¢ f
when C =[1,1+¢], f = 1¢ and € — 0). In a somewhat related direction,
it is known that the LP(R"™) norm of the uncentered operator in (0.2) is
> C} for some Cp, > 1, when 1 < p < +o0 [40].

COROLLARY 5.13. — Let K. be a symmetric log-concave probability den-
sity on R™, isotropic with variance o2, and let my. be its Fourier transform.
For every £ € R™ and j > 0 one has that

@ ()] <o o¢p teR (5.19)
mic X Oje T 57 , .
de ! 1 4 2m|tog]
where d; . is the universal constant of Lemma 5.11.
Proof. — The result is obvious when £ = 0, otherwise we apply Lem-

ma 5.11 with § = |¢|7'¢ to the normalized Fourier transform N(£) =
my.(§/0), obtaining thus

i d Y ol
& B P LA
ap "el8) = G N(Uo&lo) = o8&l g5 N,y < O5e T o g
0
5.3. Fourier analysis in L?(R")

LEMMA 5.14 (Bourgain [9]). — Let K be a kernel in L*(R™) and assume
that its Fourier transform m is C' outside the origin. For every j € Z, define

aj(m)=  sup  [m(§)| and Bj(m)=  sup  [£-Vm()].
27 -1g|<2i+1 2i-1g|€]<2i+1L
IfTp(K > jez Vaj(m) /aj(m) + B;(m) < +oo, then the mazimal op-

erator MK associated to K is bounded on L*(R™). More precisely, one has
that

1M1 £l oy = s 1) 5 1] gy < 208U I 2y S € LART).

We shall simply write a; = «;(m) and §; = fj(m) in the rest of the
section.
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Remark. — Clearly, we have that
S Vi Vai+ 8 <Y o+ Y VaiBy,
JEL JEL N/

and each of the two terms in the right-hand side is less than the left-hand
side. Bourgain employs both expressions as definitions of I'g(K), one in [9]
and the other in [10] or in [13]. The convergence of the series of a;s when j
tends to —oo implies that m(§) tends to 0 when & tends to 0, thus m(0) = 0,
which means that the integral of K on R” is equal to 0. This lemma will not
be applied to K¢ or K., but typically, to the difference of two kernels with
equal integrals.

Proof. — We shall give a proof less rough than Bourgain’s, relying on the
tools introduced in Section 4. We consider a C'*° function 7 on R such that
nt)=1if t<1, nt)=0if t>2, and 0<n< 1.

Next, we set p(t) = n(t) —n(2t) for t € R. We see that p vanishes outside
[1/2,2]. Also, p(t) =1 —n(2t) on [1/2,1] and p(t) = n(¢) on [1,2], so that
0 < p(t) <1and
do :=sup [tp' ()] = sup [tn'(t)| = sup t[n'(t)].
teR teR te[1,2]

Let € > 0 be given. One can make sure that dy < (1 + ¢€)/In2, choosing
for n a C'* approximation of the function ny defined on [0,2] by ng(t) =
min(1,1 — log, t), for which ¢|n{(¢)| = 1/In(2) when ¢ € [1,2].

For every j € Z and £ € R™, let ¢;(§) = p(277|¢|) and consider the
annulus 4 4
C;={€eR": 2071 L¢g| < 27T} CR™
From the properties of p, we have that 0 < ¢; < 1, ¢; vanishes outside C},

and

S 06 = S (n €] — n@ 1 eD) = 1

Jez JET
for everyf # 0, because 1(277[£]) = 0 when j < logy(|¢]) —1 and n(277|¢]) =
1 when j > log2(|§ [). We introduce for every j € Z a multiplier m; defined
by

ms(€) = pi(Em(©), € R,
and we let K; =m) = ¢/ + K. One has ), K; = K, which allows us to
write for f € S(R™) and every € R™ the upper bound
(Mic f)(w) = sup (K * F)(@)] < sup Y [105) )+ F@)] < 30 (M, £)(@)
0 jez JEL

By Lemma 4.7 with r = 4, one has

2 .
HMKijLz(]Rn) < 2 4 |my| oo ) 1M | oo ey 11172 ey - (5.20)
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We see that ||m;]|e < @, since |m;| < |m| and since m; is supported in the
annulus ;. On the other hand, mj(§) = £ - Vm;(§) and we have

Vm;(§) = ¢;(E)Vm(&) + m(§)V;(€) -

As ¢; is supported in Cj, we get |¢;(§)€-Vm(§)] < B; < (14 ¢€)B;/In2,
and
£

m(€)€- Vi (6)l < oy [€-277p'(277[¢]) €]
It follows that [[m}[le < (1 +¢)(a; + B;)/In2. By (5.20) we get
HMKijLz(]R") S 2\/1 teva; \/aj + Bi 1 fllz2@n) -

After summation in j € Z and letting ¢ — 0, we conclude that
HMKfHL2(Rn) <2 FB(K) ||fHL2(R")-
We pass from f € S(R") to f € L?(R™) as explained in Section 3.3. O

< ajdo < (1+€)Otj/ln2.

5.3.1. Conclusion of Bourgain’s argument

End of the proof of Theorem 5.1. — We begin with a version of the
proof that illustrates well the fact that Lemma 5.14 is a comparison lemma;:
in vague terms, if we know that the conclusion of Theorem 5.1 is true for
one family of convex sets, then it is true for all convex sets.

We rely here on Stein’s Theorem 4.1 for the Euclidean ball B, asserting
that the maximal operator Mg is bounded on LP(R™) for every p in (1, +0o0],
with a bound independent of the dimension n. In this paragraph, we only
use the L? case of this result. Let us call B = B,, v the Euclidean ball in R",
centered at 0 and normalized by variance, which has radius v/n + 2 by (5.4).
Let mp denote the Fourier transform of Kpg. Consider also a symmetric
log-concave probability density K. on R™, isotropic and normalized by vari-
ance. The two functions m;. and mp satisfy the estimates (5.17.B) of Propo-
sition 5.10. We apply Lemma 5.14 to the difference kernel K = K;. — K.
According to (5.17.B), for every £ € R™, the Fourier transform m = m;.—mp
satisfies

€l Im(E)] < V2/m, Im(&)] < (1 —mue(§)] + 11 — mp(§)] < 4ml¢],
€ Vm(€)] < 4.

We deduce that 8; = supg;—1¢|¢j<2i+1 [§ - Vm(§)] < 4 for j € Z. For j <0
one has

aj = sup  |m(€)| < 4n2Tt = 4r27 I+ 32 971l
277127t
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and for j > 0, we have a; < 2771279+ < 2779, Tt follows that the two
series >, ; a; and )., /a;3; converge, and

Do <3242, Y VaiB <20+10V2,
JEL JEL
thus the maximal operator f — sup,q |K) * f| is bounded on L*(R™) by

a constant independent of the dimension, say, less than 2I'g(K) < 2(54 +
10v/2) < 137. Finally, for f > 0, we write

Mg, f = sup |(K1e) gy * £
<sup [(Kg) gy * fl +sup|(Kie — Kg) )y * fl = Mpf + Mk f,
>0 >0

and we can estimate Mg, by the sum of two operators that are bounded
on L?(R™) by constants independent of the dimension n. |

The proof actually given by Bourgain [9] bypasses the L? result of Stein
on Fuclidean balls. The kernel K is now given as K = K;.— P, where P is the
Poisson kernel P = P from (1.32) for the value ¢ = 1 of the parameter. We
know by (1.31.P*) that the maximal operator f — sup,.q |P;f| associated
to the Poisson kernel acts boundedly on LP(R™), 1 < p < 400, with a bound
< 2 when p = 2, thus independent of the dimension n. Now, everything
is said: we replace the multiplier mp by P and it sufﬁces to see that P
also satisfies good estimates similar to (5.17.B). But P({) = e~ 27l clearly
satisfies the even better estimates

€11P(&)] = I¢] el < (2me) 7, (5.21a)

1= P&)| < 2rlé], 1§ VP(E)] = 2m|] e >l <ot (5.21D)

where we made use of the inequality ze™® < e~ !, true for every = > 0.
This ends the second proof of Theorem 5.1, with different constants whose
exact values are rather irrelevant. However, we found here an explicit bound
Ko < 24 137 < 140, explicit but definitely not sharp.

6. The L? results of Bourgain and Carbery

One gives again a symmetric convex body C in R", and pc denotes
the uniform probability measure on C. Beside the maximal function M¢ f
from (0.3.M), for every function f € L .(R™) and every z € R" we set

(d) _ - j
ME D@ =swp e [ iy =sup [ 5@+ 2] due).

—92 -



Dimension free bounds

One can call M(C‘fl) f the “dyadic” mazimal function associated to the convex

set C'. Obviously, Mgi ) < M¢. More generally, we associate to every kernel
K integrable on R™ the dyadic maximal function

flz+270)K(v)dv|, ze€R™.
R’!L

(M f)(x) = sup
JEZ

In 1986, Bourgain and Carbery have obtained identical results for LP(R™).
Somewhat surprisingly, the cases M(g ) and Mg are different, the boundedness

of M¢ on LP(R™) being obtained only when p > 3/2, as opposed to p > 1
for M(g ).

THEOREM 6.1 (Bourgain [10], Carbery [21]). — For every p in (1, 400],
there exists a constant 9 (p) such that for every integer n > 1 and every
symmetric conver body C' C R™, one has

n d
Ve LP®Y), M Fllo@ny < D0 1f] e @n) -

THEOREM 6.2 (Bourgain [10], Carbery [21]). — For every p in
(3/2,4+00], there exists a constant k(p) such that for every integer n > 1
and for every symmetric convex set C C R™, one has that

Ve LPR"), Mcfllre@wny < @) flle @y -

We recalled in the Introduction that the maximal theorem of strong type
is not true for p = 1, even with a constant depending on n, and even for
the smaller function M(Cfl) f, since Mo f < 2”M(g ) f. Note that Theorems 6.1
and 6.2 are obvious for L= (R"), with (%) (c0) = r(c0) = 1. By Bourgain [9],
we have the result in L2(IR™), so we obtain it for p € [2, +o0] by interpolation.
Consequently, our work will be limited to values of p in the interval (1, 2]. We
shall follow Carbery’s approach to both theorems. This approach has been
applied later in the Detlef Miiller article [59] (see Section 7), on which relies
Bourgain’s recent article [13] devoted to the maximal function associated to
high dimensional cubes (see Section 8).

The proof will use the inequalities (5.17.B) and (5.19), which are also true
for log-concave densities, and by simply following the proofs of Bourgain or
Carbery, we can extend the results to the log-concave setting. As suggested
in [10], one can actually take one more step, forget convexity and exploit
only the inequalities on the Fourier transform given by Lemma 5.11. In this
more general framework, we consider a probability density K, on R", or
merely a kernel K, integrable on R™ and having a Fourier transform m,
which satisfies the following: there exist dg,4,01,4 > 0 such that for every
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f € S"1, we have

d0,q d
1+[t] |dt teR.

(6.1.H)
The form of the d¢,4-bound of m, has been chosen for the sake of uniformity,
but when K, is a probability density, we know of course that [|[m[| oo rn) = 1

and in particular we have dp 4 > 1 in that case.

’mg (t0) ‘ mg(th) ‘ CE Vmg(tQ){

PROPOSITION 6.3. — Theorems 6.1 and 6.2 are also valid for any sym-
metric log-concave probability density Ki. on R™, namely

||MK,L |Lr®r) < (d)(p) ILfll e rny » 1<p<+oo,
Mg, fllze®ny < &) | fllLr@@n) » 3/2<p< +o0.
If a probability density K, satisfies (6.1.H), then for 3/2 < p < 2 we have

Mk, llp—p < £p(d0,g + 61,9 )2—2/])7

and this result extends to every p € (1,2] in the case of the dyadic operator

All these results are obvious when p = +00, and easy when p > 2 by
interpolation (L2, L°°) after the case p = 2 is obtained. When p < 2, the
log-concave statements follow from the “general” one. Indeed, for the study
of maximal functions, we may assume that the convex set C' or the sym-
metric log-concave probability density K. is isotropic and normalized by
variance. Then, by (5.17.B) or by Lemma 5.11, m¢ or my. satisfy (6.1.H)
with universal constants dy . and 41 ..

6.1. A priori estimate and interpolation

Suppose that a family (7});ez of operators on LP(X, X, ) is given, for a
set of values of p and on a certain measure space (X, 3, u) (further down, it
will be R™, equipped with the Lebesgue measure). These operators can be
linear operators, or nonlinear operators of the form

T]f = sup ‘T],’Uf| )
veV

where each T}, is linear and where v runs over a certain set V' of indices.
We want to study the maximal function

T*f=sup|T;f| = sup |Tj.fl|.
JEZ ]

JEZL,ve
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We also consider later a kernel K integrable on R™. In the application to
the geometrical problem, this kernel will be (as in Section 5.3.1) the differ-
ence K = K1 — K5 of two kernels, where K is the uniform probability density
on an isotropic convex set C' or a probability density K, satisfying (6.1.H),
and Ky is a kernel for which the dimensionless maximal inequality is al-
ready known. We have to deal with two cases. In the first one, 7T will be
the convolution with the dilate K9y from (2.7) of K, and the maximal

function T*f = M I({d ) f will then permit us to relate the dyadic maximal
function M(Cfl) f to a maximal function whose bounded character on LP(R™)

is already known. In the second one, the operator T , will be the convolution
with K25y with v € [1,2] =V, in which case

T,f= sup |K(t) * f, (6.2)

27 <20 +1

and T* f = Mg f allows us to study the “global” maximal function M¢ f or
Mg, f.

We assume that linear operators (Q;);cz such that EjeZ Q; = 1d are
given. In the applications to come, these operators will be those of Equa-
tion (2.6), in the Section 2.1 on Littlewood—Paley functions.

DEFINITION 6.4 (Carbery [21]). — Given families (T});cz and (Q;);ez
as above, we say that T* is weakly bounded on LP(X,X, u) if there exists a
constant A such that

VfelLl(X,Spn), VEkETZ, <Al fller - (Wp)

Lr(p)

sup [15Q;+ f|
JEZ

We say that T* is strongly bounded on LP(X, X, u) if there exists a real
nonnegative sequence (ax)rez, satisfying Y .., a, < +oo for every r > 0,
and such that

VfelP(X,Su), VkeZ, <ag || flleruy - (Sp)

LP(p)

sup [T;Q+ f|
JEZ

By T;Qj+1f, we mean of course T;(Qj+xf).

Remarks 6.5. — In this generality, the supremum for v € V in T} f =
sup,cy |10 f| must be understood as essential supremum, as explained in
Section 3.3. In our cases of application, the function v — Tj ,(z), z € X,
will be a continuous function on an interval V of the line, in which case the
pointwise supremum coincides with the supremum on any countable dense
subset of V.
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It is evident that (S,) implies (W), and (S,) implies that T* is bounded,
because

Tinfl = | D TjwQiinf| <Y 1TiwQienf| <D ITiQj4kfl,
keZ keZ keZ
thus
T f = sup |Tjof| <D |TyQjsrfl, then T*f < sup|TjQ; 4 f]
vev kEZ kez I€2
and

kEZ

sup |T5Q;+ f|
JEZ

<(Za)iflr ©3)
Lr ()

kEZ

If one has (W, ) and (S,,) and if 1/p = (1—0)/po+6/p1, with 0 < 0 < 1,
then as in (3.26) we obtain by interpolation

VfelP(u),VkeZ, <A Lo »

LP(p)

and >, o, AU=Oma{" < 400 for every r > 0, so (S,) is satisfied. In order to
obtain this, we apply the complex interpolation of linear operators between
spaces LP(¢%) [7, Chap. 5, Th. 5.1.2]. Here, the range space is of the form
LP (11, 0>°(7Z)), a case covered by complex interpolation. Indeed, in the simpler
case where the T}s are linear, we obtain the result by considering for each
k € Z the linear operator

[ (,Tij-HCf)jEZ € Lp(X7Ehu7£OO(Z)) S Lp(:u) :
If V' has more than one element, the range space will be LP(u, £>°(Z x V)).
The nonlinear operator f +— sup;cy |T;Q;+1f| belongs to the class of lin-
earizable operators considered in [36].

sup |T5Q;+ f|
JEZ

We now describe the assumptions that will be made in the main result of
this section. First of all, we assume that there exist constants C,, 1 < p < 2,
such that

1/2
vpea vier, (i) < Collfllirg - (Ao)

JEL LP ()

If the (Q;)jez are those of (2.4), then we can take C), = q, which behaves
as 1/(p — 1) when p — 1, according to (2.5).

We assume that T} , = U; , — S;, where U;, and S}, are positive linear
operators, and we assume for S*, defined by S*f = sup,cz ,ev [S)0 f|, that
there exist puin in the open interval (1,2) and constants Cj,, pmin < p < 2,
such that

vp S (pmin72]7 ||S*||p < CZ/’7 (Al)
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where ||R||, is a shorter notation for the norm ||R||,—, of an operator R.
The condition “Uj;, positive” will be the only reason for requiring that the
kernel K, in Proposition 6.3 be a probability density rather than an arbitrary
integrable kernel. The Uj ,s will correspond to the kernel K, under study,
while the S;,s will often refer to Poisson kernels for which the maximal
function estimates in LP(R™) are already known by (1.31.P*).

We assume that for every p € (pmin, 2], there exists a constant C}) such
that
VieZ, T, <Cy. (Az)

We shall assume that 7™ satisfies (Ss), hence we have that

VfelL*(u),VkeZ,

< ar || fllr2 ) (As)

sup [T5Q;j+ f|
JEL L2(p)

where ), ., aj, < 400 for every r > 0.

PROPOSITION 6.6 (Carbery [21]). — Under the assumptions (Ao), (A1),
(A2) and (As), the mazimal operator T* is bounded on LP(X, X, u) for every
real number p such that pmin < p < 2. For every py such that pmin < po <
p < 2, we have

2/p
1Tl < (Cr)?V/P0 <c;’0>7(2a8‘”’“2) ac, (64)
keZ

with ro = 2p/(p + 2 — po) € (po,p) and v =[1/p —1/2]/[1/po — 1/2].

Our main interest in applications will be the maximal operator U*, which
is also bounded on L?(X, X, ) since S* is bounded on L? (X, 3, ) according
to (Al)

Proof. — Under the assumption (Ag), one already knows by (6.3) that
T* is bounded on L?(X, 3, 1). We fix p; = p such that ppi, < p1 < 2 and we
try to prove that T* is bounded on LP* (X, X, 11). For doing this, it is enough
to show that for every finite subfamily (T}),cs of (T};) ez, the corresponding
maximal operator

f = max [T; f]

is LP*-bounded by a constant independent of the chosen finite subset J C Z.

We thus consider a family (7)) that has only a finite number of nonzero
terms, implying that ||T7|/,, < 400 by Property (Az). We choose py arbi-
trary such that pmin < po < p1, and we introduce rg such that pmin < po <
ro < p1 < r1:= 2, defined in this way: if 6 € (0,1) is such that

1 1-6 6

1 Ly 6.5
5= 0 T (6.5a)
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that is to say, if 6 = 1 — pg/2, then we set

1 1-6 6 11 2
_ + 2 (:2+_po, rozpl). (6.5b)

P 2p1 p1+2—po

To Do p1

Here is the plan: by a first interpolation between pg and p;, we will show
that T satisfies (W,,,) with a constant bounded by a function of ||T7*||,,.
Next, we will interpolate between (W, ) and (S,,) = (S2) and obtain (S,,),
giving a new bound for the norm ||T%||,,, whose particular form

IT*lp, < AUIT*[lp, +B)”,  for some € (0,1),

implies that ||7%||,, is bounded by a constant independent of the chosen
finite subfamily. This will complete the proof.

For 1 < r,s < 400, let k(r, s) be the smallest constant such that

Zu}gj 1/s Z|g] 1/s

JEZ JEL

<K

Lr

for every sequence (g;)jez in LT(X 3.

— One sees that (pg,po) < C/l', by (A2) and the simple sum-integral

Po
1/
O | Tygl) ™ = 1T59;155

. X po?
1mversion
JEZ Lro ez,
2 :‘ |p0 1/100

C//
JEL

— One has also #(p1, +00) < || T, +2C;, . Indeed, when (W;);ez is
a family of positive operators and g = sup;cy |g;|, one has

LPo

(W;g;l < Wilgi|l < Wjag, SUP|WJ93| SUPWJQ

Because S, is positive, we have sup,cy 1S;095] < < supjeg Sj,09 for
every v € V, and letting S;9; = sup,cy |S;,09;| we see according
to (A1) that

sup Sjg; < S%g, |lsupS;g;|l .., <IS*gllm <y |[suplgl]| ., -
JEZ JEZ JEZ
Since U;, = T}, + Sj. is positive, we obtain also for U;f =
SUPyev ‘U] vf| that
HsuplUJgngLm <NUgller < T7gl[Len + [[S*gllLm
< 1T lpy + Cp ) llgllen s

and ﬁnally HSUPJEZ |T1JgJ‘HL;D1 (HT*”pl +2C/ Hsupj€Z|gﬂ|HLP17
which proves the inequality x(p;, +00) < ||T*||p1 +2C,,
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We apply complex interpolation between spaces LP(¢4) [7, Chap. 5,
Th. 5.1.2], namely between the spaces LP°(¢P°) and LP'(¢>°), which gives
the space L™ (¢%) for the chosen value 6 of the interpolation parameter,
by (6.5a) and (6.5b). We already explained that the case where Tj is not
linear can also be covered by complex interpolation. It follows from (3.26)
that

K(r0,2) < K(po, po)' K (p1, +00)? < (Cu) (T |, +2C5,)°

Remark (in passing). — It is exactly in this manner that Stein [73,
Chap. VI, Th. 8, p. 103] shows the inequality (6.6) on the square func-
tion (Y |Enfnl?)? of a sequence (E,) of conditional expectations with
respect to an increasing sequence of o-fields, stating that

Oo1Efal?) 2| < ha| [ O 1)

When 1 < g < 2, the proof applies inversion for a pair (qo, qo), and Doob’s
maximal theorem for a pair (g1, +00) with g0 < ¢ < ¢1 and ¢(g1 — qo) =
2(q1 — q)-

Thus, with g; = Q4 f for a fixed k € Z, one has

, 1<g<+o00. (6.6)

1/2
sup I T,Qs /1| < || I1T3Quenf12)
JEZ LTo jez L7o
12
<nlro,2) || (X 1Qsnf12) Y
JEL Lmo
1/2
\Zmﬂ < Coo w0, 2) | o
JEZ Lro

We have proved the property (W, ), since we got that

VfeL" VkeZ, < Cro 610, 2) || fll 7o -

sup [15Q+ f|
JEZ

If for a certain p € (0, 1), we write

Lm0
1 1-— 1-—
IR p+£: p_|_

P <p pL— po)
D1 o 1 To 2 2-po )’
we get (S,,) by interpolating between (W) and (S2) = (S,,), obtaining
thus

VkeZ, < (Cry 6(ro,2)) Pal || fll s -

sup | T5Q 4k f|
JEZL LP1

By (6.3), it follows that

< (Cntra ) (L) Wl

Lr1 kez

sup [ T; f|
JEL
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One has finally an implicit inequality about ||T7||,,, namely

1T, < [Cry Ao, )]1_"<Za£)

keZ

— * 1-
< (G O +263,)) (Sat)

keZ
—o\1—p * —
= (€)= () Ul + 205,707
keZ
implying that || T%||,, is bounded by a constant depending only upon C,,,

C,,, Oy, and the axs. Indeed, suppose that C' > 0 satisfies C < A(C' + B)#,

where A, B > 0 and 0 < 5 < 1. We write
C < (AVO-NYP (0 4 B < (1 B)AY =P 4 B(C + B),
yielding
c<ava-my P p
1

This bound is essentially correct when B is small, and we shall use it below

with A = (Cy, (Cz’)g)l_e)l_p<zkez ai), B =2C;, and g =0(1-p).

However, when B > AY (=) 4 better bound (1 — ) "*AB” is available.
In this case, A < B*™#, thus C’ < B'(C + B)? < B+ jC, hence

B
B 2-p 8 ! 8
ca(yen) - (222) oy
because (2 — )7 (1—p)' "7 <B2-B)+(1-p)*=1.

Recall that p = (p1—po)/(2—po),s0 8 =0(1—p) =1—p;/2 < 1. We find
an explicit bound for ||T%||,,, independent of the finite subfamily (7}),cs of
(T;)s that was chosen at the beginning, of the form

2/?1
x —6\2(1=p)/ 2-p1
T < @rolCl) =P (Tag)  + o a,

kEZ

2/P1
< (C'TO)Q’Y/I’O (C]/J/O)v < Z az) + 26’1’71 ,
keZ
with y = [1/p1—1/2]/[1/po—1/2]. Observe that p = [p1/(2po) —1/2]/[1/po—
1/2] = (1 — v)p1/2. We get in particular a bound of C} by a power
v < 1 of CI’,’O. There is no miracle: this power 7 is the one correspond-
ing to interpolation between C}; and the value C3 hidden in the assump-
tion (A3) U
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6.2. Fractional derivatives

If a function h is given in the Schwartz space S(R), one can express it as
Fourier transform of another function k¥ € S(R) and write

VteR, h(t)= / k(s)e 2™t ds.
R
One has then an expression for the derivatives of h by means of (unbounded)
multipliers. For every integer j > 1 and every t € R, one sees that

(=1 R (t) = /(2i7rs)jk(s) e 2imst (g
R

It is tempting to extend the notion of derivative, from the integer case j € N

to every complex value z such that Re z > —1, by setting

ViER, (DZh)(t):/(ms)%(s)e*im ds. (6.7)
R

Note that D'h = —h' with this definition. We define complex powers by

(21778)2 _ ezln(Qiﬂ's) — ez(ln(27r|s|)—i—iArg(Qiﬂ's)) — |2ﬂ_s|zei7rzsign(s)/2

?

and we have that (Ais)® = A\?(is)® when X\ > 0. If we dilate the function h
to hpx, with A > 0 as in (2.7), we know that hpy = F(k(y)), therefore

(Dzh[A])(t) :/(Qiﬂs)z)\_lk()\—ls)e—2i7rst ds
R
=¥ [ @imu) ke du.
R

This means that

D*(hpyy) = N° (Dzh) oo OF Dih(At) = N*(D?h)(At), (6.8)
where we use the notation Dfh(At) when the function of ¢ does not have
an explicit name, as in ¢t — h(At). For a specific value, we shall write for
example th()‘t)‘tﬂ'
If we would like to extend D* to h = 1, we might consider the function
1 as the limit of h[y) when h(0) = 1 and A 0. Then (6.8) suggests that

D?*1 =0 when Rez > 0, and that D*1 is undefined if Rez < 0.

When z is not a nonnegative integer, the operator D* is not local.
We will see later however that (D*h)(¢o) depends only on the values of
h on [to,+00). This could be checked right now by arguments involving
holomorphic functions.
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When —1 < Rez < 0, the differentiation D? is in fact a fractional inte-
gration. We shall see below that (D*h)(t) = (I~*h)(t), where I is given for
Rew > 0 by

1 teo L
(IYh)(t) = 7/ u—1)"""h(u)du. 6.9
0 =505 |« ( (6.9)

The next lemma provides the tool that relates the definitions (6.7) and (6.9).

LEMMA 6.7. — Let ( be a complex number such that Re( < 0
and let € > 0. The inverse Fourier transform of the function t —
D(=C) ™ L (Loo0)(8) (1) "¢ e is equal to s — (e + 2ims)S, namely

b
I'(=¢)

Proof. — By a contour integral of (—z)~¢~!e*, running along the nega-
tive real half-line and along the half-line Hy; = {(¢ + 2ins)t € C: ¢t < 0}, we
obtain

/ 1 oo oy (D) (—8) S et 1T dt = (e + 2ims), s €R.
R

0 0
I'(—¢) :/ (—t)~Slet dt = (e + 2i7rs)*</ (—t) =St eler2ims)t g
giving the announced result. O

Integrating (6.9) by parts, we see that

+oo
(IR (t) = ——— )[ (4 — £ () .

DN(w+1
This new formula makes sense for Rew > —1 and could be used for defining
the fractional derivative D? if z = —w and Rew € (—1,0), by setting for ¢
real
1 +oe ,
D*h)(t) = —=———— u—1t)"*h'(u)du. 6.10
D) =~ [ =07 H W (6.10)
This is proved in Lemma 6.8. It is coherent with the fact that D%, for 0 <
a < 1, can be considered as the antiderivative of order 1 — « of the derivative
D'h = -},
D% = Dalelh — _Daflh/ — _Ilfozhl
The operation D? is not symmetric on R; this is obvious from the formulas
for I'". The choice that was done of (2ims)? instead of (—2ims)* in (6.7)
induces the direction in which the fractional antiderivative is computed.

This direction, to +00, is well adapted to the “radial” Carbery’s method
introduced in [20].

LEMMA 6.8. — Let € (0,1), tg € R be given and let k be a function on
R such that (1 + |s|*)k(s) is integrable on the real line. Assume that h =k
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is Lipschitz with |W'(t)| < k1(1 + |t|)~! for almost every t > to. Then, for
every t >ty and z such that Re z = a, we have
! e / 2imst
_— u—1t)"%h u)du:/2i7rs “k(s)e =™ ds.
el IO [ ims)h(s

Proof. — Let n be a nonnegative C'°*° function on R, with integral 1 and
with compact support in [—1,1]. Consider € € (0,1) and

ke(s) = k(s)(n")e)(s) = k(s)n"(es), s€R.
Then n¥ € S(R), sk.(s) is integrable and h. := k. = h * (e is C1. We can
write
—hl(t) = / 2imsk.(s)e 1™ ds, teR. (6.11)
i

Since h is Lipschitz, we also know that h. = h' x 7). Fix t > 9 +¢. When
|7| < land u > ¢, we have u—et > to, 1+|u| < 1+€|7|+|u—eT| < 242|u—eT|,

S0
! ! T 2K
|h.(u)| = ‘/1 R (u—er)n(t)dr| < K1 [1 l +n1i—)57| dr < TT |1u\ :
(6.12)
Applying (6.11) and [(u—t)"*| = (u t)~%, Fubini’s theorem and the inverse
Fourier transform of v — [(—v)4]# e given by Lemma 6.7 with ( = z — 1,
we get

1 oo —z —u

1 Feo
1—\(172 / (u—t) z s(t u) (/217‘(’8/(} ( ) —217rsud> "

1_2 // l{t u<0} U— t) z E(t w) 2171'Sk ( ) 2ims(t— )672i7rst dsdu

= /(6 + 2ims) 71 (2ims) ke (s) e 727 ds.
R

Letting ¢ tend to 0, by a double application of Lebesgue’s dominated con-
vergence, using (6.12) and since h.(u) — h'(u) at every Lebesgue point u of
h', we obtain

+oo
F(ll_z)/t (u—1)"*h (u) du:/R(Qi'frs)Z]g(s)efﬁﬂst ds. 0

It is quite comforting to have two possible ways of defining D*h. How-
ever, we will have to handle cases where the Fourier transform h(t) is well
controlled, but where the estimates on k(s) are not so good. We shall there-
fore concentrate on the integral definition (6.10) of D*h. We have to check
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that the properties obtained with the first definition remain true when only
the second applies.

When « € (0,1) tends to 1, one has T(1 —a) =~ (1 — a)~" and for ¢ > 0

we get

1 e s
_I—‘(l—oz)/t+€ (U—t) h(u)du—)O,

t+e
(1—a)/ (w—1t)"*du=e¢"" > 1.
t

We recover the fact that (D*h)(t) = —h/(t), already known by Fourier.

Let us mention the case of h(t) = e /!, the Fourier transform of a
Cauchy kernel. When ¢ > 0 and 0 < Rez < 1, we have

_ 1 e [T ot a(ue
Dze Alt| SN )\t/ (’LL o t) er A(u—t) du
¢ I'(l-=2) \

— )\ e—)\|t\

(6.13)

The dilation relation (6.8) follows from a simple change of variable similar
to the one in the line above, and is left to the reader.

We have introduced in (5.5) the right maximal function h’ of h. Notice
that for i Lipschitz on (tg, +00) and for every ¢ > tg, § > 0, we have

t+4§
[h(t+ ) < |h(D)] +/t [ (u)| du < By (t) + 0 (h)7(2) - (6.14)

LEMMA 6.9. — Let h be Lipschitz on (tp,+00), a € (0,1) and h(t)
o(t*) at +oo. Let hg = h: be the right mazimal function of h and hy = (h')}
that of h'. Then

[(DYh)(t)] < 6ho(t)' ™ “ha(t)®, t=1to.

If w is complex and Rew = «, then for every t >ty we have

(Dvh) ()] < ——2— LD

11—« «
S ol —a) TA—w)] o® )

Proof. — For t > tg and § > 0, we express E, := —I'(1 — «) (D*h)(t) as

t+5 +oo
/t (u—1)"*h (u) du+/t (u—t)"*h (u) du.

+d
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Applying (5.6) and integration by parts, we bound each of the two pieces

51 « +o0o
j/ (u— 1)~ (u) du
t+0

+oo

|Eal <

+ o

o)+ || 07ho)

t+9
11—«

0
< —
< 7o M@ +67°h(t +9)]

+ a(/tt+6 S h(u)| du + /t:o(u — )7 Hh(u)| du> :

By (6.14), by (5.6) for the non-decreasing function ¢ defined by ¥(u) =
67! when u € [t,t + d] and ¥(u) = (u — )=~ for u >t + J, we obtain

|Eal < 51 - —ha(t) + 07 (ho(t) + ha (1)) + (1 + @)~ ho(t)
f_ L(8) + (24 )6~ ho(1)
< f 01" ha(t) + 30" ho(t).

We choose 6 = dg = ho(t)/hi1(t) and get that

2
|E(J/| é (1—0{ + 3) ho(t)liahl(t)a.

Recalling I'(1 — «) > 1 and the minimal value T'(z) > 0.88 in (3.7) we have
2 3
Dh)(t)| < ho(t)' ™ “hq (t)*
D00 < (pga + Ty ) ol a0

2 11—« @ 11—« «@
<<F(xr)+3)ho(t) Ia(1)® < 6ho(t)~hu(1)°

When w is complex and Rew = «, we use |(u —¢)~"| = (u —t)~, the
same integration by parts, |(u —t)"* "} = (u —t)"*"! and we get

11—«

[Bul < q

hl(t) + 6~ (ho(t) + 6h1 (1)) + |w| <1 + ;) 5§ “ho(t)

51 «
1-—-
Choosing ¢ = (1 + |w]|)ho(t)/h1(t) we obtain the announced result. O

\

i)+ 2 (1+ hu)dhol0).

In what follows, we shall consider the following assumptions on a func-

tion h:
h is Lipschitz on [tg, +00)

O] < oL+ [t])~ for ¢ > to, (6.15)
|/ ()] < k1(1 4 |t])~" for almost every ¢ > tq .
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COROLLARY 6.10. — Suppose that the function h defined on (tg, +00),
to = 0, satisfies (6.15). Then for every a € (0,1), we have

l—a,.o
Ko K1

14t 7

(DoR)(B)] < 6 >ty
Proof. — The two upper bounds in (6.15) are decreasing functions of

t € [tg, +00), hence they also bound h or (h')*. We conclude by applying
Lemma 6.9. O

Assuming that h has enough derivatives and continuing integrations by
parts, starting from (6.10), we get successive formulas for D*h for each in-
teger j > 0, which make sense when Rez < j. Let z=j— 14w, with j > 1
and Rew € (0,1). We obtain that

—1)J too .
(D*h)(0) = () DO 0) = s [ = 0 O W,

and for every z € C such that Re z < j, we have

(D*h)(t) = Y /+Oo(u —)"FH 10 (u) du. (6.16)
L@ —2) Jy

By gluing the successive definitions, we define entire functions of z for every

fixed t and h € S(R). By the principle of analytic continuation, we conclude

that the integral formula for D*h coincides when Rez > —1 with the one

obtained by Fourier transform (a fact that we have checked in Lemma 6.8

when 0 < Rez < 1).

LEMMA 6.11. — Let « be in (0,1). Suppose that the function h satisfies
the assumptions (6.15) on [tg,+00), to = 0, and define D*h by (6.10). We
have that

(I°DR)(t) =t, t>ty.
Proof. — We first assume in addition that
+o00 +o00
/ |h/(u)]du < +o00, thus h(t) = —/ B (u) du
to t

for every t > tg since h is Lipschitz. For u > tg, accepting possibly infinite
integrals of nonnegative measurable functions, set

+oo
ﬁ/ (v — w) =} (v)] dv.

When h is decreasing on (tg, +00), the function G is equal to D%*h, and
|D*h| < G in general. Then, consider F, equal to I*G in good cases, defined

G(u) =
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for t > to by

Plt) = ﬁ /tm(u 116G () du
_ m[m(u—oal/jm(v—u)a|h'(v)|dvdu
_ m/t+w (/1@@ (u =) (0 — u)~® du>|h’(v)|dv.

Setting u =t + y(v — t), one gets with v, = T'(«)'(1 — «) that

rio) = ( [ e o) [ )
- /;oo I ()] dv < 400

The last equality can be deduced from (6.13) by applying the preceding com-
putation to h(v) = e~1*~*l or one can check directly that v, = fol Yy (11—
y)~*dy. From the Fubini theorem and the same calculation without abso-
lute values, it follows that if ftjoo |h/(u)] du < 400, then for every t > tg we
have

+oo
(I*DR)(t) = f/t B (u) du = h(t) .

Under (6.15), we introduce he(t) = eIt~ h(t) with ¢ > 0, for which we
use the preceding case and convergence when ¢ — 0. When ¢ € (0,1) and
t > to we have

Ko + K1

, o PE@ < @]+ (0] < e

By Corollary 6.10, we have |[D%h.| < x(1 + |t|)~!, and we can apply twice
dominated convergence when € — 0 in

/t*“w o /u*°°<v S ACE Y EYE ORI

Assuming (6.15) and Rez > 0, we have
Di(th(t)) = t(D*h)(t) — 2(D**h)(t) . (6.17)
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This is obtained when 0 < Re z < 1 with an integration by parts, writing
I'(1 — 2) (=D (th(t)) + t(D*h)(t))
+oo
- / (= ) ((u — OB () + h(uw)) du
t
+o0 +oo
- / (u— 1) h (u) du + / (u—1t)"?h(u)du
t t

+oo
:z/t (u—t)"*h(u) du = 2T(1 — 2)(D*"th)(t) .

6.2.1. Multipliers associated to fractional derivatives

If K is a kernel integrable on R™, we know by (2.15) that its Fourier
transform m is expressed for £ # 0 as

m(ug) = / wo(s) e 2imsulel g = / i@e (U> e 2™ gy weR,
R r 1S\

where 0 = |£|71¢ and where the function (g is defined on R by (2.14). Letting
a > 0 and assuming that « — |z|*K(z) is integrable on R™, this yields

«@ _ : Oéi 1 —2imou
Dim(uf) —/R(QITF’U) |£|<pg<|£|)e dv
= /(ms|g\)a<pg(s)e*2m\€\u ds
R

= / (2imx - §)* K (x) e 2imuzl g

which is naturally extended by 0 when £ = 0. We set in what follows
(6 V)*m(€) = Dgm(ug)| _

= /H(Qimc YK (z) e 2™ dg (6.18.V%)

= /(2m|g\)a<p9(s) e 2imslél g,
R

When o = 1 and € # 0, the quantity (£-V) m(€) is equal to —&-Vm(€), which
is the product by —|¢| of the usual directional derivative of the function m
in the direction of the norm-one vector 6 = [£|71¢. When 0 < o < 1, under
the assumptions (6.15), we can give according to Lemma 6.8 the integral
formula

+oo
<§-v>am<§>=—ﬁ / (1) Som(ue)du. (6.19)
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We shall use the integral formula (6.19) when m(&) is Lipschitz outside the
origin and when for every ug > 0 and u > ug, we have for every § € S"~!
that

k(0,uo)

1+ Jul

d
|m(ud)| + |@m(u0)| <

If K is an isotropic log-concave probability density with variance o2, we

know by Corollary 5.13 that |[(d/du)m(u)| < d1.c|0€|/(1 + 2m|ucé]|) <
01,c/(27|ul), thus

« 510 +OO 71 _
[(€-V)*m(8)] < 2T —a)| / (u—1)" du = kad1,c, (6.20)

and the bounded function & — (£ - V)*m(€) defines an L? multiplier. We
reach of course the same conclusion under (6.1.H) for a “general” kernel K.

We have seen in (2.10) that the multiplier norm of m(&) on LP(R™) is the
same as that of the dilate m(A&), for every A > 0. It is thus natural to look for
a norm invariant by dilation, if we want a norm capable to control the action
on LP of a multiplier. Since we shall work radially with Carbery’s approach,
we begin with a smooth function h compactly supported in (0, 400), and
when o € (0,1) we set with Carbery [21]

Hmug::(é+“tmuDa<%)>

One verifies that this norm is invariant by dilation. By (6.8), we have

tot1 p <hw(t)> = t*TADY <W> = (At)* T Do (h(”)>|v_m, (6.22)

t At v

t

dt) . (6.21)

and the change of variable v = At in (6.21) completes the proof. Let h be
Lipschitz on (g, +00) for all tg > 0. Applying (6.17) to h(t) = h(t)/t, we get

forallt >0
pp (M) = @ pper (MY 4 L penyy
t t t t (6.23)
1 ah(t) '
— *Da 1 N !
p0e (- ww)).
Remark 6.12. — When 1/2 < « < 1, the L2 norm dominates the

L>(0,400) norm of the function h. For a justification, let us assume in
addition that h is bounded and Lipschitz on each interval (¢,+oc0) with
t > 0. Then H : u — h(u)/u satisfies (6.15) on (¢,+00) and we can apply

- 109 —



L. Deleaval, O. Guédon and B. Maurey

Lemma 6.11, giving I*D“H = H, thus

_ ﬁ / T )= e [u““DS (ll(;)ﬂ %u '

Applying Cauchy-Schwarz, I'(«) > 1 for « € (0,1) and letting y = t/u, we
get

<o) [ (5] %)
< (jﬁlyu“yVQQdy)h”%g5§2a{_lﬂhﬂia.

The latter calculation is the basis for the L? part of Carbery’s Proposi-
tion 6.14.

Remark 6.13. — Using the second expression in (6.23), we see that
|A||2. is the integral on (0,+00), and with respect to (dt)/¢, of the square
of the modulus of

@ +oo .

e <ht(t) ) hm) B ﬁ/ (uft = 1) (ah{u) — uh (1))
+o00 ,
- ﬁ /1 (v —1)"(ah(tv) — toh/ (tv)) % _

In most cases, this expression tends to kh(0) when ¢ — 0, with x > 0, and
then we have that k[ 2 is finite only if h(0) = 0, as for Bourgain’s criterion
I'p(K).

We do not see an easy way to compare the L2 norm and the quantity
appearing in the I'p criterion. However, in the very special case where H (t) =
h(t)/t is > 0, convex and decreasing on (0,+00), the function |H'| = —H’
is decreasing and it follows from Lemma 6.9 that (D'/2H)(t) is bounded by

k+/|H(t)H'(t)|, hence
2 e slh@] (IO h@)]Y dt
quﬂénA gl ( ol )

12 t
+o00o
< [ (m@lewon +ne?) 5

< S (s + a,0?).

JEL

We obtain then (in this very special situation) that HhHL’;‘/z < klp(RY).
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6.3. Fourier criteria for bounding the maximal function

In the next proposition due to Carbery, we impose conditions that fit into
our presentation but are certainly too restrictive.

PROPOSITION 6.14 (Carbery [21]). — Let K be a kernel integrable on R™
with integral equal to 0, let m be the Fourier transform of K. Assume that
mg = u s m(ub) is differentiable on (0,+o00) for every § € S"~!, and that
myp(u), u >0, is bounded by a constant independent of 6.

(1) If there exists a € (1/2,1) such that
Co(m) = sup Ht — m(td) HL2 +00, (6.24)
9es

then for every function f € L?(R™) one has
1
| Mr flL2gny = ||iglg | K1) * fl ||L2(Rn) < N Co(m)|| fllz2@ny -

(2) Suppose thatp < +o0 and 1/p < a < 1. If the multiplier (£-V)*m(§)
from (6.18.V®) is bounded on LP(R™), then for every f in LP(R™)
one has that

1 e 1wy % 711 o g

< iy (2mllpsp + 1€ 9)m(E) prp) 1 ogey , (6:25)
with Kap < (20)1 7/ (p = 1) (@ — 1/p) .

When 1 < p < 2, one has the simpler larger bound k., < V2 (a —
1/p) 1P Indeed, for 0 < o < 1, we have that 21/2= /P =1/ (p—1)1=2/P(q—

1/p)?/P=1 is less than ([a—1/p]/[v2a(p — 1)])2/;; ' When 1 < p < 2, this
expression increases with o € (1/p,1], and for @« = 1, one has

(1-1/p)/(V2(p—1)) =1/(vV2p) <1

Observe that if we set & = |£]6 for some nonzero vector £ € R", we have

Hth (t¢) ||L2 = Hth t0) HL2

according to the invariance by dilation (6.22) of the norm L2. So the supre-
mum in (1) is also the supremum on ¢ € R™. We shall need the following
Lemma, slightly more general than the conclusion (1) in Proposition 6.14.

LEMMA 6.15. — Let (K;)i>0 be a family of integrable kernels on R™,
and denote by & — m(,t) the Fourier transform of K;. Assume that for
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every ug > 0, there exist N and k(ug) satisfying the following: for every &
in R™, the function ge : u— m(&,u)/u, for u € [ug, +00), is Lipschitz and

(1 +[eh™
1+ |u]

If there is o € (1/2,1) such that c, 1= SUpP¢epn |t — m(f,t)HL2 < 400, then

1
||21>1§ [ Ko+ f] ||L2(]R") S Vi1 callfllzn) -

|ge (u)| + [g¢ (w)] < k(uo) , EER™ uzup. (6.26)

VY f e S(RY),

Proof. — By the assumptions, the function g¢ satisfies (6.15). As in Re-
mark 6.12, we obtain by Lemma 6.11 for all £ € R™ and ¢ > 0 that

m(fvt) _ ﬁ /t+oo(u —t)*7'Dy <m(u’U)> du

For f € S(R™), according to (6.26) and Corollary 6.10, we can use Fubini
and get

(K, * f)(x) = / m(E,1)F(€) ¢ de

n

_ F(la)/tmt(u—t)a—l/npg <m(u’7“b)>f(§)e2i”f dédu
1

= o [ =gt ([ weerog (M) fg e ag) A

For v > 0 and = € R", let us set
m(§; u)

i) = [ wriog (M) fe e ac,

This operator P is associated to the multiplier

p(€) = uttiDg (m(v’”) s EERT

One can rewrite

n

+o0 u
(Kix D) = e [ W=t (PED@ T

By Cauchy—Schwarz and since I'(«) > 1 when o € (0,1), we get

s @it < ([ wra-gwren ) [TenwPet).

(6.27)

u

For @ > 1/2, one has 2(a — 1) > —1 and letting y = t/u, one sees that

/+oo(t/ )2(1—t/ )2(01—1)du_/1 (1_ )2(a—1)d < 1
. " b u Y 4 YS%a—-1"
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We have obtained for |(K; * f)(z)|? a bound independent of ¢, hence

sup (K, * f)(z)]? < %i(/omKP{if)(x) 2du)’

u

with k52 = 2a — 1. By Fubini and Parseval, we have

2 +0c0
< [ ([Tl ) a
L2(Rn) n \Jo u
Foo du
— 2 Pa 22 o —
K‘a/o [ u.f”L(]R')u
+o00o -
= [ [ e (M) g
n Jo u

<2 / A1) A = K212, 0

sup | Ky « f]|
t>0

2 du

u

Remark 6.16. — 1If |a(t)] < c(to) when ¢t > to > 0 and if b(t) = a(t)/t,
then we have (1+2)|b(t)| = (t~* +1)|a(t)| < c(to)(1+t5") when t > to. If we
add that |a/(t)] < c(to) for t > to, we have also (1+t)|a’(t)/t| < c(to)(1+t5 1),
t > tg, and

@)l , |b<t>|) < Hi )

b (t)| <
v )] ( t t 1+t

If we know that for every ug > 0, there is ¢(ug) such that

<clug) (L+ENN, €€eR"™, u>ug,

i, )]+ | g mic.

it follows that (6.26) is true, with x(ug) < 2¢(ug)(1 +t5")2.

Proof of Proposition 6.14. — We apply Lemma 6.15 to the family K; =
K of dilates of K, t > 0. Under the assumptions of Proposition 6.14, we
first have that |m(¢€)|+|(d/dt)m(t€)| < k(1+]€|). Remark 6.16 implies then
that the family of functions g¢ : t — m(t€)/t satisfies (6.26). We thus obtain
by Lemma 6.15 the L?-maximal inequality when f € S(R"), and we may
extend it to all functions in L2(R™) by the density of S(R") in L?(R"), as
explained in Section 3.3.

Let us pass to the proof of (2), the LP case. We use the notation of
the proof of Lemma 6.15, adapted to m(&,t) = m(tf). Denote by ¢ the
conjugate exponent of p, and observe that ¢—2 > —1 because p < +0o. When
a € (1/p,1) and t > 1, by applying Hélder to (6.27) and since a —1 > —1/q,
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I'(e) > 1, we obtain

[(K ) * f)(z)]
< F(a)—l(/;oo(t/u)m — t/u)tleD) du>1/q(/t+m|(Pﬁf)(x)|p du)l/p

ub

<o [ Samra e ) ([ Ciner )

+oo 1/q +o0 du 1/p
<o [T prena) ([T een@r )
1 1 U

< (/12@ - 1)qa-qdv+/2+oo(v - 1)_qdv>1/q
<o | e e ‘fj‘)/ .

With ¢l , =1/(qa—q+1)+1/(q—1) = a(p—1)/(a —1/p), it follows that

p o0 du
< cgp2p/Q/ (/ (Pﬁf)(:v)l”dx>
’ n uP

Lr(R™) 1

Feo du
ST L

sup K * f]

1<t<2

Cgpgp/q
< —— sup||P%f|],

and we shall see that | PY||p—p < 2||mlp—p +11(€- V)*m(§)] p—p. The multi-
pliers p¢ are dilates of one another, indeed, for every A > 0, we have by (6.22)
that
A
PNE) = utiDg (m(” g)>| _

v

v=Au

—ue D (m(f)) oo = PRul©)
It suffices therefore to consider p§. According to (6.23), one has

pS(€) = Dy (@) |, =aD <m(tt£)) |,_, + Dim(tS)|,_, -

The multiplier D?m(tf)h_l is precisely equal to (¢ - V)*m(§). The other
term, since & — 1 < 0, can be written by (6.9) as

U(€) = aD>? <m(tt§)> = ﬁ /1+00(v 1) (m(;’g)) dv.
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By Lemma 2.1, we have ||U||p—p < 2{m|p—p because

a/+00( _1)—adl<L L_Fl _;<2
ra-ea) f; Y v T(l-a)\l-a o) T@2-a) 7’

cutting f;roo at v = 2, and using (3.7). ]

6.4. Proofs of Theorems 6.1 and 6.2, and Proposition 6.3

We need only show Proposition 6.3, and we can limit ourselves to 1 <
p < 2. As in Bourgain’s proof of the L? theorem for M¢ at the end of
Section 5.3.1, the kernel K to which we shall apply Proposition 6.6 is given
by K = K, — P, where P is the Poisson kernel P; from (1.32), and K| is
a probability density on R™ satisfying (6.1.H) with two constants dg 4 > 1
and d1,4 controlling the Fourier transform mg, and its gradient. We know
by (1.31.P*) that the maximal operator associated to the Poisson kernel acts
on L"(R™), 1 < r < 400, with constants independent of the dimension n.
Letting B denote the Euclidean ball normalized by variance in R™, we could
replace P by Kp and invoke Stein’s Theorem 4.1 instead.

We shall apply Proposition 6.6 in the two cases corresponding to Theo-
rems 6.1 and 6.2, in order to show that the maximal function (or the dyadic
maximal function) associated to the kernel K is bounded on LP for p > 3/2
(or for p > 1). We shall get by difference that the maximal function for K,
(or Ki., K¢) is bounded as well. In the “dyadic” case of Theorem 6.1, the
operator T}, for j € Z, is the convolution with the dilate K55y of K. For
Theorem 6.2, T}, is the convolution with K(,2i), 1 < v < 2, and Tj is given
by

T,f = sw |Tpufl=  sup [K .

1<v<L2 27 <120+
One has to check that the assumptions of Proposition 6.6, namely, (Ag),

(A1), (A2) and (Asg), are satisfied in these two cases. If the (@) are those
of Littlewood—Paley, defined by

Qj(€) = #¥ Il o2 g e R,
then the assumption (Ag) is satisfied according to (2.4), with C), = q,.

For (A1), we write Tj, = Uju — Sj, where the Ujy = (Kg) (01
related to K and the S;, = P, to the Poisson kernel. The operators
U;.» and S;, are positive, as convolutions with probability densities. As
mentioned before, this is the only place where we need K, to be a probability
density rather than a general integrable kernel. We know by (1.31.P*) that
the maximal operator S* associated to the Poisson kernel is bounded on

are

- 115 -



L. Deleaval, O. Guédon and B. Maurey

LP(R™), 1 < p < +0o0, by a constant C,, independent of the dimension n.
Consequently, the property (Aj) is satisfied.

Let us consider (Az). The first case is when T; = K5,y and in this case,
according to (2.13), the operator T} is bounded on all the spaces LP(R™),
1 < p < 400, by the L' norm of K and we get that

1T5llp—p < 1K N2 ey < 2. (6.28)

In the second case, we have to use the part (2) of Proposition 6.14. This will
be discussed below.

Finally, we must show (As), i.e., prove that T™* satisfies the property
(S2). For k fixed in Z, we shall bound the maximal operator of the kernel
Ni = K % Q using the conclusion (1) of Proposition 6.14. We show in
Section 6.5 that for every value a € (1/2,1), the norm by, := Ca(m) decays
exponentially with |k|, with constants depending on « and (linearly) on
00,9 + 01,4- In the “dyadic case”, the bound obtained in this way by (1) for
the maximal function of N, implies that

Isup [75Qs+1 1], = [|sup [ Kas) # (Passr) = Pasrsn)) = 1]
JEL JEZ
= Hjlellzj |(Nk)(2f) * f| Hz Hsup| (Nk) (t) * [ H2 Ka b,

which proves (Ss) in this case. The case of the global maximal function
requires a small adaptation, Carbery says: “This is not exactly what being
strongly bounded on L? means, but a slight modification of this argument
will give precisely what we require”. Indeed, there is now a gap between
what we get from Proposition 6.14 and the assumption we need for applying
Proposition 6.6. We shall discuss it in the subsection 6.4.1 and resolve this
“gap question” in the subsection 6.5.1. We obtain at last by Lemma 6.19
and by Lemma 6.15 that there exist universal coefficients (ay)rez such that
> kez @i < 4oo for every s > 0, and such that

Hsup |T Qj+kf‘H2 50g+51 g)ak, keZ. (629)

For (Az) in the “global” case, we study the operators (W})¢~o defined by
Wif = sup |Kuy*fl, t>0,

t<u2t
and we want to prove (Ag) for the family of T; = Wy, from (6.2), with j € Z.
Using the invariance by dilation (2.11) of multiplier norms, we see that the
operators W, have the same norm when ¢ varies, hence we need to find a
bound for Ty = Wi only. For this, we want to apply the conclusion (2) of
Proposition 6.14, so we must show that the multipliers m and (£ - V)*m/(§)
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are bounded on LP(R™) for some « € (1/p,1). For m it is clear by the
elementary fact (2.13).

For (£-V)®m(€) we shall use complex interpolation between (£-V)%m(£) =
m(€) that acts on LY(R™), and (¢ - V)m(€) that acts on L?(R™) since it is
a bounded function on R™ by (6.20) and (6.1.H). We get by interpolation
that the multiplier (£ - V)*m(§) is bounded on LP(R™), with p given by

1 1-a « «

-_= — + —_ = 1 - =,

D 1 2 2
and we need 1 — /2 = 1/p < a for applying (2), thus 1 < 3a/2 =3 — 3/p.
We must therefore have p > 3/2 in order to conclude. We see that the reason
for the restriction on the values of p in Theorem 6.2 is to be found precisely
here.

This sketch is not fully accurate. For being able to interpolate, one must
control in L? the values a = 1+i7, for every 7 real, which causes no difficulty,
but also the values a = 0+ i7 in L', and this is more technical. The precise
work, involving a slight modification of the strategy described here, is done
in Section 7.3 when we are well embedded by Miiller [59] in the mood for
interpolation. For every p € (3/2,2], we shall then obtain for some « > 1/p,
function of p, a bound of the form ||(£ - V)*m(€)||p—p < Fp(S0,g + 01,4)2 /P,
By Proposition 6.14, we deduce

HTOJCHLP(JRh H buP 1K) * f] HLP(R” Ky (d0,9 + 01 o) 2/p||fHL1’(R"

for every function f € L”(R”) We get (Az) with ppin = 3/2, since
IZillp—p = 1Tollp—p < 7, (J0,g + 01,9)*” 2. jez, 3/2<p<2. (6.30)

Applying Proposition 6.6, we finish the proof of Proposition 6.3. For
p € (3/2,2], we shall bound 7™ = My in LP(R™), thus also Mg,. We choose
a value pog, function of p, such that 3/2 < pg < p, and we let § = g 4 + 91 4.
We have by (6.30) that CJ < k! 6%~2/Po. Then, applying (6.4), (6.29), (6.30)
and dg 4 > 1, we obtain

2/p
M, sy < N lpsp + Ko < i1 (CI )Y (Z@aw“‘”’p”) + p
keZ

< Hp52—2/p

as announced, observing that 1 —~ = [1/po — 1/p]/[1/po — 1/2] is the inter-
polation parameter for LP and the pair (LP°, L%), and that the powers of §
under the exponents v and 1 — v are of the form 2 —2/r, r = pg or 2. In the
dyadic case, we may replace (6.30) by (6.28) and obtain the result for M(d)

when p € (1,2].
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Remark 6.17. — Bringing back the question to the Poisson kernel
leads to some complications, because the function g (s) associated to the
Poisson kernel, i.e., the Cauchy kernel (1.33.C), does not have decay prop-
erties as good as that of the function g ¢ of a convex set. This approach
however does not depend on the LP result of Stein for the Euclidean ball.

Why not employ the Gaussian semi-group instead? In some non Eu-
clidean situations, like Heisenberg groups or Grushin operators for in-
stance, and especially for the weak type (1, 1) property of associated max-
imal functions, the Poisson kernel is preferable. Indeed, some asymptotic
estimates, uniform in the dimension, are required on the kernel and are
easier to obtain for the Poisson kernel. But in the Euclidean case, we can-
not see a compelling obstacle to the use of the Gaussian kernel. We would
get an excellent decay, both in the space variable and in the Fourier vari-
able. We have chosen to stick to the original proofs, but we urge the reader
to rewrite them with Gaussian kernels instead. We shall see in Section 8
that Bourgain uses Gaussian kernels.

6.4.1. Where is the gap?

As was said above, we will arrive for N = K % () at

Co(Ng) := aesgf)_lHt — N’f(te)HLa <ka2 W kez,

for some «y > 0. This implies by Proposition 6.14 (1), that
Hsup|(Nk)(t) * f|”2 < kg2 VIR
>0
Translating the definition of N gives
HSUP |(K * Qk)(t) * f] H2 < "faz—’y'kl
>0
where K = K, — P, or

H sup sup |(K(y2i) * (Pogitr) — Pugitriny) * f| H2 < K2 VIR
v€E([l,2] JEZ

This must be compared to bounding the expression

H sup Ssup |(K(U2j) * (P(2j+k) — P(2j+k+1)) * fl H2 s
v€E[l,2] JEZ

which is what we are waiting for, in the definition of Property (Ss) for the
family of operators (T},.), j € Z, v € [1,2].
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6.5. A proof for the property (Ss)

In what follows, m = my, — P is the Fourier transform of the kernel
K = K, — P that appears in the proof of Proposition 6.3, where K is a
probability density on R™ satisfying (6.1.H). We have

ﬁ(f) = e 276l and we let p(&) = ﬁ(f) — ]3(2«5), £eR™.

For every k € Z, every £ € R™ and u > 0, we set

m(€) = Ni(€) = m(€) (e72 el — 2" 7lel) = () p(2"¢)
hi(u) _ mk(“f) )

u

One must show that for any given a € (1/2,1), the quantity

2 2 _ oo a+1 @10 2 du
Co(my)® = sup HuHmk(uﬁ)HLz = sup (u* T (D*hy,) (w))” —
gesn—1 «  gesn—1Jo u

introduced in (6.24) decays exponentially to 0 when |k| tends to infinity. We
fix therefore § € S"~! and for u € R, we set
o(u) = mub), x(u)=e 2" —e=47lul = P(yh) — P(2ub) = p(ub).
Let 6 = 0o,y + 1,4 = 1, where Jg 4,014 are the constants in (6.1.H). We
know that
|ul [mg(ub)] < 00,9 <&, [0 - Vmg(ub)] <1, <6,
[uf - Vmgy(uf)| <5, ueR.

On the other hand, the derivative with respect to u > 0 of P(uf) = e~27lul
is bounded by 27, and according to (5.21a), (5.21b), we have

luP(uf)] < (2me)~! <1<4, ujﬁ(uG)‘ e l<4.
u

~

For ¢(u) = m(uf) = my(uf) — P(uf) we get |¢'(u)| < 6 + 2m. Using again
0 > 1, we simplify this bound as |¢'(u)| < 8J. It follows first that |¢(u)| <
80|ul, and

6(u)] < 86(jul A [ul™Y), |6/ (w)] < 86(1 A JulY). (6.31a)
For x(u), we see when u > 0 that 0 < x(u) < ™2™ and
—2me P Ly (u) = —2me 2™ fdw e AT L 2 e 2
implying that |x'(u)| < 27 for u # 0 and
()| < @rlul) Al2meul ™, X/ (u)] < (2m) Aleul " (6.31b)
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We obtain a symmetric treatment of the two functions y and ¢s := 6 '¢
since, up to some universal multiple k (we express this by the sign <), we
have

b5 (), Ix()] < Jul Alul =0, [@5(u)l, [X/ ()] S TA el (6.32)

We set pi(u) = mg(uf) = ¢(u)x(2%u), hi(v) = pr(u)/u and we want to
estimate ||px|[z2 for every k € Z. Notice that

p-k(250) = x(v)¢(2).

The L2 norm is invariant by dilation and the assumptions on ¢5 and y are
identical, we may therefore restrict the verification to the case k > 0. Let
us fix an integer £ > 0. We have the following table, divided into the three
regions where the chosen bounds (6.32) for the functions hy and hj keep
the same analytical expression, namely, the intervals (0,27%), (27%,1) and
(1,+00). We consider that hj, is the derivative of the product of u~'¢(u)
and x(2%u), we bound therefore |R}| by the sum of |(u"*¢(u))’|[x(2*u)| and

™ o (u)| 27X/ (2%u) .

u: 0 92—k 1
u™ s (u)] < 1 1 u—2
Ix(2%u)| S 2ky 9—ky—1 g—kqy—1
U71|¢g(u)|+u72|¢5(u)| 5 U71 + ufl u71 + u,1 u*? + u—3 S/ u72
N I B et e
57 Hhg(w)] <) 2ku < 27 ky—1 9—kqy—1 o—kqy—3
3 Ay ()] Sl2b 2k Swut|27hu2 put Sumt| 2 Fu B w3 Sud

We see that 67|k} (v)| < Hi(u) := w=* Au=3. This function H; is non-
increasing on (0, +oc) and independent of k, and 6~ !hy(u)| < Hox(u) =
27k H, (u). Tt follows from Lemma 6.9 that for ¢ > 0, we have

(D) (t)] S How(t)' ™ Hi(t)* S 27U Hy(2),

and the conclusion is reached since we obtain then

dt

—+o0
o « 2
loxallts = loulls = [ e om0l

1
< §29-201—a)k / (to+1p1)2 dt n /Oo(ta+1t_3)2 dt

and

/1t2a‘1dt+/mt2a_5dt S L 1,
= — = J— %
0 1 2 4-2a a2—-a) « ’
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thus ||pxllr2 <6a~1/2270=9% when k>0, and |[pi| 12 <k~ /2527 (0-)lk
when k € Z. This implies by Proposition 6.14 (1) that

lsp (16m4) 17 1) |y < 58270 H 2 (6.3

for every a € (1/2,1), giving the property (S3) (see Definition 6.4) in the
dyadic case.

It would be just as simple to work with the I'g(K) criterion of Bourgain
given in Section 5.3. We prove a general Lemma that will be invoked again
in Section 8 for the cube problem.

LEMMA 6.18. — Suppose that two integrable kernels K1 and Ko on R"
satisfy, for a certain r and every 6 € S"~t, that

1K (uf)| < w(jul Alul™Y), 10 VEK;ud)| < s(1Aul™Y), j=1,2, ueR.
It follows that T g (K1 % (K3)ory) < C(r)27M/2 for k € Z.

Proof. — We fix § € S~ !, and in order to remind us about the preceding
case, we let m be the Fourier transform of K; and p that of K. We will
modify the table above, in order to emphasize now ¢(u) := m(uf) and
uf - Vm(ub) = u¢’(u) that appear in the components «;(m) and §;(m) of
I'p(K), and we proceed similarly for x(u) := p(uf).

Let my, be the Fourier transform of the kernel K * (Kz)@k). We have
that my.(uf) = m(ud)p(2¥uf) and we may again restrict ourselves to k > 0,
since a dilation by 2¢ on a multiplier g(¢) produces a shift of i places on the
indices j of the sequences (a;(9))jez, (8(9))jez, leaving 3, unchanged.
The bounds below do not depend on § € S"~1, so we will be able to estimate

Ap(u) := sup |my(ub)| and Byg(u):= sup [|uf  Vmy(ud)|.
fesn—1 fesn—1
Note that By (u) is controlled by ¢(u)2Fux’(25u) and ug’ (u)x(2Fu). We have
aj(mg) ~ Ag(27), Bj(mg) ~ By(27), for every j € Z. The new table is
divided into the same three regions as before.

u 0 92—k 1
ol S| w . p_
|X(2ku)| S 2ky 9—=kq—1 9—ky—1
ulg'(w)] < u u 1
2kux (2Fu)| < 2k 1 1
Ap(u) S 2kq2 9—k ok —2
By (u) S| 2R+ 272 | ut+27F Sujutt 27 R Sut
Ap(u)Bi(u) S 2kq2 9—k/2,,1/2 9—k/2,,~3/2
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It follows that for every j € Z, we have

ok+2j if j < —

aj(mg) S g 27k if —k<j5<0, so ZO‘J (mp) S (E+1)277,
27F=21 if 0 < g, Jjez
and
2k+27 if j < —k,

aj(my) B (my) S 4 27F/2H/2 i — k< j <0,
2—k/2—3j/2 if 0 <J7

SO Z aj(my) Bj(my,) S 2782
JEZ
Taking the supremum, we obtain I'p (K1 * (Kz)(%)) < C(ﬁ)g—\k\m7 for
ke Z. O
Coming back to Carbery’s situation, we obtain in this way by Lemma 5.14
that
lmi|l2—2 < k627IKI/2 ke,

slightly better than what we got with C,(my). Indeed, we must choose
a > 1/2 with Carbery, and we have obtained for Cy(my) a bound of or-
der 2~ (1=Kl

6.5.1. A solution to the gap question

The gap question has been exposed in Section 6.4.1. Instead of the func-
tion studied precedently, equal to
Nk(f) 1t mpy (5)(ﬁ[t2k] - ﬁ[t2k+l])(§) , t>0,¢eR",
we need to study the family of multipliers defined by
k(€ t) = myg(€)(Pas+n) — Pier))(€), j€Z and 2 <t < 291,

which are the Fourier transforms of the kernels Ky * (P(Qj(t)+k) — P(Qj(t)+k+1))
with j(t) = [logs t]. They do not fit into the setting of Proposition 6.14, but
can be treated using Lemma 6.15. We do the following: for every j € Z, let
x; = 27 42771 be the midpoint of the interval I; = [27,2771]. Let the “new”
function be R R

t > mygsya(t—20))(€) (Praitr) — Praitr+11)(§)
for ¢ in the first half [27, ;] of the interval I;, and

t > myg+11(€) (Prar (2s 120t —2,))) — Plar+1(2i a(t—a,))) (€)
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in the second half. The first half “contains” the family 7y (£, t) that we have
to study, and adjoining the second half will allow us to exploit easily what
has been done in Section 6.5 for the regular setting. We can describe more
compactly the new setting if we define two motions going along (0, +00)
according to

20 +2(t —27 27 <t < xj
x(ty={ 2 A=), %
2+ r; <t <2
and
2 2 <t<ay,
Y(t)=4 " i
2 4+2(t—-xj), x;<t<PT

Then, the new function can be written as

mi(§,t) == mx () (f)(ﬁ[ZkY(t)] - ﬁ[zkﬂya)})(f) : (6.34)

corresponding to the family of kernels Ky = K (x (1)) *(Pary 1)) — Part1y(1)))-
The two functions X,Y are non-decreasing, continuous, piecewise linear,
and we have X (27) = Y (27) = 2/ for j in Z. Notice that X (2t) = 2X(t)
and Y (2t) = 2Y(t) (make use of 2z; = x;j41). Also, 0 < X'(t),Y’(t) < 2.
Applying Remark 6.16, one sees easily that the functions g¢(t) = my(§,t)/t
satisfy (6.26).

In the “dilation case” where mg(§,t) = m(t§), we have that mg(s,t) =
mo (&, st) for every s > 0, and it allowed us to restrict the study of the
functions t — mg(§,t), & € R™, to the case |¢| = 1. This is not true anymore,
but we still have that m(2¢,¢) = m(,2t) for the two components ¢ and ¥
of my(&,t), defined by

B(E,t) = mxan(€), V(1) = (Pywy) — Pyn)(€),
and this permits us to restrict to the case 1 < || < 2. Indeed,
D(2¢,1) = mx () (26) = m(2X ()€) = m(X(2t)¢) = (€, 2t).
The same property holds true for U(¢,t), with ¥ replacing X.

Let us fix € such that 1 < || < 2, and consider now

$1(uw) = ®(&,u) = m(X (w)€), x1(u) = V(& u) = e 2V WIEl_ emamV (el

Letting £ = [£]|0, we compare ¢(u) = m(uf) with ¢1(u) = ¢(X(u)|€]). For
every u > 0, we have u < X (u) < 2u and u/2 < Y (u) < u. We have therefore
that u < X (u)|¢] < 4u and u/2 < Y (u)|¢] < 2u. Recall that m, difference of

mg and P, satisfies (6.31a). It follows that
0 o1 (w)] = lds(X (u) €] < 8[(X(w)l€) A (X (w)~HE[TH)]

< 32(|u| A |u\_1) < lul A |u|_1 .
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We also have ¢} (u) = X' (u) ¢’ (X (u)[€]), and since X' (u) < 2,

0 (u)] < 2|¢5(X (w)[€D] < 16[1 A (X (w)HEI™H] < 16(1 A Jul ™),
which can be written as 6~ 1(¢) (u)| < 1A |u|~!. Using (6.31b), we have the
same kind of inequalities for y;. The proof in Section 6.5 depended only on

these two bounds, so the result in (6.33) is also valid in the modified setting
and gives the following lemma.

LEMMA 6.19. — Suppose that K, is a probability density on R™ sat
isfying (6.1.H), that m = my — P and that my, is defined by (6.34). For
a € (1/2,1), one has

sup Ht — m (€, 1) HL2 < K(do,g + 51’9)2_(1_“)““', kelZ.
§ER

6.6. Appendix: proof of Bourgain’s L? theorem by Carbery’s cri-
terion

Proof. — This section is intended to illustrate the Fourier definition (6.7)
of D%, and we shall have to perform some contortions in order to enter into
the suitable setting. The kernel K on R™ to which we want to apply the
conclusion (1) of Carbery’s Proposition 6.14 is again K = K;. — P, as in
Section 6.4, where K. is a symmetric log-concave probability density on
R™ normalized by variance Let us fix a norm one vector § € R"; here, the
function @g(s) = [,. K(y 4+ s0)d" 'y, for s € R, is the dlﬁerence of two
symmetric probablhty densities gbj, associated respectively to K. and to the
Poisson kernel P. The function ¢; of integrals of K. on affine hyperplanes
parallel to 6+ satisfies, according to Lemma 5.6, an estimate of exponential
decay ¢1(s) < ke I V"‘ for s € R and for a certain x > 0 universal. On the
other hand, ¢o(s) is the Cauchy kernel (1.33.C) equal to 7=1(1 + s?)71, for
which one has only ¢2(s) < 1As~2, where a Ab denotes the minimum of two
real numbers a and b. This estimate is valid also for ¢, up to some universal
factor x, and we shall remember for the absolute value of @y that

1
VseR, |<p9(s)|<n<1A82). (6.35)

The Fourier transform m of K is given by

m(tl) = / wp(s) e 215t s,
R

Denote by ® the antiderivative of ¢y vanishing at 0. The function @ is odd,
it vanishes also at infinity because ¢y is even with integral zero. We deduce
from (6.35), for some x > 0 and every s € R, that

|(s)| < s(ls| A ls| ). (6.36)
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For t # 0, we could, performing an integration by parts, express m(t0) by a
simply converging integral

+o00o

m(tl) = 2i7rt/ P(s)e 2™ ds,

—0o0
but we prefer to work with absolutely converging integrals, for example
in this way: let us denote by 160 the L'-normalized truncation ﬁo =
1P ”le(]Rn) 1pP of the Poisson kernel P at a sufficiently large Euclidean
ball B in R", so that [|[1pP]||; > 1/2. We can see according to (1.35) that
the radius of B must be at least of order x+/n. Another possibility is to
introduce a modified Poisson kernel

P(z) = 2P(z)e=0l*’/2

where €9 > 0 is chosen so that the integral of P is equal to 1. With both
choices, one has Fy, P < 2P, and the estimates of the maximal function for
the kernel P are thus clearly true for P, with a bound simply doubled. For

the same fixed 6 of norm one, the modified function ¢ defined by

pa(s) =2 | P(y+ s0) e oWl +s/2 qn=l, < O(p) ge0"/2
0L
decays exponentially at infinity, and since ¢o(s) < 2771(1+s2)~!, the mod-
ified function ¢y satisfies (6.35) and (6.36). The modified antiderivative @
inherits now at infinity of the exponential decay of ¢ and of ¢o, and this
makes the integrals that follow absolutely convergent. However, the “univer-
sal” estimates remain given by (6.35) and (6.36).

The situation would be simpler using a Gaussian kernel, letting
K(z) = Ko(z) - G(z), zeR",
with G being the N(0,1,) density (1.17) on R™.

We apply here the Fourier definition (6.7) for D®. For every t > 0 we
write
m(t0)
t

= 2i7r/ P(s)e 2™t g5,
R

where |®| decays exponentially at infinity. This ensures that ¢ — m(t6)/t
is C* on the line, with bounded derivatives. By (6.7), we can express the
fractional derivative appearing in Carbery’s criterion as

m(t0)

DY (t> = in(Qw)a/R(is)o‘q)(s) e 21Tt (s,

—125 —



L. Deleaval, O. Guédon and B. Maurey

For 0 < a < 1, we write
/0 SQ‘I)(S) 67217rst ds = 217Tt/0 (Saq)(s))/672lﬂ5t dS,

and because (so‘@(s))/ vanishes at 0, we see that

o . 1> :
/0 5B (s) e 2™t s = _m/o (sa<I>(s))// e 2imst s

The integrals on the side of negative s ask for an analogous treatment, es-
sentially already seen in Section 5.2, Lemma 5.8. We estimate the various
parts (five parts) issued from the differentiations of s*®(s) to the first and
second order, by applying the upper bounds (6.35) and (6.36) and the fact
that 0 < a < 1. Notice that

/ (s* 14572 (s Ash)ds
0

Grouping two of the terms issued from (s*®)’, (s*®)” and using (6.36), we
have

1 1 1 1
S — 4+ ——— =kq.

:1+a+a l—-a 2—«

o .
’/ Sa_l(b(s) e—217rst ds
0

we also have [[° (5% + s*71)|@g(s)| ds < K kq for two other terms by (6.35),
and finally for each ¢ = ¢;, j = 1,2, decreasing on the positive side of the
real line, we know by Lemma 5.9 that

oo +oo
/ 5% ¢’ (s)|ds = a/ 5" 1g(s)ds < +o0,
0 0

which permits us to close this list of estimates for pg = ¢1 — ¢o. It follows
that for every t > 0, we have

‘D? (m(;@)) ‘ <KL(ETIAETE),

o0
+ ‘/ Y720 (s) e 2™ ds| < Kk,
0

with s/, < K'(27)%k, independent of the direction 6. Recalling the defini-
tion (6.24) and since 0 < o < 1, we get
taJrlDta <m(t0)>

t

2 at
t

+oo
2
Co(m)* = sup Htr—>m(t9)|L2 = sup /
fesn—1 > fesr—1Jo

1 “+o0
dt dt
< (HQ)Q(/ (ta+1t71)2 7 Jr/ (ta+1t72)2 t)
0 1

1 400
(n;)z(/ tzafldt+/ t2a3dt>
0 1
1 1
_ N2 T
= (kp) (2a+2—2a) < +00.
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One thus chooses o € (1/2,1) arbitrary and applies Carbery’s Proposi-
tion 6.14(1), which gives the boundedness on L?(R"™) of the maximal op-
erator associated to the difference kernel K = K. — P. We get in this way
that the maximal operator M, is bounded on L?(R™) by a constant inde-
pendent of the dimension n. (|

7. The Detlef Miiller article

Miiller [59] introduces a geometrical parameter Q(C) associated to every
symmetric convex body C in R™. When C is isotropic of volume 1, this
parameter Q(C) is equal to the maximum of (n — 1)-dimensional volumes of
hyperplane projections of C. Miiller shows that in the class C(\) consisting
of Cs for which Q(C) and the isotropy constant L(C') are bounded by a
given )\, the existence for the maximal operator M¢ associated to C' of an
LP(R™) bound, uniform in n, can be pushed to every value p > 1 with a
constant k(p,\) depending on p and A only. This removes — in a way —
the restriction p > 3/2 imposed by Bourgain and Carbery.

We have seen in (5.1) and (5.3) that when C’o is isotropic of volume 1 in
R™, then the dilate C; = roCy with 7 = L(Cp) ™! is isotropic and normalized
by variance. The proof of Miiller will actually make use of a parameter ¢(C1)
equal to the supremum in # € S"~! of the masses of the signed measures 6 -
V K¢, . We shall see that for § of norm one, the mass of the measure -VK¢,,
the directional derivative in the sense of distributions of the probability
measure fc,, is given by

APt gy |PyColams < = Q(Co) = 2L(Co) QUC) .
|C1]n To

where Py is the orthogonal projection onto the hyperplane 6+. For every
symmetric convex set C', we let Cj be an isotropic position of volume 1 for
C and we set

q(C) = 2L(Co)Q(Co) - (7.1)
Miiller [59, Section 3] proves that ¢(C) is uniformly bounded for the family
of unit balls B of ¢4, 1 < ¢ < 400 fixed and n € N*. This is easy when
g = 2. By (5.4), we know that the Euclidean ball B,, v in R™ normalized by
variance has a radius r, 1 equal to v/n + 2, hence by the log-convexity of
the Gamma function we get

2PyBpvin1  2wn_ 2T (n/2 + 1
o(B2) = sup [PoBnyln-1 _ 2wn1 _ (n/2+1)
gesn—1 |Bn,V|n Tn,VWn (n + 2) F(R/Q + 1/2
_ 2T (n/2+1/2)V2T(n/2+3/2)/2 o | mt1 \/’
h T(n+2)T(n/2+1/2) 21 (n + 2)
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Given a kernel K integrable on R"™ and having partial derivatives 0; K in
the sense of distributions that are (signed) measures p;, for j =1,...,n, we
define the directional variation V(K) of K by

n
V(K):= sup ||6- VKHl bup ||Zt9juj||1. (7.2)
gesn—1 gn-1 4

We will show at Lemma 7.10 that V(K¢) = ¢(C) when C is an isotropic
symmetric convex body normalized by variance. For the N(0,1,) Gaussian
density 7y, we see that V(v,) = [g. |2 - €1 dyn(z) = [ [u|dyi(u) = \/2/7.
Notice that

V(Ky)=t"'"V(K), t>0, and V(K=xp) <V(K) (7.3)
for any probability measure g on R™. Since V' (7, ) is independent of n, it

follows from the subordination formula (1.30) that the same is true for the

Poisson kernel P;") on R™ expressed in (1.32). Precisely, because G in (1.30)
is a N(0, s1,,) Gaussian measure, we have V(G) = s~/2V (v,,) by (7.3) and
we first get

+00 —3/2 too o—1/(25) g 2
v(P™) g/ V(Gs)sﬁ o—1/(25) g :/ € ?j =2, (14
0 s 0 T e

but actually V(P%n)) = 2/7 since for each = € R”, all gradients VG4(z),
s > 0, are nonnegative multiples of the same vector —z. This equality is of
course also easy to derive by a direct calculation on the Poisson density.

Besides the appearance of the parameter ¢(C'), Miiller’s proof draws on
estimates such as (6.1.H), but extended to more derivatives of the Fourier
transform mg of K¢. That bounding more derivatives leads to improved
results was already seen in Bourgain [11], who obtained a dimension free
bound in LP(R™) for all p > 1 in the case of the maximal operator Mg of
£2 balls when ¢ is an even integer. We shall consider a probability density K,
on R” or more generally an integrable kernel K, with a Fourier transform
myg satisfying that for every integer j > 0, there exists a constant d; 4 such
that
’dﬂ (tH)) O g gl ¢ 0 (7.5.Ho)
dts 1+¢’ ’ ' T
Actually, for each specific value p € (1,3/2], bounding M¢ in LP(R™), know-
ing that ¢(C) < A, requires a certain finite number of estimates from the
infinite list (7.5.H), and this number increases to infinity when p tends to
1. We let

k
Ak = 6ig- (7.6)
j=0
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The “radial” estimate (7.5.H,) implies |d? /(d¢7 )ym,(t€)] < 6;,41€)7 /(14 [¢€])
for £ # 0. It is natural to disregard ¢ = 0 in a radial method, but when
j > 0, we can extend continuously & — d7/(dt?)my(t€) by giving the value
0at &=0.

THEOREM 7.1 (Miiller [59]). — For every p € (1,400] and A > 0, there
exists a constant k(p, \) independent of n such that

HMchf

|r@n) < K(D, A) | fll L e

if K. is an isotropic symmetric log-concave probability density on R™, nor-
malized by variance and with V(K;.) < X. In particular, for every sym-
metric convex body C in R" such that q(C) < A, one has [[Mc fl|Lr@mn) <
&P, N) || fll L (rny- When p € (1,2], we can write more precisely

||MK1C |LP(Rn) < k(p)(1+ )\2/17—1)'
If a probability density K4 satisfies (7.5.Ho) and if p € (1,2], then we have

Mg, fll oy < fip g HPATYPA+V (K271, with ko(p) < p/(p—1).

The subsequent proof furnishes for the constant «, in the line above an
order exponential in ¢ = p/(p—1) that is certainly not right, see Remarks 7.13
and 7.14. The case p > 3/2 is already known, with k(p, A) independent of A,
see Theorem 6.2 and Proposition 6.3. We know by Lemma 5.11 that isotropic
symmetric log-concave probability densities satisfy (7.5.H,) with absolute
constants (J;,.)52. We shall thus concentrate on the K, case and on values
p € (1,3/2]. Taking Carbery’s results into account, the following proposition
will be (essentially) enough for proving Miiller’s theorem.

PROPOSITION 7.2 ([59, Proposition 1]). — Let K, be an integrable kernel
on R™ satisfying (7.5.Hs) and let my be its Fourier transform. For every

€ (0,1) and every p € (1,4+00), the multiplier (§ - V)*mgy(§) in (6.18.V*)
admits on LP(R™) a bound that depends upon p, a, d = (3;,4)52 and V (K),
but not on the dimension n. When p € (1,2] and if || Kg||p1(mny < 1, we can
write

4/3)(1-1 2/3)(1-1 _
1&-V) (&) lpsp < 1+ 5(0, p) ALY P (146821 D Py () )21
with k(p) = [3p/(4p — 4)].
The case p = 2 follows easily from Parseval (2.12.P) by (6.1.H) and (6.20).
The result for p > 2 can be obtained by duality from the case 1 < p < 2.

Proof of Theorem 7.1. — Let p € (1,2) be given. We then choose py €
(1,p) and « € (1/po,1) as being functions of p, for example py = (2p +
2)/(5—p) and a = (p+7)/(4p + 4). We apply in LP°(R™) the part (2) of
Proposition 6.14 to the kernel K = K, — P. We know by Proposition 7.2
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that (£ - V)*mgy(§) is bounded on LP°(R™) by a function of V(K,) and we
will check in Section 7.2 that (£ - V)*P(&) is also bounded on LP°(R™) by
some Ty p, = 7(p). It follows for m = my — P that

16 - ) (&) llpg-spo < Kol A)(L+ V(Kg)>P71) < ko(p, d)(1+ N2/,

with ro(p,d) < H(p)Al(:zaii(l71/170)6((),2;3)(171/1)0)’ where A; > 6o, > 1 be-
cause K, here is a probability density. We obtain in this way that
f=Wif:= sup |K(u) * f|

<ug?2

is bounded on LP°(R™). This was the only missing information for deducing
from Proposition 6.6 that My is bounded on LP(R™) when 1 < p < 3/2.
Indeed, with the notation of Section 6.1, let T}, be the convolution with
K (i), v € [1,2] and let T} be as in (6.2). By Proposition 6.14(2), we have
for every j € Z that

||Tj||po—>po = ||TO||po—>po = ||W1||po—>po

< oy (2 1€ VM o). )

with q.p, from (6.25). We bound it by CJ (A) = Ka,p, (2 + Ko(p,d)(1 +
A2/Po=1)) By (6.4), with py already set and ro = 2p/(p + 2 — po) function
of p and pg, we get

2/p
Ml < C P CL 0 (S 7).
keZ

where v = [1/p—1/2]/[1/po—1/2] = (p+1)/(2p). The constants C, in (A),
C,, in (A1) depend only on p, py and ro, hence on p alone, and they exist
regardless of p > 3/2 or not. By Section 6.5, we know that under (6.1.H),
the (ax)rez in (As) satisfy ap < (80,9 + 01,9) Ao,k With (Gak)kez universal.
We obtain

HMK«;HPH:D < | Mk lp—p + fp
< (p,d)(L+ NP2 = (p,d)(L+ AP,

with 1 —1/po = (3p — 3)/(2p + 2), k(po) = [(p+1)/(2p — 2)] < p/(p— 1),
and

k(p,d) < ,1(]))(A](:Z)izg(l—1/170)(5((J2/3)(171/p(,))ayAi_ﬂY

g

1-1 1-1
<KAo ATH O
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7.1. The Miiller strategy

Miiller prefers to work with another version ¢* of the fractional integral
I* from (6.9). This version is defined when Rew > 0, beginning this time
with f € C*°(R), by the formula

1

2
N0 = 75 / (w— 0 fl) du, t<2.

The chosen limit 2 is rather arbitrary, but will be quite convenient for the
computations that follow, in particular because (2 — 1)* = 1 for every w.
Integrating by parts as we did for IV in Section 6.2, we get
, 2-t)"f2) 1 / ? /

i f)(t) = — u—1)"f'(u)du.

N0 = Frn . e [, 0w
This new formula makes sense for Rew > —1 and defines a fractional deriv-
ative d* if z = —w and Re z < 1, by setting

(d*f)t) = 2 F_(?:zj)@) - 1“(11_2)/t (w—t)"f (u)du, t<2. (7.9)

Notice that (d°f)(t) = f(2) — ff f'(u)du = f(¢t). Continuing integration
by parts as in Section 6.2, we get successive formulas defining d? f, for each
integer k, which make sense for Re z < k and extend each other. Gluing them
together, we can define entire functions of z for every ¢ fixed and every given
function f € C*°(R), for example (d*1)(1) = 1/T(1 — z) if f = 1. Suppose
that Rez < 0. From

1

2
d*f)(t) = / uw—1t)"""f(u)du,
@0 =g | -0 W
we get for every integer k > 1 that

(@10 = Bulet) + (D ey [ =01 O du, (710)

a formula to be compared with (6.16), and where Ey(z,t) is equal to

k-1 ; ;
_ g (2= t)~=+ f9)(2)

If zis in C, ¢t < 2 and Re z < k, we can take (7.10) as definition for (d?f)(¢).
When —1 < Rez <0, f € S(R") and ¢ < 2, we see that

(D)) = (d*f)(t) = (T% =77 f)(t)

1

Foo o (7.11)
= s /2 (u—1t) f(u)du.
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This equality can be extended by analytic continuation to every z € C
with Rez > —1, or it can be proved by successive integrations by parts. In
particular, one has (dV f)(t) = (DN f)(t) = (=1)N fN)(t) for every integer
N > 0 because I'(—N)~! = 0. As we did for D, when the function of ¢ does
not have an explicit name, we use the notation d¢ f(2t), and d¢ f(2t) ’til for
the value at t = 1. B

LEMMA 7.3 (Miiller [59]). — Let m denote the Fourier transform of a
kernel K integrable on R™. For every a € (0,1), the difference

(€-V)"m(e) — dem(te)|,_ . €eR™,
is a multiplier on LP(R™), 1 < p < 400, with a norm bounded by || K || 1 rn).

Proof. — By (6.18.V%) we have (£-V)*m(§) :D?m(t§)|t_1. From (7.11),
we get a

“+o0
(€ 9) m() = dm ()] _, = gy [ (0= D)7 mlue) du

The result follows by Lemma 2.1, since

1 /m( nH—eld ! LI O
u— U = = .
| | )2 |—al(=a)]  T(1-a)

Thanks to the reduction from (£ - V)*m(&) to d¢m(t) |t:1 given by
Lemma 7.3, one can transform the condition (2) of Proposition 6.14. The ob-
jective now is to control the action on LP(R™) of the multiplier df'm (&) ’t
for some fixed « € (1/p, 1) denoted by @ = 1 —¢, where € > 0 gets arbltrarlly
small when p tends to 1. Miiller embeds the “objective” into the holomorphic
family of multipliers

m(€) = (L4 |e)' " dimg(t6)],_ . Rez>-1,  (.12)

and applies the complex interpolation scheme described in Section 3.2. For
the value z = a =1 — ¢, one has

M (€) = mi_(€) = d} o my(t6)| _ = dim(t6)] _ .

which is the objective to be controlled. Miiller studies this holomorphic fam-
ily for z € C varying in a strip of the form —e < Rez < v, with v > 0 real.
He shows by rather long and delicate calculations that the multipliers m<(€)
are bounded functions of £ € R™, for all z in this strip, not uniformly in z,
but with a L>(R™) norm of order I'(z)~!. This allows him to control the
action on L?(R™), which is used for one end of the interpolation scale, the
one corresponding to Rez = v.
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The other end of the scale is Rez = —e, where the operator associated
to

mE i = (L4 [E) 7 dr T Tmg (1))
(L €)™ (U4 Jel) dy =+ mmy (16)]| _

involves a “small” fractional integration d %17 of order ¢, and a multipli-
cation on the Fourier side by 1+ |{|. We will show that these multipliers
m? _,;, are bounded on all the spaces L"(R"), 1 < r < +o0. In order to
do it, we shall have to work mainly on the multiplier |{|m4(§). The param-
eter V(K ,) appears when bounding the action of this multiplier on L™(R"™),
and the proof will use the dimensionless estimates for the Riesz transforms
given in (2.22). Next, given p in (1, 2], we choose py € (1,p), a € (1/po, 1),
and v > a which is a function of p, py, a. By interpolation between L?(R™)
(when Rez = v) and LP°(R™) (when Rez = —¢), we shall obtain for the
value @ = 1 — ¢ the boundedness on LP(R™) of the multiplier m¢ (§) that is
our “objective”, thus proving Proposition 7.2.

Let us comment on the formulas for the Miiller multipliers. We know
by (5.19) in Corollary 5.13 that differentiating N times the function ¢
mgy(t€) introduces a factor of order (14 [¢£])V 1, which must be compensated
for being in a position to apply Parseval for the L? bound, using (2.12.P)
as usual. This is done by multiplying by (1 + |£])}~¢~" when z = v. On the
other hand, we do not want a compensating factor when z = «, where we
want to precisely recover our objective. The compensation will thus be of
the form (1 + |¢|)?**?, with av +b =1 —¢ — v and aa + b = 0. We then
get a “compensating factor” with a positive power of || for Re z < «, which
becomes an additional problem and requires more work.

The interpolation strip technique has been often employed by Stein. For ex-
ample, in [73, Chap. III, §3], for studying the maximal function sup,~q | P: f|
of general semi-groups, Stein works on a strip S of the form —1 < Rez <
N. If z = —1, he considers that the maximal inequality of Hopf concerns
the derivative of order —1 of the semi-group, that is to say, its antideriva-
tive (multiplied by t* = ¢t™')

t_lDt_l(Ptf)z%/ (P.f)ds.
0

By Hopf, this operator is known to be LP bounded, 1 < p < +o00. Stein
must check in addition that the extension to complex values in the vertical
line z = —1 + i7 also gives bounded operators on LP(R"™).

Stein’s objective is to study the maximal function of the semi-group
itself, which corresponds to the derivative of order z = 0. In order to
do this, he interpolates between Hopf in LP°, py < p < 2, for Rez =
—1, and an L? estimate of derivatives of the semi-group, for Rez = N.
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For each integer k, the quantity t*DF (P:f) appears in the Littlewood—
Paley function gx(f), so one can control in L? its maximal function, see
Section 2.1.1. The holomorphic family is then defined by z — t*Di (P.f),
z € S, for a suitable version D? of fractional differentiation.

The general strategy above was already applied in [71] to the discrete
case.

7.2. Model of proof: the Poisson case

For proving Theorem 7.1, we have to apply Carbery’s Proposition 6.14(2)
to the difference K = K, — P. Miiller shows that (£ - V)*m4(§) acts on
LP(R™) when 0 < av < 1 and 1 < p < 400, and we need to verify that the
corresponding multiplier (& - V)*P(¢) for the Poisson kernel P also acts on
LP(R™), 1 < p < +00, with bounds independent of the dimension n. This
could be covered by Proposition 7.2, by observing that the Poisson kernel
P™ in (1.32), with Fourier transform e~27l¢l clearly satisfies (7.5.Ho) and

has V(PYL)) bounded independently of n according to (7.4). We actually
prefer to take an opportunity to examine the structure of Miiller’s proof in
a simple case. When a € (0,1), we could find a shorter specific proof, but
the longer one that is given below provides a better introduction to what
follows in this Section 7.

One sees that (& - V)*P(¢) = (2r|¢[)* e=27I¢l | cither by applying (6.13)
that gives D e~ = A e~ for X\ ¢ > 0, or by making use of the residue
theorem.

Indeed, according to (6.18.V®) with £ = |£|6, one has

—2i7s|€|

(€-V)*P(€) = / ds,

R

(217r5|§\)°‘<p9(5)672i”‘5‘ ds I/R(Qiﬂsm)aﬁ

that can be computed using a contour formed of [—R, R] with R > 1, and
of a half-circle of radius R centered at 0, located in the lower complex
half-plane.

We are going to bound the action on LP(R") of the multiplier |¢|* e~ ¢!
by the interpolation scheme of Section 3.2. Consider the holomorphic family
of multipliers

P.(&)=|¢Fe ¥l Rez>0, € eR".

We will interpolate between L?(R™) and LPo(R"™), py > 1 close to 1. For
proving the boundedness on L?(R™), it is enough by (2.12.P) to see that
the function £ — |¢J? e 1€l is bounded when ¢ varies in R”, and since this
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function is radial, its supremum is independent of n. If we write z = a + ib,
a > 0, we have
sup sup [Po(¢)] = sup {[lg|H e}
£€R™,bER

£ER™ Rez=a (713)

=sup{r®e "} =a%e"".
>0

We work on a line Rez = v, with v “large”, for dealing with the L?
boundedness, and the other line is Rez = 0. For the values z = 0 + ib,
b real, we know by (2.18) when 1 < r < +oco that the norm on L"(R")
of the multiplier |£|'* is bounded by A, e™*l/2) with ), independent of the
dimension n. The multiplier e ¢l corresponds to the convolution with a
Poisson probability measure, so it is bounded by 1 on L"(R™) when 1 < r <
+00 by (2.13).

Let o € (0,1) be given. Consider p € (1,2), introduce py = 2p/(p+ 1) €
(1,p), making 1/pg the midpoint between 1 and 1/p. Then with§ =p—1 €
(0,1) we can check that 1/p = (1 — 0)/po + 6/2, and we define v by the
condition o = (1 — #).0 4 v, namely, we set v = a/(p — 1). Let T, be the
operator associated to the multiplier P,. We have to estimate the norm of
T, on L? by bounding (T, f,g) uniformly for f in the unit ball of L?(R")
and ¢ in the unit ball of the dual L?(R"™), where 1/g+ 1/p = 1. Consider the
holomorphic function

H:z-{(T.f.,9.)
where f,,g. are as in (3.23). The bounds obtained for the family 7, do not
allow us to apply directly the three lines Lemma 3.1, but Corollary 3.4 will
do the job. We got at the boundary of the strip, for the norms ||7%||p,—po
when Rez = 0, a bound of the form O(e®!™?!). For every real number 7,
the function H satisfies

|H(0+i7)| < Ao €™™V2 and also |H(v + i7)] <v”e™.

By Corollary 3.4, the value H(«) is bounded uniformly by a quantity 7
depending on pg, # and on the width w = v of the strip, hence on «, p only.
As explained in (3.26), this gives then for the action of T, on LP(R™) a
bound || |-y < 1.

For applying Corollary 3.4, it remains to check that H has an admissible
growth in S = {2z : 0 < Rez < v}. We may actually reduce the discussion to
a function H bounded in the strip (but without universal estimate). Indeed,
one can observe that all operators T,, z € S, are uniformly bounded on
L?(R™), since |P. ()| is bounded by v* for all £ € R™ and z in S by (7.13).
We may limit ourselves to f, g continuous with compact support, so that
f=, gz, 2 € S, stay in a bounded subset of L?, according to (3.24), implying
that H = Hy 4 is bounded in the strip.
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7.3. The interpolation part of Carbery’s proof for Theorem 6.2

Proof. — In order to complete the proof of Theorem 6.2 and Proposi-
tion 6.3, it remains to show that the multiplier (¢ - V)*m(§), where m is
the Fourier transform of K = K, — P, is bounded on LP(R"™) for at least
one value o > 1/p when p > 3/2. We have seen in the preceding Sec-
tion 7.2 that (¢ - V)aﬁ(f) is bounded on LP(R™), we need only consider
now (£ - V)*mgy(§). We will obtain the result by interpolating between the
boundedness on L*(R"), for agp = —¢, and the boundedness on L?(R"), for
a1 =1 —¢, of a certain holomorphic family N, (€) such that N, (§) controls
(&-V)*mg(€). If p > 3/2 is fixed, its conjugate ¢ is < 3. We write

2 1 1—-6 0 0 0 1 1

3>p— 1 —|—2—1 5 thus 2—1 i
and § = 2/q > 2/3 > 1 —6/2. One can then find £ € (0,1) small enough,
and independent of the dimension n, so that

Qe (1—0)(—e)+0(1—e)—f—e>1-2-1
2 p

We need 0 < €<360/2 — 1, we can set for example ¢ = 30/4 — 1/2 =
(p—3/2)/p. By Lemma 7.3, it is enough to show that df'm (&) |t:1 is bounded
on LP. Consider the holomorphic family of multipliers (N.), simpler than
that of Miiller, namely, N, (&) := dtzmg(tf)| in the strip —e < Rez < 1—-e.
When Re z < 0, we have

t=1

1

Nz(é) = P(—Z)

2
/1 (u—1)"*" my(ug) du, (7.14)

and in particular

1

Necrinl®) = gy | (= D () du

We see that
2 ' 2
/ |(u—1)"""""du= / (u—1) " du=¢e" < 400,
1 1

thus N_., i, acts on L', with norm < 2e71(1+ 72)1/4_8/2 e™I71/2 according
to Lemma 2.1, to the inequality (3.12.T") for the Gamma function and since
the L' norm of the kernel K, is equal to 1. When Rez = 1 — ¢, we have
by (7.9) that

Ni_eqir(§) = FT(ZgEQ;CZ) - F(si 7 /1 (u—1)"I7 e Vmg(ug) du.
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The kernel N1_.4i, is a bounded function of £, because we have |my(2£)| <
do,g and ‘u§ . Vmg(ug)‘ < 01,4 by (6.1.H). Using (3.12.T") we obtain

1)
’Nl_a_HT ’\|F(( 0,9 /‘u—ls iT— 1‘ 1,9d)

((507_(]-1-(5179)6 (l—l-T )1/4 c/2 e”‘ |/2.

This shows that the operator associated to Ny_. ;. (&) is bounded on L?(R™)
with a bound O(e”!7l). We deal with this estimate as in the preceding Sec-
tion 7.2, and we obtain by interpolation that N, () is a LP(R"™)-multiplier.
Remark 3.6 takes care of the polynomial factor (1472)Y/47¢/2 < (1472)1/4,
By Lemma 7.3 and (3.22) withw =1, ¢; = 1/4, u; = 7/2, and since 6y 4 > 1
we get

o 2p 3\ /2 x _
16 )l < 1 =20 (3] 07/4 0+ 010

< HPA§72/ L
We now check that the function H(z) = (N.f,,g,) of (3.25) has an
admissible growth in S = {—e < Rez < 1 — e}. We may again observe that
all kernels N, (§) are bounded functions of £. Indeed, N, () can be expressed
in the whole strip by

mg(28) B 1
I'(—z+1) TI(-z+1

so that |N,(€)] < ke s(1 + 72)Y/%e™I71/2, Next, we can assume that the two
functions f, g appearing in the definition of H are bounded with bounded
support, and argue with (3.24) as at the end of Section 7.2, obtaining that
|H(2)| < k|| N2 |lame < KL(14+72)1/4e7I71/2 4 growth admissible for applying
Corollary 3.4. O

2
N.(§) = ] /1 (u—1)77¢ - Vmg(u€)du, &e€R",

We see pretty well why Miiller finds a better result than the one given by
the preceding argument, which suffices for Carbery’s theorem. It is because
Miiller is able to make use of multipliers more difficult to handle, which
contain an extra factor |£| on the line Rez = —¢, for example m® _(§) =
(1 + [£])N—c(&) when z = —e. This factor |£| is precisely the one that will
be treated by the geometrical parameter ¢(C). On the other hand, Miiller’s
approach is not better when p > 3/2, since the result is known in this case
without assumption on ¢(C).

Remark. — The factor 1/T'(—z) in (7.14) is not purely decorative. With-
out it, N.(£) would have a “pole” at z = 0, which is compensated by the zero
of 1/T'(z) at 0. One could perhaps get away here with a less sophisticated
factor such as z/(a — z), with a real and > 1. See also Remark 7.13.
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7.4. Upper bounds for the functions £ — mS(§)

We present a version of Miiller’s upper bounds for the functions m$ de-
fined in (7.12). Miiller’s bounds in [59] are not fully explicit since they use
asymptotic estimates, but they do not contain the annoying factor e ! that
our somewhat shorter proof introduces below.

LEMMA 7.4 ([59, Lemma 2]). — Assume that the kernel K, integrable
on R™ satisfies (7.5.Hu), let € € (0,1), let v > 1 —¢ and set £ = [v +¢].
For every z € C such that —e < Rez < v, one has that

VEER™, [mS(€)] < kye TAp(14 (Imz)2)/271/4 erlimzl/2
where k, = AT'(max(v,2)) (3/2)""1/2e™* and where A, is defined at (7.6).

One of the difficulties in Miiller’s article is the following: with the operator
D%, we have been able to compute certain integrals by the residue theorem,
on entire half-lines. The corresponding values for d* are less pleasant, because
they involve bounded segments, and quarters of circle at finite distance whose
contribution is not zero. Let us mention another difficulty, somewhat related
to the latter. If we know that |D7m(t0)| < w(1 + |¢t])~! for every t real
and 6 € S"~1 then by the homogeneity relation (6.8) we get |Dim(t)| <
K|€|Re# (1+|t€]) ! for € € R™, but this kind of behavior is not clear for d*. The
more delicate analysis of [59] will not be given here, but some special cases
are rather easy. Indeed, the computation is not difficult when Rez = k — ¢,
for every integer k > 0. We will however be able to deduce Lemma 7.4 from
the easy cases that are treated in the next lemma.

LEMMA 7.5. — Assume that K, is integrable on R"™ and satisfies
(7.5.Hy). For every e € (0,1), every integer k > 0 and z € C such that
Rez =k — ¢, one has

VEERT, Imi(O)l< 2h, 7 A (1 (Im z)?)F /22t /A erlim =/,
where k* = max(k, 1), k), < T(k —¢) for k > 3 and &{, k), kh < 1.
Proof. — We first give the proof for k = 0, when z = —¢ + i7. We have

€ l—e—(—e+iT) 1 2 e—iT—1
m i (€) = (1 +1€) e [ 0 )

and it follows that
2
/1 (u— 111+ [¢]) g (u)| du.

By (7.5.Ho), we know that |[my(ug)| < 8o,4(1 +]¢])~! when u > 1, thus

2
]
T(e —it)ms 4. (§)] < 5079/ (u=1)""du= %.
1

1
< |—
|m—a+17-( )| ~ ‘F(E _ 17_)
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Using also (3.12.T"), this simplest case reads as
1M e iirlloo < 280,97 (1 +72)VA72emT2 7 e R,

and 1/4 = k*/2—1/4 here. For k > 0, we have by (7.10) with z =k —e + ir
that

—e+iT 1 ? —ir— dk
dy ==t te)],_, = Bx + (—1)km/l (u—1)° 1@”‘9(“5) du
where
pe= Sy By
k_j:O FG+l1—k+e—ir)’

By our assumption (7.5.Hy), the function u — mgy(ug) satisfies

di | €17
oy o08)| = | Syl <yt ()

for each integer j > 0, if £ # 0 and 0 = |£|71£. This yields

’ i1 4" ’ L _lg
’/1 (u—1) ng(ug)du <6k7g/1 (u—1)° T+ e du
Gy I
e 1+¢°
For the terms in the expression Fj, we have by (7.15) that

|l (1+[€])
mg(u£)|u:2 < g 1+ € <jg 1+ €]

Vuz>1,

< 6j7g (1+ |f|)k71
7=0,...,k—1.

d7
‘duj

Recalling Ay = Z?:o d;¢ and (3.12.T") with a = —k + 1 + ¢, we get

M1 (O] = A+ €))7 F | af = Tmy(£€)
AV N [ e C S S

iz

(7.16)
x max{|['(e —iT —j1)| 7 :0<j1 <k—1}
< Ba Ag E_l (1 + 7_2)1/4—1—(1@—1—5)/2 eﬂ"Tl/Q .
We may take 8, = 2 when k < 2 and 8, = 2I'(k — €) otherwise. |
Remark. — One could not make the same simple computation for k — &’

when &’ > ¢. Indeed, we have then

mi_oi(§) = (L4 e 0=

|t:1’
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so |mé__,(€)| contains the factor (1 + |£)*~*+<'=¢ that is not controllable
by the preceding proof when ¢’ > ¢. With one more integration by parts in
the log-concave case we obtain

&I (=2im]¢])’~

—mye(ué) =

2
™ y /(Sj(pg(s))”672iﬂsu‘6‘ ds
R

w2

that seems to give an additional improvement, able to swallow the bad factor
£]¢'~¢ above. However, we would need now for Jz sV l¢y(s)|ds a universal
bound that does not exist, and actually, this integral does not make sense in
general.

When k > 1, the kernel mj__, ;. = (1+ |§\)1*k*”Dﬁ*€+”mg(uf)|
is even easier to bound since we can write directly

+oo k +oo
/ (-1 L ) du| < 5y / (= 1)1 S ) g,
1 duk ’ 1

but D;€+i7mg(u§)| _, isnot a bounded function of £ in the neighborhood
of £ = 0. For example, we have D; e "Il | = |¢|=% e l¢l. Thus me , is
u=1

not an L? multiplier, nor an L? multiplier for any p # 2, and this justifies
working with df instead.

u=1

Proof of Lemma 7.4. — Let v > 1 —¢c and £ = [v+¢] > 2, so that
v <Ll —e. If Rez < ¢, we have by (7.10) that

2 )4
dmg(t9)],_, = Bi2) + (<) ey [ (= )7 () du

with E(z) = Zf;é(—l)iI‘(i +1-2)714 mg(uf)’ . We fix £ € R™ and
consider the holomorphic function

He': 2 m(€) = (14 €)' dsmy(€)]_,

in the strip —e < Rez < ¢ — e. We have |(di/dui)mg(u§)’ < i glElt
by (7.5.Hy,), and it follows from (3.12.T) that |He(2)| < xe”/7! in the strip,
with x depending on |£|]. Consider an arbitrary zo such that 1 —e < vy :=
Rezg < v. Let k integer be such that k—e < vy <k+1—¢,thus1 <k < /.
By Lemma 7.5, when Rez = k —¢ or Rez = k 4+ 1 — ¢, we have for He(z)
the good bound

[He(z)| < 2“kez+5ARez+65_l(1 + (Im Z)Q)Rez/2_1/4 emltm=l/2, (7.17)
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We write Ay < Apy1 < Ajand vyg+e=(1-0)k+6(k+1). Whenk >3
we have
I(k+1—¢)
(k—e)l -0
_To) T+ D™ ™
S (k—e)t?  (k—e)t-?

and K1 Gn’g <1, K5 o ’9 < 2. By Corollary 3.4 and Remark 3.6, (3.22)

with w = 1 and ¢; = (k+j —¢)/2—-1/4, j = 0,1, we get for |H§(zo)| a
bound

4F(max(y, 2))(3/2)Rezo—1/2 e71'/4 E_lAg(l + (Im ZO)Q)Rez0/2—1/4 e7r|Imz0|/2 )

KK < T(k—e) T (k+1—¢)? =

I(vp) < 2T(v),

This proves Lemma 7.4 when 1 —& < Rezg < v. The case —¢ < Rezg < v =
1—e¢ is left to the reader, one has k = 0 and the polynomial component of the
bound is then (1+72)"/2=1/4 on both sides of the strip —e < Rez < 1—¢. [

An alternative proof could go like this: divide the integral f 12 in the def-
. . . 1+
inition of d} mg(t§)|t:1 into f1

a .
and [, for some suitable a € [0, 1].

For the first integral lea, we modify (7.10) and get when —1 < Rez < 0
that

1 1+a L
d:q1(a) := T / (u—1) mg(ug) du
1

1
Nk+2-2)

1+a b1 dk+2
X / (u—1)"% FREs mg(u€) du
1

= Biina(2) +(—1)*

for every integer k > —1, where Ei124(2) is equal to

k+1 ar d? m (u )|
j dud 19 ¢ u=1l+a

Biza(?) = 2 (-0 —p7—)

=0

Let now —1 < Rez < v and write z = k + o + i7 with k integer and
0 < o < 1. Applying the preceding formulas it follows by (7.5.H) that
2l < i a6 (2= 0) T T G ¢
1 B .
& TG +1—2)(1+€D IT(k+2—2)[(1+[¢])

When [¢] < 1, we choose a = 1 and obtain |d. 1(a)| < Cr(2)(1 + |¢))*
where

Cr(z) = Agto max{|Fi—z)| O<i<k+2}.
<

When [£] > 1, we let a = |¢| ™" and get |d.1(a)| < Ck(2)[€[FT7 (1 + €)™
The other term d. 2(a), corresponding to f1+a, is zero when [¢]| < 1 since
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a = 1 in this case. Otherwise, we have a = |¢|™! and assuming k + ¢ # 0,
we get
1 2
|dz 2(a)] = ’F(z)/ (u—1)7" Fmy(ué) du
1+g) =t

< 1 ‘£|k+a —1 dog

S D=2 k+o 1+fEl”
There is no problem as long as Rez = k + o is not close to 0. Otherwise,
we can apply ||§|k+° - 1| < |k + o] \5\(k+">+ In |£], where tT = max(¢,0).
Summing up and letting L(£) = 1 + (In|¢|)*, we have when —1 < Rez =:
s < v that

dimg(t€)| | < Cu(2)([1+ sl T A LE)) (1 + [€])

giving bounds multiple of (1+[&]) ™", (1+]¢]) " L(€) for s in [~1, —&/2] and
[—£/2, 0] respectively, (14]£])* 1 L(¢) and (14|¢])* ! in [0,¢/2] and [e/2, V]
respectively. For m<(€), we get bounds multiple of 1, (1+|¢])~%/2L(€) and
(1+1&)7° for s in [—e,—¢/2], [—€/2,¢/2] and [e/2, V] respectively. This
shows that mZ(§) is a bounded function of £ € R™.

sT—1
’

.

7.5. Lemma 4 of Miiller’s article

We must control the action on LP(R™), p > 1 close to 1, of multipliers
m; when Rez = —e. If 2 = —e + i7, we have

. 2 .
[(e—im)mZ (&) = (1 + Ifl)lf”/1 (s =177 Tmy(s8) ds.

Since ff’(s—l)s_”_l‘ ds = ¢71, it is enough to bound uniformly in s € [1, 2]
the norm of ng(€) := (1+£])*~'"m,(s€). This multiplier can be decomposed
into several parts: first (1+[£|)~'7, which is taken care of by Proposition 2.2
on multipliers of Laplace type. Indeed, replacing A by 1 + X in (2.17) and
integrating by parts, one finds that (1 +\)~I" = )\f0+oo e M a, (t) dt, with

_ ]' it —t ¢ iT —s

and |a, (t)] < [D(1+ iT)|71 < (1472)~V4e7I71/2 according to (3.4). Next, in
ns(§), we have (1+]&|)mgy(s), which is formed of my(s), multiplier bounded
by [[Kgl p1rny on all LP(R™) spaces, and of s™![s&|mgy(s€), s > 1, with a
multiplier norm less than that of [£|m4(€), according to (2.10).

Given an integrable kernel K on R™ and its Fourier transform m, the
question boils down to handling the crucial multiplier

m#(€) := [¢|m(€) . (7.19)
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We summarize the latter discussion in the lemma that follows, where we
include the bound 2(1472)/4e™I71/2 from (3.12.T) for the factor [['(e—ir)|~!
that was left apart above. So far, the kernel K can be arbitrary in L!(R™).

LEMMA 7.6. — Let p belong to (1,2]. One has that
M cyirllposp < 2571)‘1) eml! (”Kg”Ll(R") + ||m#Hp—>p) , TER,

where A\, is the constant appearing in Proposition 2.2.

The serious work will be done in the proof of the following essential
lemma.

LEMMA 7.7. — Let K, be a kernel integrable on R™ satisfying (6.1.H),
and my its Fourier transform. Let m# be defined by (7.19) and p € (1,2].
One has that

_ 2—2 _
[m# ||,y < (2m) 727 p, 80 2PV (K ) TP,

where p, s the constant from (2.22) and where V(K,) is defined at (7.2).

The proof of Lemma 7.7 will be broken into several easy statements. Some
of them are used again in Section 8. To begin with, we merely assume that
K is an integrable kernel on R™ having partial derivatives 9; K in the sense
of distributions that are (signed) measures p;, and we let m = K. We can
express m# (&) with the help of the Riesz transforms (R;)j=; introduced in
Section 2.3, writing

The functions (2in€;)m(€), j = 1,...,n, are the Fourier transforms of the
measures p; = 0; K. When K is the uniform probability density K¢ on a
symmetric convex set C, the p;s are supported on the boundary of C, and
we shall see below that V(K¢) = ¢(C) if C is isotropic and normalized by
variance.

The convolution operator 7,,# can thus be written under the form
n
T o T f = (2m) 71 Y Ryjpy = f
j=1
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Riesz transforms commute with convolutions. If ¢ is in the dual L9 of LP,

we have
2m(Te .9 = | S o £.9)| = | (=500 = | .00
= n ) 1/2J:1n N ) 1/2 -
</er(§|ij|) (;uj*gl) ,

where [i; denotes the image of u; under the symmetry « — —z of R™.
By (2.22), the Riesz transforms are “collectively bounded” in L?(R"™) by a
constant p, independent of the dimension n, and we obtain therefore that

n 1/2
(ij *gP)

j=1

27T|< m#fv >| gpP”f”P

q

Noticing that i * g = (u; * g)~ and (2?21 |11 * g|2)1/2 = |VK * g|, we are
led to study the operator
Uk :9g€ LIR")— VK g € LYR",R") (7.20)

given by the vector-valued convolution with VK. Let us state what we have
got.

LEMMA 7.8. — Let K be an integrable kernel on R™, m its Fourier trans-
form and let m* be defined by (7.19). For every p € (1,2] and ¢ = p/(p—1),
one has

Tt llp—p < (27) "1 Sup IVE % gllpaggny = (27) 7" pp Uk lgsq -
9llax
When K = K, satisfies (6.1.H), we shall estimate ||Ug, /4 by interpo-
lation between L? and L>°. Contrary to the L? estimate which will make use
of (6.1.H), the L™ estimate is a straightforward observation following from
the definition of V(K). In the special case K; = K¢ of a convex body C,
this L case will bring in the geometrical parameter ¢(C') = 2Q(Cy)L(Ch),
equal to V(K¢).
LEMMA 7.9. — Let K be an integrable kernel on R™ having a finite di-
rectional variation V(K), and let Uk be defined by (7.20). One has that

Uk |loos00 < V(K. (7.21)

Proof. — For each z € R”, the Euclidean norm of the vector (VK x
g)(z) € R™ is given by the supremum over § € S*~1 of

o-( [ ste-nawom)|=| [ se-nae- v
< ol 16~ ¥E T < VE) gl
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O

LEMMA 7.10. — For every symmetric convex body C, isotropic and nor-
malized by variance, one has that V(K¢) = ¢q(C).

Proof. — Let 6 belong to S™~! and let y be in . For each line y + R#
that meets the set C, the jumps of the density K¢ = |C|~11¢ of uc, when
traveling on the line in the direction of increasing real numbers, are equal to
|C|~! when we enter C, and to —|C|~! when leaving C, implying that the
mass of the directional derivative is equal to 2/|C| times the measure of the
projection of C onto #-. More precisely, suppose without loss of generality
that 6 is the first basis vector e; of R™ and let m; be the orthogonal projection
onto ei. Let 1 € S(R™) be given, and write each x € R" as x = (s,y) with
s € R and y € R"~L. Using Fubini, we get

7 0
o1 Vho ) = (2.0} = . )

= [ frercen s as) .

The inside integral is 0 if L, = y 4+ Re; does not meet the convex set C.
Otherwise, the line L, cuts C along a segment [y + si(y)e1,y + sa2(y)eq],
s1(y) < s2(y), and

2|7T10|n_1
Cln

—<e1'VMc,¢>=ﬁn / (o2 1) (s ().) dy < 1¥loo

Going back to a general § € S"~! and according to (7.1), we conclude that

2
0- Vel < il |PoCln—1 < 2Q(Co)L(Co) = q(C) .
We get V(K¢) < q(C), which suffices for our purpose. Miiller [59, Lemma 3|
shows that this inequality is actually an equality. O

When K, = K¢, we have ||[Ukglloomoo < ¢(C), specifying the esti-
mate (7.21) obtained in the general case. We complete now the interpolation
for Uk,. We formulate the next Lemma so that we can apply it again in
Section 8.

LEMMA 7.11. — Let K be an isotropic log-concave probability density
on R™ with variance o2. For 2 < q < 400, one has that

Uk fllg = VK * fllg < 29072V (E) 724 ]|, f € LIR").
If K, is an integrable kernel on R™ satisfying (6.1.H), then

Uk, llg—q < (271'60’9)2/‘1 V(Kg)1_2/q '
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Proof. — Let m = K and consider first ¢ = 2. By Parseval (2.12.P) we
have

n 1/2 n N
IV £ = H(Z@K*N) = [ S amgim@rifior .
j=1 " j=1

and Y7, 4727 [m(6)[? = 4n> €] [m(€)[* <2072 by (5.17.B) (or by (6.1.H),
it is < 47263 ¢)» hence [[Uk[l2—2 < V2071 (or < 218g4). If g € (2,+00), we
write 1/¢g = (1 — 6)/2 + 0/o0 with § = 1 — 2/q. We get that ||Uk|lq—q <
(V20 129V (K)1 =2/ (or we get < (2180 4)?/9V (K)'~2/9) by Lemma 7.9
and interpolation (L2, L>). O

2

2

End of the proof of Lemma 7.7. — We use Lemma 7.8, then apply
Lemma 7.11 to K, with 1/¢ =1 — 1/p and obtain that

_ 2—2 _
HTm#Hp%p (277) pp”UKquHq < (27r)1 2/pp1760,g /pV(Kg) +2/r O

7.5.1. Conclusion

We finish the proof of Proposition 7.2. We first run over half of the way
in the following lemma, which we shall refer to again in Section 8.

LEMMA 7.12. — Let K, be an integrable kernel on R" satisfying
(7.5.Hu), and let m¥# be defined by (7.19). Let o € (0,1) and suppose that
1 < po < p < 2. There exists a constant £(p, po), independent of n, such that

1€ - V) mg(&)llp—p
< gliremt P (g + [ o)~ Al
where 0 € (0,1) is defined by 1/p= (1 —6)/po + 0/2 and k(8) = [1/6].
Proof. — Lemma 7.3 gives

1€ - V) mg(E)llp—p < [l L1y + [[dimg(t€)], _ llp—p-

Let e =1 — a > 0. We apply complex interpolation to the Miiller family
(m%) in the strip § = {z € C: —e < z < v} of width w := v + . We
bound m¢, (§) = d?mg(t§)|t:1 on LP(R™), using LP° estimates of m¢ for
Rez = —¢ and L? estimates when Rez = v. The value v must satisfy
a=(1-0)(—e)+0v,hencev =1/ —¢ >1—¢c and w = 1/6. Tt follows
from Lemma 7.6 that

||mie+i‘r||poﬁpo < 25_1)‘1’0 eﬂTl (||Kg||L1(R") + qugﬂ'poﬁpo) :
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By Lemma 7.4, each operator m: is bounded by

v+iT
HZ,S_lAg(l 4T )y/2—1/4 e‘n'|7-|/2

on L?(R™), with , < Ky = 4T (max(w,2))(3/2)v"/2e™/* =: ¢y, a function
of f alone, and ¢ = [v+¢] = [w]. If we check the admissible growth condition
in S, we can rely on Corollary 3.4, Remark 3.6 and (3.22) in order to get a
bound

15, (E)llp—sp < K(psp0)e ™ (1K ll L2 @y + 1M [lpo—sp0)' eAk(e

with k(0) = ¢ = [1/6] and k(p,po) < (1 + w/2)0¥=1/2) emw/2(2), Y1 =0cf.
Observing that v < 1, w > 1 and Ap, > 1, we may simplify this bound as

K(p,po) < Kw e™/2 A, D(max(w, 2))V/* < kw? ™2\, . (7.22)

We now verify that the holomorphic function H(z) = (mSf.,g.) has an
admissible growth in S. Since the kernels are bounded functions of £ by
Lemma 7.4, all multipliers m¢, z € S, are L>-bounded with a bound of the
form e 2l If we restrict to functions f and ¢ bounded with bounded
support, we have by (3.24) that f., g. are uniformly bounded in L2(R"),
and we can conclude as in Section 7.3. ]

End of the proof of Proposition 7.2. — Givenp € (1,2) anda=1—¢ €
(0,1), we select pg € (1,p) and let 6 € (0,1) satisty 1/p = (1 —6)/po + 0/2.
Since 1 < pg < p < 2, we have that 0 < 8 < 2(1 —1/p) < 1. It follows from
Lemma 7.7 that

2-2 _
Hm?”po—)pg < (27.‘.)1 2/pop 5 /POV( g)2/p0 1

By Lemma 7.12, and because || K,||z1(rn) < 1, pp, = 1 (see Remark 2.3), we
get

1(6-9) 2 1m0() lp—sp < 1+5(p, po)e ™ ppy Al (1405, FP 7DV ()27 7).

We still have a choice of § € (0,2 — 2/p). If 6 gets small, then the power
of Ay gets small, but the number k() of constants §; 4 involved increases
to infinity. In the log-concave case, the estimate (5.18) indicates a growth
of order Ag . ~ k! yielding AZ(e) ~ 1/6. Furthermore, the width w = 1/6
of the strip and the associated interpolation constants also tend to +oc in
this case, and we should thus keep 6 away from 0, as much as possible. If §
approaches its upper limit 2(1 — 1/p), then py tends to 1 and the constants
such as Ay, pp, tend to infinity. Choosing 6 = (4/3)(1 — 1/p) has the merit
to provide the relatively simple bound

1§ - V) *mg (&)l p—p
<14 m(a,p)A;‘tjD?)(l‘l/p) (1+ 85/ Py (K )2/P=1) | (7.23)
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with k(a, p) = K(p,po)e ™ pp, < ke w? ™2 N\, ppy by (7.22), with py —

1= (p—1)/(5—2p) and k(p) = [1/0] = [3p/(4p — 4)]. 0
Remark 7.15. — Tt is usual to have a factor 1/T'(z) in fractional deriva-
w|T|/2 Tw/2 in

tives, which led us to seeing e in many places, ending with e
our estimate (7.22) of k(p,po), with w = 1/0 ~ ¢ := p/(p — 1) after the
final choice of § = 4/(3¢q) above. We could avoid this exponential though.
Consider the modified Miiller family

I'(2e + 2)
I'l1+¢)
which coincides with the former at z = « since € + @ = 1 and I'(2) = 1. For

the LP° bound when z = —¢ + i7, we decompose m? ., ;,(§) as
1

i [T(e+ir) 2 B
— [I'(14i7)(1 == -1 ds]|.
ry PO+ ™) | FERT (46D [ (=1 g s6)ds
Introducing I'(1 + i7) in the Laplace type multiplier (7.18), we obtain a
new function @, (¢) bounded by 1, and I'(2e + z) is used for the bound of
d;“”mg(tﬁ)h_1 because |T'(e + i7)| = |T'(e — i7)|. We get in this way for
mZ(€) a bound

175 (E)llpo—spo < 26~ Apg (I K gll 21 Ry + 17107 [lpg—p0)

that replaces Lemma 7.6 (we use again 1/T'(1 + ¢) < 2). The L™ bounds
obtained in (7.16) when z = k — ¢ + i, k > 0, have now a largest factor
of Ape™tequal to M(k+1+ir)T'(k+e+ir)/[T(14+e)l(—k+1+e—iT)]
(when the index j; in (7.16) is equal to k — 1). The modulus of this factor is
the same as that of

m (&) =T(1+e+2) m;(§), Rez>—e £eR",

k—1

Dk+1+ir)T(k+e+ir) T(1+ir) LI . .
T4+l (=k+1+ec+ir) T(l14e) <j1:[1(j+17')> (j_l!ﬂ(]%—ﬁ—m’)).

This is a bounded function of 7 according to (3.1), with a rough bound
given by 2v/27 (k + |7[)3F e=™I71/2 < 6.2Fk3% (use x/sinhz < (1 4 2z)e™®
for > 0). One need not be too careful here since this term will be raised to
the power 6 = 1/w < 1/k. We use it as in (7.17) for two values k, k+ 1 such
that k <vy+e<k+1<{=[w] <w+ 1. One has then for the L? bound
of M, ;. (€) an estimate by x2¥w3(@ DA, e~1. By interpolation we have

v+iT
Hmfx(g)‘lpﬁ‘p < “5_1)‘1110_9(21”1”3(“}4_1))9(HKg”Ll(R“) + qug#Hpoﬁpo)l_eAz .

We thus get for x(p,po) in (7.22) a new estimate x'(p,po) < Kw>\,,, lead-
ing in (7.23) to &/(a,p) < ke 1q3Ap,pp,- The final choice in the proof of
Proposition 7.2 gives pgp — 1= (p—1)/(5 — 2p) of order p— 1 as p — 1, and
since Ay, pp, are O((po — 1)71) as po — 1 (see (2.20) and (2.24)), we end

up with #’(a, p) < ke 1¢®, a bound which is polynomial but has no reason
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to be accurate. After these modifications, we have for Proposition 7.2 when
1 < p <2 anew form

(€ - V)amg(f)upﬂp
<14 K€—1q5A(4/3)(171/p)(1 + 5(()’233)(171/p)V(Kg)2/p—1) . (7.24)

k(p)
with k(p) = [3p/(4p — 4)] and ¢ = p/(p — 1).
Remark 7.14. — With the new information above, we go back to the

proof of Theorem 7.1. One has chosen there e =1 —a =3(p—1)/(4p + 4),
and pg € (1,p) such that pp—1 =3(p—1)/(5—p). Both € and pg — 1 behave
as multiples of p — 1 when p — 1. If we consider the Poisson kernel P as
another K, satisfying (7.5.H ), and with V (P) < 2/m by (7.4), we can apply
to it (7.24) for the value py and obtain that [|(€ - V) P(€)|lpypy, < £ 145
Applying also (7.24) to m, and pg, we get for m = mg — P that

1€ - V)2 MO sy < £g® ALV (g | y2/m0=1) ;.

We have « — 1/pg = 3(p — 1)/(4p + 4) which again is of order p — 1. The
constant kg, from (6.25), seen in (7.7), behaves thus as (p — 1)71/70 ~ ¢,
so C () is bounded by kq(2 + B). Also g — 1 =~ (p + po — 2)/2 in (7.8)
is of order p — 1 >~ 1/g. In (7.8), the constants C,, and C,, are of order g.
Indeed, we can take C,, = qr, from (2.4), that was estimated by ro/(ro —1)
n (2.5), and C}, can be the bound for the maximal function of the Poisson
kernel, see (1.31.P*). Also, 1 —v = (p — 1)/(2p), and with Lemma 6.19 we
know that

/!

(1 7)p/2 —(1—a)(1—7)plk|/2 K " 2
a,, <K 2 < ——F—— <K QG .
;Z gz (1-a)(l=9)

N

Finally, we obtain for Theorem 7.1 another bizarre polynomial estimate

M, llp—p < M [lp—sp + Og) < C7,Cy (M (574%)* + O(q)

To ~ Po

< qu?)Alﬂﬂl/PAi l/P(l +)\2/p 1)7 1 <p < 2.

8. Bourgain’s article on cubes
In this section, @ is a cube in dimension n, more precisely, the symmetric

cube
1 17"
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of volume 1 in R™. It is isotropic, but if we look for a multiple b@ normalized
by variance, we would need that the half-side a = b/2 of bQ satisfy UEQ =1,
where

1 / 1 @ 1 /a a?

2 2 2 2

Ol = —— r{dr = — s°ds = — s7ds = —,
bQ 1bQ] bQ ! 2a J_, aJo 3

and where z = (z1,...,2,) € R”. This gives a = v/3 in every dimension n,
but the cube [—+/3,4/3]" is not very pleasant to manipulate, and we shall
rather follow Bourgain [13] and keep the volume 1 cube Q. With a = 1/2,
the covariance for @ is given by (12)7'I,. Since the variance 0629 =1/12
is independent of the dimension, we shall have no problem with the esti-
mates (5.17.B) or (5.19). The Fourier transform of the probability measure
1q is given by
—~ — " sin(g;)
mqo(§) = pe(€) = Ko©) =[] e -G g ERn
J

Bourgain observes that a decay better than the usual (5.17.B) for a Fourier
transform m¢ would allow to relax the limitation p > 3/2 of Theorem 6.2,
and that this better decay is achieved by m( is most directions. He says that
his proof proceeds therefore to diverse localizations in Fourier space.

Jj=1

THEOREM 8.1 (Bourgain [13]). — For every p in (1,400|, there exists a
constant ki, such that |Mgq, ||p—p < kp for every integer n > 1.

We shall approach the maximal function problem for the cube by sum-
ming expressions such as K — K2R with

KR = KQ *G(I/R)a

where G is a Gaussian probability kernel, G (/) its dilate (2.7), and where
R takes the values 1,2,...,27 ... with j being any integer > 0. This is a
Littlewood—Paley-type decomposition, similar to what we have seen before.
By Pré@afLeindler, K% is a log-concave probability density. We shall set
mf = KR in what follows.

We will call the Carbery—Miiller artillery and obtain when 1 < r < 2, for

every d > 0 and R = 27 with j > 0, bounds of the form
H sup \K(If) * f|Hr < kor RO||fl-,  where K(% = (KR)(t).
1<t<2

Why this may be a decisive step will be explained below. According to Car-
bery’s Proposition 6.14(2), this bound will be consequence of the L"(R™)-
boundedness of the multiplier (¢-V)*mf(¢) for a value of a € (1/r,1). Next,
following Miiller, it will be enough to estimate in L*(R™), with 1 < s < 7,
the “crucial” multiplier |£|m®(¢). This is what Bourgain does along several
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pages, in a series of reductions bringing in many tools that are specific to
the product structure of the cube.

8.1. Holding on Miiller and Carbery

Let us specify the preceding rough outline. The final objective is to bound
in LP(R™) the maximal operator Mg for p below the limit 3/2 that is known
so far, proving that

<Hplfllp, 1<p<2, feLP(R").
p

sup |(KQ)(t) * f]
t>0

We fix a value p € (1,2) in all that follows. In order to obtain the prop-
erty (Az), needed for applying Carbery’s Proposition 6.6, we must show
that

<"{Hf”PQ? 1<p2<p<2a (A)

sup | K * f]
1<t<2 po

where K = Kg — P and P is the Poisson kernel (1.32). This is the only
missing fact for lowering the limitation p > 3/2 down to p > 1, as explained
in the proof of Miiller’s Theorem 7.1. For the Poisson side it is fine, it remains
to work on Kq. We introduce the Gaussian kernel G = (v2)(,3,/z) on R™.

The variance of G is equal to 2/, thus independent of n, and é(f) = e—4nlel®
for every £ € R™. With this normalization for G, we have by (7.3) that

V(G)=+/7/2V(v,) =1. (8.1)
We decompose the Dirac probability measure §p at the origin, in the sense
of distributions, by means of the simple telescopic series

do =Gy + (G(l/g) - G(l)) + -+ (G(z—k—l) — G(Q—k)) + -
and we decompose K accordingly, using the approximations K R = Kg *
G /Ry, for R =27 > 1 and j nonnegative integer, under the form
Ko=K'+ (K2 K4+ (K" —K?)+....
By Prékopa-Leindler, each K% is a log-concave symmetric probability den-
sity on R™. It is isotropic, with a variance 0% satisfying
127 <o =127 +27'R2<1, R>1. (8.2)
We set duf(z) = Kf(z)dz, mf = KR = ;/H\%. It follows from (5.19) that
mt satisfies (7.5.H,) with constants independent of n. We get
dJ dj.e o 0j.c

R n—1 .
= mRo)] < < , 0eS™ teR, j>0. (83
an "™ )‘ Lalt/v3 1+ ’ (83)
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We shall obtain the desired estimate (A) for p, by interpolating between p;
and 2, where 1 < p; < pa < p < 2. As we have said previously, we will show
that for every § > 0, we have for all R = 27 > 1 that

| sup K& = A1, < ms Rl | € L7 (RY), (B)
1<t<2

and on the other hand, we prove that for every f € L?(R") we have
lsup | (K™ = K2R) )« 1], < s RV2( Sl [lsup | KL + /1],
>0 >0

<k fl2-

The second inequality in (C) is the log-concave version of Bourgain’s L? the-
orem, Theorem 5.2. One can obtain the first part of (C) by the I'g(K)
criterion, Lemma 5.14. We have indeed, uniformly in § € S"~! and in the
dimension n (observe that G has a radial expression independent of n), that

IG(ub) — Gub)| < u?Ae ™ < JulAlu/~" and
0- VGl —0-VG2ub)| < [ul(1Ae ™™ )< 1A ul"", ueR.

We apply Lemma 6.18 with K; = Kg, K2 = G, replacing 2kl with R and
obtaining

Z <O¢j(KR) + a](KR)ﬂJ.(KR)) < R71/2 .

JET

If & > 0 is sufficiently small we deduce by interpolation between (B)
and (C) that there exists 6; > 0 such that

R _ 2R -5
I s, 55— K2 1], <l 17
and we get Property (A) by summing on the values R = 27 for all integers
j = 0. We fix thus a value §, = d.(p,p2,p1) > 0 of 4, sufficiently small for
implying that 6; > 0 whenever 0 < ¢ < d,. Precisely, if A € (0,1) is such

that

1 1-X A

i + =,

D2 p1 2
we need to choose d. > 0 so that —d; = (1 —X)d. — A/2 < 0, i.e., we select a
value 0, = 6. (p, p2,p1) such that 0 < 6.(p, p2,p1) < (p2 — p1)/(2p1 — p2p1)-

For obtaining (B) we shall use the conclusion (2) of Carbery’s Proposi-
tion 6.14 and also apply Miiller’s analysis. We need to show that for some
a € (1/p1,1) and 0 < & < d4, we have

20m gy —py + 1€ V) M)y < KR (8.4)

for all R = 27, j € N. There is no problem for m®, which corresponds to
convolution with a probability density, and for the other term we shall apply

- 152 —



Dimension free bounds

Lemma 7.12 with 1 < pg < p1 < 2. For technical reasons, the value pg, close
to 1, is chosen in a way that its conjugate qg is an integer of the form 2%,
with v integer > 0. If we can prove that for a fixed § > 0 and for every
R =27, we have
R 5
[lglm"™ )], < HsR (8.5)

it follows from Lemma 7.12 that ||(£-V)*m®(€) ||, p, < K5 (1+R%P) < k) R?
for some 8 € (0,1), uniformly in the dimension n according to (8.3). The
conclusion (8.4) is then obtained.

By exploiting the inequality (2.22) on Riesz transforms, Miiller’s plan
went on with a reduction to estimating the expression HV,uR * quO when

g € L (R™) and 1/qo + 1/po = 1. We must show that for every R = 27 we
have

HVMR * quo g ’QPUﬁR&Hg”% )
yielding (8.5) by Lemma 7.8. We use (8.1) and (7.3), which give
V(ER) =V (g *Gayr) < V(Gaym) = R. (8.6)

By Lemma 7.9, this bound for the mass of § - Vuf when # € S*~! implies
that |[Vuf % g||pe@n) < Rlg||Lo®n). Then, by interpolation with the L?
case given by (C), we can find when 2 < ¢ < +00 a bound in L4(R") of the
form

IV (1" = 1?7 % gl| parny < H(R_1/2)2/qR1_2/q||9||Lq(JRn)
= KR/ |g]| Larn) -

This interpolation (L, L?) does not give the desired bound R° in L% (R™),
with & small, when gg > 3. However, it does give the right ingredient for the
Bourgain—Carbery Theorem 6.2 when 3/2 < p < 2, since 1 — 3/¢ < 0 in this
case.

For going farther than Miiller, one has to prove inequalities that allow
one to work in L"(R™), 2 < r < 400, instead of L>(R™). This is done with
the help of certain analytic semi-groups (Section 8.2), as well as a ad hoc
method a la Bourgain, which he says inspired from martingale techniques
(Section 8.3). Theorem 8.1 will be obtained once we have the following propo-
sition, which we can apply with a value § < d.(p, p2, p1). We then conclude
by the preceding discussion.

PROPOSITION 8.2. — For every 6 > 0 and qo = 2¥, with v an integer
> 1, there ewists a constant r(qo,0) such that for every n > 1 and R = 2,
k=0,1,..., one has

IV % gll pao mny < £(q0,6) R ||gllLoomny g € L (R™).
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We shall keep § > 0, po = qo/(go — 1) and R = 2*¢ fixed in the rest of
Section 8.

8.1.1. A priori estimate

The proof will play with an a priori estimate
HVIUR*QHLQ()(]RH) < B(QO7R’ n)”g”LqO(R") ,» g€ qu(Rn)a (87)

and will aim to find a relation of the form B(qo, R,n) < c(qo,d)R° +
eB(qo, R,n) for some ¢ < 1 and for R larger than some R;, for example
with € = 1/2, thus reaching the conclusion that B(qo, R,n) < 2¢(qo, ) R?
when R > R;. We know that B(qg, R, n) is finite for every dimension n, for
instance as a consequence of the trivial bound ||V ®||; < [|[VGE|; < ky/nR.

We must notice that the a priori estimate in R™ yields the same estimate
for the dimensions ¢ < n, with a smaller or equal constant, precisely, we must
know that B(qo, R, ¢) < B(qo, R,n) when 1 < ¢ < n. Indeed, the forthcoming
proof in dimension n will bring the question down to dimensions ¢ < n, where
we shall use the a priori bound by B(qo, R, ¢). For justifying the validity of
the same bound when ¢ < n, apply the case n to a function g of the form
g1 ® ¢, namely

g(z1,22) = g1(x1)p(22) ,
where x; is in Rf, g; € L(RY), 25 € R"* and where ¢ is a fixed C*>
function with compact support in R, not identically zero. The indicator
of the cube and the Gaussian density have a product structure, which allows
us to write

Kl (@1, 00) = K{'(21)¢(x2),  dpt (@1, 22) = dpgt(21) ® ($(2) daa)
where K1, K{* and duf'(z,) = K¥(z1)dz; correspond to the cube in RY,

and v is a probability density on R"~* corresponding to the cube in R™¢.
We also have

plxg=(p*g1) ® (P * ).
The gradient of p* x g contains (Vuft* g1) ® (1 * ) in its first £ coordinates,
thus
R R
|Vt ngqu(Rf) [ ‘PHqu(Rn—ﬁ) = [(Vui +g1) @ (¢ » w)HLQO(R")
< ||V,U’R * gHLQO(R") < B(QO) R7 Tl) ||g||L‘20(]R")
= B(qo, R, n) ||gl||Lq0(R€)”QD”L‘?O(R"*Z) .

This yields B(q07 R, Z) < B(q07 R?”) H(pHL‘IO(R"*[)/HdJ * (p|‘qu(Rn—2) and by
spreading ¢, replacing it with ¢ :  — (z/k), k — 400, one makes the
quotient of norms tend to 1, thus proving that B(qo, R, ¢) < B(qo, R, n).
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8.2. First reduction

One applies a result of Pisier [62] about holomorphic semi-groups. If T =
(T;)%—, is a family of bounded linear operators on L(X, ¥, i), 1 < ¢ < +o0,

we introduce for every subset J C N = {1,...,n} the operators
J ~J N\J
=][m, /=1 =]]T
JjEJ Jj¢J

and T~/ will be a short form for TN{j}, 1 < j < n. We found the nota-
tion T~ convenient, but it might be ambiguous, since it depends on the
ambient set N.

Given commuting projectors (E;)”

=1, one can consider the semi-group

n
HE+e (I-Ej), t=>0,

where I denotes the 1dent1ty operator. If we set z = e~! and expand the

product, we can arrange it according to powers of z, displaying in this way
homogeneous parts ¥ Hj, of degree k. We see that

:zn:z’f( > E“’J(I—E)J> :zn:zka :zn:e_ktHk.
k=0 k=0

k=0 |J|=k

Letting X% denote the family of subsets J C N of cardinality %k, we have

Hy= Y EYA-E), k=0,...,n, and Y Hy=To=1. (88)
Jexy k=0

PROPOSITION 8.3 (after Pisier [62]). — Let (E;)7_; be a family of com-
muting conditional expectation projectors on LY(X, X, 1), 1 < ¢ < 400, and
consider the semi-group

n n
=] 1+1-e" HE+e (I-E;)), t=0.
=1 i=1
This semi-group is analytic on LY(X, ¥, ), 1 < g < 400, with an extension
(P:)zeq,, to a sector Q,, = {z = rel i r >0, (0] < ¢4} in C, where
wq > 0 depends on q only. The extension is bounded uniformly in g on
every compact subset of Q. There exists hy > 1 independent of n such

that whenever 0 < k < n, the homogeneous part Hy in (8.8) is bounded on
LI(X, %, 1) by (he)*.

That hy > 1 can be seen on any example P, f = Eif + e '(f — E1f)
with n = 1 and E; # I. Then H; is the projector I — E; # 0, hence
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> [[Hillg—q = 1. If (Ejs)}—q, s € [0,1], is a family of such conditional
expectatlons where E; ; and Ej ; commute for all j # k and all s,¢ € [0,1],
and if we set for example

1
Uj:/ Ej.ds, j=1,...,n,
0

then we see that

n

Qi = H(e*t I+(1- e*t)Uj) = / Pig ... s,ds1...dsy,

j=1 [0,1]™

where each P, s, = [Tj_, (e7" I+(1—e ")E;,) is of “Pisier type”. Also,

the corresponding homogeneous parts are of the form

H,=> U~/ (1-u)’

Jes,
:/ (HE)(H - Ejs])) dsidss...ds,
01" jexm,, Nigg jeJ
that are averages of terms Hy(s1,. .., s,) bounded by h’; according to Propo-

sition 8.3. The result of Proposition 8.3 generalizes thus to families such as
(Uj )?:1-

We shall apply Proposition 8.3 to operators (£;)}_; of conditional expec-
tation on LI(R™), where each E; is acting in the x; variable and 1 < j < n.
For one variable and sy € R fixed, we associate to a locally integrable func-
tion f on R its averages on length one intervals I, = [sg + r, 80 + r + 1),
r € Z, defining E by

(Eoy f)(v (/f ds)1,() veER.

rEZ

This operator is a conditional expectation, as considered in Remark 1.2. We
define operators F; ., 7 =1,...,n, on Li .(R™) by the analogous formula,
acting on the x; variable. When j =1 for example, we let

(Brsof) (1,22, ., T (/ f(s 562,--~733n)d8> 1y, (z1).

re’

Averaging on values of sg, one can replace the E;s by convolution operators
with probability densities xy on R of the form

x(z) = /]R 15 s41y(2)dr(s), x€R, (8.9)

where v is a probability measure on the line. We see that x(x) = F(x) —
F(z — 1), with F(z) = v[(—o0,x)] non-decreasing, F(—occ) = 0 and
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F(+00) = 1. One can also proceed to changes of scale. Summarizing, we
have the lemma that follows.

LEMMA 8.4 (Bourgain [13], Lemma 5). — Let x be a compactly supported
probability density on R of the form (8.9). Denote by T; the convolution
operator with X ;) in the x; variable, t; >0, j =1,...,n. For 0 < k < n,
the norm of the operator

Hy:= Y T5(I-T)°
SeXy

on L1(R™) is bounded by h’;, with 1 < g < 400 and h, from Proposition 8.3.
In what follows, we denote by T}, j = 1,...,n, the convolution in the

x; variable on LI(R™) by 1w, (2;), where wo = R79/? will stay fixed and

where

1/2

@) = (=lel) = [ Layzenajoen@)ds = (Uaymaym #11/20/2)(@).

Since 7 is a convolution square, 7] is real and nonnegative. We have

. 2
ii(t) = (Sm(m)> . and  77(t) = —4x? /}R s2(1 — |s])4 cos(2mst) ds

Tt

for every t € R, thus

! 82
70 < 87r2/ 2(1—s)ds = & <3,
0 12
By the Taylor formula we get
0<1—7t) <A AL. (8.10)

For every subset S C N := {1,...,n} let us set
¥ =1>51-T)%. (8.11)
The homogeneous parts (Hy) in Q; = [[_,(e™* I + (1 — e7")T}) have the
form
n
He= Y T9 0<k<n, and » Hp=1I.
SeXy k=0

In particular, Hy = I = TV = H?Zl T; has norm < 1 on every space
LY(R™), for 1 < g < 400, since Hy is the convolution with the product
probability density H?Zl N(wo)(25). When 1 < ¢ < +ooand 1 < k < n, we
have ||Hg|g—q < h’qc by Proposition 8.3. It is convenient to set Hy = 0 below
when k& > n.
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To every given function g in L4(R™), we shall apply a decomposition
of the form g = Hog + --- 4+ Hy—19 + h, and consider the corresponding
expression

Viultsg=Vult s« Hyg+ -+ Vult s Hy_1g+ Vi« h, (8.12)

where M > 1 will be chosen as a function of the already fixed py and § > 0.
We have to estimate in L% (R™) the successive terms in (8.12). The func-
tion h is considered as a small rest, the mapping g +— V% h will be handled
in L?(R") by a Fourier estimate, and in some L% (R"), ¢; > qo, as a con-
sequence of Proposition 8.3. We choose M large enough for deducing from
[Vl « bl < kRYOM/2|g|ly and ||[Vu® % b, < &R| gl that one has by
interpolation

HVILLR * h”qo < ’i(qoa 6) ”quo ) (813)

which is just perfect in the direction of (8.7). Recall that uf denotes the
jth partial derivative O;u® = (Ojuq) * G of u®, so that |Vuft « h|> =
>oon luft = bl

We factor the mapping ¢ — V' * h into UKR : h = Vuf x h and
A:gw— hyie, A=1—-—Hy—---—Hy_1 = Z,@MH;C. We look for
estimates in L? and L9, gy < ¢ < +o0. For UKR we use Lemma 7.11 and get
by (8.2) and (8.6) that

1V nllamq < 2Y905" V(KR 720 < (24)9R0 < 5R

since ¢ > 2. On the other hand, by Lemma 8.4, the mapping A : g — h is
bounded in L4(R"™) by 1+ ZM ! hE < (M + 1)hé‘4 L Tt follows that

Vi 5 hllg = U phllg < 5RIAllg < SR(M + Dhg" Mgl (8.14)

This is also valid when ¢ = 2, but the point is that we will then get
a much better bound by factoring now g — Vuf x h as UGR o B, with

U,,:f— VG« fand B: g — pg* Ag = pg * h. We begin by estimating

g <t = e« (3 )| = [uas (3 1)

k=M |S|>M

2

One needs to control the L°°(R™) norm of the function £ — L(§), where L is
the multiplier associated to the mapping B. It is the aim of the next lemma.
One sees that

(ﬁsm ) (S Tt [0 - iws))-

j=1 IS|>M j¢S jES
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LEMMA 8.5 (see [13, Equations (2.9), (2.11)]). — For 0 < u < 1/4 and
every & € R™, one has that

<H sin 2@ )< Z Hn ué;) H ﬁ(ufj)))‘gulw'
7=1 ! [S|Z>M j¢S jES

Proof. — We know from (8.10) that 0 < 7j(#) < 1 and 1—7(t) < (4¢?) A 1.
We introduce v = 1/u > 4 and begin by checking that for every ¢t > 0, we
have

X() = sin(7t)

’(1 +o[(4u*t?) A 1)) < 1.

Tt
Consider first the case 0 <t < 1/(2u). One has then 4u?t? < 1 and it follows
that 1+ v[(4u?t?) A1] = 1 +4ut?. If in addition 0 < ¢ < 1, then, for example
by the Euler product formula (3.2.E), we have [sin(rt) /7t| < 1 —t?, and
since 4u < 1 by assumption, we get
Xt) <A —-tHA4+4ut>) <A1 -1+ < 1.

When 1 <t <1/(2u), we have

sin(mt

™

~—

1+ 4ut?

— (1/t+4ut) §<1.

(14 4ut?) <

~

In the second case, when 2ut > 1, we can write

1+w < 2u(l +v) . 1/2+42 <1

X(t) < <
() Tt T T

Expanding the product H;;l X (&;) and since X is even, one sees that
n n
]:1 j=1

ﬁ (ﬁ(%‘) +o(l- 77(%)))

Jj=1

UM‘(HSID = )( > 1w 10 77(1@)))‘- O

j=1 |S|>M j¢S jes

sin(mé;)

s (14 v[(4u*E) A 1))

sin( 7T§ sin(m§;)

WV

By Lemma 7.11, we have that HU(;R||2—>2 < /TR < 2R, because the

variance of GF is 2r~'R™2. Let us define Ry by RS/Q =4.If R > Ry, then
wo=R92 < 1/4, we obtain from Lemma 8.5 with « = wq the final control

IVu® 5 hlla = U, (5 * W)l < 2R|lng * hlls < 2RR™M/2|g]l2.

We use now (8.14) with for example ¢ = ¢1 = 2qo/po > qo- Letting 8 = 1/py,
we have (1—60)/2+6/q1 = 1/qo and we see by interpolation for g — Vu® xh
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that
_ 1/ —1\1/
[V s hllgy < (2R7M2) 7% R (5(M + Dhg! ™')™ |lglla, -

We select M = M(6) = [2qo/d], so that 6M/(2¢p) > 1. When R > R, we
get

2 o
195 Bllay < Faosllglla With g5 < 5(2+ 20/8) /70 H30I0™ . (8.15)

In what follows we assume that R > Ry, hence R® > 16. In the conclusion
section, we shall need the following bound for a Fourier transform.

LEMMA 8.6. — For everyr € R, £ > 1 and all £ = (£&1,...,&) € RY,
one has that
¢
_ o rRIel Hﬁ@

Proof. — We observe first that
. 2
. sin(7t) 1
t) = < .
) ( il > 1+ 2

This is clear when [t| > 1 because 7)(t) < (7t)72 and 1 + #* < 72¢? in this
case. When [t| < 1 we have 7j(t) < |sin(nt)|/|nt] < (1 —#2) < (1 +¢2)71
by (3.2.E). It suffices thus to bound for 2 € R’ the expression

Y4

F(z) = (1—e "2

\

The function F' tends to 0 at infinity, we have at any maximum 7 # 0 that

2127 1B 9, _
—— = —, Jj=1...,¢.
1 —er?lzl 1+ T
The nonzero coordinates of = have the same square x sy > 0, and if k£

denotes their cardinality, we have 0 < k < £ and [z|> = k:y. It follows that
fry < eFTv 1 = r2(1+y) <r2(1+y)k.
Finally, we have F(Z) = (1 — e ") (1 + y) =% < kr2y(1+y)* <r2 O

8.2.1. Decoupling

We have to analyze each of the expressions Vu® x Hyg in (8.12), for
0< k< M. When 1 < k < M, we handle this by a decoupling argument
that will allow us to essentially reduce to the cases where k = 0,1, but
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in a dimension ¢ < n. Before proceeding by a Bourgainian technique of
“selectors”, we split
2) 1/2

" B n " ) 1/2 B n
‘Vu *Hkg‘ = ij * Hyg| = Z
j=1 j=1

into two. For each j in {1,...,n}, let Ei and E;j denote respectively the
family of subsets S of {1,...,n} with cardinality |S| = k containing j, resp.
such that j ¢ S. Then ’v,U,R * Hkg’ is bounded by the sum of the two

expressions
2 1/2
) (8.16a)

' ( > FSQ)

Sexy

Ei(R,n,g) == (il

uf”*( > FSQ)

Sex’

and
2\ 1/2
) . (8.16b)

= (3

2(5 )

Sex)

Assume that 1 < k < M = M(9). Let (vi)1<i<n be independent {0,1}-
valued random variables with mean 1/(k + 1) on some probability space
(Q,F,P). For each j in {1,...,n} and S € X7, let o5 = v; [[;c5(1 — 7).
We have that

k k
1 1 k
J— 1_ — = :1.
Eos.j k+1< k+1) L S e A

and e, ! <e(k+1) < e M because e'/* > 1+ 1/k. By convexity, we see that
n

o) = (Z & *< > [Euos,w)] F39> 2>1/2

Jj=1 SEZ;j
2> 1/2:|

E, KZ:; uf*( > as,j(w)F59>

sexy’
Let ¢ > 1 be given. It follows that for some wy € §2, we have
|Ex(R,n, g HLq(Rn

(% )

Let Jo = {j : vj(wo) = 1}. Then og;(wo) = 0 whenever S meets Jy or
j ¢ Jo. The L(R™) norm at the right-hand side of (8.17) is therefore the

SeM’

(8.17)

Mf*( > Us,j(wO)F59>

Sexyd

La(R")
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2> 1/2
where Y77 denotes the family of subsets S of {1,...,n} such that |S| = k
and that are disjoint from Jy. Let us introduce the operator

norm of

E(Jo, g) = ( >

Jj€Jo

uf*( > FSQ)

~J0
sesy

U= Z T~(US) (I - T)%  and the function ¥ =Ug

~J
Sex -0

on R". We see that T/U = ZSeE~J0 'Y, and the operator U acts on
k

the variables not in Jy as does the kth homogeneous part Hj relative to
RiL-n3\Jo - Consequently, applying Proposition 8.3 in the variables x™~70 =
(74)ig.,, We get

<hEllg_, | (8.18)

”\I/xfo ||L<1(R~JO) La(R~7J0)
for every fixed x”’° = (z;);c,, where [ (x~7) = f(x',x~7) = f(x), and

we see that E(Jy,g) = (ZjEJo ’M? * TJU\I/‘Q)UQ. Assume that there exists
bo(qo, R,n) such that for every subset J of {1,...,n} and f € L®(R’) we

have
I( )
jeJ

with pigs uniform on Q7 := [-1/2,1/2]7 in R”. It follows from (8.18), by
integrating in the Jy variables, that

< bo(qo, B, n) | fll pao (rvy » (8.19)
Lao(R7)

(ot (TI7 ) ¢

icJ

I1E(Jo, 9) || Lo ®n) < bo(go, B, ) b [|gll pao () -

For Fi (R, n, g) we proceed similarly, writing each S € Ef; as S = {j}USy,
with [S1] = k —1, and using now s, j = v; [[;cg, (1 —7i) for which we have
Eos,; = kF Yk +1)7F > 1/(ek) > 1/(e M). We obtain for some wy €
that

2> 1/2

[E5 (R, 9)| Loy <6MH(Z
j=1
Considering again Jy = {j : v;j(wo) = 1}, we get instead of E(Jo,g) the
expression
2) 1/2

La(R")

Mf*( > Usl,j(wo)l“sg)

Sexy

F(Jo,g) = (Z

Jj€Jo

~Jo
S1€%, 7Y
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When k£ = 1, we have S; =0, S = {j} and 05, ; = 7;, the argument remains
correct but becomes “inactive”. Let now W' =37 o~ T~JoUS)(I-T)51 g,
k—1

satisfying by Proposition 8.3 applied to LI(R™~70) the inequality
k—1
v | <

For each j € Jy, let B; = (I — T;)T7\}. Then F(Jy,g) = (ZjEJo |M§% *

Bj\I!|2)1/2. If there exists b1 (qo, R,n) such that for every subset J of {1,...,n}
and every function f € L% (R”7) we have an inequality

H(ZMf*(I—Tj)( 11 Ti>f2)1/2

jeJ i€, i#]

x70 'La(R~70) La(R~J0) °

Lo (R7)
< bl(qo; Rv n)”fHLqO(]RJ) ) (820)

it implies that F(Jo,g) may be bounded by bi(qo, R,n)hE™||gl| a0 ) in
Lo (R™).

In view of (8.19) and (8.20), all we need to do in order to control in
L% (R™) the expressions Vi x Hy.g, when 1 < k < M, is to establish in all
lower dimensions ¢ < n and for every function f € L% (R’) the inequalities

¢ 1/2
HVMR*HofHqu(JR‘f) = H (Z |M§% *H0f|2)
j=1

< bo(qo, R, n)”fHqu(Rf) (8.21)

Lao(R¢)

and

‘ 4 1/2
PR ey = | (S <171
j=1

< bi(qos B, )| fll oo mey  (8.22)

for suitable by (qgo, R,n) and b (qo, R,n), with T7 :=T'1} = (1—7) T} e\
Note that (8.21) controls the so far neglected term k¥ = 0 in (8.12). From
(8.13) and the preceding, this will permit us to estimate

n 1/2
IV % 9| oo oy = H (Z |ft 92>
j=1

Recalling (8.15), (8.17) and that M = M (6) depends on the fixed value
§ > 0, we have when R > Ry that

C(qo, R,n) < Kgy.5 +eM(5)? hé‘g(‘s) (bo(q0, R,m) + b1(qo, R,m)),  (8.23)

where the three terms correspond to the decompositions (8.12) and (8.16).
By definition, it will follow that the a priori bound B(qo, R,n) is less than

Lao (R?)

< C(qo, R,n) [|gll Lao (mn) -
Lao (R™)
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C(qo, R,n). Bounds on by(qo, R,n) and by (qo, R, n) will be obtained below,
and will use the other quantities B(qo, R,¢) < B(qo, R,n), with £ < n. We
shall get a relation

B(q07R7n> <C((ZO»5)R46+B(QO>R7”)/27 ’I’L> 17

for R larger than some R; > Ry, and we shall be able to conclude.

8.3. Second reduction

Let 7 > 0 be given. We say that a nonnegative function f defined on R
is T-stable with constant C' if whenever |t| < 7, we have

fs+t)<Cf(s), seR.

One sees that C' > 1. Evident properties are to be observed about products,
integrals, translations, convolutions. .. For example, if f1,..., fx are T-stable
with respective constants C;, then clearly the product f; ... f; is 7-stable
with constant C;...Cy. If f is 7-stable with constant C and if g > 0, then
for |t| < 7 we have

(f*g)(8+t):/Rf(s—kt—v)g(v)dv (8.24)
<C [ fs=vg)do = C(7x9)(s).
R

hence f * g is also 7-stable with constant C'. Suppose that f, g, h are non-
negative on R, and that f is 7-stable with constant C. If |¢{| < 7 then

/ f(s)g(s —t)h(t)ds > C~! / f(s—1t)g(s —t)h(t)ds
R R

=) [ st ar).

therefore

/Rf(s)(g*h)(s)ds > 01(/“@ h(t) dt) (/Rf(v)g(v) dv>. (8.25)

We shall now move to R with £ > 1. Let ® be a probability density on R
that is 7-stable with constant C, for some 7 > 0. This implies that ®(s) > 0
for every s € R. Let us define 8 > 1 by

g1 = /t _p0ae 0, (8.26)
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We denote by ®; the operator on L?(R?) of convolution with @ in the variable
xj, for each j € L ={1,...,£}. For instance, when j = 1 we let

(P1f)(z1,22,...,2¢) = /Rf(xl — 8,Z2,...,x0)P(s)ds.

For j = 2,...,¢ we let the transposition 7; = (1j) act on = (z1,...,2¢) in
R by 72 = (ij(i))le and on functions by 7;(g) = g o 7;. Letting 7 = I,
we have

O;f =7;(®1(fomy)), j=1,...,n. (8.27)
For every subset J C L we set ®/ = [I1cs ®r, and o~ = oMU =
[1z; Pk We understand that @ = I. Each ®’ is an operator acting on

L4(RY) with norm equal to 1, when 1 < ¢ < +oo. The next Bourgain’s
lemma is not too difficult, but the details are long and painful to write down
precisely. We have chosen to break it into two parts, the first one containing
the serious work.

LEMMA 8.7 (a first part of Bourgain’s [13, Lemma 7]). — Let ® be a
probability density on R that is T-stable with constant C, let 8 > 1 be defined
by (8.26). Let ¢ be an integer > 1, L = {1,...,£} and define ®; by (8.27), for
j=1,...,L. For all integers q > 1, for all nonnegative integrable functions
(fj)=1 on R", one has

IS0, < a0 [ oks], + Va1 e

JEL JEL JEL

Proof. — The fundamental remark compares

/}R (101)(3)(@192)(5) .- (Brgi—1)(s)gu(s) s
and
/R (B101)(5) (B192)(5) - . (Bagi—1)(s)(@1g)(s) ds

when k£ > 2 and when the functions g;s are nonnegative on R. We know
by (8.24) that ®;g = ®x*g is T-stable with constant C for every g nonnegative,
so the product f = (®191)(®192) ... (P1gr_1) is T-stable with constant C*~1,
Applying (8.25) and the definition of 5 with f, g = gx, h = ® and g« h =
D491, we get

/R(‘I’lgl)(s)(@lgﬁ(s) o (P1gr-1)(s)gr(s) ds

< ck—154(¢1gl)(s)(¢192)(s)...(élgkfl)(s)(@lgk)(s)d& (8.28)
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The case ¢ = 1 of the lemma follows from 3 > 1 and [, g* f = [p. f for
every probability density g. For the simplest non-trivial case, when q = 2,
we write

(Z <I>~jfj) = D@V @) + Y (@)

JjeL i#] JjeEL

When j # i, the function ®~'f; = &L\}f, = <I’j<I)L\{i’j}fi is of the form
®,g1, and letting go = ®~7 f; we get by (8.28) for the z; variable that

/(‘1>~ifi)(<1>~jfj)dxj = /(‘I’jgl)gz dx;
R R
<CpB / (101)(®592) da; = OB / (& ,)(@" f;) da;

because ®,;0~7 = ®L. Integrating in the remaining variables, and since the
functions are nonnegative, we obtain

/R 2@ de < O /. > )
(Zrb”ﬁ) (Z@ij) dz < C Z@”jf]

i€l jEL jEL

22|

JjeL

When j = i, we use (&~ x )2 < &7 x g% and get

/WZ ™I f;)? / > o™ifidr =B

JEL jEL

It follows that E := ||, ®~7f;]|, satisfies an inequality E? < AE + B,

where we let A := C’ﬂHZjeL <I>ijH2. This yields E < A+ B'/? and we have

Z Z(I)ij Zq)Njij

jEL JEL JEL

1/2

<Cp
2

2 1

This is Lemma 8.7 when ¢ = 2. In general, when ¢ > 3, we expand
/ (Z P~ fj> de= > / Oy ). (@Y f; Yda. (8.29)
R¢ JjeL J1,d2,-Jq €L R¢

Consider a multi-index (j1, jo, ..., Jq) € {1,...,£}9 = L7 and suppose that
Jq is not equal to any of ji,...,j,—1. Then we can write ®~J* f; = ®; gy for

- 166 —



Dimension free bounds
each k < ¢, so as before, by (8.28) applied in the x;, variable, we get that
[ @5 @) o
R¢
<Crig [ @ g @) (@8 ) d,
R

Let us denote by ), the part of the summation at the right-hand side
of (8.29) that is extended to all ji,...,j, such that j, & {j1,...,Jq—1} We
obtain that

S, @ ) @) da
q—1
<C‘1‘16/ (Z@foj) (Z@Lf]) da
RZ

jeL jeL

> ooy > ool

JEL JjeEL

<Crip

qg—1
q

q

The remaining sum ), is less than the sum of ¢ — 1 terms corresponding to
which index ji, £ =1,...,9 — 1 is equal to j,. Each of these ¢ — 1 terms is
similar to

Z /W(CDNJi i) (@NjQ*ijq72)((ijq71 qu71)2 dz,
J1,J2s-Jq—1€L i
which is bounded by

L(Zrn) (5r5)

JjeL JjeL

q—2

S

jEL

> e

JEL

q q/2

q
a bound by X + Y9 of the form
q

We obtain for £, = H ZJ,EL I f

B, < qulﬂ Z(I)ij Eéfl/q+ (g—1) Zq)~jfj2 E;72/q’
jEL q jeL q/2
which can be written also as
B2 <0IBTl | BYT+ (g 1) Y] @™ f
jeL q jEL a/2
This implies as before that
, I
S oovif|l =EYI<CTIB| Y ot +Vg—1||> @Y7 O
jeL q JEL q jeL q/2
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LEMMA 8.8 ([13, Lemma 7]). — Let ® be a probability density on R that
is T-stable with constant C, and let 8 > 1 be defined by (8.26). Let £ > 1
be an integer, L = {1,...,L} and define ®; by (8.27), for j =1,...,L. For
every integer v > 1 and for all nonnegative integrable functions (fj)fz1 on
R, one has

> ey

jeL

—k
e < (1) . (8.30)

> f

jeL

<IN ets

2¥ k=0 jeL

—1
KV
ov

—k
with x, < max(2¥,3C?"). Each term szeL <I>ij2k||;y_k, for 0 < k < v,
satisfies

> i

jeL

1> et

jeL

K & 27k
l(gee)

jeL

<
v v

Proof. — We begin with the easy last sentence. For » = 2F and k =
0,...,v, we have

1/r T
Z‘I’ijr < ||@F ij
v k

jeL B jeL

1/r r1/r
(62
ov—k

jeL

ij

jeL

ov—k B v
The constant in the right-hand inequality of (8.30) is therefore bounded by
v+ 1.

We pass to the left-hand inequality. Let ¢ = 2”. By Lemma 8.7, we can
reduce the case ¢ = 2 to the case ¢/2. We proceed by induction, with a
number of steps bounded by v. Using (a + b)* < a® + b* when a,b > 0 and
a € (0,1], we obtain

IS avigl, < s S wbs |, + Va1 02

jel jeL ek
B[Sy 2R [0
jeL rek
2o S e A <
JjelL

. . 27k
and the successive factors in front of ||ZJEL <I>ij2k||2l,_k, for 0 < k <

have the form q(ﬂ/q)Qik(Cq)‘Fk < q(BC’I/q)Tk, leading to &,
max(g, 3CY).

R

)

(VAN

We can try to optimize the constant k, in the following way. Suppose
that the function In ® is Lipschitz on R with constant A\. Then we see that

- 168 —



Dimension free bounds

® is 7-stable with constant C; = ™ for every 7 > 0, and

T 1— —AT
1> 8" ::/ O(t)dt > 2@(0)/ e M dt = 2<1>(0)L

< 0 A

Let ¢ = 2” and select 7 = 1/(\q). Then C, < e'/9 and
el < e? \ < 4\
20(0)(1—e 1/9) =~ 28(0) 7= 3(0
Coming back to Lemma 8.8 and noticing that A > 2®(0), we obtain

4N

Ky < m 2Y. (8.31)

8,08 <

)4

We now introduce Bourgain’s specific example ¢ of a function @, defined
by

_c
145t

where ¢ = v/2/7 is chosen so that ¢ is a probability density. This value c is
obtained by the residue theorem, which also gives the Fourier transform

B(t) = (cos(mv2[t]) + sin(wv2]t])) e ™21 e R.
Notice that (cosu + sinu)e ™ = v/2 cos(u — 7/4)e™™ > e~ when 0 < u <
7/2, because h(u) = In(v2cos(u — 7/4)) — u+ u* > 0 on this interval.

Indeed, we have h(0) = A/(0) = 0 and A" (u) = 1 — tan(u — 7/4)®> > 0 on
[0, 7/2]. It follows that

VseR, ¢(s)

B(t) > e 2% when mV2t| < g

in particular when 7|t| < 1. We shall need later the estimate given by
Lemma 8.9.

LEMMA 8.9. — For all s € R, { integer > 1 and & = (£1,...,&) € RY,

one has that , ,
(1 - H @(8@)) H n(&;) < 2ns?.
J j=1

=1
Proof. — Suppose that m|s{| < 1. Then 7|s&;| < 1 and @(s§;) =
e~ 25’ for each index j=1,...,¢ thus by Lemma 8.6 we have

¢ ¢
(1-TTete)
J=1 J
Otherwise, we have 7|s¢| > 1 and applying Lemma 8.6 with » — 0 we get

P4 l Y
(1 -1l ﬂsfﬂ) [17) <2 ][ ) <202 < 2ns”.
j=1 j=1 j=1

l
i) < (1—e 2 1) T igy) < 2ns2.
1 j=1
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O

We know that ¢ is 1-stable, because F(x) = In () is Lipschitz. Indeed,
its derivative F'(x) = —423/(1 + 2*) is bounded on the real line. To be
precise, the second derivative F” vanishes when z* = 3, which implies that
|F’(z)] < 3%/* for every x. When |t| < 1, we have thus

p(s+1) < 3 o(s), seR,

with e3”" < 9,772 < 10. This shows that ¢ is 1-stable with constant < 10.
We shall need more than the 1-stability of the function ¢, namely, we shall
use the polynomial character of 1/¢. When || > 1 and u € R, we have

T+ (u—t)* <1+ 8w +1*) <81 +t1) (1 +u?) < 16¢* (1 +u?), (8.32)

implying in this case, and with u = s + ¢, that (s +t) < 16t*¢(s).

We introduce wy = w3 = R™° < wo. The dilate ¢(,,) of ¢ is wi-stable
with constant 10 and we shall consider from now on that ® = (). We
denote as before by ®; the operator on L9(R") of convolution with ¢(,,) in
the variable z;, where j € L = {1,...,¢}. For every subset J C L we define
@7 as before, as well as &~ = &L\, For |t| > w; we have by (8.32) the
inequality

Py (s+1) < 16(t/w1)4g0(w1)(3) = 16R45t4<p(w1)(5) , s€R. (8.33)

Here is perhaps the crux of the matter. The boundary measures p;, partial
derivatives of ug, will be swallowed and disappear as if by magic. The cube
@ here is the cube Q, in R.

LEMMA 8.10 ([13, Lemma 8]). — Let v be an integer > 1, let ¢ = 2V,
and let fi, ..., fo be functions in LI(R*). Let w; denote the partial derivative
Ojpg of the probability measure pg, for j = 1,...,£. With ®; defined as
in (8.27) from ®f = @,y * f when f € LY(R), one has that

La(RY)

< kv/qlngRY

La(R?)

Y R 1/2 ¢ 1/2
(35 wasr) ()
Jj=1 j=1

Proof. — Let us write L = {1,...,£} and R for R?. For each j € L, let
Q™7 denote the cube [Tiz;[-1/2,1/2] in R Jet dx™7 be the Lebesgue
measure on R\t and consider the probability measures 7i, K ~i K4} on
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R¢ defined by
Tj = %(51/2(%‘) + 0 12(25)) ® <®i;ﬁj 50(1’1')) )
K™ = §o(a5) ® (@wﬁ] L1219 (2 )d%) = do(x;) ® (1g~ dx™),

KV = (1[1/2,1/2](%)(1%) ® (®i¢j 50(%)) :

When convenient, we shall identify a kernel K and the convolution operator
with that kernel. Note that the signed measure p; = 0;1¢ satisfies

|6j1Q| = (51/2(Ij) + 5_1/2(l’j)) X (1Q~j dXNj) = 2Tj * KNj .
Using |p* f|P < p*|f|? when p is a probability measure and p > 1, we have
¢

I
D101 # @2 <4 O (15 K™ x| f]7)
j=1 j=1
We evaluate the LY norm applying Lemma 8.8, obtaining that

¢ ERNE
(5 vsr)
j=1

14

4D o™ (K™ x| f])

Jj=1

v—1

—k

<4K/1/—1 § (Ek)2 )
k=0

where the expressions FE. are given by

Z@L KNJ*|f|]

2
<4

X

q

q/2

. 12k gg/2=2""1,
q/2++

Using again |u*f\p JTE: |f|p for p > 1, we get

= HZ be ¥ K™« |f]‘2k+1)Hq/2k+1 .

Next, observe that w(wl)(s + 1) S W7 () (8) = R¥ ) (s) for [t < 1/2.
Indeed when wy < [t] < 1/2 we have ¢y,)(s + 1) < 16(t/w1)*@(u,)(s) <
Wi P,y (s) by (8:33), and @iy, (s + 1) < 100w, (5) < R¥¢(u,)(s) when
[t| < wy, because we assumed that R® > RY = 16. When y is a probability
measure supported on [—1/2,1/2], it follows that ,u * Pwy) < R45<p(w1) and
Pluwr) < R pxp(y,). We have therefore 7;®; < R¥®; and &; < R*®; K1}
For g nonnegative we obtain

Di7ig < R¥®,;9 < R¥®,; K1}y,
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Consequently, observing that K1/} «+ K~ = 15(x) dz, we have
@L(TjKNjg) = @NjéjTjKNjg < R85<I>~j<1)jK{j}K~jg = Rl « 1gx*yg,

and by the last assertion of Lemma 8.8, we obtain for £k =0,...,v — 1 that
¢
k+1
Fp < R¥ <Z‘1>L|fj2 )*1Q
j=1 q/2k+1
¢ [ ok+1
< R86 Z‘I)L‘fj|2k+l < R85 (Z |fj‘2)1/2
j=1 q/2k+1 j=1 q

2 1/2H < 1 we get

Finally, assuming || (Z?:l |£i%)

’ N2
(s -asr) ],
j=1

Since In ¢ is Lipschitz on R, we can estimate x,, by (8.31) and conclude. O

2
<4k, 1 Z R86 < 41/,%1,,1R85.

Recalling that G is a probability density and ,uf' = pj * GR, we imme-
diately deduce the result that we really need.

LEMMA 8.11 ([13, Lemma 9]). — Assume that ¢ = 2%, with v > 1 an
integer. Let f1,..., fo be elements of LY(RY). With ®; as in Lemma 8.10, we
have

‘ 1/2 ¢ 1/2
(Srent) ], el (E)
—1 La(Rf) j=1 La(R?)
8.4. Conclusion
It remains to estimate the two terms E(R,/, f) = |Vu® x Hof| and

F(R,?, f) defined in (8.22), for f € L%(R%), ¢qo = 2" and ¢ < n. Each
one will be cut into two pieces, one of order a power of R® and the second
bounded by a “small” multiple of B(qo, R,n). Let us start with E(R,?, f),
and cut |Vu® x Hyf| into

E'(R, ¢, f) : ’V,u *G ()

, E'(R, L, f): ‘Vu * (0 —G(wl))*Hof‘.

We begin with E’(R, ¢, f). The mapping f — Vu® « G,y * Hof, equal
to UMR*G(“)I) o Hy is studied by applying Lemma 7.11 to the log—concave
probability density u® * G(wl Using (7.3) and (8.1), we see that V(u®
Gwn)) < V(G(wy)) = wy " = R. The variance of pf % G, ) = pg *G(1/p) *
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G(w,) is larger than that of ug, which is equal to (12)~!. By Lemma 7.11
and qo > 2, we get that

[E"(R. €. /)], <247 (R) /% Hofllgg < 5B fllgo -
We study now E"”(R, ¢, f) with the a priori estimate that involves the
constant B(qo, R, {). By the definition (8.7), one writes
HE”(R&f)HQO = ||[Vu" (60 — Guy)) * HoquO
B(q()v R, é) ”(50 - G(w1)) * HOfHCIO .

We continue by interpolation (L, L?) for f + (00— G(w,))*Ho f. In L>=(R")
one has simply [|(6p — G(w,)) * Hollso—soo < 2 by using the L' norm of the
convolution kernel. Lemma 8.6 with r = 2y/mw;/wo gives for the Fourier
transform a bound

¢
(1 — et T iwoé;) < 4m(wi fwo)? = 4mwl = 47R™°, € € R,
j=1
implying [|(0 — G(w,)) * Holl2—2 < 4mR™°. We get in this way that
180 = Gun) * Hollgg—sqo < 2'7%/% (47R %)/ < 4 R™20/0,
thus ||E”(R, ¢, f)||q0 < kB(qo, R, 0)R™2%/% || f||,, and we obtain

[E(R. ¢ £)|],, < K(R+ Blao, BOR2/®)| £,

Now we consider F(R, ¢, f) and we cut it into

1/2
F/(R, 0, f) : <Z‘MJ « 179~ f| ) ,

1/2
F'(R,0, ) : <Z|MJ*I‘J <1>~J')f|2> .

By Lemma 8.11, we have that

AN V.
(SirP)
j=1
Using Khinchin’s (1.22.K) and (1.27) we reduce to HZﬁ:l :I:l"ijqO, and
dividing a'ccording to the sign 4, we further reduce to szeJl FJquO and
||Zj§§]1 F7f||q0, where J; C {1,...,¢}. The first sum corresponds to the
operator Hp relative to Jp, the second is the one for ~ Jy :={1,...,¢}\ J;.

[P0, ), < gy Y

q0
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By Proposition 8.3 for the set .J; of variables, writing = = (x”t,x~”1) € RY,
we have for 1 < g < +oo that

(),

JEJL
and integrating in the variables in ~ J; we get with A, from (1.22.K) that

14 o 1/2
I f )
(e

for 1 < ¢ < 4o0. It follows that ||F'(R,¢, f)||qD < H;0R45||f”qo.

x™7 e R

)

<h ;
La(R71) quxNJl HL‘I(RJl)

<24, g |1 (8.34)
q

For the second term F”(R,/, f) we first obtain an L? bound for the

nonlinear operator V : f — (Z§=1 |TI(T — (IDNj)f|2)1/2, by estimating the
Fourier transform

£ 2
= > (1 Awog;))” (Hﬁ(%&)) (1-J]ewe&)” < an?R70.

i=1 i#] i#]
Indeed, we know that 0 < 7(t) < 1 and —1 < §(¢) < 1, therefore

iﬁ(l— (woé;)) (Hnwo&)(l—Hﬂwl&))

j=1 i#j i#]
£ 4
<2 Z 1 - w()g] H?? woﬁz < H((l - (U)Og])) + ﬁ(waj)) =2,
Jj=1 i#£] Jj=1

and by Lemma 8.9 applied to RX\U} with s = wy/wy = wy = R™9/2 it
follows that

X(©) < 2 max <Hn (wos) ) (1- 1;[¢<w15i>) <R, feR’
i#j

We get [|[Vf]|3 <472 R79|f||? and ||V |22 < 27 R~%/2. On the other hand,
given functions (9j)§:1 and independent Bernoulli random variables (€j)§:17
we have

L L
2(2“‘?*912) :2<Zﬂf*5j9j2>
j=1 j=1
¢ ) 1/2 1 , 1/2
< (ZW?* (6595 + Y €ii)] ) + <Z|/~Lf* (eig5 — > eigi)| >

j=1 i#] =1 i#]

1/2 1/2
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hence with g; = T9(I — &™) f and F. = Y'_, &,T"(I — ®~%) f we see that

1 1/2
(e )

Jj=1

With Khinchin (1.27) and the a priori bound (8.7) we obtain

HF//(R7 l, f)HqO < E.

=E Vi x| =D

q0

¢ 1/2
D < B(Q(],R,g) Ee ||Fa||qo < (](],R [ H (Z (I)Nl f2>

q0

In L9 (R*) with ¢; = 2¢y9 = 2"*! we have by (8.34) and Lemma 8.8 that

(Sru-rr)
J(sem)], < |sees

Interpolating with the L? bound, and with kg, changing from line to line,
we get

H(éwj(f—(le)ﬂz)lm

therefore ||F” (R, ¢, f)H < Ko (QOava)Rfa/(QQO)”quo and

q1
1/2 1/2

K‘]OHf”Ql'

qQ q1/2

S Kgo R 0/(2q0= 2)”qu0 ’iqu_(S/ 2q0)||qu )

q0

[F(R, L, )], < Fao (RY + Blao, R, Q)R %)Y || £l

The estimates are proved in every dimension ¢ < n, we have thus realized
our objectives (8.21) and (8.22). Noticing that R > 1, we have consequently

bo(qo, R, n) + bi(qo, Ryn) < kige (R* + B(go, R,n) R~/ (210)) .

At last, we put all parts of (8.23) together. We may assume that 45 < 1.
We use again R > 1 in order to absorb the constant bound from (8.15), thus
obtaining

[V % g, < (a0, 0) (R + B(go, B, n) R/ 1)) gllg,
for g € L?(R™) and R > Ry. Since B(qo, R,n) is the maximum of HVMR *
gH for g of norm < 1in L% (R"), we deduce that B(qo, R,n) < c(qo,6) R*+

B(qo,R,n)/2 for R > Ry, if Ry > Ry is such that ¢(qo, )R, 8/(240) <
1/2, thus B(qo, R,n) < 2c¢(qo,0) R* for R > R;. The value of R; de-
pends on § and ¢¢ that are fixed. For R < R;, we may estimate directly
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Ve * gl < KR|gllg < KRITPRY|\gll4y by Lemma 7.11. Tt follows fi-
nally that B(qo, R,n) < ¢/(go,d) R*, and § being arbitrarily small, we have
proved Proposition 8.2.

9. The Aldaz weak type result for cubes, and improvements

We work again in this section with the symmetric cube @, of volume 1
in R™, that is to say, with Q; = [-1/2,1/2] when n = 1 and Q,, = (Q1)".
We first present, following Aubrun [3], a rather soft argument proving the
result of Aldaz [1] that the weak type (1,1) constant kg, associated to the
cubes @,, is not bounded when n tends to infinity. We shall indicate and
comment the quantitative improvement obtained by Aubrun [3], who gave
a lower bound kg, > re(logn)' = for every € > 0. We then give a version
of the proof of Iakovlev and Strémberg [46] who considerably improved this
lower bound, showing that kg, > kn'/4. All the arguments though are
based on the same initial principle that we now recall.

We begin with a few simple reflections. If we want to contradict the
uniform boundedness of the weak type (1,1) constant k¢ , we must, in view
of Bourgain’s Theorem 8.1, look for functions f, on R™ that do not stay
bounded, as n — oo, in any LP(R"™) with p > 1. Also, we may easily obtain
by mollifying techniques that the weak type inequality for L' functions,
stating that

c{z e R": Mg f)(z) > c}| < kgl fllr@ny, >0, fe LR, (9.1)

where we let Mg = Mg, extends to bounded nonnegative measures p on R™:
if for every z € R™ we define (Mg p)(z) to be the supremum over r > 0 of
all quotients p(x +7Q)/|z +rQ|, then (9.1) extends with the same constant
KQn as

c{z e R": Mgu)(z) > c}| < kguu®R™), ¢>0.

These two remarks lead naturally to consider measures on R™ that are sums
of Dirac measures, in order to contradict the boundedness of kg, when
n — oo.

Let py = Z;V=1(5j—1/2 +0_j41/2) stand for an “approximation” of the
Lebesgue measure A on a large segment Sy = [—N, N]. The measure ux has
a unit mass at the middle of each interval (j,7+1), j integer and —N < j <
N. Every interval [u,u + h) contained in Sy, with length an integer h > 0,
has the same measure h for py or for A\. However, if I is a segment of length
1+4a,0<a=1—¢ <1, centered at s = 0 or at any s = j, integer with
|7] < N, then I contains j £+ 1/2 and

pn(I)=2 but A\()=14a=2-e<2,
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so that Mg pun)(s) = un(I)/MI) = 2/(2—¢). The same observation is valid
if s is not too far from an integer j in (—N, N), precisely, if |s — j| < a/2. If
we pass to R™ and to the tensor product measure ,ug\?;' = ®"uy, we obtain
a huge magnification due to dimension, which reads as

(Mg ) (x) > <2i€>n

when all coordinates z;, ¢ = 1,...,n, of the point x = (z1,...,2,) € R"
belong to the subset C,, of [N, N] defined by
Co= |J (G—0a/2j+a/2). (9.2)
~N<j<N

If ¢ = 2h+1 > 1is an odd integer, if J = (—h—1/2—a/2,h+1/24+a/2) =
({+a)@ and if s+J is contained in Sy, we see in the same way, when s € Cy,
that the segment s + J contains £ + 1 = 2h + 2 of the unit masses forming
pn - Consequently, we have (Mg un)(s) = (0+1)/[s+ J| = (L +1)/({ + «)

and
(n) f+1 "
M >(—
o)) > (1
when © = (z1,...,2,) has all coordinates z; in C, and z + J* C S} =
2NQ,,.

This case is much too particular, since the set of such points x represents
only a tiny proportion o™ of the cube S3. One has actually to consider that
some coordinates x; of x = (z1,...,2z,) € R™ are in C,, say m < n of
them. For the other coordinates x;, observe that any interval of length ¢+ «
contained in Sy contains at least ¢ points of the support of uy. Assuming
that = + (£ + «)Q C S%, we get for this point = with m coordinates in C,
the lower bound

(n) m n—m
(n) iy’ (z+ (L + 2)Q) (41 ¢
Mouy’)(@) > PESTEwnTe] > (€+a> <€+a) . (9.3)

We want the cardinality m of the “good”, “centered” coordinates x; to be
as big as possible. Since they are chosen out of subsets of length « in unit
intervals (j — 1/2,7 + 1/2), it is likely that the proportion of “good coor-
dinates” among n coordinates be around «, with a plausible deviation of
order y/n from the expected number an. We shall thus think henceforth
that m = an + d+/n for some § > 0.

We try to make the lower bound (9.3) as large as possible, by a suitable
choice of £. Setting 8 = 1 — «, we rewrite the right-hand side of (9.3) under

- 177 —



L. Deleaval, O. Guédon and B. Maurey

the form

l+a+B\"(l+a—a ﬁ m 1__© nom
l+a e é +a (4« '
Considering now y = (£ + «)~! as a real parameter, we will study

V(y) == 0+ By)" (1 —ay)™, -1/f<y<l/a,

and find the maximal value V(y). Equivalently, we let f denote the fraction
m/n of coordinates of x that are in C,,, and we maximize vy, (s) = V(s)'/™
defined by

vra(s) =(1 +Bs)f(1 - ozs)l*f, se[-1/8,1/a].

We have to remember though that the lower bound V(y) for MQME\?) (x)
given in (9.3) is only valid when 1/y — « is an odd integer ¢. We shall replace
y by a value y = yn > 0 close to y, such that 1/yy — « is an odd integer,
thus obtaining that MQ,ugf,l)(x) > V(yn). We must ensure that the value of
V(y) does not decrease too much when moving from y to yy. We would like
to have

Viyn) 2 e “V(y) or vfa(yn) > e c/m Vfa(y), forsome ¢>0. (9.4)

The maximal argument y is produced from f and a choice of a < f. We
shall say that the couple (f, ) is c-allowable if the above condition (9.4) is
satisfied.

LEMMA 9.1. — Let 0 < a < f < 1, 62 = a(l — a) and let us define
T >0 by writing f = a4+ oo7. The function vs o reaches its mazimum at
T f—a

yzgf,oz:;a: 03 >0. (9.5)

If0 < y,y < 1/2 then

o) am = (1) ()7 e

le} 11—«

If 0 <y < 1/4 and y* < ¢/n, then the couple (f,a) is c-allowable.

Proof. — Let w(s) = Invyq(s) = fIn(l+ Bs) + (1 — f)In(1 — as). We
have
Bf o=

wl(S)ZI—FBS_ 1—as ’ w'(s) = -

Bf a?(1—f)
(1+8s)2 (1—-as)?’
The maximal argument y is found by solving w’(y) = 0, yielding

_ f-«a _ f I Y
y==——7%, 1+pfy==, l-ay= .
o « 1—«

e
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This gives us the maximal value vs,(y) at the right-hand side of (9.6).
Suppose now that we have 0 < y,y < 1/2. Using Taylor-Lagrange at y, we
get
=12
— y—y
w(y) -~ wm) = v LY

for some & between y and y, hence 0 < £ < 1/2. We have 1 — af > 1/2 and
—w"(§) <Ff +40’(1- /) <P t+4a’(1-a)<Bra=1,
because (1 — «) < 1/4. This implies the left-hand side of (9.6).

Suppose that 0 <y < 1/4. Moving around ¥y, we can find yyn > 0 satisfy-
ing

lpw -yl _|1_ 1

yny Y oUN

and such that 1/yN ais an odd integer. From |yy—y| < yny andy < 1/4 fol-

lows that yy < 4y/3 <1/3 < 1/2 Also, |yny — 7| < 492/3 < V252, By (9.6),

we deduce that vy o(yn) > e ¥y t,o(y) and the conclusion is reached. O

<1

Given f and « such that 0 < a < f < 1, let us now examine the optimal
value

Efo=v5a1) =1+ 67 (1—ay)~ = (f>f<1_f>1f. (9.7)

a 11—«

Consider the function ¢, defined on (0,1) by
(ba(s):sln(i)+(1—s)ln<11_s), s€(0,1). (9.8)
We see that ¢/, (s) = In(s/a) —In((1—s)/(1—a)), ¢l(s) =1/s+1/(1—s) =

1/(s(1—s)), and ¢S (s) = —s72 4 (1 —s)~2. Note that ¢a(e) = ¢}, (e) =
and that ¢ (a) = o, 2.

LEMMA 9.2. — If0< a < f = a+ 0,7 < 1, the mazimal value vy o (y)

satisfies

7'2 1-—2a 73

1 a » — - . .
nv1a(y) = dal(f) > 5 — (9.9)
Proof. — By Taylor-Lagrange for ¢, at the point «, we have
f—a)? f—a)? 72 oT)?
8alf) = (@) L=y g U Ty g 10eT)
2 6 2 6
for some & € (o, f). Since (b,(f’) is increasing, we get that
72 (0a1)? 20—1 o373 2a—173
——> (3) al) _ Yol . 0
Pa(f) = 5 2 0 (@) w21 —a) 6 P
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In all that follows, we see 4 := [N, N| as a probability space equipped
with the uniform probability measure, denoted here by P;, and we shall
consider the cube S¥ = 2NQ,, equipped with the product measure P =
P{X’", also the uniform probability measure, as being our main probability
space (2, F, P). On this space, the random variables (1¢, (x;))",, where
z = (x1,...,2,) € Q, are independent and equal to 0 or 1 with respective
probabilities 1 — a and «. Their expectation is o and their variance is equal
to 02 = a(l — a) < 1/4. For every a € (0,1), we introduce the centered and
variance 1 Bernoulli variable X; , defined on 2; by

1lc —« 11—« «
Xio=—= = lc, —/—1 , 9.10
1, O o Ca 1—a Q1\Cq ( )

We also let N, o(z) = > 1¢, (2;) denote the number of coordinates of

x that are in C,. We are ready for a first explicit estimate of the maximal

function Mng\?).

and we let

x=(x1,...,2,) € Q.

LEMMA 9.3. — Let 0 < a < 1 and 02 = a(1l — ). Let n € N*, t > 0

and 0 < 0 < 1 be such that /n > 2to;2(1—0)~1. We have MQME\?) > eft/2
on the set

A&”t) = {x €2N =t 'V/n)Qp : Npo(z) = Z 1o, (z;) > an+ taa\/ﬁ} ,
i=1

where C,, is defined at (9.2). When the dimension n is large, and assuming
the size N large enough compared to n, it follows that

[{Muyy > ™2} 1452
S ~ 2NQ.

‘ > %71((t,+00)) .

Proof. — By the central limit theorem (see [32] for instance), we know
that the distribution of X, , tends to the distribution of a N(0,1) Gaussian
random variable G when n tends to infinity. This yields

P(Np.a > an+toay/n) = P(Xpa > 1) — P(G>t) =11 ((t,+00)).

Let A(Jfgo) be the set of points x € Q where N, o(z) > an + toqy/n. Fix
x € Agf;o) and let m = N, o(x). We shall apply Lemma 9.1 with f = m/n
and 7 = t//n. By assumption, the optimal argument y satisfies
J= t < oa(1—10)
Tar/T 2
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At (9.3), we used a cube centered at x, with side length ¢+, £ an odd integer.
We can choose /+a < 1/y+2 < 2/y < t~1y/n. This cube must be contained

in Q = S, so we have to give up a small part of Af;f;o), close to the boundary
of Q. We thus introduce the subset A((X"t = A(”’O) N2(N —t=1/n)Q,. The
difference Aano \A(nt gets negligible when the side 2N of S}, tends to
infinity since (1 —t~1y/n/N)" —x 1, so the set A((Lt has essentially the
same probability as A, n,o when N = N(n) > /<a( t)n3/? is large enough.
When n tends to mﬁmty7 the probability of Aa + is therefore, say, larger
than ~; ((t, +00))/2.

We first show that the couple (f,«) is c-allowable with ¢ = (1 — 6)t%/4.
We know that ¥ < 1/4 and on the other hand, we have

_ t c 4¢2 c 2t ¢
Yt = == <= < —.
oin?2 n(1-0)cin n\(1-0)c2y/n n

It follows from Lemma 9.1 that MQME\?)(:U) > e~ (1=0F/4 (7)) for every x €
A(n) It remains to estimate the optimal value V (y). For this we apply (9.9).
It implies that V(y) > e */2 when o > 1/2, and when a < 1/2, we see that

1—20417(172a)7'z t 12<0a(1—0)z<(1—0)7
0o 6 30, 2  304.yn 2 6 2 4 7
so that V(y) > ot?/2=(1-0)*/4 414 MQM(n)( ) > ot?/2 o= (1-0)t2 /2 _
0t /2. O

a,t
is large. We shall have to use several values of «, and show that the union

of the corresponding sets provides a fair amount of the total volume of S%;.
We thus introduce 0 < ap < as < ... < ag < 1 and we will prove that the
probability of the union of sets (A( DE j—o gets > 1/4, say, when K is large
but fixed and when n tends to inﬁnlty Rather than relying, as Aubrun does,
on the law of iterated logarithm, we apply easy facts behind the proof of
that “law”. In a simple qualitative approach, we shall analyze the Gaussian
limit of the joint distribution of (X, a,),, which is the distribution of a
Gaussian vector (Gj)jK:O whose covariance matrix C' is the same as that of

(Xn,a_,»)f{:@ Letting sz = (1 — ), the entries of C' are

Given a € (0,1), we have identified a subset AT of S where MQMS\?)

Cik =E(X1,0,X1,0,) = U;lo']:l(aj Aoy — 2050, + ajor), 0< k< K.

Note that C;; = 1. Assuming «; < ai, that is to say, assuming j < k, we
get
Q; 1— oy

Cir=0tota;(1—ay) =
75 J k ]( ) 1—Oéj Qg
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We fix v € (0,1) and set w = V1 —v2. We define a; = (1 4+ v¥)71, j =
0,...,K,and obtain Cj j, = v¥=Jl. We can realize the distribution of (Gj)szo
by considering the larger Gaussian sequence indexed by Z, which is defined
by the sums of the series G = w Zi@. vI~tU;, for every j € Z, where the

(Ui)iez are independent N (0, 1) Gaussian variables. Indeed, if j < k we have
that

E(G;Gr) =(1—- 112) Zv-j"’k_zi = pF=I = plk=il,
i<
We see that G; — vGj_1 = wU; and it follows that

N | _ < wt i .
Jmax [Uj] =w™ max |G —vGja| <w™ (1+v) max |G (9.11)

We now recall an extremely classical estimate.
LEMMA 9.4. — Let J > 21 be an integer and set
sy:=+/2InJ —In(167In.J).
If Uy,..., Uy are independent N(0,1) Gaussian variables, one has that

P(lrélj% Uj>sy)>1/2.

Proof. — We have for s > 0 that

+o00o
S _52/2
/s dyi(s) > 7\/%(1 ) e , (9.12)

consequence of
2/2 oo 2 2/2 2 oo 2/2
e/ /s:/ (1+u"2)e v/ du<(1+sf)/ e /2 du.

When J > 21, one has e”*J? > 167InJ > 1, hence 1 < s; < v2InJ.
Therefore, we see by (9.12) for each j =1,...,J that
Sy V167In J 253 1

P(U; >sy5) > > > —.
=) > oty (A+s2)J = 7

It follows that
1\’ 1
< <(1-2= o2,
P(1I£]a<)(JUJ < SJ) < (1 J) <e "< 5 O
THEOREM 9.5 (Aldaz [1]). — The weak type (1,1) constant kg, in (9.1)

does not stay bounded when the dimension n tends to infinity.

Proof. — Given an arbitrary ¢t > 1, we let t; := tw= (1 +v) > t and
choose an integer K > 21 such that sx > t;. Applying Lemma 9.4, we obtain
that the event {maxi<;<x |U;| > t1} has probability > 1/2, and by (9.11),
it follows that the event {maxoc;j<k |G;| > t} also has probability > 1/2.
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We see that sup|G;| is the maximum of sup G; and sup(—G;) that have
the same distribution, hence {maxocj<x G; > t} has probability > 1/4.
Consequently, given any ¢ > 1, we obtain by the central limit theorem that
gj_)’t, for j = 0,..., K, has a probability close to that of
{maxog;<x G; > t}, hence > 1/4 when n is large. By Lemma 9.3, given
0 € (0,1) and if \/n(1 — #)o% > 2t, the maximal function MQ,LLE\?) is larger

2 . K
9°/2 on the union (J;_, A(a?t,

the union of sets A

than e i.e., on a subset of 1 = S} having

probability > 1/4, hence kg, > eft*/2 /4 when n is large enough. O

Aubrun [3] gives a lower bound kg, > k:(Inn)'~¢ for every € > 0 by
making quantitative the proof above. He applies to this end results proved
years before (by Bretagnolle-Massart [14] in 1989 and previously, by Komlés—
Major-Tusnddy [51] in 1975) on the approximation of Brownian bridges,
when n — 400 and with explicit bounds, by binomial processes

n

n livigey — 2
25)22¥7 telo,1],
= vn

where the (Y;)!_; are independent and uniform on [0,1]. One can see that
the distribution of the process (Zt(n))te((),l) is equal to that of (0 X ¢)te(0,1)-

Takovlev and Stromberg [46] begin with the same observations, in par-

ticular introducing the measure ,ug\?), using the fundamental estimate (9.3)

and, in a less apparent manner, the value ?**/2 from Lemma 9.3. But instead
of working in a probabilistic setting, they proceed to a finer combinatorial
analysis. Contrary to Aubrun, they do not use values « close to 1, nor close
to 0. In our exposition of their arguments, we shall work towards simplicity
rather than optimality.

Let us digress a little with some comments on the Gaussian process view-
point, and express in terms of stochastic maximal function the lower bound
for MQ/LS\CO given in (9.3). Let z € Q and m = N, o(z), 02 = a(1 —a) and
write m = an + oqty/n. Notice that t = (m — an)/(cavn) = Xn,o(2).
We let f be the fraction m/n, and rewrite the preceding formula for m as
f=a+oa1, with 7 = t/y/n. We know the optimal argument y for V (y),
given in (9.5) by

_ InV(y _
y:Uai/ﬁ:é7 and nn(y):fln<£>+(l—f)ln(1£>.

By Lemma 9.2 we have In Ef o, = ¢u(f) > 72/2 = t2/(2n) if 7 > 0 and
a>1/2. Let 1/2 < a < 3/4 and assume that 0 < t = X, o(z) < n'/*/2.
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We see then that § = t/(cay/n) < 20~ Y4 /4/3, thus ny* < 16/9, 5 < 1/4
for n > 455 and by Lemma 9.1 we are then in the allowable case with
¢ < 16/9. This yields

n B, - t?
MQﬂgv)(I) >k 'Efq >k exp <2) )

with x < e'%°< 6, n>455. (9.13)

Let us define a maximal function X*(z) = sup; jaca<a/a X,(Ll)a (z), where
X,(lex(z) = X, o(z) when 0 < 2X, o(x) < n'/* and X,(lex(m) = 0 otherwise.

We get
* 2
6Mouyy (z) > exp <X (z) )

2
and the weak type (1,1) constant k¢, must satisfy the condition
2 2
P({X* > 5}) < P({MQ/I,E\T,L) > et /2 /6}) <b6rgne * /%, s>0.
This explains how delicate the question can be. Indeed, given a subgaus-
sian process (Y:)ier satisfying tail estimates of the form P(Y > s) <
ne*sz/(%?) for every s > 0, for each difference Y = Yz, — Yz, and with

d = d(t1,t2) = ||Yi; — Yi,]l2, the well known chaining technique of Dud-
ley [28] does not allow one to prove for the maximal process sup,cp Y; a
subgaussian inequality with the same bounding function e/ 2 but rather

—Cs?/2

with e for some C < 1, which is inoperative here.

THEOREM 9.6 (Iakovlev and Stromberg [46]). — One has that

KQn = rnt/t

Rather than exploiting the exponential asymptotics (9.13) of E} . we
shall observe some more nice features of the expression Ey , defined in (9.7),
where f = m/n = a + to,//n = a + o,7. We replace the value eft*/2
seen in Lemma 9.3 by a fixed large value V' > 1 and we try to keep the
(conditional on allowability) lower bound E} , for Mg ,ug\?)

to V. Equivalently, we keep
Efo=ct) =yl/n (9.14)

for all values of f (or of m) that will be handled. The possibility of finding
« satisfying (9.14) comes from the fact that for every given f € (0,1), the

function
f B 1-f
Vs <£> (11—,{) = 5e(0,1), (9.15)

is convex on (0,1) (actually, log-convex), tends to infinity at 0 and at 1,
and assumes its minimal value ¢s(f) = 1 at s = f. Consequently, there

constantly equal
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are exactly two values ap < f < ag of a € (0,1) solving (9.14), we shall
consider the smallest one and set o(f) = . Notice that (Inys)'(s) =
—f/s+ (11— f)/(1 —s) vanishes at s = f, and
1—
(Ineyp)’(s) = Siz + (1_{:)2 >f+(1-f)=1. (9.16)

We have therefore for every s € (0,1) that

iy (s) > (s - f)2/2,
thus (f —a(f)*/2 < i) = V)/n. (9.17)

From now on, we fix two values 0 < f, < f* < 1/2, independent of the
dimension n. For every integer m in the range [f.n, f*n], we shall consider
the set

Fr={2€Q: Ny op(x) =m}, with f=m/n.

Let us write o = a(f) for brevity. We have that Ey, = V" and if we

assume c-allowability for (f, a) we get MQM%)(x) > e ¢V for every x € I,
by (9.4). The probability of Fy, is o™ (1 — a)"~™(") and we see that

vt = () (1=2) oo ()

- (),

Stirling’s formula in the form e=/(12P) p! < pPe=P /27p < p! (see [66]) gives

e /20y p(FL) < __vn L e/ W2mn=m) yp(p ). (9.18)
2rm(n —m)
With s, = v/ f«(1 — fi) and s* =/ f*(1 — f*), it follows that
—1/(12f(1—f)n) —1/(12s2n)
VP(Fp) > - c !

m)>«/27rf(1—f)n> s2r  n

If the sets F),, were disjoint (and the couples (f, a(f)) c-allowable) we would
get immediately, by summing on m between f.n and f*n, a lower bound of

Kan > e VP({Mou) > e™*V}) by x[e™“(f* = £.)/(s"V2m)] Vi,

but this disjointness property is clearly not true. We shall specify a suitable
large V' such that the probability of the intersection of two events F;,, and
F,,, will be small compared to the probability of F,,, when m; < my are
not too close. We shall find a subset M C [f.n, f*n], as large as possible,

(9.19)
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consisting of “well spaced” values m; giving rise to c-allowable couples. The
final estimate has the form

kgm =e “VP( ] Fn). (9.20)
meM

where the probability of the union will be larger than half of the sum of
probabilities. The seemingly harmless allowability restriction that y = —a =
0o/T — @ must be an odd integer ¢ will actually cause a heavy loss at the

end.
We fix ¢ € (0, fi] and introduce n := /1 — ¢/ f.. We define the “big”
value V as V = e°""/2. By (9.17), we have that
0<f-af)<e. (9.21)
LEMMA 9.7. — Suppose that 0 < a < < f<a+eand f. < f<1/2.
One has
s _a al-a)
< - < o
& &(1-9)

e?n/2

<1, n particular noy =n+/f(1—f) <oa. (9.22)

, a=al(f) and writing o7 = f — «, one has that
NT<eELT. (9.23)

Proof. — We see that a(1 —a) < &(1 — &) because 0 < a < £ < 1/2.
Next, we get

Assuming V = e

al—a) «a_ f—c¢ € 9
— T n > T 2 zl-——==n".
-8 ¢ f i
By Taylor-Lagrange at « for the function ¢, defined in (9.8), we have
(f —a)? o2 2 a(l-a) 72

¢Oé(f):¢a(£0) 2 = 50(1_50) 52 50(1_50) 5
for some & € (o, f), and @o(f) = dua(p)(f) = (InV)/n = £%/2 by assump-
tion. The inequalities in (9.23) follow then from (9.21) and (9.22). O

We have to understand how the values a(f) are distributed when f varies
in [f«, f*]- To this end, we estimate the derivative o/(f).

LEMMA 9.8. — Let 0 < e < fe and V = =" n/2. The mapping (0,1) 3
f = alf) implicitly defined at (9.14) is increasing, and when f € [f., f*] we
have that
n” <d(f)<1.

Proof. — We express the derivative o/ (f) by differentiating with respect
to f the equality ¢ (s)(f) = (InV)/n. Writing ¢, for ¢q(y), we obtain

60+ (e onl )a'l) = 6,0) - =0l =0,
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By Taylor-Lagrange at « for s +— ¢/ (s), there is £ € (a, f) such that

1 Y _ f_a 0/ ence a/ :a(l_a)
RO —a) = 0L(f) = =5 @), bence @'(f) =g

because ¢/ (&) = 05_2. We have that o < £ < f < a+¢ by (9.21), and when
we further assume f, < f < f* < 1/2 the conclusion follows by (9.22). O

>0

We need to study the intersections F,,,, N F,,,, when my, ms € [fin, f*n].

LEMMA 9.9. — Suppose that f.n < my < mo < f*n. One has that

O PEy 1) P () < e )\l )
with § =n3s. /(1 — f.) and X = V1 — f.//T— f*.

Proof. — Let fj =mj/n, f. < f; < f*, and o = a(f;), for j = 1,2. By
Lemma 9.8, we have that a; < as since f; < fs. Let J be an arbitrary subset
of {1,...,n} satisfying |J| = mq, and let A(J) be the subset of = S%
defined by

A=AJ)={z=(z1,...,2,) €Q: T ={i:2; € Ca,}}.

One has thus N, o, (x) = my when z € A. The conditional probability
p, that Ny, o, (z) = me knowing that z € A is equal to the probability that
m, := mg—my of the remaining n, := n—my = (1— f1)n > n/2 coordinates
of z (those coordinates that are in £\ Cy, ) fall in C,, \ C4, . This is given by
the binomial distribution corresponding to n, and to a, = (aa—a1)/(1—ay),
and we know therefore that
P Nn,a = ma NA
Py = ({ 2P(A) } ) = P({NnA’aA = A})

n

_ a;nA(l —aA)nA_mA <mA) )

A

Let f, =m,/n, = (f2 — f1)/(1 — f1). Since &/(f) < 1 on [f., f*], we get

fo—fi  fo—fi fi—a
p— = 1
Ja 1-fi 1—oy +1—f1
Qg — 0 (fl_al)(fQ_fl) fi—a
> + =, + ——— — .
o T 0—ai-f) M aCanaom
Let fi — a1 = 0o, 1. We have 71 > ¢ by (9.23), op, > 04, > N0y = 18,
by (9.21) and (9.22), and f. < f1 < 1/2. By the leftmost inequality in (9.22),
we obtain

2

2
L oo T, 7
l—ar = Ail=f1) 1—-fi~ 1-fa

therefore

s, de

fA—@A>m(f2—f1)= 7 (f2—f1)- (9.24)
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Recalling the function ¢ from (9.15), we see that

my

Py = wa (o) "a f:LA (L= fy)ra=™a (nA) .

Applying Stirling as before in (9.18), and because we have that n,/(n, —
m,)=(1-f1)/(1—f2) < (1 — fi)/(1— f*), we obtain

—1/(12n,) i —n Ty
) b <y (o) [
—-n 1_ f*
<y, (@) " (= fyma

For some ¢ € (a,, f,), and since (In¢y )"(€) > f, /€% > 1/f, by (9.16), we
get
(fA — O‘A)Q (fA - OKA)2-

Iy, (a,) = (v, )" (§) =5 > 5

Consequently, we can write

Pa < el/(12nA) €Xp < —n, (fA — aA)2) A 5 with \ = @ .
2, ) Vawma Vior

We see that n, /f, =n?/(mg —m1). By (9.24) we have
no. o (1= f1)? 82 (fo - i)’
fA (fA aA) 2 me —my (1 _ f1)2

Using also n < 2n, and the definition of p,, we obtain for A = A(J) that

= 5252(7712 — ml).

P(A(J) N {Npa, = ma})
< (el/(Gn) /\6—5252(7”2_’"1)/2/ 27r(m2 — ml)) P(A(J))

Summing on all subsets J of {1,...,n} with |[J| = mj, and because
UIJI:m1 A(J) is equal to {Ny, o, = m1} = F)y,, we get

P(Fy, NFy,) < <e1/<6">Ae5262<m2m1>/2/ 2m(my — m1)> P(F,)

End of proof of Theorem 9.6. — Let H be a sufficiently large integer, and
let us now define M = {jH : j € N} N [f.n, f*n] to be the set of multiples
of H located in the segment [f.n, f*n]. We fix m; € M and let mg > m; be
any other element of M. Then my —my = kH with k integer > 1. Summing
on k > 1 we see that

+00 622k H/2 +o0 otermsyz ds V2T(1/2)  Vorm

— < = .
; VEH 0 v Hs ceHO eHé6
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By Lemma 9.9, we get >,y P(Fp, N Fp,) < P(Fp,)/2 when
eH is larger than 2Xe!/(6™) /5. Tt follows then that at least one half of the
set F,, is not covered by the other sets F,, for me > m; and mqy € M,
therefore P(U,,.crr.msm, £m) 2 P(Unmerr,msm, Fm) + P(Fm,)/2 for mi €
M. The probability of UmE u Fm is thus at least equal to half of the sum of
probabilities. By (9.19) and (9.20) we get

e—¢ efl/(12sfn) |M‘

—c e e e T M
KQun > e VP(mLEJMFm)> 5 MEZMVP(Fm)> T o T

(9.25)

So far we could hope for a lower bound of order /n for the weak type
constant. But we have to comply with the allowability restriction, and we
must estimate the number of couples (f, a(f)) that are c-allowable. We let

~1/4
SeM € € _
* so that — = = S.Nn 1/4

€:1+8*n_1/4/f*, 772_1_5/f*
and € < f,. We choose a spacing H ~ n'/%. For every m € M, for f = m/n,
a=af) and f = a+ g,7 we have by (9.5), (9.22) and (9.23) that

gzlgfi\ 25 —n 14

Oo N NTF N8
For n > 256 we see that ¥ < 1/4 and y* < 1/n, thus (f,a(f)) is allowable
with constant ¢ = 1 according to Lemma 9.1. We choose the spacing integer
H such that H > 2X\e'/(6") /(§¢). Since ¢ = n?s.n~'/4, we arrive to the
condition

H > (2)\/01%s,) et/ (") /4
We obtain a set M C [f.n, f*n] of multiples of H with cardinality at least
equal to [(f*n— fin)/H] > [n?0s.(f* — f.)/(2))] e7 /(6" n3/4 — 1 where
each element m produces a l-allowable couple (f,a(f)). By (9.25), we get
that

- 5271 *
e~1/(12s,m) % S 0?05 (f* = fo) nl/4

1
KQmn 2 7 ———F—— z — " —0(n~Y?).
@nZ9e ov2m Jn dev/2mAs* ( )

Our version of the Iakovlev-Stromberg proof is not optimal, we shall
however try to figure out a numerical value for the constant that we get in
front of n'/4. We have for n large that € = o(1), thus 7 ~ 1. Let us introduce

z = I8+ (f* = f+) 83 "= fa _ f*(f*_f*)

73 As* I-fo /FFA—f) VIFO-f)
This expression increases with f*, so we set f* = 1/2, the maximal possibil-
ity. Then, the resulting value of z is maximal for f, = 3/4—4/11/48 ~ 0.271,
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yielding z > 0.102. When n is large, we have

nl/4
V4 _o(n*) > 0.0037n/4 > —

z
KQmn > —F—"N .
@n T ev2n 271

Notice that we have set the constant value V as V =V, ~ eV in di-
mension n. The corresponding sequence of values t, = v/2InV,, ~ n'/* for
the “test sets” {X,, o > ¢} is “invisible” to the Gaussian limit argument of
Theorem 9.5. O
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